1
|
Vögele J, Hymon D, Martins J, Ferner J, Jonker HA, Hargrove A, Weigand J, Wacker A, Schwalbe H, Wöhnert J, Duchardt-Ferner E. High-resolution structure of stem-loop 4 from the 5'-UTR of SARS-CoV-2 solved by solution state NMR. Nucleic Acids Res 2023; 51:11318-11331. [PMID: 37791874 PMCID: PMC10639051 DOI: 10.1093/nar/gkad762] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/19/2023] [Accepted: 09/09/2023] [Indexed: 10/05/2023] Open
Abstract
We present the high-resolution structure of stem-loop 4 of the 5'-untranslated region (5_SL4) of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) genome solved by solution state nuclear magnetic resonance spectroscopy. 5_SL4 adopts an extended rod-like structure with a single flexible looped-out nucleotide and two mixed tandem mismatches, each composed of a G•U wobble base pair and a pyrimidine•pyrimidine mismatch, which are incorporated into the stem-loop structure. Both the tandem mismatches and the looped-out residue destabilize the stem-loop structure locally. Their distribution along the 5_SL4 stem-loop suggests a role of these non-canonical elements in retaining functionally important structural plasticity in particular with regard to the accessibility of the start codon of an upstream open reading frame located in the RNA's apical loop. The apical loop-although mostly flexible-harbors residual structural features suggesting an additional role in molecular recognition processes. 5_SL4 is highly conserved among the different variants of SARS-CoV-2 and can be targeted by small molecule ligands, which it binds with intermediate affinity in the vicinity of the non-canonical elements within the stem-loop structure.
Collapse
Affiliation(s)
- Jennifer Vögele
- Institute for Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt/M., Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Daniel Hymon
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Jason Martins
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Jan Ferner
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Hendrik R A Jonker
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | | | - Julia E Weigand
- Philipps-University Marburg, Department of Pharmacy, Institute of Pharmaceutical Chemistry, Marbacher Weg 6, 35037 Marburg, Germany
| | - Anna Wacker
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt/M., Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Elke Duchardt-Ferner
- Institute for Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt/M., Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| |
Collapse
|
2
|
Berg MD, Brandl CJ. Transfer RNAs: diversity in form and function. RNA Biol 2021; 18:316-339. [PMID: 32900285 PMCID: PMC7954030 DOI: 10.1080/15476286.2020.1809197] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022] Open
Abstract
As the adaptor that decodes mRNA sequence into protein, the basic aspects of tRNA structure and function are central to all studies of biology. Yet the complexities of their properties and cellular roles go beyond the view of tRNAs as static participants in protein synthesis. Detailed analyses through more than 60 years of study have revealed tRNAs to be a fascinatingly diverse group of molecules in form and function, impacting cell biology, physiology, disease and synthetic biology. This review analyzes tRNA structure, biosynthesis and function, and includes topics that demonstrate their diversity and growing importance.
Collapse
Affiliation(s)
- Matthew D. Berg
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | | |
Collapse
|
3
|
Rybak MY, Rayevsky AV, Gudzera OI, Tukalo MA. Stereospecificity control in aminoacyl-tRNA-synthetases: new evidence of d-amino acids activation and editing. Nucleic Acids Res 2019; 47:9777-9788. [PMID: 31504788 PMCID: PMC6765224 DOI: 10.1093/nar/gkz756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 02/02/2023] Open
Abstract
The homochirality of amino acids is vital for the functioning of the translation apparatus. l-Amino acids predominate in proteins and d-amino acids usually represent diverse regulatory functional physiological roles in both pro- and eukaryotes. Aminoacyl-tRNA-synthetases (aaRSs) ensure activation of proteinogenic or nonproteinogenic amino acids and attach them to cognate or noncognate tRNAs. Although many editing mechanisms by aaRSs have been described, data about the protective role of aaRSs in d-amino acids incorporation remained unknown. Tyrosyl- and alanyl-tRNA-synthetases were represented as distinct members of this enzyme family. To study the potential to bind and edit noncognate substrates, Thermus thermophilus alanyl-tRNA-synthetase (AlaRS) and tyrosyl-tRNA-synthetase were investigated in the context of d-amino acids recognition. Here, we showed that d-alanine was effectively activated by AlaRS and d-Ala-tRNAAla, formed during the erroneous aminoacylation, was edited by AlaRS. On the other hand, it turned out that d-aminoacyl-tRNA-deacylase (DTD), which usually hydrolyzes d-aminoacyl-tRNAs, was inactive against d-Ala-tRNAAla. To support the finding about DTD, computational docking and molecular dynamics simulations were run. Overall, our work illustrates the novel function of the AlaRS editing domain in stereospecificity control during translation together with trans-editing factor DTD. Thus, we propose different evolutionary strategies for the maintenance of chiral selectivity during translation.
