1
|
Rivest JF, Carter S, Goupil C, Antérieux P, Cyr D, Ung RV, Dal Soglio D, Mac-Way F, Waters PJ, Paganelli M, Doyon Y. In vivo dissection of the mouse tyrosine catabolic pathway with CRISPR-Cas9 identifies modifier genes affecting hereditary tyrosinemia type 1. Genetics 2024; 228:iyae139. [PMID: 39178380 PMCID: PMC11457941 DOI: 10.1093/genetics/iyae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 08/12/2024] [Indexed: 08/25/2024] Open
Abstract
Hereditary tyrosinemia type 1 is an autosomal recessive disorder caused by mutations (pathogenic variants) in fumarylacetoacetate hydrolase, an enzyme involved in tyrosine degradation. Its loss results in the accumulation of toxic metabolites that mainly affect the liver and kidneys and can lead to severe liver disease and liver cancer. Tyrosinemia type 1 has a global prevalence of approximately 1 in 100,000 births but can reach up to 1 in 1,500 births in some regions of Québec, Canada. Mutating functionally related "modifier' genes (i.e. genes that, when mutated, affect the phenotypic impacts of mutations in other genes) is an emerging strategy for treating human genetic diseases. In vivo somatic genome editing in animal models of these diseases is a powerful means to identify modifier genes and fuel treatment development. In this study, we demonstrate that mutating additional enzymes in the tyrosine catabolic pathway through liver-specific genome editing can relieve or worsen the phenotypic severity of a murine model of tyrosinemia type 1. Neonatal gene delivery using recombinant adeno-associated viral vectors expressing Staphylococcus aureus Cas9 under the control of a liver-specific promoter led to efficient gene disruption and metabolic rewiring of the pathway, with systemic effects that were distinct from the phenotypes observed in whole-body knockout models. Our work illustrates the value of using in vivo genome editing in model organisms to study the direct effects of combining pathological mutations with modifier gene mutations in isogenic settings.
Collapse
Affiliation(s)
- Jean-François Rivest
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Québec City, QC G1V 4G2, Canada
- Université Laval Cancer Research Centre, Québec City, QC G1V 0A6, Canada
| | - Sophie Carter
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Québec City, QC G1V 4G2, Canada
- Université Laval Cancer Research Centre, Québec City, QC G1V 0A6, Canada
| | - Claudia Goupil
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Québec City, QC G1V 4G2, Canada
- Université Laval Cancer Research Centre, Québec City, QC G1V 0A6, Canada
| | - Pénélope Antérieux
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Québec City, QC G1V 4G2, Canada
- Université Laval Cancer Research Centre, Québec City, QC G1V 0A6, Canada
| | - Denis Cyr
- Medical Genetics Service, Dept. Laboratory Medicine and Dept. Pediatrics, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC J1H 5N4, Canada
| | - Roth-Visal Ung
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Québec City, QC G1V 4G2, Canada
| | - Dorothée Dal Soglio
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Fabrice Mac-Way
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Québec City, QC G1V 4G2, Canada
| | - Paula J Waters
- Medical Genetics Service, Dept. Laboratory Medicine and Dept. Pediatrics, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC J1H 5N4, Canada
| | - Massimiliano Paganelli
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Yannick Doyon
- Centre Hospitalier Universitaire de Québec Research Center and Faculty of Medicine, Laval University, Québec City, QC G1V 4G2, Canada
- Université Laval Cancer Research Centre, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
2
|
Mattar CN, Chew WL, Lai PS. Embryo and fetal gene editing: Technical challenges and progress toward clinical applications. Mol Ther Methods Clin Dev 2024; 32:101229. [PMID: 38533521 PMCID: PMC10963250 DOI: 10.1016/j.omtm.2024.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Gene modification therapies (GMTs) are slowly but steadily making progress toward clinical application. As the majority of rare diseases have an identified genetic cause, and as rare diseases collectively affect 5% of the global population, it is increasingly important to devise gene correction strategies to address the root causes of the most devastating of these diseases and to provide access to these novel therapies to the most affected populations. The main barriers to providing greater access to GMTs continue to be the prohibitive cost of developing these novel drugs at clinically relevant doses, subtherapeutic effects, and toxicity related to the specific agents or high doses required. In vivo strategy and treating younger patients at an earlier course of their disease could lower these barriers. Although currently regarded as niche specialties, prenatal and preconception GMTs offer a robust solution to some of these barriers. Indeed, treating either the fetus or embryo benefits from economy of scale, targeting pre-pathological tissues in the fetus prior to full pathogenesis, or increasing the likelihood of complete tissue targeting by correcting pluripotent embryonic cells. Here, we review advances in embryo and fetal GMTs and discuss requirements for clinical application.
Collapse
Affiliation(s)
- Citra N.Z. Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, Singapore 119228
- Department of Obstetrics and Gynaecology, National University Health System, Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, Singapore 119228
| | - Wei Leong Chew
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, 60 Biopolis St, Singapore, Singapore 138672
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, Singapore 119228
| |
Collapse
|
3
|
Mattar CNZ, Chan JKY, Choolani M. Gene modification therapies for hereditary diseases in the fetus. Prenat Diagn 2023; 43:674-686. [PMID: 36965009 PMCID: PMC10946994 DOI: 10.1002/pd.6347] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/27/2023]
Abstract
Proof-of-principle disease models have demonstrated the feasibility of an intrauterine gene modification therapy (in utero gene therapy (IUGT)) approach to hereditary diseases as diverse as coagulation disorders, haemoglobinopathies, neurogenetic disorders, congenital metabolic, and pulmonary diseases. Gene addition, which requires the delivery of an integrating or episomal transgene to the target cell nucleus to be transcribed, and gene editing, where the mutation is corrected within the gene of origin, have both been used successfully to increase normal protein production in a bid to reverse or arrest pathology in utero. While most experimental models have employed lentiviral, adenoviral, and adeno-associated viral vectors engineered to efficiently enter target cells, newer models have also demonstrated the applicability of non-viral lipid nanoparticles. Amelioration of pathology is dependent primarily on achieving sustained therapeutic transgene expression, silencing of transgene expression, production of neutralising antibodies, the dilutional effect of the recipient's growth on the mass of transduced cells, and the degree of pre-existing cellular damage. Safety assessment of any IUGT strategy will require long-term postnatal surveillance of both the fetal recipient and the maternal bystander for cell and genome toxicity, oncogenic potential, immune-responsiveness, and germline mutation. In this review, we discuss advances in the field and the push toward clinical translation of IUGT.
Collapse
Affiliation(s)
- Citra N. Z. Mattar
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- National University Health SystemsSingaporeSingapore
| | - Jerry K. Y. Chan
- KK Women's and Children's HospitalSingaporeSingapore
- Duke‐NUS Medical SchoolSingaporeSingapore
| | - Mahesh Choolani
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- National University Health SystemsSingaporeSingapore
| |
Collapse
|
4
|
Pu W, Zhu H, Zhang M, Pikiolek M, Ercan C, Li J, Huang X, Han X, Zhang Z, Lv Z, Li Y, Liu K, He L, Liu X, Heim MH, Terracciano LM, Tchorz JS, Zhou B. Bipotent transitional liver progenitor cells contribute to liver regeneration. Nat Genet 2023; 55:651-664. [PMID: 36914834 PMCID: PMC10101857 DOI: 10.1038/s41588-023-01335-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/07/2023] [Indexed: 03/16/2023]
Abstract
Following severe liver injury, when hepatocyte-mediated regeneration is impaired, biliary epithelial cells (BECs) can transdifferentiate into functional hepatocytes. However, the subset of BECs with such facultative tissue stem cell potential, as well as the mechanisms enabling transdifferentiation, remains elusive. Here we identify a transitional liver progenitor cell (TLPC), which originates from BECs and differentiates into hepatocytes during regeneration from severe liver injury. By applying a dual genetic lineage tracing approach, we specifically labeled TLPCs and found that they are bipotent, as they either differentiate into hepatocytes or re-adopt BEC fate. Mechanistically, Notch and Wnt/β-catenin signaling orchestrate BEC-to-TLPC and TLPC-to-hepatocyte conversions, respectively. Together, our study provides functional and mechanistic insights into transdifferentiation-assisted liver regeneration.
Collapse
Affiliation(s)
- Wenjuan Pu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Huan Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Mingjun Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Monika Pikiolek
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Caner Ercan
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Jie Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiuzhen Huang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ximeng Han
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhenqian Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zan Lv
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yan Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Kuo Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Lingjuan He
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Xiuxiu Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Markus H Heim
- Department of Biomedicine, University Hospital and University of Basel, Basel, Switzerland.,Clarunis University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Luigi M Terracciano
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,IRCCS Humanitas Research Hospital, Milan, Italy
| | - Jan S Tchorz
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland.
