1
|
Tokano T, Kato Y, Sugiyama S, Uchihashi T, Noguchi T. Structural Dynamics of a Protein Domain Relevant to the Water-Oxidizing Complex in Photosystem II as Visualized by High-Speed Atomic Force Microscopy. J Phys Chem B 2020; 124:5847-5857. [PMID: 32551630 DOI: 10.1021/acs.jpcb.0c03892] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Photosystem II (PSII) is a multiprotein complex that has a function of light-driven water oxidation. The catalytic site of water oxidation is the Mn4CaO5 cluster, which is bound to the lumenal side of PSII through amino acid residues from the D1 and CP43 proteins and is further surrounded by the extrinsic proteins. In this study, we have for the first time visualized the structural dynamics of the lumenal region of a PSII core complex using high-speed atomic force microscopy (HS-AFM). The HS-AFM images of a PSII membrane fragment showed stepwise dissociation of the PsbP and PsbO extrinsic proteins. Upon subsequent destruction of the Mn4CaO5 cluster, the lumenal domain of CP43 was found to undergo a conformational fluctuation. The observed structural flexibility and conformational fluctuation of the CP43 lumenal domain are suggested to play important roles in the biogenesis of PSII and the photoassembly of the Mn4CaO5 cluster.
Collapse
Affiliation(s)
- Takaya Tokano
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yuki Kato
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Shogo Sugiyama
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takayuki Uchihashi
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takumi Noguchi
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
2
|
Zhao C, Gu W, Wang C, Sun S, Zhou H, Ran G, Song Q. Potassium Ferrate(VI) as a Highly Efficient and Environmentally Friendly Chemiluminescence Reagent in Acidic Solution. Anal Chem 2019; 91:12255-12259. [PMID: 31394898 DOI: 10.1021/acs.analchem.9b02263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein we report that the reactions of potassium ferrate (VI) with a number of reductants can produce strong chemiluminescence (CL) in acidic aqueous solution. The CL Spectra were registered and compared with the classical KMnO4 and NaClO-H2O2 CL systems. The characteristic emission peaks at 1268 and 1050 nm were observed, which are consistent to the spectrum obtained from the NaClO-H2O2 system. Additional emission bands at 680 nm further confirmed the formation of singlet oxygen dimers. The high CL intensity and the chemically green nature of K2FeO4, prompt us to further develop it as a novel CL reagent. Sensitive response and wide calibration ranges were obtained for dopamine, ascorbic acid, and ethanol. The linear range for the determination of three analytes were 50 nM to 50 μM for dopamine (LOD: 20 nM), 5.0 μM to 1.0 mM for ascorbic acid (LOD: 2.21 μM), and 0.5 μM to 1.0 mM for ethanol (LOD: 0.30 μM). Thus, K2FeO4 has a great potential for the postcolumn detection of those UV featureless compounds.
Collapse
Affiliation(s)
- Chenkai Zhao
- International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering , Jiangnan University , Wuxi 214122 , People's Republic of China
| | - Wenxiu Gu
- International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering , Jiangnan University , Wuxi 214122 , People's Republic of China
| | - Chan Wang
- International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering , Jiangnan University , Wuxi 214122 , People's Republic of China
| | - Shuquan Sun
- International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering , Jiangnan University , Wuxi 214122 , People's Republic of China
| | - Haifeng Zhou
- International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering , Jiangnan University , Wuxi 214122 , People's Republic of China
| | - Guoxia Ran
- International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering , Jiangnan University , Wuxi 214122 , People's Republic of China
| | - Qijun Song
- International Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering , Jiangnan University , Wuxi 214122 , People's Republic of China
| |
Collapse
|
3
|
Shevela D, Ananyev G, Vatland AK, Arnold J, Mamedov F, Eichacker LA, Dismukes GC, Messinger J. 'Birth defects' of photosystem II make it highly susceptible to photodamage during chloroplast biogenesis. PHYSIOLOGIA PLANTARUM 2019; 166:165-180. [PMID: 30693529 DOI: 10.1111/ppl.12932] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
High solar flux is known to diminish photosynthetic growth rates, reducing biomass productivity and lowering disease tolerance. Photosystem II (PSII) of plants is susceptible to photodamage (also known as photoinactivation) in strong light, resulting in severe loss of water oxidation capacity and destruction of the water-oxidizing complex (WOC). The repair of damaged PSIIs comes at a high energy cost and requires de novo biosynthesis of damaged PSII subunits, reassembly of the WOC inorganic cofactors and membrane remodeling. Employing membrane-inlet mass spectrometry and O2 -polarography under flashing light conditions, we demonstrate that newly synthesized PSII complexes are far more susceptible to photodamage than are mature PSII complexes. We examined these 'PSII birth defects' in barley seedlings and plastids (etiochloroplasts and chloroplasts) isolated at various times during de-etiolation as chloroplast development begins and matures in synchronization with thylakoid membrane biogenesis and grana membrane formation. We show that the degree of PSII photodamage decreases simultaneously with biogenesis of the PSII turnover efficiency measured by O2 -polarography, and with grana membrane stacking, as determined by electron microscopy. Our data from fluorescence, QB -inhibitor binding, and thermoluminescence studies indicate that the decline of the high-light susceptibility of PSII to photodamage is coincident with appearance of electron transfer capability QA - → QB during de-etiolation. This rate depends in turn on the downstream clearing of electrons upon buildup of the complete linear electron transfer chain and the formation of stacked grana membranes capable of longer-range energy transfer.