Collapse
Affiliation(s)
- Mariia Yu Rybak
- Department of Protein Synthesis Enzymology, Institute of Molecular Biology and Genetics of the NAS of Ukraine, 150 Zabolotnogo Street, 03143, Kyiv, Ukraine
| | - Alexey V Rayevsky
- Department of Protein Synthesis Enzymology, Institute of Molecular Biology and Genetics of the NAS of Ukraine, 150 Zabolotnogo Street, 03143, Kyiv, Ukraine
| | - Olga I Gudzera
- Department of Protein Synthesis Enzymology, Institute of Molecular Biology and Genetics of the NAS of Ukraine, 150 Zabolotnogo Street, 03143, Kyiv, Ukraine
| | - Michael A Tukalo
- Department of Protein Synthesis Enzymology, Institute of Molecular Biology and Genetics of the NAS of Ukraine, 150 Zabolotnogo Street, 03143, Kyiv, Ukraine
| |
Collapse
|
4
|
Mistranslation: from adaptations to applications. Biochim Biophys Acta Gen Subj 2017; 1861:3070-3080. [PMID: 28153753 DOI: 10.1016/j.bbagen.2017.01.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND The conservation of the genetic code indicates that there was a single origin, but like all genetic material, the cell's interpretation of the code is subject to evolutionary pressure. Single nucleotide variations in tRNA sequences can modulate codon assignments by altering codon-anticodon pairing or tRNA charging. Either can increase translation errors and even change the code. The frozen accident hypothesis argued that changes to the code would destabilize the proteome and reduce fitness. In studies of model organisms, mistranslation often acts as an adaptive response. These studies reveal evolutionary conserved mechanisms to maintain proteostasis even during high rates of mistranslation. SCOPE OF REVIEW This review discusses the evolutionary basis of altered genetic codes, how mistranslation is identified, and how deviations to the genetic code are exploited. We revisit early discoveries of genetic code deviations and provide examples of adaptive mistranslation events in nature. Lastly, we highlight innovations in synthetic biology to expand the genetic code. MAJOR CONCLUSIONS The genetic code is still evolving. Mistranslation increases proteomic diversity that enables cells to survive stress conditions or suppress a deleterious allele. Genetic code variants have been identified by genome and metagenome sequence analyses, suppressor genetics, and biochemical characterization. GENERAL SIGNIFICANCE Understanding the mechanisms of translation and genetic code deviations enables the design of new codes to produce novel proteins. Engineering the translation machinery and expanding the genetic code to incorporate non-canonical amino acids are valuable tools in synthetic biology that are impacting biomedical research. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
|
5
|
Naganuma M, Sekine SI, Chong YE, Guo M, Yang XL, Gamper H, Hou YM, Schimmel P, Yokoyama S. The selective tRNA aminoacylation mechanism based on a single G•U pair. Nature 2014; 510:507-11. [PMID: 24919148 DOI: 10.1038/nature13440] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/06/2014] [Indexed: 11/09/2022]
Abstract
Ligation of tRNAs with their cognate amino acids, by aminoacyl-tRNA synthetases, establishes the genetic code. Throughout evolution, tRNA(Ala) selection by alanyl-tRNA synthetase (AlaRS) has depended predominantly on a single wobble base pair in the acceptor stem, G3•U70, mainly on the kcat level. Here we report the crystal structures of an archaeal AlaRS in complex with tRNA(Ala) with G3•U70 and its A3•U70 variant. AlaRS interacts with both the minor- and the major-groove sides of G3•U70, widening the major groove. The geometry difference between G3•U70 and A3•U70 is transmitted along the acceptor stem to the 3'-CCA region. Thus, the 3'-CCA region of tRNA(Ala) with G3•U70 is oriented to the reactive route that reaches the active site, whereas that of the A3•U70 variant is folded back into the non-reactive route. This novel mechanism enables the single wobble pair to dominantly determine the specificity of tRNA selection, by an approximate 100-fold difference in kcat.