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China. .,Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, China. .,New Cornerstone Science Laboratory, Shenzhen, China.
| |
Collapse
|
5
|
Matsumoto T. Implications of Polyploidy and Ploidy Alterations in Hepatocytes in Liver Injuries and Cancers. Int J Mol Sci 2022; 23:ijms23169409. [PMID: 36012671 PMCID: PMC9409051 DOI: 10.3390/ijms23169409] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Polyploidy, a condition in which more than two sets of chromosomes are present in a cell, is a characteristic feature of hepatocytes. A significant number of hepatocytes physiologically undergo polyploidization at a young age. Polyploidization of hepatocytes is enhanced with age and in a diseased liver. It is worth noting that polyploid hepatocytes can proliferate, in marked contrast to other types of polyploid cells, such as megakaryocytes and cardiac myocytes. Polyploid hepatocytes divide to maintain normal liver homeostasis and play a role in the regeneration of the damaged liver. Furthermore, polyploid hepatocytes have been shown to dynamically reduce ploidy during liver regeneration. Although it is still unclear why hepatocytes undergo polyploidization, accumulating evidence has revealed that alterations in the ploidy in hepatocytes are involved in the pathophysiology of liver cirrhosis and carcinogenesis. This review discusses the significance of hepatocyte ploidy in physiological liver function, liver injury, and liver cancer.
Collapse
Affiliation(s)
- Tomonori Matsumoto
- Department of Molecular Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
6
|
2-Year-Old and 3-Year-Old Italian ALS Patients with Novel ALS2 Mutations: Identification of Key Metabolites in Their Serum and Plasma. Metabolites 2022; 12:metabo12020174. [PMID: 35208248 PMCID: PMC8878019 DOI: 10.3390/metabo12020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 11/17/2022] Open
Abstract
Pathogenic variants in ALS2 have been detected mostly in juvenile cases of amyotrophic lateral sclerosis (ALS), affecting mainly children and teenagers. Patients with ALS2 mutations demonstrate early onset cortical involvement in ALS. Currently, there are no effective treatment options. There is an immense need to reveal the underlying causes of the disease and to identify potential biomarkers. To shed light onto the metabolomic events that are perturbed with respect to ALS2 mutations, we investigated the metabolites present in the serum and plasma of a three-year-old female patient (AO) harboring pathogenic variants in ALS2, together with her relatives, healthy male and female controls, as well as another two-year-old patient DH, who had mutations at different locations and domains of ALS2. Serum and plasma samples were analyzed with a quantitative metabolomic approach to reveal the identity of metabolites present in serum and plasma. This study not only shed light onto the perturbed cellular pathways, but also began to reveal the presence of a distinct set of key metabolites that are selectively present or absent with respect to ALS2 mutations, laying the foundation for utilizing metabolites as potential biomarkers for a subset of ALS.
Collapse
|
7
|
Akbaba AI, Ozgül RK, Dursun A. Presentation of 14 alkaptonuria patients from Turkey. J Pediatr Endocrinol Metab 2020; 33:289-294. [PMID: 31927521 DOI: 10.1515/jpem-2019-0163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 11/19/2019] [Indexed: 11/15/2022]
Abstract
Background Alkaptonuria (OMIM: 203500) is an inborn error of metabolism due to homogentisate 1,2-dioxygenase homogentisic acid 1,2 dioxygenase (HGD) enzyme deficiency. Due to the enzyme deficiency, homogentisic acid cannot be converted to maleylacetoacetate and it accumulates in body fluids. Increased homogentisic acid is converted to benzoquinones, the resulting benzoquinones are converted to melanin-like pigments, and these pigments are deposited in collagen - this process is called ochronosis. In patients with alkaptonuria, the urine is darkened, which is misinterpreted as hematuria, the incidences of renal stones, arthritis and cardiac valve calcification are increased, and spontaneous tendon ruptures, prostatitis and prostate stones can be encountered. The present study aimed to evaluate the HGD gene mutations in 14 patients with alkaptonuria. Methods Fourteen patients diagnosed with alkaptonuria and followed up from 1990 to 2014 were retrospectively evaluated. Their demographic, clinical and treatment-related data were retrieved from hospital files. For mutation analysis, genomic DNAs of the patients were isolated from their peripheral blood samples. Variations in the HGD gene were scanned on the HGD-mutation database (http://hgddatabase.cvtisr.sk). Results Among 14 patients, the female/male ratio was 1/1 and the median age was 9 years (range, 6-59 years). All patients were symptomatic at their first visit and the most common symptom was dark urine (71%) followed by arthralgia. Independent of the urinary homogentisic acid concentrations, patients with the presenting symptom of arthralgia were elder. Nine different mutations including p.Ser59AlafsX52, p.Gly161Arg, p.Asn219Ser, p.Gly251Asp, p.Pro274Leu, p.Arg330Ser, p.Gly372Ala, c.656_657insAATCAA and a novel mutation of p.Val316Ile were detected. All of the pediatric-age patients (n = 13) were treated with ascorbic acid at a dose of 250-1000 mg/day. Conclusions Nine different HGD gene mutations with a novel one, p.Val316Ile, were detected. The most common mutation was p.Ser59AlafsX52 for the HGD gene followed by p.Gly161Arg and p.asn219Ser, which can be considered specific to the Turkish population.
Collapse
Affiliation(s)
- Alper Ilker Akbaba
- Department of Pediatrics, Hacettepe University Faculty of Medicine, Gevher Nesibe Cd., Altındağ, 06230, Ankara, Turkey, Phone: +90 505 329 4554
| | - Rıza Köksal Ozgül
- Department of Pediatric Metabolism, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Ali Dursun
- Department of Pediatric Metabolism, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
8
|
Wilkinson PD, Alencastro F, Delgado ER, Leek MP, Weirich MP, Otero PA, Roy N, Brown WK, Oertel M, Duncan AW. Polyploid Hepatocytes Facilitate Adaptation and Regeneration to Chronic Liver Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1241-1255. [PMID: 30928253 DOI: 10.1016/j.ajpath.2019.02.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/29/2019] [Accepted: 02/25/2019] [Indexed: 01/10/2023]
Abstract
The liver contains diploid and polyploid hepatocytes (tetraploid, octaploid, etc.), with polyploids comprising ≥90% of the hepatocyte population in adult mice. Polyploid hepatocytes form multipolar spindles in mitosis, which lead to chromosome gains/losses and random aneuploidy. The effect of aneuploidy on liver function is unclear, and the degree of liver aneuploidy is debated, with reports showing aneuploidy affects 5% to 60% of hepatocytes. To study relationships among liver polyploidy, aneuploidy, and adaptation, mice lacking E2f7 and E2f8 in the liver (LKO), which have a polyploidization defect, were used. Polyploids were reduced fourfold in LKO livers, and LKO hepatocytes remained predominantly diploid after extensive proliferation. Moreover, nearly all LKO hepatocytes were euploid compared with control hepatocytes, suggesting polyploid hepatocytes are required for production of aneuploid progeny. To determine whether reduced polyploidy impairs adaptation, LKO mice were bred onto a tyrosinemia background, a disease model whereby the liver can develop disease-resistant, regenerative nodules. Although tyrosinemic LKO mice were more susceptible to morbidities and death associated with tyrosinemia-induced liver failure, they developed regenerating nodules similar to control mice. Analyses revealed that nodules in the tyrosinemic livers were generated by aneuploidy and inactivating mutations. In summary, we identified new roles for polyploid hepatocytes and demonstrated that they are required for the formation of aneuploid progeny and can facilitate adaptation to chronic liver disease.
Collapse
Affiliation(s)
- Patrick D Wilkinson
- Department of Pathology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Frances Alencastro
- Department of Pathology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Evan R Delgado
- Department of Pathology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Madeleine P Leek
- Department of Pathology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Matthew P Weirich
- Department of Pathology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - P Anthony Otero
- Department of Pathology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nairita Roy
- Department of Pathology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Whitney K Brown
- Department of Pathology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael Oertel
- Department of Pathology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andrew W Duncan
- Department of Pathology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
9
|
Nygaard S, Barzel A, Haft A, Major A, Finegold M, Kay MA, Grompe M. A universal system to select gene-modified hepatocytes in vivo. Sci Transl Med 2017; 8:342ra79. [PMID: 27280686 DOI: 10.1126/scitranslmed.aad8166] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 05/16/2016] [Indexed: 12/15/2022]
Abstract
Many genetic and acquired liver disorders are amenable to gene and/or cell therapy. However, the efficiencies of cell engraftment and stable genetic modification are low and often subtherapeutic. In particular, targeted gene modifications from homologous recombination are rare events. These obstacles could be overcome if hepatocytes that have undergone genetic modification were to be selectively amplified or expanded. We describe a universally applicable system for in vivo selection and expansion of gene-modified hepatocytes in any genetic background. In this system, the therapeutic transgene is coexpressed with a short hairpin RNA (shRNA) that confers modified hepatocytes with resistance to drug-induced toxicity. An shRNA against the tyrosine catabolic enzyme 4-OH-phenylpyruvate dioxygenase protected hepatocytes from 4-[(2-carboxyethyl)-hydroxyphosphinyl]-3-oxobutyrate, a small-molecule inhibitor of fumarylacetoacetate hydrolase. To select for specific gene targeting events, the protective shRNA was embedded in a microRNA and inserted into a recombinant adeno-associated viral vector designed to integrate site-specifically into the highly active albumin locus. After selection of the gene-targeted cells, transgene expression increased 10- to 1000-fold, reaching supraphysiological levels of human factor 9 protein (50,000 ng/ml) in mice. This drug resistance system can be used to achieve therapeutically relevant transgene levels in hepatocytes in any setting.