Collapse
Affiliation(s)
- Dmitry Shevela
- Department of Chemistry, Chemical Biological Centre, Umeå University, S-90187, Umeå, Sweden
| | - Gennady Ananyev
- The Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Ann K Vatland
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036, Stavanger, Norway
| | - Janine Arnold
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036, Stavanger, Norway
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, Uppsala University, S-75237, Uppsala, Sweden
| | - Lutz A Eichacker
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036, Stavanger, Norway
| | - G Charles Dismukes
- The Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Johannes Messinger
- Department of Chemistry, Chemical Biological Centre, Umeå University, S-90187, Umeå, Sweden
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, Uppsala University, S-75237, Uppsala, Sweden
| |
Collapse
|
4
|
Photosynthetic water splitting by the Mn4Ca2+OX catalyst of photosystem II: its structure, robustness and mechanism. Q Rev Biophys 2018; 50:e13. [PMID: 29233225 DOI: 10.1017/s0033583517000105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The biological energy cycle of our planet is driven by photosynthesis whereby sunlight is absorbed by chlorophyll and other accessory pigments. The excitation energy is then efficiently transferred to a reaction centre where charge separation occurs in a few picoseconds. In the case of photosystem II (PSII), the energy of the charge transfer state is used to split water into oxygen and reducing equivalents. This is accomplished by the relatively low energy content of four photons of visible light. PSII is a large multi-subunit membrane protein complex embedded in the lipid environment of the thylakoid membranes of plants, algae and cyanobacteria. Four high energy electrons, together with four protons (4H+), are used to reduce plastoquinone (PQ), the terminal electron acceptor of PSII, to plastoquinol (PQH2). PQH2 passes its reducing equivalents to an electron transfer chain which feeds into photosystem I (PSI) where they gain additional reducing potential from a second light reaction which is necessary to drive CO2 reduction. The catalytic centre of PSII consists of a cluster of four Mn ions and a Ca2+ linked by oxo bonds. In addition, there are seven amino acid ligands. In this Article, I discuss the structure of this metal cluster, its stability and the probability that an acid-base (nucleophilic-electrophilic) mechanism catalyses the water splitting reaction on the surface of the metal-cluster. Evidence for this mechanism is presented from studies on water splitting catalysts consisting of organo-complexes of ruthenium and manganese and also by comparison with the enzymology of carbon monoxide dehydrogenase (CODH). Finally the relevance of our understanding of PSII is discussed in terms of artificial photosynthesis with emphasis on inorganic water splitting catalysts as oxygen generating photoelectrodes.