Collapse
Affiliation(s)
- Masahiro Naganuma
- 1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Department of Biophysics and Biochemistry and Laboratory of Structural Biology, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [3] RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shun-ichi Sekine
- 1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Department of Biophysics and Biochemistry and Laboratory of Structural Biology, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [3] Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yeeting Esther Chong
- 1] The Skaggs Institute for Chemical Biology and the Department of Cell and Molecular Biology, The Scripps Research Institute, BCC-379, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] aTyr Pharma, 3545 John Hopkins Court, San Diego, California 92121, USA (Y.E.C.); Department of Cancer Biology, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, USA (M.G.)
| | - Min Guo
- 1] The Skaggs Institute for Chemical Biology and the Department of Cell and Molecular Biology, The Scripps Research Institute, BCC-379, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] aTyr Pharma, 3545 John Hopkins Court, San Diego, California 92121, USA (Y.E.C.); Department of Cancer Biology, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, USA (M.G.)
| | - Xiang-Lei Yang
- The Skaggs Institute for Chemical Biology and the Department of Cell and Molecular Biology, The Scripps Research Institute, BCC-379, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Paul Schimmel
- 1] The Skaggs Institute for Chemical Biology and the Department of Cell and Molecular Biology, The Scripps Research Institute, BCC-379, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2] The Scripps Florida Research Institute, 130 Scripps Way, 3B3 Jupiter, Florida 33458-5284, USA
| | - Shigeyuki Yokoyama
- 1] RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan [2] Department of Biophysics and Biochemistry and Laboratory of Structural Biology, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan [3] RIKEN Structural Biology Laboratory, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
6
|
Ananth P, Goldsmith G, Yathindra N. An innate twist between Crick's wobble and Watson-Crick base pairs. RNA (NEW YORK, N.Y.) 2013; 19:1038-1053. [PMID: 23861536 PMCID: PMC3708525 DOI: 10.1261/rna.036905.112] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Non-Watson-Crick pairs like the G·U wobble are frequent in RNA duplexes. Their geometric dissimilarity (nonisostericity) with the Watson-Crick base pairs and among themselves imparts structural variations decisive for biological functions. Through a novel circular representation of base pairs, a simple and general metric scheme for quantification of base-pair nonisostericity, in terms of residual twist and radial difference that can also envisage its mechanistic effect, is proposed. The scheme is exemplified by G·U and U·G wobble pairs, and their predicable local effects on helical twist angle are validated by MD simulations. New insights into a possible rationale for contextual occurrence of G·U and other non-WC pairs, as well as the influence of a G·U pair on other non-Watson-Crick pair neighborhood and RNA-protein interactions are obtained from analysis of crystal structure data. A few instances of RNA-protein interactions along the major groove are documented in addition to the well-recognized interaction of the G·U pair along the minor groove. The nonisostericity-mediated influence of wobble pairs for facilitating helical packing through long-range interactions in ribosomal RNAs is also reviewed.
Collapse
|
7
|
Alexander RW, Eargle J, Luthey-Schulten Z. Experimental and computational determination of tRNA dynamics. FEBS Lett 2009; 584:376-86. [PMID: 19932098 DOI: 10.1016/j.febslet.2009.11.061] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 11/14/2009] [Accepted: 11/16/2009] [Indexed: 10/20/2022]
Abstract
As the molecular representation of the genetic code, tRNA plays a central role in the translational machinery where it interacts with several proteins and other RNAs during the course of protein synthesis. These interactions exploit the dynamic flexibility of tRNA. In this minireview, we discuss the effects of modified bases, ions, and proteins on tRNA structure and dynamics and the challenges of observing its motions over the cycle of translation.
Collapse
Affiliation(s)
- Rebecca W Alexander
- Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109-7486, United States.
| | | | | |
Collapse
|
8
|
Computational analysis of tRNA identity. FEBS Lett 2009; 584:325-33. [PMID: 19944694 DOI: 10.1016/j.febslet.2009.11.084] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 11/20/2009] [Accepted: 11/20/2009] [Indexed: 11/22/2022]
Abstract
I review recent developments in computational analysis of tRNA identity. I suggest that the tRNA-protein interaction network is hierarchically organized, and coevolutionarily flexible. Its functional specificity of recognition and discrimination persists despite generic structural constraints and perturbative evolutionary forces. This flexibility comes from its arbitrary nature as a self-recognizing shape code. A revisualization of predicted Proteobacterial tRNA identity highlights open research problems. tRNA identity elements and their coevolution with proteins must be mapped structurally over the Tree of Life. These traits can also resolve deep roots in the Tree. I show that histidylation identity elements phylogenetically reposition Pelagibacter ubique within alpha-Proteobacteria.