Collapse
Affiliation(s)
- Sean Nygaard
- Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Adi Barzel
- Departments of Pediatrics and Genetics, Stanford Medical School, Stanford, CA 94305, USA
| | - Annelise Haft
- Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Angela Major
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Milton Finegold
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark A Kay
- Departments of Pediatrics and Genetics, Stanford Medical School, Stanford, CA 94305, USA
| | - Markus Grompe
- Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
10
|
Elgilani F, Mao SA, Glorioso JM, Yin M, Iankov ID, Singh A, Amiot B, Rinaldo P, Marler RJ, Ehman RL, Grompe M, Lillegard JB, Hickey RD, Nyberg SL. Chronic Phenotype Characterization of a Large-Animal Model of Hereditary Tyrosinemia Type 1. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 187:33-41. [PMID: 27855279 DOI: 10.1016/j.ajpath.2016.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 09/08/2016] [Accepted: 09/15/2016] [Indexed: 01/06/2023]
Abstract
Hereditary tyrosinemia type 1 (HT1) is an autosomal recessive disease caused by deficiency in fumarylacetoacetate hydrolase, the last enzyme in the tyrosine catabolic pathway. In this study, we investigated whether fumarylacetoacetate hydrolase deficient (FAH-/-) pigs, a novel large-animal model of HT1, develop fibrosis and cirrhosis characteristic of the human disease. FAH-/- pigs were treated with the protective drug 2-(2-nitro-4-trifluoromethylbenzoyl)-1, 3 cyclohexandione (NTBC) at a dose of 1 mg/kg per day initially after birth. After 30 days, they were assigned to one of three groups based on dosing of NTBC. Group 1 received ≥0.2 mg/kg per day, group 2 cycled on/off NTBC (0.05 mg/kg per day × 1 week/0 mg/kg per day × 3 weeks), and group 3 received no NTBC thereafter. Pigs were monitored for features of liver disease. Animals in group 1 continued to have weight gain and biochemical analyses comparable to wild-type pigs. Animals in group 2 had significant cessation of weight gain, abnormal biochemical test results, and various grades of fibrosis and cirrhosis. No evidence of hepatocellular carcinoma was detected. Group 3 animals declined rapidly, with acute liver failure. In conclusion, the FAH-/- pig is a large-animal model of HT1 with clinical characteristics that resemble the human phenotype. Under conditions of low-dose NTBC, FAH-/- pigs developed liver fibrosis and portal hypertension, and thus may serve as a large-animal model of chronic liver disease.
Collapse
Affiliation(s)
- Faysal Elgilani
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota
| | - Shennen A Mao
- Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | | | - Meng Yin
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Ianko D Iankov
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Anisha Singh
- Department of Surgery, Mayo Clinic, Rochester, Minnesota
| | - Bruce Amiot
- Brami Biomedical, Inc., Minneapolis, Minnesota
| | - Piero Rinaldo
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Ronald J Marler
- Department of Comparative Medicine, Mayo Clinic, Scottsdale, Arizona
| | | | - Markus Grompe
- Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, Oregon
| | - Joseph B Lillegard
- Department of Surgery, Mayo Clinic, Rochester, Minnesota; Midwest Fetal Care Center, Children's Hospital and Clinics of Minnesota, Minneapolis, Minnesota
| | - Raymond D Hickey
- Department of Surgery, Mayo Clinic, Rochester, Minnesota; Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Scott L Nyberg
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota; Department of Surgery, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
11
|
Angileri F, Roy V, Morrow G, Scoazec JY, Gadot N, Orejuela D, Tanguay RM. Molecular changes associated with chronic liver damage and neoplastic lesions in a murine model of hereditary tyrosinemia type 1. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2603-17. [PMID: 26360553 DOI: 10.1016/j.bbadis.2015.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 08/28/2015] [Accepted: 09/04/2015] [Indexed: 01/06/2023]
Abstract
Hereditary tyrosinemia type 1 (HT1) is the most severe inherited metabolic disease of the tyrosine catabolic pathway, with a progressive hepatic and renal injury and a fatal outcome if untreated. Toxic metabolites accumulating in HT1 have been shown to elicit endoplasmic reticulum (ER) stress response, and to induce chromosomal instability, cell cycle arrest and apoptosis perturbation. Although many studies have concentrated on elucidating these events, the molecular pathways responsible for development of hepatocellular carcinoma (HCC) still remain unclear. In this study the fah knockout murine model (fah(-/-)) was used to investigate the cellular signaling implicated in the pathogenesis of HT1. Fah(-/-) mice were subjected to drug therapy discontinuation (Nitisinone withdrawal), and livers were analyzed at different stages of the disease. Monitoring of mice revealed an increasing degeneration of the overall physiological conditions following drug withdrawal. Histological analysis unveiled diffuse hepatocellular damage, steatosis, oval-like cells proliferation and development of liver cell adenomas. Immunoblotting results revealed a progressive and chronic activation of stress pathways related to cell survival and proliferation, including several stress regulators such as Nrf2, eIF2α, CHOP, HO-1, and some members of the MAPK signaling cascade. Impairment of stress defensive mechanisms was also shown by microarray analysis in fah(-/-) mice following prolonged therapy interruption. These results suggest that a sustained activation of stress pathways in the chronic HT1 progression might play a central role in exacerbating liver degeneration.
Collapse
Affiliation(s)
- Francesca Angileri
- Laboratoire de génétique cellulaire et développementale,IBIS et PROTEO,Département de Biologie Moléculaire,Biochimie Médicale et Pathologie,Faculté de Médecine,1030 Ave de la médecine,Université Laval,Québec G1V 0A6,Canada
| | - Vincent Roy
- Laboratoire de génétique cellulaire et développementale,IBIS et PROTEO,Département de Biologie Moléculaire,Biochimie Médicale et Pathologie,Faculté de Médecine,1030 Ave de la médecine,Université Laval,Québec G1V 0A6,Canada
| | - Geneviève Morrow
- Laboratoire de génétique cellulaire et développementale,IBIS et PROTEO,Département de Biologie Moléculaire,Biochimie Médicale et Pathologie,Faculté de Médecine,1030 Ave de la médecine,Université Laval,Québec G1V 0A6,Canada
| | - Jean Yves Scoazec
- Service Central d'anatomie et de Cytologie Pathologiques,Hôpital Edouard-Herriot,69437 Lyon Cedex 03,France
| | - Nicolas Gadot
- Service Central d'anatomie et de Cytologie Pathologiques,Hôpital Edouard-Herriot,69437 Lyon Cedex 03,France
| | - Diana Orejuela
- Laboratoire de génétique cellulaire et développementale,IBIS et PROTEO,Département de Biologie Moléculaire,Biochimie Médicale et Pathologie,Faculté de Médecine,1030 Ave de la médecine,Université Laval,Québec G1V 0A6,Canada
| | - Robert M Tanguay
- Laboratoire de génétique cellulaire et développementale,IBIS et PROTEO,Département de Biologie Moléculaire,Biochimie Médicale et Pathologie,Faculté de Médecine,1030 Ave de la médecine,Université Laval,Québec G1V 0A6,Canada.
| |
Collapse
|
12
|
Dani SU, März W, Neves PMS, Walter GF. Pairomics, the omics way to mate choice. J Hum Genet 2013; 58:643-56. [PMID: 23945982 DOI: 10.1038/jhg.2013.86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 06/17/2013] [Accepted: 07/03/2013] [Indexed: 11/09/2022]
Abstract
The core aspects of the biology and evolution of sexual reproduction are reviewed with a focus on the diploid, sexually reproducing, outbreeding, polymorphic, unspecialized, altricial and cultural human species. Human mate choice and pair bonding are viewed as central to individuals' lives and to the evolution of the species, and genetic assistance in reproduction is viewed as a universal human right. Pairomics is defined as an emerging branch of the omics science devoted to the study of mate choice at the genomic level and its consequences for present and future generations. In pairomics, comprehensive genetic information of individual genomes is stored in a database. Computational tools are employed to analyze the mating schemes and rules that govern mating among the members of the database. Mating models and algorithms simulate the outcomes of mating any given genome with each of a number of genomes represented in the database. The analyses and simulations may help to understand mating schemes and their outcomes, and also contribute a new cue to the multicued schemes of mate choice. The scientific, medical, evolutionary, ethical, legal and social implications of pairomics are far reaching. The use of genetic information as a search tool in mate choice may influence our health, lifestyle, behavior and culture. As knowledge on genomics, population genetics and gene-environment interactions, as well as the size of genomic databases expand, so does the ability of pairomics to investigate and predict the consequences of mate choice for the present and future generations.
