1
|
Leystra AA, Gilsdorf BJ, Wisinger AM, Warda ER, Wiegand S, Zahm CD, Matkowskyj KA, Deming DA, Khan N, Rosemarie Q, Sievers CK, Schwartz AR, Albrecht DM, Clipson L, Mukhtar H, Newton MA, Halberg RB. Multi-ancestral origin of intestinal tumors: Impact on growth, progression, and drug efficacy. Cancer Rep (Hoboken) 2021; 5:e1459. [PMID: 34245130 PMCID: PMC8842699 DOI: 10.1002/cnr2.1459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/24/2021] [Accepted: 04/21/2021] [Indexed: 11/07/2022] Open
Abstract
Background Data are steadily accruing that demonstrate that intestinal tumors are frequently derived from multiple founding cells, resulting in tumors comprised of distinct ancestral clones that might cooperate or alternatively compete, thereby potentially impacting different phases of the disease process. Aim We sought to determine whether tumors with a multi‐ancestral architecture involving at least two distinct clones show increased tumor number, growth, progression, or resistance to drug intervention. Methods Mice carrying the Min allele of Apc were generated that were mosaic with only a subset of cells in the intestinal epithelium expressing an activated form of PI3K, a key regulatory kinase affecting several important cellular processes. These cells were identifiable as they fluoresced green, whereas all other cells fluoresced red. Results Cell lineage tracing revealed that many intestinal tumors from our mouse model were derived from at least two founding cells, those expressing the activated PI3K (green) and those which did not (red). Heterotypic tumors with a multi‐ancestral architecture as evidenced by a mixture of green and red cells exhibited increased tumor growth and invasiveness. Clonal architecture also had an impact on tumor response to low‐dose aspirin. Aspirin treatment resulted in a greater reduction of heterotypic tumors derived from multiple founding cells as compared to tumors derived from a single founding cell. Conclusion These data indicate that genetically distinct tumor‐founding cells can contribute to early intratumoral heterogeneity. The coevolution of the founding cells and their progeny enhances colon tumor progression and impacts the response to aspirin. These findings are important to a more complete understanding of tumorigenesis with consequences for several distinct models of tumor evolution. They also have practical implications to the clinic. Mouse models with heterogenous tumors are likely better for predicting drug efficacy as compared to models in which the tumors are highly homogeneous. Moreover, understanding how interactions among different populations in a single heterotypic tumor with a multi‐ancestral architecture impact response to a single agent and combination therapies are necessary to fully develop personalized medicine.
Collapse
Affiliation(s)
- Alyssa A Leystra
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA.,Division of Gastroenterology and Hepatology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Brock J Gilsdorf
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Amanda M Wisinger
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Elise R Warda
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Shanna Wiegand
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Christopher D Zahm
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Kristina A Matkowskyj
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Dustin A Deming
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA.,Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Naghma Khan
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA.,Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Quincy Rosemarie
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Chelsie K Sievers
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA.,Division of Gastroenterology and Hepatology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Alexander R Schwartz
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Dawn M Albrecht
- Division of Gastroenterology and Hepatology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Linda Clipson
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Hasan Mukhtar
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA.,Department of Dermatology, University of Wisconsin, Madison, Wisconsin, USA
| | - Michael A Newton
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Richard B Halberg
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA.,Division of Gastroenterology and Hepatology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Alexander MR, Murgai M, Moehle CW, Owens GK. Interleukin-1β modulates smooth muscle cell phenotype to a distinct inflammatory state relative to PDGF-DD via NF-κB-dependent mechanisms. Physiol Genomics 2012; 44:417-29. [PMID: 22318995 PMCID: PMC3339851 DOI: 10.1152/physiolgenomics.00160.2011] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/17/2012] [Indexed: 12/14/2022] Open
Abstract
Smooth muscle cell (SMC) phenotypic modulation in atherosclerosis and in response to PDGF in vitro involves repression of differentiation marker genes and increases in SMC proliferation, migration, and matrix synthesis. However, SMCs within atherosclerotic plaques can also express a number of proinflammatory genes, and in cultured SMCs the inflammatory cytokine IL-1β represses SMC marker gene expression and induces inflammatory gene expression. Studies herein tested the hypothesis that IL-1β modulates SMC phenotype to a distinct inflammatory state relative to PDGF-DD. Genome-wide gene expression analysis of IL-1β- or PDGF-DD-treated SMCs revealed that although both stimuli repressed SMC differentiation marker gene expression, IL-1β distinctly induced expression of proinflammatory genes, while PDGF-DD primarily induced genes involved in cell proliferation. Promoters of inflammatory genes distinctly induced by IL-1β exhibited over-representation of NF-κB binding sites, and NF-κB inhibition in SMCs reduced IL-1β-induced upregulation of proinflammatory genes as well as repression of SMC differentiation marker genes. Interestingly, PDGF-DD-induced SMC marker gene repression was not NF-κB dependent. Finally, immunofluorescent staining of mouse atherosclerotic lesions revealed the presence of cells positive for the marker of an IL-1β-stimulated inflammatory SMC, chemokine (C-C motif) ligand 20 (CCL20), but not the PDGF-DD-induced gene, regulator of G protein signaling 17 (RGS17). Results demonstrate that IL-1β- but not PDGF-DD-induced phenotypic modulation of SMC is characterized by NF-κB-dependent activation of proinflammatory genes, suggesting the existence of a distinct inflammatory SMC phenotype. In addition, studies provide evidence for the possible utility of CCL20 and RGS17 as markers of inflammatory and proliferative state SMCs within atherosclerotic plaques in vivo.