Collapse
|
9
|
Tavares TJ, Beribisky AV, Johnson PE. Structure of the cytosine-cytosine mismatch in the thymidylate synthase mRNA binding site and analysis of its interaction with the aminoglycoside paromomycin. RNA (NEW YORK, N.Y.) 2009; 15:911-922. [PMID: 19329536 PMCID: PMC2673063 DOI: 10.1261/rna.1514909] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2008] [Accepted: 02/18/2009] [Indexed: 05/26/2023]
Abstract
The structure of a cytosine-cytosine (CC) mismatch-containing RNA molecule derived from a hairpin structure in the thymidylate synthase mRNA that binds the aminoglycoside paromomycin with high affinity was determined using nuclear magnetic resonance (NMR) spectroscopy. The cytosines in the mismatch form a noncanonical base pair where both cytosines are uncharged and stack within the stem of the RNA structure. Binding to paromomycin was analyzed using isothermal titration calorimetry (ITC) to demonstrate the necessity of the CC mismatch and to determine the affinity dissociation constant of this RNA to paromomycin to be 0.5 +/- 0.3 microM. The CC mismatch, and the neighboring GC base pairs experienced the highest degree of chemical shift changes in their H6 and H5 resonances indicating that paromomycin binds in the major groove at the CC mismatch site. In comparing the structure of CC mismatch RNA with a fully Watson-Crick GC base paired stem, the CC mismatch is shown to confer a widening of the major groove. This widening, combined with the dynamic nature of the CC mismatch, enables binding of paromomycin to this RNA molecule.
Collapse
Affiliation(s)
- Tony J Tavares
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | | | | |
Collapse
|
10
|
Giegé R. Toward a more complete view of tRNA biology. Nat Struct Mol Biol 2008; 15:1007-14. [PMID: 18836497 DOI: 10.1038/nsmb.1498] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 09/09/2008] [Indexed: 12/11/2022]
Abstract
Transfer RNAs are ancient molecules present in all domains of life. In addition to translating the genetic code into protein and defining the second genetic code together with aminoacyl-tRNA synthetases, tRNAs act in many other cellular functions. Robust phenomenological observations on the role of tRNAs in translation, together with massive sequence and crystallographic data, have led to a deeper physicochemical understanding of tRNA architecture, dynamics and identity. In vitro studies complemented by cell biology data already indicate how tRNA behaves in cellular environments, in particular in higher Eukarya. From an opposite approach, reverse evolution considerations suggest how tRNAs emerged as simplified structures from the RNA world. This perspective discusses what basic questions remain unanswered, how these answers can be obtained and how a more rational understanding of the function and dysfunction of tRNA can have applications in medicine and biotechnology.
Collapse
Affiliation(s)
- Richard Giegé
- Département Machineries Traductionnelles, Institut de Biologie Moléculaire et Cellulaire du Centre National de la Recherche Scientifique & Université Louis Pasteur, Strasbourg, France.
| |
Collapse
|
11
|
Korostelev A, Noller HF. The ribosome in focus: new structures bring new insights. Trends Biochem Sci 2007; 32:434-41. [PMID: 17764954 DOI: 10.1016/j.tibs.2007.08.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 07/02/2007] [Accepted: 08/02/2007] [Indexed: 01/19/2023]
Abstract
Recent all-atom crystal structures of 70S ribosome functional complexes provide a detailed description of how the ribosome interacts with its mRNA and tRNA substrates. The structures support the view that the fundamental steps of translation are based on RNA-RNA interactions, which in some cases underwent further refinement as a result of having recruited proteins. The structural basis of the discrimination of cognate tRNA, the high affinity for tRNA in the peptidyl-tRNA site, the structure of the peptidyl transferase catalytic center, the specificity of the exit site for deacylated tRNA and other functional properties of the ribosome are now explained, confirmed or visualized for the first time in complexes containing full-length tRNAs and defined mRNAs. Clues to the structural dynamics of translation are suggested by conformational changes that occur in both tRNA and the ribosome upon complex formation.