Collapse
Affiliation(s)
- Sergio Ulhoa Dani
- Medawar Institute for Medical and Environmental Research, Acangau Foundation, Paracatu, Brazil
| | | | | | | |
Collapse
|
13
|
Han C, Ren C, Zhi T, Zhou Z, Liu Y, Chen F, Peng W, Xie D. Disruption of fumarylacetoacetate hydrolase causes spontaneous cell death under short-day conditions in Arabidopsis. PLANT PHYSIOLOGY 2013; 162:1956-64. [PMID: 23743712 PMCID: PMC3729774 DOI: 10.1104/pp.113.216804] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Fumarylacetoacetate hydrolase (FAH) hydrolyzes fumarylacetoacetate to fumarate and acetoacetate, the final step in the tyrosine (Tyr) degradation pathway that is essential to animals. Deficiency of FAH in animals results in an inborn lethal disorder. However, the role for the Tyr degradation pathway in plants remains to be elucidated. In this study, we isolated an Arabidopsis (Arabidopsis thaliana) short-day sensitive cell death1 (sscd1) mutant that displays a spontaneous cell death phenotype under short-day conditions. The SSCD1 gene was cloned via a map-based cloning approach and found to encode an Arabidopsis putative FAH. The spontaneous cell death phenotype of the sscd1 mutant was completely eliminated by further knockout of the gene encoding the putative homogentisate dioxygenase, which catalyzes homogentisate into maleylacetoacetate (the antepenultimate step) in the Tyr degradation pathway. Furthermore, treatment of Arabidopsis wild-type seedlings with succinylacetone, an abnormal metabolite caused by loss of FAH in the Tyr degradation pathway, mimicked the sscd1 cell death phenotype. These results demonstrate that disruption of FAH leads to cell death in Arabidopsis and suggest that the Tyr degradation pathway is essential for plant survival under short-day conditions.
Collapse
|
14
|
Preston AJ, Keenan CM, Sutherland H, Wilson PJ, Wlodarski B, Taylor AM, Williams DP, Ranganath LR, Gallagher JA, Jarvis JC. Ochronotic osteoarthropathy in a mouse model of alkaptonuria, and its inhibition by nitisinone. Ann Rheum Dis 2013; 73:284-9. [PMID: 23511227 DOI: 10.1136/annrheumdis-2012-202878] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Alkaptonuria (AKU) is a rare metabolic disease caused by deficiency of homogentisate 1,2 dioxygenase, an enzyme involved in tyrosine catabolism, resulting in increased circulating homogentisic acid (HGA). Over time HGA is progressively deposited as a polymer (termed ochronotic pigment) in collagenous tissues, especially the cartilages of weight bearing joints, leading to severe joint disease. OBJECTIVES To characterise blood biochemistry and arthropathy in the AKU mouse model (Hgd-/-). To examine the therapeutic effect of long-term treatment with nitisinone, a potent inhibitor of the enzyme that produces HGA. METHODS Lifetime levels of plasma HGA from AKU mice were measured by high-performance liquid chromatography (HPLC). Histological sections of the knee joint were examined for pigmentation. The effect of nitisinone treatment in both tissues was examined. RESULTS Mean (±SE) plasma HGA levels were 3- to 4-fold higher (0.148±0.019 mM) than those recorded in human AKU. Chondrocyte pigmentation within the articular cartilage was first observed at 15 weeks, and found to increase steadily with mouse age. Nitisinone treatment reduced plasma HGA in AKU mice throughout their lifetime, and completely prevented pigment deposition. CONCLUSIONS The AKU mouse was established as a model of both the plasma biochemistry of AKU and its associated arthropathy. Early-stage treatment of AKU patients with nitisinone could prevent the development of associated joint arthropathies. The cellular pathology of ochronosis in AKU mice is identical to that observed in early human ochronosis and thus is a model in which the early stages of joint pathology can be studied and novel interventions evaluated.
Collapse
Affiliation(s)
- Andrew J Preston
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, Bone and Joint Research Group, University of Liverpool, , Liverpool, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Duncan AW. Aneuploidy, polyploidy and ploidy reversal in the liver. Semin Cell Dev Biol 2013; 24:347-56. [PMID: 23333793 DOI: 10.1016/j.semcdb.2013.01.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/09/2013] [Indexed: 12/30/2022]
Abstract
Polyploidy has been described in the liver for over 100 years. The frequency of polyploid hepatocytes varies by age and species, but up to 90% of mouse hepatocytes and approximately 50% of human hepatocytes are polyploid. In addition to alterations in the entire complement of chromosomes, variations in chromosome copy number have been recently described. Aneuploidy in the liver is pervasive, affecting 60% of hepatocytes in mice and 30-90% of hepatocytes in humans. Polyploidy and aneuploidy in the liver are closely linked, and the ploidy conveyor model describes this relationship. Diploid hepatocytes undergo failed cytokinesis to generate polyploid cells. Proliferating polyploid hepatocytes, which form multipolar spindles during cell division, generate reduced ploidy progeny (e.g., diploid hepatocytes from tetraploids or octaploids) and/or aneuploid daughters. New evidence suggests that random hepatic aneuploidy can promote adaptation to liver injury. For instance, in response to chronic liver damage, subsets of aneuploid hepatocytes that are differentially resistant to the injury remain healthy, regenerate the liver and restore function. Future work is required to elucidate the mechanisms regulating dynamic chromosome changes in the liver and to understand how these processes impact normal and abnormal liver function.
Collapse
Affiliation(s)
- Andrew W Duncan
- Department of Pathology, McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219, United States.
| |
Collapse
|
16
|
Simic D, Euler C, Thurby C, Peden M, Tannehill-Gregg S, Bunch T, Sanderson T, Van Vleet T. Assessing cell fusion and cytokinesis failure as mechanisms of clone 9 hepatocyte multinucleation in vitro. ACTA ACUST UNITED AC 2013; Chapter 14:Unit 14.9.1-17. [PMID: 22896007 DOI: 10.1002/0471140856.tx1409s53] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In this in vitro model of hepatocyte multinucleation, separate cultures of rat Clone 9 cells are labeled with either red or green cell tracker dyes (Red Cell Tracker CMPTX or Vybrant CFDA SE Cell Tracer), plated together in mixed-color colonies, and treated with positive or negative control agents for 4 days. The fluorescent dyes become cell-impermeant after entering cells and are not transferred to adjacent cells in a population, but are inherited by daughter cells after fusion. The mixed-color cultures are then evaluated microscopically for multinucleation and analysis of the underlying mechanism (cell fusion/cytokinesis). Multinucleated cells containing only one dye have undergone cytokinesis failure, whereas dual-labeled multinucleated cells have resulted from fusion.
Collapse
Affiliation(s)
- Damir Simic
- Drug Safety Evaluation, Bristol-Myers Squibb Co, Mount Vernon, Indiana, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
In vivo selection of transplanted hepatocytes by pharmacological inhibition of fumarylacetoacetate hydrolase in wild-type mice. Mol Ther 2012; 20:1981-7. [PMID: 22871666 DOI: 10.1038/mt.2012.154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Genetic fumarylacetoacetate hydrolase (Fah) deficiency is unique in that healthy gene-corrected hepatocytes have a strong growth advantage and can repopulate the diseased liver. Unfortunately, similar positive selection of gene-corrected cells is absent in most inborn errors of liver metabolism and it is difficult to reach the cell replacement index required for therapeutic benefit. Therefore, methods to transiently create a growth advantage for genetically modified hepatocytes in any genetic background would be advantageous. To mimic the selective pressure of Fah deficiency in normal animals, an efficient in vivo small molecule inhibitor of FAH, 4-[(2-carboxyethyl)-hydroxyphosphinyl]-3-oxobutyrate (CEHPOBA) was developed. Microarray analysis demonstrated that pharmacological inhibition of FAH produced highly similar gene expression changes to genetic deficiency. As proof of principle, hepatocytes lacking homogentisic acid dioxygenase (Hgd) and hence resistant to FAH inhibition were transplanted into sex-mismatched wild-type recipients. Time course analyses of 4-6 weeks of CEHPOBA administration after transplantation showed a linear relationship between treatment length and replacement index. Compared to controls, recipients treated with the FAH-inhibitor had 20-100-fold increases in liver repopulation. We conclude that pharmacological inhibition of FAH is a promising approach to in vivo selection of hepatocytes.