Collapse
Affiliation(s)
- Matthew R Alexander
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | |
Collapse
|
3
|
Lee CY, Jeffery R, Hutchinson G, Alison MR, Poulsom R, Wright NA, Otto WR. Bone marrow cells in murine colitis: multi-signal analysis confirms pericryptal myofibroblast engraftment without epithelial involvement. PLoS One 2011; 6:e26082. [PMID: 22022515 PMCID: PMC3192776 DOI: 10.1371/journal.pone.0026082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 09/19/2011] [Indexed: 01/30/2023] Open
Abstract
Background The contribution of bone marrow-derived cells to epithelial tissues in the inflamed gut remains controversial. Recent reports have suggested that cell fusion between bone marrow-derived cells and the intestinal epithelium takes place in inflammatory conditions. Methods In attempts to confirm this, we have undertaken gender mis-matched bone marrow (BM) transplants from male Swiss Webster (SWR) mice to B and T cell-deficient female Rag2 KO mice which, 4 weeks later, were given 5% dextran sodium sulphate in drinking water to induce acute colitis. A further BM-treated group of animals with a graft versus host-like condition was also studied. We developed a new method to combine up to three brightfield or fluorescent lectin- or immuno-histochemical signals with fluorescent in situ hybridisation for the Y and X chromosomes to enable us unequivocally to identify BM-derived male cells which presented as different cell types in the gastrointestinal tract. Principal Findings In rolled preparations of whole intestines we scanned around 1.5 million crypts at many tissue levels. In no instance did we see a Y chromosome-positive cell in the epithelial compartment, which was not also CD45-positive. We saw no evidence of cell fusion, based on combined X and Y chromosome analysis. Levels of CD45-positive stromal and lymphoid cells and pericryptal myfibroblasts (positive for α-smooth muscle actin) increased with time up to a plateau, which resembled the level seen in untreated control grafted animals. We saw very few Y chromosome-positive endothelial cells in intestinal stromal vessels. Conclusions We conclude that whole BM transplantation does not result in intestinal epithelial engraftment in this model. Our new methods can usefully assist in multi-signal analyses of cell phenotypes following BM transplant and in models of chimaerism and regenerative medicine.
Collapse
Affiliation(s)
- Chung-Yin Lee
- Histopathology Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
| | - Rosemary Jeffery
- Histopathology Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
| | - Gillian Hutchinson
- Biological Resources Unit, Cancer Research UK, London Research Institute, London, United Kingdom
| | - Malcolm R. Alison
- Centre for Digestive Diseases, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Richard Poulsom
- Histopathology Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
- Centre for Digestive Diseases, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Nicholas A. Wright
- Histopathology Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
- Centre for Digestive Diseases, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - William R. Otto
- Histopathology Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
- Centre for Digestive Diseases, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
- * E-mail:
| |
Collapse
|
4
|
Wei Y, Epstein SP, Fukuoka S, Birmingham NP, Li XM, Asbell PA. sPLA2-IIa amplifies ocular surface inflammation in the experimental dry eye (DE) BALB/c mouse model. Invest Ophthalmol Vis Sci 2011; 52:4780-8. [PMID: 21519031 DOI: 10.1167/iovs.10-6350] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE sPLA2-IIa is a biomarker for many inflammatory diseases in humans and is found at high levels in human tears. However, its role in ocular surface inflammation remains unclear. An experimentally induced BALB/c mouse dry eye (DE) model was used to elucidate the role of sPLA2-IIa in ocular surface inflammation. METHODS BALB/c mice were subcutaneously injected with scopolamine and placed in a daytime air-drying device for 5 to 10 days. Control mice received no treatment. DE status was evaluated with tear production with a phenol-red thread method. Tear inflammatory cytokines were quantified by multiplex immunoassays. Ocular surface inflammation and sPLA2-IIa expression were examined by immune-staining and quantitative (q)RT(2)-PCR. Conjunctiva (CNJ) of the mice was cultured for prostaglandin E2 production induced by sPLA2-IIa with various amount of sPLA2-IIa inhibitor, S-3319. RESULTS Treated mice produced fewer tears and heavier corneal (CN) fluorescein staining than the untreated controls (P < 0.001). They also revealed lower goblet cell density (P < 0.001) with greater inflammatory cell infiltration within the conjunctiva, and higher concentration of tear inflammatory cytokines than the controls. Moreover, treated mice showed heavier sPLA2-IIa immune staining than the controls in the CNJ epithelium, but not in the CN epithelium or the lacrimal gland. Treated mice exhibited upregulated sPLA2-IIa and cytokine gene transcription. Furthermore, CNJ cultures treated with sPLA2-IIa inhibitor showed significantly reduced sPLA2-IIa-induced inflammation. CONCLUSIONS This is the first report regarding sPLA2-IIa in the regulation of ocular surface inflammation. The findings may therefore lead to new therapeutic strategies for ocular surface inflammation, such as DE disease.