Collapse
Affiliation(s)
- Andrei Korostelev
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | |
Collapse
|
12
|
Korostelev A, Trakhanov S, Laurberg M, Noller HF. Crystal Structure of a 70S Ribosome-tRNA Complex Reveals Functional Interactions and Rearrangements. Cell 2006; 126:1065-77. [PMID: 16962654 DOI: 10.1016/j.cell.2006.08.032] [Citation(s) in RCA: 390] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 08/10/2006] [Accepted: 08/30/2006] [Indexed: 11/16/2022]
Abstract
Our understanding of the mechanism of protein synthesis has undergone rapid progress in recent years as a result of low-resolution X-ray and cryo-EM structures of ribosome functional complexes and high-resolution structures of ribosomal subunits and vacant ribosomes. Here, we present the crystal structure of the Thermus thermophilus 70S ribosome containing a model mRNA and two tRNAs at 3.7 A resolution. Many structural details of the interactions between the ribosome, tRNA, and mRNA in the P and E sites and the ways in which tRNA structure is distorted by its interactions with the ribosome are seen. Differences between the conformations of vacant and tRNA-bound 70S ribosomes suggest an induced fit of the ribosome structure in response to tRNA binding, including significant changes in the peptidyl-transferase catalytic site.
Collapse
Affiliation(s)
- Andrei Korostelev
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | | | | | | |
Collapse
|
13
|
McClain WH. Surprising contribution to aminoacylation and translation of non-Watson-Crick pairs in tRNA. Proc Natl Acad Sci U S A 2006; 103:4570-5. [PMID: 16537400 PMCID: PMC1450212 DOI: 10.1073/pnas.0600592103] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecules of transfer RNA (tRNA) typically contain four stems composed of Watson-Crick (W-C) base pairs and infrequent mispairs such as G-U and A-C. The latter mispairs are fundamental units of RNA secondary structure found in nearly every class of RNA and are nearly isomorphic to W-C pairs. Therefore, they often substitute for G-C or A-U base pairs. The mispairs also have unique chemical, structural, and dynamic conformational properties, which can only be partially mimicked by W-C base pairs. Here, I characterize the identities and tasks of six mutant G-U and A-C mispairs in Escherichia coli tRNA(Gly) using genetic and bioinformatic tools and show that mispairs are significantly more important for aminoacylation and translation than previously realized. Mispairs boost aminoacylation and translation primarily because they activate tRNA by means of their conformational flexibility. The statistical preservation of the six mutant mispair sites across tRNA(Gly) in many organisms points to a fundamental structure-function signature within tRNA(Gly) with possible analogous missions in other RNAs.
Collapse
Affiliation(s)
- William H McClain
- Department of Bacteriology, University of Wisconsin, 420 Henry Mall, Madison, WI 53706-1569, USA.
| |
Collapse
|
14
|
Mokdad A, Krasovska MV, Sponer J, Leontis NB. Structural and evolutionary classification of G/U wobble basepairs in the ribosome. Nucleic Acids Res 2006; 34:1326-41. [PMID: 16522645 PMCID: PMC1390688 DOI: 10.1093/nar/gkl025] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We present a comprehensive structural, evolutionary and molecular dynamics (MD) study of the G/U wobble basepairs in the ribosome based on high-resolution crystal structures, including the recent Escherichia coli structure. These basepairs are classified according to their tertiary interactions, and sequence conservation at their positions is determined. G/U basepairs participating in tertiary interactions are more conserved than those lacking any interactions. Specific interactions occurring in the G/U shallow groove pocket--like packing interactions (P-interactions) and some phosphate backbone interactions (phosphate-in-pocket interactions)--lead to higher G/U conservation than others. Two salient cases of unique phylogenetic compensation are discovered. First, a P-interaction is conserved through a series of compensatory mutations involving all four participating nucleotides to preserve or restore the G/U in the optimal orientation. Second, a G/U basepair forming a P-interaction and another one forming a phosphate-in-pocket interaction are replaced by GNRA loops that maintain similar tertiary contacts. MD simulations were carried out on eight P-interactions. The specific GU/CG signature of this interaction observed in structure and sequence analysis was rationalized, and can now be used for improving sequence alignments.