Collapse
|
5
|
Barber J. Mn4Ca Cluster of Photosynthetic Oxygen-Evolving Center: Structure, Function and Evolution. Biochemistry 2016; 55:5901-5906. [DOI: 10.1021/acs.biochem.6b00794] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- James Barber
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, South Kensington Campus, London SW7 2AZ, U.K
| |
Collapse
|
6
|
Gates C, Ananyev G, Dismukes GC. The strontium inorganic mutant of the water oxidizing center (CaMn4O5) of PSII improves WOC efficiency but slows electron flux through the terminal acceptors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1550-1560. [DOI: 10.1016/j.bbabio.2016.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/26/2016] [Accepted: 06/10/2016] [Indexed: 01/26/2023]
|
7
|
Shevela D, Arnold J, Reisinger V, Berends HM, Kmiec K, Koroidov S, Bue AK, Messinger J, Eichacker LA. Biogenesis of water splitting by photosystem II during de-etiolation of barley (Hordeum vulgare L.). PLANT, CELL & ENVIRONMENT 2016; 39:1524-1536. [PMID: 26836813 DOI: 10.1111/pce.12719] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/14/2016] [Accepted: 01/17/2016] [Indexed: 06/05/2023]
Abstract
Etioplasts lack thylakoid membranes and photosystem complexes. Light triggers differentiation of etioplasts into mature chloroplasts, and photosystem complexes assemble in parallel with thylakoid membrane development. Plastids isolated at various time points of de-etiolation are ideal to study the kinetic biogenesis of photosystem complexes during chloroplast development. Here, we investigated the chronology of photosystem II (PSII) biogenesis by monitoring assembly status of chlorophyll-binding protein complexes and development of water splitting via O2 production in plastids (etiochloroplasts) isolated during de-etiolation of barley (Hordeum vulgare L.). Assembly of PSII monomers, dimers and complexes binding outer light-harvesting antenna [PSII-light-harvesting complex II (LHCII) supercomplexes] was identified after 1, 2 and 4 h of de-etiolation, respectively. Water splitting was detected in parallel with assembly of PSII monomers, and its development correlated with an increase of bound Mn in the samples. After 4 h of de-etiolation, etiochloroplasts revealed the same water-splitting efficiency as mature chloroplasts. We conclude that the capability of PSII to split water during de-etiolation precedes assembly of the PSII-LHCII supercomplexes. Taken together, data show a rapid establishment of water-splitting activity during etioplast-to-chloroplast transition and emphasize that assembly of the functional water-splitting site of PSII is not the rate-limiting step in the formation of photoactive thylakoid membranes.
Collapse
Affiliation(s)
- Dmitriy Shevela
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036, Stavanger, Norway
- Department of Chemistry, Chemical Biological Centre, Umeå University, S-90187, Umeå, Sweden
| | - Janine Arnold
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036, Stavanger, Norway
| | - Veronika Reisinger
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036, Stavanger, Norway
| | - Hans-Martin Berends
- Department of Chemistry, Chemical Biological Centre, Umeå University, S-90187, Umeå, Sweden
| | - Karol Kmiec
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036, Stavanger, Norway
| | - Sergey Koroidov
- Department of Chemistry, Chemical Biological Centre, Umeå University, S-90187, Umeå, Sweden
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Stanford, CA, 94305, USA
| | - Ann Kristin Bue
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036, Stavanger, Norway
| | - Johannes Messinger
- Department of Chemistry, Chemical Biological Centre, Umeå University, S-90187, Umeå, Sweden
| | - Lutz A Eichacker
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036, Stavanger, Norway
| |
Collapse
|
8
|
Light-induced gradual activation of photosystem II in dark-grown Norway spruce seedlings. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:799-809. [DOI: 10.1016/j.bbabio.2016.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/12/2016] [Accepted: 02/17/2016] [Indexed: 11/19/2022]
|
9
|
Yadav DK, Prasad A, Kruk J, Pospíšil P. Evidence for the involvement of loosely bound plastosemiquinones in superoxide anion radical production in photosystem II. PLoS One 2014; 9:e115466. [PMID: 25541694 PMCID: PMC4277363 DOI: 10.1371/journal.pone.0115466] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/24/2014] [Indexed: 11/22/2022] Open
Abstract
Recent evidence has indicated the presence of novel plastoquinone-binding sites, QC and QD, in photosystem II (PSII). Here, we investigated the potential involvement of loosely bound plastosemiquinones in superoxide anion radical (O2•−) formation in spinach PSII membranes using electron paramagnetic resonance (EPR) spin-trapping spectroscopy. Illumination of PSII membranes in the presence of the spin trap EMPO (5-(ethoxycarbonyl)-5-methyl-1-pyrroline N-oxide) resulted in the formation of O2•−, which was monitored by the appearance of EMPO-OOH adduct EPR signal. Addition of exogenous short-chain plastoquinone to PSII membranes markedly enhanced the EMPO-OOH adduct EPR signal. Both in the unsupplemented and plastoquinone-supplemented PSII membranes, the EMPO-OOH adduct EPR signal was suppressed by 50% when the urea-type herbicide DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) was bound at the QB site. However, the EMPO-OOH adduct EPR signal was enhanced by binding of the phenolic-type herbicide dinoseb (2,4-dinitro-6-sec-butylphenol) at the QD site. Both in the unsupplemented and plastoquinone-supplemented PSII membranes, DCMU and dinoseb inhibited photoreduction of the high-potential form of cytochrome b559 (cyt b559). Based on these results, we propose that O2•− is formed via the reduction of molecular oxygen by plastosemiquinones formed through one-electron reduction of plastoquinone at the QB site and one-electron oxidation of plastoquinol by cyt b559 at the QC site. On the contrary, the involvement of a plastosemiquinone formed via the one-electron oxidation of plastoquinol by cyt b559 at the QD site seems to be ambiguous. In spite of the fact that the existence of QC and QD sites is not generally accepted yet, the present study provided more spectroscopic data on the potential functional role of these new plastoquinone-binding sites.