Collapse
Affiliation(s)
- Yi Wei
- Department of Ophthalmology, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Cooper HS, Chang WCL, Coudry R, Gary MA, Everley L, Spittle CS, Wang H, Litwin S, Clapper ML. Generation of a unique strain of multiple intestinal neoplasia (Apc(+/Min-FCCC)) mice with significantly increased numbers of colorectal adenomas. Mol Carcinog 2005; 44:31-41. [PMID: 15937958 DOI: 10.1002/mc.20114] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The relevance of the Apc(+/Min) mouse model in the study of human colorectal cancer remains uncertain due to the predominance of small intestinal adenomas and few, if any, colorectal adenomas. A new strain of Apc(+/Min) mice (Apc(+/Min-FCCC)) with significantly greater numbers of colorectal adenomas has been generated and characterized. Male C57BL/6J-Apc(+/Min) mice (the Jackson Laboratory, Bar Harbor, ME) were crossed with wild-type (Apc(+/+)) C57BL/6J females from an independent colony at this institution (offspring=Apc(+/Min-FCCC)) and 233 animals were evaluated over 20 generations. In order to determine the contribution of genetics to the enhanced colorectal adenoma phenotype, breeding pairs (Apc(+/Min) male x wild type female C57BL/6J) were purchased from the Jackson Laboratory and offspring (Apc(+/Min-JAX)) were maintained in our facility under identical conditions (n=98). Animals were fed Purina Rodent chow (#5013) diet containing 5% fat. The entire intestinal tract was examined histopathologically in both strains. Both the Apc and Pla2g2a (candidate for Mom1) genes were sequenced and found to be identical for both the Apc(+/Min-FCCC) and Apc(+/Min-JAX) mouse strains. The multiplicity of colorectal adenomas in the Apc(+/Min-FCCC) mice was much higher than reported in the literature and significantly greater than the multiplicity of colorectal adenomas in Apc(+/Min-JAX) mice maintained in our facility (P=0.01). Apc(+/Min-FCCC) had a significantly greater incidence of rectal prolapse (P = 0.02) and small intestinal adenocarcinomes (P=0.001), and multiplicity of small intestinal adenocarcinomas (P=0.001) compared to Apc(+/Min-JAX) mice. Male Apc(+/Min-FCCC) mice had significantly greater numbers of colorectal adenomas compared to female Apc(+/Min-FCCC) mice (P=0.0002), as did male Apc(+/Min-JAX) mice vs. female Apc(+/Min-JAX) mice (P< 0.0001). These results allow us to conclude: (1) Apc(+/Min-FCCC) mice are unique in that they develop significantly greater numbers of colorectal adenomas and small intestinal cancers, and a significantly greater incidence of small intestinal cancers and rectal prolapse than Apc(+/Min-JAX) mice. (2) This study represents the first report of a significant gender difference in multiplicity of colorectal adenomas. (3) Differences between Apc(+/Min-FCCC) and Apc(+/Min-JAX) mice in currently undefined genetic modifiers may contribute to the enhanced colorectal phenotype. (4) The Apc(+/Min-FCCC) strain is highly suited for the investigation of colorectal neoplastic disease and chemoprevention studies.
Collapse
Affiliation(s)
- Harry S Cooper
- Department of Pathology, Division of Medical Science, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|