Collapse
MESH Headings
- Base Pairing
- Base Sequence
- Conserved Sequence
- Crystallography, X-Ray
- Evolution, Molecular
- Guanine/chemistry
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Phosphates/chemistry
- RNA, Archaeal/chemistry
- RNA, Bacterial/chemistry
- RNA, Ribosomal/chemistry
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 5S/chemistry
- Ribosomes/chemistry
- Sequence Analysis, RNA
- Uracil/chemistry
Collapse
Affiliation(s)
- Ali Mokdad
- To whom correspondence should be addressed. Tel: +1 419 372 2332; Fax: +1 419 372 2024;
| | - Maryna V. Krasovska
- Institute of Biophysics, Academy of Sciences of the Czech RepublicKralovopolska 135, 612 65, Brno, Czech Republic
| | - Jiri Sponer
- Institute of Biophysics, Academy of Sciences of the Czech RepublicKralovopolska 135, 612 65, Brno, Czech Republic
| | - Neocles B. Leontis
- To whom correspondence should be addressed. Tel: +1 419 372 2332; Fax: +1 419 372 2024;
| |
Collapse
|
15
|
Choi H, Gabriel K, Schneider J, Otten S, McClain WH. Recognition of acceptor-stem structure of tRNA(Asp) by Escherichia coli aspartyl-tRNA synthetase. RNA (NEW YORK, N.Y.) 2003; 9:386-393. [PMID: 12649491 PMCID: PMC1370406 DOI: 10.1261/rna.2139703] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2002] [Accepted: 12/16/2002] [Indexed: 05/23/2023]
Abstract
Protein-RNA recognition between aminoacyl-tRNA synthetases and tRNA is highly specific and essential for cell viability. We investigated the structure-function relationships involved in the interaction of the Escherichia coli tRNA(Asp) acceptor stem with aspartyl-tRNA synthetase. The goal was to isolate functionally active mutants and interpret them in terms of the crystal structure of the synthetase-tRNA(Asp) complex. Mutants were derived from Saccharomyces cerevisiae tRNA(Asp), which is inactive with E. coli aspartyl-tRNA synthetase, allowing a genetic selection of active tRNAs in a tRNA(Asp) knockout strain of E. coli. The mutants were obtained by directed mutagenesis or library selections that targeted the acceptor stem of the yeast tRNA(Asp) gene. The mutants provide a rich source of tRNA(Asp) sequences, which show that the sequence of the acceptor stem can be extensively altered while allowing the tRNA to retain substantial aminoacylation and cell-growth functions. The predominance of tRNA backbone-mediated interactions observed between the synthetase and the acceptor stem of the tRNA in the crystal and the mutability of the acceptor stem suggest that many of the corresponding wild-type bases are replaceable by alternative sequences, so long as they preserve the initial backbone structure of the tRNA. Backbone interactions emerge as an important functional component of the tRNA-synthetase interaction.
Collapse
Affiliation(s)
- Hyunsic Choi
- Department of Bacteriology, University of Wisconsin, Madison, Madison, Wisconsin 53706-1567, USA
| | | | | | | | | |
Collapse
|
16
|
Choi H, Otten S, McClain WH. Isolation of novel tRNA(Ala) mutants by library selection in a tRNA(Ala) knockout strain. Biochimie 2002; 84:705-11. [PMID: 12457558 DOI: 10.1016/s0300-9084(02)01407-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The relationship between tRNA structure and function has been widely investigated by site-directed mutagenesis. This method has been a very useful tool to reveal the critical bases in tRNAs that are important for recognition and aminoacylation, but has been limited by the large number of possible base combinations in tRNA molecules. We have devised a new method that uses tRNA knockout cells for selection of functional tRNAs from a mutant tRNA gene library to overcome this limitation. To explore the mechanism of tRNA(Ala) recognition, the bases of the acceptor-stem region were randomized and active mutants were selected in a tRNA(Ala) knockout strain. Mutants of tRNA(Ala) having diverse sequence combinations in the acceptor-stem region and a broad range of functional activity to support knockout cell growth were isolated. The mutant tRNAs selected by the method included molecules containing novel base substitutions as well as extensively altered base combinations that would not be readily generated by rationally designed site-directed mutagenesis. Our results emphasize the importance of the acceptor stem as a structural unit in which some nucleotides may carry more weight than others, but in summation every nucleotide contributes to the interaction with the enzyme.
Collapse
Affiliation(s)
- H Choi
- Department of Bacteriology, University of Wisconsin, WI Madison 53706-1567, USA
| | | | | |
Collapse
|
17
|
Shimada N, Suzuki T, Watanabe K. Dual mode recognition of two isoacceptor tRNAs by mammalian mitochondrial seryl-tRNA synthetase. J Biol Chem 2001; 276:46770-8. [PMID: 11577083 DOI: 10.1074/jbc.m105150200] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Animal mitochondrial translation systems contain two serine tRNAs, corresponding to the codons AGY (Y = U and C) and UCN (N = U, C, A, and G), each possessing an unusual secondary structure; tRNA(GCU)(Ser) (for AGY) lacks the entire D arm, whereas tRNA(UGA)(Ser) (for UCN) has an unusual cloverleaf configuration. We previously demonstrated that a single bovine mitochondrial seryl-tRNA synthetase (mt SerRS) recognizes these topologically distinct isoacceptors having no common sequence or structure. Recombinant mt SerRS clearly footprinted at the TPsiC loop of each isoacceptor, and kinetic studies revealed that mt SerRS specifically recognized the TPsiC loop sequence in each isoacceptor. However, in the case of tRNA(UGA)(Ser), TPsiC loop-D loop interaction was further required for recognition, suggesting that mt SerRS recognizes the two substrates by distinct mechanisms. mt SerRS could slightly but significantly misacylate mitochondrial tRNA(Gln), which has the same TPsiC loop sequence as tRNA(UGA)(Ser), implying that the fidelity of mitochondrial translation is maintained by kinetic discrimination of tRNAs in the network of aminoacyl-tRNA synthetases.