Collapse
|
18
|
Duncan AW, Hanlon Newell AE, Bi W, Finegold MJ, Olson SB, Beaudet AL, Grompe M. Aneuploidy as a mechanism for stress-induced liver adaptation. J Clin Invest 2012; 122:3307-15. [PMID: 22863619 DOI: 10.1172/jci64026] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 06/28/2012] [Indexed: 02/06/2023] Open
Abstract
Over half of the mature hepatocytes in mice and humans are aneuploid and yet retain full ability to undergo mitosis. This observation has raised the question of whether this unusual somatic genetic variation evolved as an adaptive mechanism in response to hepatic injury. According to this model, hepatotoxic insults select for hepatocytes with specific numerical chromosome abnormalities, rendering them differentially resistant to injury. To test this hypothesis, we utilized a strain of mice heterozygous for a mutation in the homogentisic acid dioxygenase (Hgd) gene located on chromosome 16. Loss of the remaining Hgd allele protects from fumarylacetoacetate hydrolase (Fah) deficiency, a genetic liver disease model. When adult mice heterozygous for Hgd and lacking Fah were exposed to chronic liver damage, injury-resistant nodules consisting of Hgd-null hepatocytes rapidly emerged. To determine whether aneuploidy played a role in this phenomenon, array comparative genomic hybridization (aCGH) and metaphase karyotyping were performed. Strikingly, loss of chromosome 16 was dramatically enriched in all mice that became completely resistant to tyrosinemia-induced hepatic injury. The frequency of chromosome 16-specific aneuploidy was approximately 50%. This result indicates that selection of a specific aneuploid karyotype can result in the adaptation of hepatocytes to chronic liver injury. The extent to which aneuploidy promotes hepatic adaptation in humans remains under investigation.
Collapse
Affiliation(s)
- Andrew W Duncan
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Portland, OR, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Ochronosis in a murine model of alkaptonuria is synonymous to that in the human condition. Osteoarthritis Cartilage 2012; 20:880-6. [PMID: 22542924 PMCID: PMC3406176 DOI: 10.1016/j.joca.2012.04.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/03/2012] [Accepted: 04/13/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Alkaptonuria (AKU) is a rare genetic disease which results in severe early onset osteoarthropathy. It has recently been shown that the subchondral interface is of key significance in disease pathogenesis. Human surgical tissues are often beyond this initial stage and there is no published murine model of pathogenesis, to study the natural history of the disease. The murine genotype exists but it has been reported not to demonstrate ochronotic osteoarthropathy consistent with the human disease. Recent anecdotal evidence of macroscopic renal ochronosis in a mouse model of tyrosinaemia led us to perform histological analysis of tissues of these mice that are known to be affected in human AKU. DESIGN The homogentisate 1,2-dioxygenase Hgd(+/)(-)Fah(-)(/)(-) mouse can model either hereditary tyrosinaemia type I (HT1) or AKU depending on selection conditions. Mice having undergone Hgd reversion were sacrificed at various time points, and their tissues taken for histological analysis. Sections were stained with haematoxylin eosin (H&E) and Schmorl's reagent. RESULTS Early time point observations at 8 months showed no sign of macroscopic ochronosis of tissues. Macroscopic examination at 13 months revealed ochronosis of the kidneys. Microscopic analysis of the kidneys revealed large pigmented nodules displaying distinct ochre colouration. Close microscopic examination of the distal femur and proximal fibula at the subchondral junctions revealed the presence of numerous pigmented chondrocytes. CONCLUSIONS Here we present the first data showing ochronosis of tissues in a murine model of AKU. These preliminary histological observations provide a stimulus for further studies into the natural history of the disease to provide a greater understanding of this class of arthropathy.
Collapse
|
20
|
The ploidy conveyor of mature hepatocytes as a source of genetic variation. Nature 2010; 467:707-10. [PMID: 20861837 PMCID: PMC2967727 DOI: 10.1038/nature09414] [Citation(s) in RCA: 499] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 08/11/2010] [Indexed: 02/06/2023]
|
21
|
Fisher AL, Page KE, Lithgow GJ, Nash L. The Caenorhabditis elegans K10C2.4 gene encodes a member of the fumarylacetoacetate hydrolase family: a Caenorhabditis elegans model of type I tyrosinemia. J Biol Chem 2008; 283:9127-35. [PMID: 18227072 PMCID: PMC2431024 DOI: 10.1074/jbc.m708341200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 01/25/2008] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes and many bacteria, tyrosine is degraded to produce energy via a five-step tyrosine degradation pathway. Mutations affecting the tyrosine degradation pathway are also of medical importance as mutations affecting enzymes in the pathway are responsible for type I, type II, and type III tyrosinemia. The most severe of these is type I tyrosinemia, which is caused by mutations affecting the last enzyme in the pathway, fumarylacetoacetate hydrolase (FAH). So far, tyrosine degradation in the nematode Caenorhabditis elegans has not been studied; however, genes predicted to encode enzymes in this pathway have been identified in several microarray, proteomic, and RNA interference (RNAi) screens as perhaps being involved in aging and the control of protein folding. We sought to identify and characterize the genes in the worm tyrosine degradation pathway as an initial step in understanding these findings. Here we describe the characterization of the K10C2.4, which encodes a homolog of FAH. RNAi directed against K10C2.4 produces a lethal phenotype consisting of death in young adulthood, extensive damage to the intestine, impaired fertility, and activation of oxidative stress and endoplasmic stress response pathways. This phenotype is due to alterations in tyrosine metabolism as increases in dietary tyrosine enhance it, and inhibition of upstream enzymes in tyrosine degradation with RNAi or genetic mutations reduces the phenotype. We also use our model to identify genes that suppress the damage produced by K10C2.4 RNAi in a pilot genetic screen. Our results establish worms as a model for the study of type I tyrosinemia.
Collapse
Affiliation(s)
- Alfred L Fisher
- Department of Medicine, Division of Geriatric Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | |
Collapse
|
22
|
Bateman R, Ashworth J, Witte J, Baker LJ, Bhanumoorthy P, Timm D, Hurley T, Grompe M, Mcclard R. Slow-onset inhibition of fumarylacetoacetate hydrolase by phosphinate mimics of the tetrahedral intermediate: kinetics, crystal structure and pharmacokinetics. Biochem J 2007; 402:251-60. [PMID: 17064256 PMCID: PMC1798426 DOI: 10.1042/bj20060961] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
FAH (fumarylacetoacetate hydrolase) catalyses the final step of tyrosine catabolism to produce fumarate and acetoacetate. HT1 (hereditary tyrosinaemia type 1) results from deficiency of this enzyme. Previously, we prepared a partial mimic of the putative tetrahedral intermediate in the reaction catalysed by FAH co-crystallized with the enzyme to reveal details of the mechanism [Bateman, Bhanumoorthy, Witte, McClard, Grompe and Timm (2001) J. Biol. Chem. 276, 15284-15291]. We have now successfully synthesized complete mimics CEHPOBA {4-[(2-carboxyethyl)-hydroxyphosphinyl]-3-oxobutyrate} and COPHPAA {3-[(3-carboxy-2-oxopropyl)hydroxyphosphinyl]acrylate}, which inhibit FAH in slow-onset tight-binding mode with K(i) values of 41 and 12 nM respectively. A high-resolution (1.35 A; 1 A=0.1 nm) crystal structure of the FAH.CEHPOBA complex was solved to reveal the affinity determinants for these compounds and to provide further insight into the mechanism of FAH catalysis. These compounds are active in vivo, and CEHPOBA demonstrated a notable dose-dependent increase in SA (succinylacetone; a metabolite seen in patients with HT1) in mouse serum after repeated injections, and, following a single injection (1 mumol/g; intraperitoneal), only a modest regain of FAH enzyme activity was detected in liver protein isolates after 24 h. These potent inhibitors provide a means to chemically phenocopy the metabolic defects of either HT1 or FAH knockout mice and promise future pharmacological utility for hepatocyte transplantation.