Collapse
Affiliation(s)
- Deepak Kumar Yadav
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Ankush Prasad
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Pavel Pospíšil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
- * E-mail:
| |
Collapse
|
10
|
Yang J, Yan H, Zong X, Wen F, Liu M, Li C. Roles of cocatalysts in semiconductor-based photocatalytic hydrogen production. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2013; 371:20110430. [PMID: 23816907 DOI: 10.1098/rsta.2011.0430] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A photocatalyst is defined as a functional composite material with three components: photo-harvester (e.g. semiconductor), reduction cocatalyst (e.g. for hydrogen evolution) and oxidation cocatalyst (e.g. for oxidation evolution from water). Loading cocatalysts on semiconductors is proved to be an effective approach to promote the charge separation and transfer, suppress the charge recombination and enhance the photocatalytic activity. Furthermore, the photocatalytic performance can be significantly improved by loading dual cocatalysts for reduction and oxidation, which could lower the activation energy barriers, respectively, for the two half reactions. A quantum efficiency (QE) as high as 93 per cent at 420 nm for H₂ production has been achieved for Pt-PdS/CdS, where Pt and PdS, respectively, act as reduction and oxidation cocatalysts and CdS as a photo-harvester. The dual cocatalysts work synergistically and enhance the photocatalytic reaction rate, which is determined by the slower one (either reduction or oxidation). This work demonstrates that the cocatalysts, especially the dual cocatalysts for reduction and oxidation, are crucial and even absolutely necessary for achieving high QEs in photocatalytic hydrogen production, as well as in photocatalytic water splitting.
Collapse
Affiliation(s)
- Jinhui Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, 457 Zhongshan Road, Dalian 116023, People's Republic of China
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
The emergence of oxygen-producing (oxygenic) photosynthesis fundamentally transformed our planet; however, the processes that led to the evolution of biological water splitting have remained largely unknown. To illuminate this history, we examined the behavior of the ancient Mn cycle using newly obtained scientific drill cores through an early Paleoproterozoic succession (2.415 Ga) preserved in South Africa. These strata contain substantial Mn enrichments (up to ∼17 wt %) well before those associated with the rise of oxygen such as the ∼2.2 Ga Kalahari Mn deposit. Using microscale X-ray spectroscopic techniques coupled to optical and electron microscopy and carbon isotope ratios, we demonstrate that the Mn is hosted exclusively in carbonate mineral phases derived from reduction of Mn oxides during diagenesis of primary sediments. Additional observations of independent proxies for O2--multiple S isotopes (measured by isotope-ratio mass spectrometry and secondary ion mass spectrometry) and redox-sensitive detrital grains--reveal that the original Mn-oxide phases were not produced by reactions with O2, which points to a different high-potential oxidant. These results show that the oxidative branch of the Mn cycle predates the rise of oxygen, and provide strong support for the hypothesis that the water-oxidizing complex of photosystem II evolved from a former transitional photosystem capable of single-electron oxidation reactions of Mn.