Collapse
Affiliation(s)
- N Shimada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | |
Collapse
|
18
|
Moulinier L, Eiler S, Eriani G, Gangloff J, Thierry JC, Gabriel K, McClain W, Moras D. The structure of an AspRS-tRNA(Asp) complex reveals a tRNA-dependent control mechanism. EMBO J 2001; 20:5290-301. [PMID: 11566892 PMCID: PMC125622 DOI: 10.1093/emboj/20.18.5290] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The 2.6 A resolution crystal structure of an inactive complex between yeast tRNA(Asp) and Escherichia coli aspartyl-tRNA synthetase reveals the molecular details of a tRNA-induced mechanism that controls the specificity of the reaction. The dimer is asymmetric, with only one of the two bound tRNAs entering the active site cleft of its subunit. However, the flipping loop, which controls the proper positioning of the amino acid substrate, acts as a lid and prevents the correct positioning of the terminal adenosine. The structure suggests that the acceptor stem regulates the loop movement through sugar phosphate backbone- protein interactions. Solution and cellular studies on mutant tRNAs confirm the crucial role of the tRNA three-dimensional structure versus a specific recognition of bases in the control mechanism.
Collapse
Affiliation(s)
| | | | - G. Eriani
- UPR 9004, Laboratoire de Biologie et Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 rue Laurent Fries, BP 163, 67404 Illkirch Cedex, C.U. de Strasbourg,
UPR9002, IBMC, 15 rue René Descartes, 67084 Strasbourg, France and Department of Bacteriology, University of Wisconsin, Madison, WI 53706-1567, USA Corresponding author e-mail:
| | - J. Gangloff
- UPR 9004, Laboratoire de Biologie et Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 rue Laurent Fries, BP 163, 67404 Illkirch Cedex, C.U. de Strasbourg,
UPR9002, IBMC, 15 rue René Descartes, 67084 Strasbourg, France and Department of Bacteriology, University of Wisconsin, Madison, WI 53706-1567, USA Corresponding author e-mail:
| | | | - K. Gabriel
- UPR 9004, Laboratoire de Biologie et Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 rue Laurent Fries, BP 163, 67404 Illkirch Cedex, C.U. de Strasbourg,
UPR9002, IBMC, 15 rue René Descartes, 67084 Strasbourg, France and Department of Bacteriology, University of Wisconsin, Madison, WI 53706-1567, USA Corresponding author e-mail:
| | - W.H. McClain
- UPR 9004, Laboratoire de Biologie et Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 rue Laurent Fries, BP 163, 67404 Illkirch Cedex, C.U. de Strasbourg,
UPR9002, IBMC, 15 rue René Descartes, 67084 Strasbourg, France and Department of Bacteriology, University of Wisconsin, Madison, WI 53706-1567, USA Corresponding author e-mail:
| | - D. Moras
- UPR 9004, Laboratoire de Biologie et Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 rue Laurent Fries, BP 163, 67404 Illkirch Cedex, C.U. de Strasbourg,
UPR9002, IBMC, 15 rue René Descartes, 67084 Strasbourg, France and Department of Bacteriology, University of Wisconsin, Madison, WI 53706-1567, USA Corresponding author e-mail:
| |
Collapse
|
19
|
Moor NA, Ankilova VN, Lavrik OI, Favre A. Determination of tRNA(Phe) nucleotides contacting the subunits of Thermus thermophilus phenylalanyl-tRNA synthetase by photoaffinity crosslinking. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1518:226-36. [PMID: 11311934 DOI: 10.1016/s0167-4781(00)00294-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The nucleotides of tRNA(Phe) interacting with the subunits of Thermus thermophilus phenylalanyl-tRNA synthetase (the alpha(2)beta(2) heterotetramer) have been determined by photoaffinity crosslinking of randomly s(4)U-monosubstituted tRNA(Phe) transcripts which retain aminoacylation parameters closely similar to those of the native tRNA(Phe). The thiolated transcripts have been fractionated by affinity electrophoresis and separately crosslinked to the enzyme. Sites of crosslinking to the beta subunit have been identified at positions 33 and 39 and crosslinking sites to the alpha subunit have been localized at positions 20, 45 and 47, using alkaline hydrolysis analysis of the crosslinked proteinase K-treated tRNAs. An additional crosslink to the beta subunit, not identified in the full-length crosslinked tRNAs, has been deduced to occur at position 12, based on the analysis of an unusual (fast migrating) crosslinked product. Nucleotide s(4)U8 of native tRNA(Phe) has been shown to form a minor crosslink to the alpha subunit. Four of the seven crosslinking sites, namely nucleotides 8, 12, 20 and 39, are among those shown to be protected against cleavage by iodine in footprinting experiments; in contrast, only nucleotide 12 is among the contact sites defined in the crystal structure. The data of independent biochemical approaches strongly suggest conformational flexibility of the complex under functional conditions, thus reflecting the importance of macromolecular dynamics for the interaction.