Collapse
Affiliation(s)
- Raynard L. Bateman
- *Arthur F. Scott Laboratory of Chemistry, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202, U.S.A
- †Department of Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, OR 97201, U.S.A
| | - Justin Ashworth
- *Arthur F. Scott Laboratory of Chemistry, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202, U.S.A
| | - John F. Witte
- *Arthur F. Scott Laboratory of Chemistry, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202, U.S.A
| | - L.-J. Baker
- ‡Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN 46202, U.S.A
| | - Pullooru Bhanumoorthy
- ‡Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN 46202, U.S.A
| | - David E. Timm
- ‡Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN 46202, U.S.A
| | - Thomas D. Hurley
- ‡Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN 46202, U.S.A
| | - Markus Grompe
- †Department of Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, OR 97201, U.S.A
| | - Ronald W. Mcclard
- *Arthur F. Scott Laboratory of Chemistry, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
23
|
Willis MS, Basinger AA, Fan Z, Pendyal S, Muenzer J, Hammett-Stabler C. Hepatosplenomegaly in an 8-Month-Old Child. Lab Med 2006. [DOI: 10.1309/vyl8811l7712pejj] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
24
|
Langlois C, Jorquera R, Finegold M, Shroads AL, Stacpoole PW, Tanguay RM. Evaluation of dichloroacetate treatment in a murine model of hereditary tyrosinemia type 1. Biochem Pharmacol 2006; 71:1648-61. [PMID: 16581029 DOI: 10.1016/j.bcp.2006.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 02/22/2006] [Accepted: 02/22/2006] [Indexed: 11/16/2022]
Abstract
Hereditary tyrosinemia type 1 (HT1) is an autosomal recessive disease severely affecting liver and kidney and is caused by a deficiency in fumarylacetoacetate hydrolase (FAH). Administration of 2-(2-nitro-4-trifluoro-methylbenzyol)-1,3 cyclohexanedione (NTBC) improves the HT1 phenotype but some patients do not respond to NTBC therapy. The objective of the present study was to evaluate whether administration of dichloroacetate, an inhibitor of maleyl acetoacetate isomerase (MAAI) to FAH-knockout mice could prevent acute pathological injury caused by NTBC withdrawal. DCA (0.5 and 5g/L) was given in combination with a standard diet or with a tyrosine-restricted diet. With the low-tyrosine diet body weight loss and most of hepatic and renal injuries were prevented regardless the DCA dose. The administration of DCA with a standard diet did not prevent damage nor the oxidative stress response nor the AFP induction seen in FAH-knockout mice. DCA was shown to inhibit hepatic MAAI activity to 86% (0.5g/L) and 94% (5g/L) of untreated wild-type mice. Interestingly, FAH(-/-) mice deprived of NTBC (NTBC-OFF) and NTBC-treated FAH-knockout mice had similar low hepatic MAAI activity levels, corresponding to 10-20% of control. Thus the failure of DCA treatment in FAH(-/-) mice seems to be attributed to the residual MAAI activity, high enough to lead to FAA accumulation and HT1 phenotype.
Collapse
Affiliation(s)
- Chantale Langlois
- Laboratory of Cellular and Developmental Genetics, CREFSIP, Department of Medicine, University Laval, Que., Canada G1K 7P4
| | | | | | | | | | | |
Collapse
|
25
|
Held PK, Al-Dhalimy M, Willenbring H, Akkari Y, Jiang S, Torimaru Y, Olson S, Fleming WH, Finegold M, Grompe M. In Vivo Genetic Selection of Renal Proximal Tubules. Mol Ther 2006; 13:49-58. [PMID: 16216560 DOI: 10.1016/j.ymthe.2005.09.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 08/19/2005] [Accepted: 09/06/2005] [Indexed: 01/06/2023] Open
Abstract
Repopulation by transplanted cells can result in effective therapy for several regenerative organs including blood, liver, and skin. In contrast, cell therapies for renal diseases are not currently available. Here we developed an animal model in which cells genetically resistant to a toxic intermediate of tyrosine metabolism, homogentisic acid (HGA), were able to repopulate the damaged proximal tubule epithelium of mice with fumarylacetoacetate hydrolase (Fah) deficiency. HGA resistance was achieved by two independent mechanisms. First, Fah+ transplanted bone marrow cells produced significant replacement of damaged proximal tubular epithelium (up to 50%). The majority of bone marrow-derived epithelial cells were generated by cell fusion, not transdifferentiation. In addition to regeneration by fusion-derived epithelial cells, proximal tubular repopulation was also observed by host epithelial cells, which had lost the homogentisic acid dioxygenase gene. These data demonstrate that extensive regeneration of the renal proximal tubule compartment can be achieved through genetic selection of functional cells.
Collapse
Affiliation(s)
- Patrice K Held
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Held PK, Olivares EC, Aguilar CP, Finegold M, Calos MP, Grompe M. In vivo correction of murine hereditary tyrosinemia type I by phiC31 integrase-mediated gene delivery. Mol Ther 2005; 11:399-408. [PMID: 15727936 DOI: 10.1016/j.ymthe.2004.11.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Accepted: 11/01/2004] [Indexed: 11/28/2022] Open
Abstract
Phage phiC31 integrase is a site-specific recombinase that mediates efficient integration of circular extrachromosomal DNA into the host genome. Here, the integrase system was used to transfer the fumarylacetoacetate hydrolase (FAH) gene into the liver of mice affected with hereditary tyrosinemia type 1. Approximately 3.6% of transfected hepatocytes experienced an integration event. The absolute frequency of integration was 1/1374. A higher proportion of integrase-transfected FAH+ hepatocytes displayed abnormal morphology (bizarre nuclei, enlarged cells) on day 25 after gene transfer, compared to cells not receiving integrase. The increased frequency of these abnormal cells correlated with the amount of integrase plasmid administered, suggesting some form of integrase toxicity in Fah-/- livers. The abnormal hepatocyte appearance was transient and livers analyzed after longer selection (90 days) showed 60% repopulation with only normal healthy FAH+ hepatocytes. A total of seven different integration sites (accounting for >90% of integration) were identified. Serial transplantation of integrase-corrected hepatocytes to Fah-/- recipients was successful, suggesting long-term viability of corrected cells and persistent gene expression through many rounds of cell division. The stability of transgene expression, relatively high integration frequency, and significant site specificity that characterize the phiC31 integration system suggest that it may have utility in many gene therapy settings.
Collapse
Affiliation(s)
- Patrice K Held
- Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Bouchard S, MacKenzie TC, Radu AP, Hayashi S, Peranteau WH, Chirmule N, Flake AW. Long-term transgene expression in cardiac and skeletal muscle following fetal administration of adenoviral or adeno-associated viral vectors in mice. J Gene Med 2004; 5:941-50. [PMID: 14601131 DOI: 10.1002/jgm.421] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND In utero gene transfer may provide advantages for the correction of congenital genetic disorders. In the present study we compare the ability of adenovirus (AdCMVLacZ), and two serotypes of adeno-associated virus (AAVCMVLacZ serotypes 2 and 2/5), to target cardiac and skeletal muscle after prenatal systemic or intramuscular injection in mice and assess the immune response to the vectors. METHODS Day 14 gestation fetal mice underwent direct intraperitoneal or intramuscular injection of AdCMVLacZ, and AAVCMVLacZ serotypes 2 and 2/5 vectors. Tissues were processed for beta-galactosidase expression in frozen or high-resolution thin plastic sections at early and late time points. Neutralizing antibodies to Ad and AAV were analyzed in separate fetal experimental and neonatal or adult control groups after administration and re-administration of the vectors. RESULTS A single injection of each vector in utero resulted in sustained expression of beta-galactosidase transgene in skeletal and cardiac muscle. Transgene expression was detected for the length of the study, i.e. 86, 58, and 31 weeks after birth for AdCMVLacZ, and AAVCMVLacZ serotypes 2 and 2/5, respectively. High-level expression in the myocardium was observed independent of the vector or route of administration. Neutralizing antibody responses to AAV and Ad antigens were reduced and long-term expression in muscle was not ablated on postnatal re-administration of vector. CONCLUSIONS Sustained, high-level cardiac and skeletal muscle transgene expression can be obtained after prenatal gene transfer with each of these vectors. The potential for immune response to viral antigens is altered, but not entirely ablated after in utero exposure.
Collapse
Affiliation(s)
- Sarah Bouchard
- Division of Pediatric General, Thoracic, and Fetal Surgery, The Children's Institute for Surgical Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Demers SI, Russo P, Lettre F, Tanguay RM. Frequent mutation reversion inversely correlates with clinical severity in a genetic liver disease, hereditary tyrosinemia. Hum Pathol 2004; 34:1313-20. [PMID: 14691918 DOI: 10.1016/s0046-8177(03)00406-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hereditary tyrosinemia type I (HTI), a severe disease affecting primarily the liver, is caused by a deficiency of fumarylacetoacetate hydrolase (FAH). HTI is clinically heterogeneous, with no correlation between genotype and phenotype. Reversion of FAH mutant alleles in livers of HTI patients was reported previously, but the clinical significance of this phenomenon has not been fully documented. In the present study, the mosaic expression of FAH was analyzed by immune cytochemistry in liver specimens from a cohort of 26 French-Canadian HTI patients who underwent liver transplantation and related to the histopathologic status of the liver and the clinical history. Reversion was observed in 88% of patients with reverted surfaces ranging from 0.1% to 85%. Patients with the chronic form had a much higher surface of reversion (average, 36%) than those with the acute form (average, 1.6%) and a lower incidence of liver dysplasia. Within reverted nodules, hepatocytes had a normal appearance and showed no dysplasia. Hepatocellular carcinoma was observed only in FAH-negative regions. In summary, the extent of mutation reversion of the FAH gene in the liver of HTI patients was inversely correlated with the clinical severity of the disease, suggesting that the corrected hepatocytes play a substantial protective role in liver function.
Collapse
Affiliation(s)
- Sylvie I Demers
- Laboratory of Cellular and Developmental Genetics, Department of Medicine, Université Laval and CHUL Research Center, CHUQ, Ste-Foy, Québec, Canada
| | | | | | | |
Collapse
|
29
|
Vogel A, van Den Berg IET, Al-Dhalimy M, Groopman J, Ou CN, Ryabinina O, Iordanov MS, Finegold M, Grompe M. Chronic liver disease in murine hereditary tyrosinemia type 1 induces resistance to cell death. Hepatology 2004; 39:433-43. [PMID: 14767996 DOI: 10.1002/hep.20077] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The murine model of hereditary tyrosinemia type 1 (HT1) was used to analyze the relationship between chronic liver disease and programmed cell death in vivo. In healthy fumarylacetoacetate hydrolase deficient mice (Fah(-/-)), protected from liver injury by the drug 2-(2- nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC), the tyrosine metabolite homogentisic acid (HGA) caused rapid hepatocyte death. In contrast, all mice survived the same otherwise lethal dose of HGA if they had preexisting liver damage induced by NTBC withdrawal. Similarly, Fah(-/-) animals with liver injury were also resistant to apoptosis induced by the Fas ligand Jo-2 and to necrosis-like cell death induced by acetaminophen (APAP). Molecular studies revealed a marked up-regulation of the antiapoptotic heat shock proteins (Hsp) 27, 32, and 70 and of c-Jun in hepatocytes of stressed mice. In addition, the p38 and Jun N-terminal kinase (JNK) stress-activated kinase pathways were markedly impaired in the cell-death resistant liver. In conclusion, these results provide evidence that chronic liver disease can paradoxically result in cell death resistance in vivo. Stress-induced failure of cell death programs may lead to an accumulation of damaged cells and therefore enhance the risk for cancer as observed in HT1 and other chronic liver diseases.
Collapse
Affiliation(s)
- Arndt Vogel
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97239, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Pérez P, Martínez O, Romero B, Olivas I, Pedregosa AM, Palmieri F, Laborda F, Ramón De Lucas J. Functional analysis of mutations in the human carnitine/acylcarnitine translocase in Aspergillus nidulans. Fungal Genet Biol 2003; 39:211-20. [PMID: 12892634 DOI: 10.1016/s1087-1845(03)00049-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Deficiency of the carnitine/acylcarnitine translocase (CACT), the most severe disorder of fatty acid beta-oxidation, is usually lethal in both humans and animals, precluding the development of animal models of the disease. In contrast, CACT deficiency is conditionally lethal in the fungus Aspergillus nidulans, since loss-of-function mutations in acuH, the translocase structural gene, do not prevent growth on carbon sources other than ketogenic compounds, such as fatty acids. Here, we describe the molecular characterization of extant acuH alleles and the development of a fungal model for CACT deficiency based on the ability of human CACT to fully complement, when expressed at physiological levels, the growth defect of an A. nidulans DeltaacuH strain on acetate and long-chain fatty acids. By using growth tests and in vitro assays this model enabled us to carry out a functional characterization of human CACT mutations showing that it may be useful for distinguishing potentially pathogenic human CACT missense mutations from neutral, single residue substitution-causing polymorphisms.
Collapse
Affiliation(s)
- Patricia Pérez
- Departamento de Microbiología y Parasitología, Universidad de Alcalá, Carretera Madrid-Barcelona Km, 33.600, Alcalá de Henares ES-28871, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Montini E, Held PK, Noll M, Morcinek N, Al-Dhalimy M, Finegold M, Yant SR, Kay MA, Grompe M. In vivo correction of murine tyrosinemia type I by DNA-mediated transposition. Mol Ther 2002; 6:759-69. [PMID: 12498772 DOI: 10.1006/mthe.2002.0812] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Gene therapy applications of naked DNA constructs for genetic disorders have been limited because of lack of permanent transgene expression. This limitation, however, can be overcome by the Sleeping Beauty (SB) transposable element, which can achieve permanent transgene expression through genomic integration from plasmid DNA. To date, only one example of an in vivo gene therapy application of this system has been reported. In this report, we have further defined the activity of the SB transposon in vivo by analyzing the expression and integration of a fumarylacetoacetate hydrolase (FAH) transposon in FAH-deficient mice. In this model, stably corrected FAH(+) hepatocytes are clonally selected and stable integration events can therefore be quantified and characterized at the molecular level. Herein, we demonstrate that SB-transposon-transfected hepatocytes can support significant repopulation of the liver, resulting in long-lasting correction of the FAH-deficiency phenotype. A single, combined injection of an FAH-expressing transposon plasmid and a transposase expression construct resulted in stable FAH expression in approximately 1% of transfected hepatocytes. The average transposon copy number was determined to be approximately 1/diploid genome and expression was not silenced during serial transplantation. Molecular analysis indicated that high-efficiency DNA-mediated transposition into the mouse genome was strictly dependent on the expression of wild-type transposase.
Collapse
Affiliation(s)
- Eugenio Montini
- Department of Medical & Molecular Genetics, Oregon Health and Sciences University, Portland, Oregon 97239, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Fernández-Cañón JM, Baetscher MW, Finegold M, Burlingame T, Gibson KM, Grompe M. Maleylacetoacetate isomerase (MAAI/GSTZ)-deficient mice reveal a glutathione-dependent nonenzymatic bypass in tyrosine catabolism. Mol Cell Biol 2002; 22:4943-51. [PMID: 12052898 PMCID: PMC133921 DOI: 10.1128/mcb.22.13.4943-4951.2002] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In mammals, the catabolic pathway of phenylalanine and tyrosine is found in liver (hepatocytes) and kidney (proximal tubular cells). There are well-described human diseases associated with deficiencies of all enzymes in this pathway except for maleylacetoacetate isomerase (MAAI), which converts maleylacetoacetate (MAA) to fumarylacetoacetate (FAA). MAAI is also known as glutathione transferase zeta (GSTZ1). Here, we describe the phenotype of mice with a targeted deletion of the MAAI (GSTZ1) gene. MAAI-deficient mice accumulated FAA and succinylacetone in urine but appeared otherwise healthy. This observation suggested that either accumulating MAA is not toxic or an alternate pathway for MAA metabolism exists. A complete redundancy of MAAI could be ruled out because substrate overload of the tyrosine catabolic pathway (administration of homogentisic acid, phenylalanine, or tyrosine) resulted in renal and hepatic damage. However, evidence for a partial bypass of MAAI activity was also found. Mice doubly mutant for MAAI and fumarylacetoacetate hydrolase (FAH) died rapidly on a normal diet, indicating that MAA could be isomerized to FAA in the absence of MAAI. Double mutants showed predominant renal injury, indicating that this organ is the primary target for the accumulated compound(s) resulting from MAAI deficiency. A glutathione-mediated isomerization of MAA to FAA independent of MAAI enzyme was demonstrated in vitro. This nonenzymatic bypass is likely responsible for the lack of a phenotype in nonstressed MAAI mutant mice.
Collapse
|
33
|
Abstract
Hepatocyte injury and necrosis from many causes may result in pediatric liver disease. Influenced by other cell types in the liver, by its unique vascular arrangements, by lobular zonation, and by contributory effects of sepsis, reactive oxygen species and disordered hepatic architecture, the hepatocyte is prone to injury from exogenous toxins, from inborn errors of metabolism, from hepatotrophic viruses, and from immune mechanisms. Experimental studies on cultured hepatocytes or animal models must be interpreted with caution. Having discussed general concepts, this review describes immune mechanisms of liver injury, as seen in autoimmune hepatitis, hepatitis B and C infection, the anticonvulsant hypersensitivity syndrome, and autoimmune polyendocrinopathy. Of the monogenic disorders causing significant liver injury in childhood, alpha-1 antitrypsin deficiency and Niemann-Pick C disease demonstrate the effect of endoplasmic or endosomal retention of macromolecules. Tyrosinemia illustrates how understanding the biochemical defect leads to understanding cell injury, extrahepatic porphyric effects, oncogenesis, pharmacological intervention, and possible stem cell therapy. Pathogenesis of cirrhosis in galactosemia remains incompletely understood. In hereditary fructose intolerance, phosphate sequestration causes ATP depletion. Recent information about mitochondrial disease, NASH, disorders of glycosylation, Wilson's disease, and the progressive familial intrahepatic cholestases is discussed.