Collapse
Affiliation(s)
- N A Moor
- Novosibirsk Institute of Bioorganic Chemistry, Siberian Division of the Russian Academy of Sciences, Novosibirsk 630090, Russia.
| | | | | | | |
Collapse
|
20
|
Abstract
Aminoacyl-tRNAs are substrates for translation and are pivotal in determining how the genetic code is interpreted as amino acids. The function of aminoacyl-tRNA synthesis is to precisely match amino acids with tRNAs containing the corresponding anticodon. This is primarily achieved by the direct attachment of an amino acid to the corresponding tRNA by an aminoacyl-tRNA synthetase, although intrinsic proofreading and extrinsic editing are also essential in several cases. Recent studies of aminoacyl-tRNA synthesis, mainly prompted by the advent of whole genome sequencing and the availability of a vast body of structural data, have led to an expanded and more detailed picture of how aminoacyl-tRNAs are synthesized. This article reviews current knowledge of the biochemical, structural, and evolutionary facets of aminoacyl-tRNA synthesis.
Collapse
Affiliation(s)
- M Ibba
- Center for Biomolecular Recognition, IMBG Laboratory B, The Panum Institute, DK-2200, Copenhagen N, Denmark.
| | | |
Collapse
|
21
|
Varani G, McClain WH. The G x U wobble base pair. A fundamental building block of RNA structure crucial to RNA function in diverse biological systems. EMBO Rep 2000; 1:18-23. [PMID: 11256617 PMCID: PMC1083677 DOI: 10.1093/embo-reports/kvd001] [Citation(s) in RCA: 333] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The G x U wobble base pair is a fundamental unit of RNA secondary structure that is present in nearly every class of RNA from organisms of all three phylogenetic domains. It has comparable thermodynamic stability to Watson-Crick base pairs and is nearly isomorphic to them. Therefore, it often substitutes for G x C or A x U base pairs. The G x U wobble base pair also has unique chemical, structural, dynamic and ligand-binding properties, which can only be partially mimicked by Watson-Crick base pairs or other mispairs. These features mark sites containing G x U pairs for recognition by proteins and other RNAs and allow the wobble pair to play essential functional roles in a remarkably wide range of biological processes.
Collapse
Affiliation(s)
- G Varani
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
22
|
Abstract
Computer simulation methods are increasingly being used to study possible conformations and dynamics of structural motifs in RNA. Recent results of molecular dynamics simulations and continum solvent studies of RNA structures and RNA-ligand complexes show promising agreement with experimental data. Combined with the ongoing progress in the experimental characterization of RNA structure and thermodynamics, these computational approaches can help to better understand the mechanism of RNA structure formation and the binding of ligands.
Collapse
Affiliation(s)
- M Zacharias
- AG Theoretische Biophysik, Institut für Molekulare Biotechnologie, Jena, D-07745, Germany.
| |
Collapse
|
23
|
Abstract
The wobble GoU pairs have been implicated in several biological processes where RNA molecules play a key role. We review the geometrical and conformational properties of wobble GoU pairs on the basis of available crystal structures of RNAs at high resolution. The similarities with the wobble A+oC pairs and UoU pairs are illustrated, while the differences with the recently discovered bifurcated G x U pairs are contrasted.
Collapse
Affiliation(s)
- B Masquida
- Institut de Biologie Moléculaire et Cellulaire du CNRS, UPR9002, Strasbourg, France
| | | |
Collapse
|