Collapse
Affiliation(s)
- M S Tanner
- Institute of Child Health, University of Sheffield Children's Hospital, Western Bank, UK
| |
Collapse
|
34
|
Al-Dhalimy M, Overturf K, Finegold M, Grompe M. Long-term therapy with NTBC and tyrosine-restricted diet in a murine model of hereditary tyrosinemia type I. Mol Genet Metab 2002; 75:38-45. [PMID: 11825062 DOI: 10.1006/mgme.2001.3266] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In human patients with hereditary tyrosinemia type I (HT1) a combination therapy of 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3 cyclohexane dione (NTBC) and dietary restriction of phenylalanine and tyrosine is currently widely used. We previously reported that the use of NTBC in a murine model of HT1 abolished acute liver failure but did not prevent the development of hepatocellular carcinoma (HCC) in the setting of nonrestricted protein intake. Here we present the results obtained with higher doses of NTBC plus dietary tyrosine restriction on long-term follow up (>2 years). Liver function tests and succinylacetone levels were completely corrected with this regimen and cancer-free survival was improved when compared to historical controls. However, while no HT1 animals had HCC at age 13 months, the incidence was 2/16 (13%) at age 18 months and 1/6 (17%) after 24 months. Thus, even the most stringent therapy could not prevent the emergence of HCC in the mouse model of HT1, even when initiated prenatally.
Collapse
Affiliation(s)
- M Al-Dhalimy
- Department of Molecular and Medical Genetics, Oregon Health Sciences University, 3181 SW Sam Jackson Park Rd., Portland, OR 97201, USA
| | | | | | | |
Collapse
|
35
|
Peñalva MA. A fungal perspective on human inborn errors of metabolism: alkaptonuria and beyond. Fungal Genet Biol 2001; 34:1-10. [PMID: 11567547 DOI: 10.1006/fgbi.2001.1284] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Crucial for the establishment and development of biochemical genetics as a self-standing discipline was Beadle and Tatum's choice of Neurospora crassa as experimental organism some 60 years ago. Although Garrod's insights on biochemical genetics and his astonishingly modern concepts of biochemical individuality and susceptibility to disease had been ignored by their contemporaries, Beadle acknowledged on several occasions how close Garrod had come to the "one-gene-one-enzyme" hypothesis. In an unexpected turn of events, several genes involved in human inborn errors of metabolism, including the gene for Garrod's favorite disease, alkaptonuria, have been characterized by exploitation of the experimental advantages of another mold, Aspergillus nidulans, which shares with N. crassa the experimental advantages that prompted pioneers of biochemical genetics to use them: rapid growth, facile genetic manipulation, and an environment (the composition of the growth medium) that can be manipulated à la carte.
Collapse
Affiliation(s)
- M A Peñalva
- Centro de Investigaciones Biológicas del CSIC, Velázquez 144, Madrid 28006, Spain
| |
Collapse
|
36
|
Abstract
Hypertyrosinemia encompasses several entities, of which tyrosinemia type I (or hepatorenal tyrosinemia, HT1) results in the most extensive clinical and pathological manifestations involving mainly the liver, kidney, and peripheral nerves. The clinical findings range from a severe hepatopathy of early infancy to chronic liver disease and rickets in the older child; gradual refinements in the diagnosis and medical management of this disorder have greatly altered its natural course, mirroring recent advances in the field of metabolic diseases in the past quarter century. Hepatorenal tyrosinemia is the inborn error with the highest incidence of progression to hepatocellular carcinoma, likely due to profound mutagenic effects and influences on the cell cycle by accumulated metabolites. The appropriate follow-up of patients with cirrhosis, the proper timing of liver transplantation in the prevention of carcinoma, and the long-term evolution of chronic renal disease remain important unresolved issues. The introduction of a new pharmacologic agent, NTBC, holds the hope of significantly alleviating some of the burdens of this disease. Mouse models of this disease have permitted the exploration of newer treatment modalities, such as gene therapy by viral vectors, including ex vivo and in utero methods. Finally, recent observations on spontaneous genetic reversion of the mutation in HT1 livers challenge conventional concepts in human genetics.
Collapse
Affiliation(s)
- P A Russo
- Department of Pathology, Children's Hospital of Philadelphia, 324 S. 34th Street, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
37
|
Abstract
Orthotopic liver transplantation is the treatment of choice for several inborn errors of metabolism. Unfortunately, the supply of donor organs is limiting and therefore many patients cannot benefit from this therapy. In contrast, hepatocyte transplantation could potentially overcome the shortage in donor livers by use of cells from a single donor for multiple recipients. In classic hepatocyte transplantation, however, only 1% of the liver mass or less can be replaced by donor cells. Recently, though, it has been shown in animal models that >90% of host hepatocytes can be replaced by a small number of transplanted donor cells in a process we term 'therapeutic liver repopulation'. This phenomenon is analogous to repopulation of the haematopoietic system after bone marrow transplantation. Liver repopulation occurs when transplanted cells have a growth advantage in the setting of damage to recipient liver cells. It has been discovered that transplanted cells from extrahepatic sources such as the adult pancreas or bone marrow can also be used for liver repopulation. Because bone marrow donors are widely available, this finding raises the hope of therapeutic application of these cells in the future. Here, the current knowledge regarding therapeutic liver repopulation and the hopeful implications for treatment of liver diseases will be discussed.
Collapse
Affiliation(s)
- M Grompe
- Department of Molecular and Medical Genetics, Department of Pediatrics, Oregon Health Sciences University, Portland 97201, USA.
| |
Collapse
|
38
|
Abstract
We have investigated the reduction of fitness caused by the fixation of new deleterious mutations in small populations within the framework of Fisher's geometrical model of adaptation. In Fisher's model, a population evolves in an n-dimensional character space with an adaptive optimum at the origin. The model allows us to investigate compensatory mutations, which restore fitness losses incurred by other mutations, in a context-dependent manner. We have conducted a moment analysis of the model, supplemented by the numerical results of computer simulations. The mean reduction of fitness (i.e., expected load) scaled to one is approximately n/(n+2Ne), where Ne is the effective population size. The reciprocal relationship between the load and Ne implies that the fixation of deleterious mutations is unlikely to cause extinction when there is a broad scope for compensatory mutations, except in very small populations. Furthermore, the dependence of load on n implies that pleiotropy plays a large role in determining the extinction risk of small populations. Differences and similarities between our results and those of a previous study on the effects of Ne and n are explored. That the predictions of this model are qualitatively different from studies ignoring compensatory mutations implies that we must be cautious in predicting the evolutionary fate of small populations and that additional data on the nature of mutations is of critical importance.
Collapse
Affiliation(s)
- A Poon
- Department of Zoology, University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
39
|
Rodríguez JM, Timm DE, Titus GP, Beltrán-Valero De Bernabé D, Criado O, Mueller HA, Rodríguez De Córdoba S, Peñalva MA. Structural and functional analysis of mutations in alkaptonuria. Hum Mol Genet 2000; 9:2341-50. [PMID: 11001939 DOI: 10.1093/oxfordjournals.hmg.a018927] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Alkaptonuria (AKU), the prototypic inborn error of metabolism, was the first human disease to be interpreted as a Mendelian trait by Garrod and Bateson at the beginning of last century. AKU results from impaired function of homogentisate dioxygenase (HGO), an enzyme required for the catabolism of phenylalanine and tyrosine. With the novel 7 AKU and 22 fungal mutations reported here, a total of 84 mutations impairing this enzyme have been found in the HGO gene from humans and model organisms. Forty-three of these mutations result in single amino acid substitutions. This mutational information is analysed here in the context of the HGO structure and function using kinetic assays performed using purified AKU mutant enzymes and the crystal structure of human HGO. HGO is a topologically complex structure which assembles as a functional hexamer arranged as a dimer of trimers. We show how the intricate pattern of intra- and inter-subunit interactions and the extensive surfaces required for subunit folding and association of this oligomeric enzyme can be inactivated at multiple levels by single-residue substitutions. This explains, in part, the predominance of missense mutations (67%) in AKU.
Collapse
Affiliation(s)
- J M Rodríguez
- Centro de Investigaciones Biológicas CSIC, Velázquez 144, Madrid 28006, Spain
| | | | | | | | | | | | | | | |
Collapse
|
40
|
|