Collapse
|
12
|
Petrova I, Kurashov V, Semenov A, Mamedov M. Manganese-depleted/reconstituted photosystem II core complexes in solution and liposomes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:372-6. [DOI: 10.1016/j.jphotobiol.2011.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 02/28/2011] [Accepted: 03/05/2011] [Indexed: 11/26/2022]
|
13
|
Cardona T, Battchikova N, Zhang P, Stensjö K, Aro EM, Lindblad P, Magnuson A. Electron transfer protein complexes in the thylakoid membranes of heterocysts from the cyanobacterium Nostoc punctiforme. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:252-63. [DOI: 10.1016/j.bbabio.2009.01.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 12/15/2008] [Accepted: 01/13/2009] [Indexed: 10/21/2022]
|
14
|
Dasgupta J, Ananyev GM, Dismukes GC. Photoassembly of the Water-Oxidizing Complex in Photosystem II. Coord Chem Rev 2008; 252:347-360. [PMID: 19190725 DOI: 10.1016/j.ccr.2007.08.022] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The light-driven steps in the biogenesis and repair of the inorganic core comprising the O(2)-evolving center of oxygenic photosynthesis (photosystem II water-oxidation complex, PSII-WOC) are reviewed. These steps, known collectively as photoactivation, involve the photoassembly of the free inorganic cofactors to the cofactor-depleted PSII-(apo-WOC) driven by light and produce the active O(2)-evolving core comprised of Mn(4)CaO(x)Cl(y). We focus on the functional role of the inorganic components as seen through the competition with non-native cofactors ("inorganic mutants") on water oxidation activity, the rate of the photoassembly reaction, and on structural insights gained from EPR spectroscopy of trapped intermediates formed in the initial steps of the assembly reaction. A chemical mechanism for the initial steps in photoactivation is given that is based on these data. Photoactivation experiments offer the powerful insights gained from replacement of the native cofactors, which together with the recent X-ray structural data for the resting holoenzyme provide a deeper understanding of the chemistry of water oxidation. We also review some new directions in research that photoactivation studies have inspired that look at the evolutionary history of this remarkable catalyst.
Collapse
Affiliation(s)
- Jyotishman Dasgupta
- 306 Lewis Hall, Department of Chemistry, University of California, Berkeley, CA 94709, USA
| | | | | |
Collapse
|
15
|
Baldisserotto C, Ferroni L, Anfuso E, Pagnoni A, Fasulo MP, Pancaldi S. Responses of Trapa natans L. floating laminae to high concentrations of manganese. PROTOPLASMA 2007; 231:65-82. [PMID: 17602280 DOI: 10.1007/s00709-007-0242-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 06/06/2006] [Indexed: 05/05/2023]
Abstract
The present study focuses on the responses of floating laminae of the Mn-tolerant hydrophyte Trapa natans L. to 1 mM Mn and their ability to accumulate the metal. Studies were carried out first on young floating laminae belonging to the second verticil of 30-day-old plants which originated from fruits that had been maintained in a 1 mM Mn-treated environment and again on the young floating laminae after 10 days of further treatment with 1 mM Mn. Mn storing was observed from the first days after germination, but only 10-day-treated laminae showed the capability to hyperaccumulate the element inside specialised cells (>20000 microg/g [dry weight]). Electron microscopy and the Folin-Ciocalteu reaction for phenolics revealed deposits of chelated material inside vacuoles of the first palisade layer and of idioblasts in the spongy tissue. X-ray microanalysis indicated that the deposits were Mn chelated with phenolic compounds. Numerous trichomes were observed at the lower epidermis of 10-day-treated laminae. They were rich in phenolics and characterised by Mn concretions at their base. As they are associated with a high concentration of the metal in culture water and sediments, trichomes may constitute a morphological differentiation for the secretion of Mn-chelating molecules into the culture water, as a probable "avoidance" mechanism. Finally, monitoring of the photosynthetic apparatus showed that photosynthetic function was not impaired, though differences in development occurred.
Collapse
Affiliation(s)
- C Baldisserotto
- Laboratory of Plant Cytophysiology, Department of Natural and Cultural Resources, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
16
|
Suorsa M, Aro EM. Expression, assembly and auxiliary functions of photosystem II oxygen-evolving proteins in higher plants. PHOTOSYNTHESIS RESEARCH 2007; 93:89-100. [PMID: 17380423 DOI: 10.1007/s11120-007-9154-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 02/26/2007] [Indexed: 05/14/2023]
Abstract
The oxygen-evolving complex (OEC) of higher plant photosystem II (PSII) consists of an inorganic Mn(4)Ca cluster and three nuclear-encoded proteins, PsbO, PsbP and PsbQ. In this review, we focus on the assembly of these OEC proteins, and especially on the role of the small intrinsic PSII proteins and recently found "novel" PSII proteins in the assembly process. The numerous auxiliary functions suggested during the past few years for the OEC proteins will likewise be discussed. For example, besides being a manganese-stabilizing protein, PsbO has been found to bind calcium and GTP and possess a carbonic anhydrase activity. In addition, specific roles have been suggested for the two isoforms of the PsbO protein in Arabidopsis thaliana. PsbP and PsbQ seem to play an additional role in the formation of PSII supercomplexes and in grana stacking, besides their originally recognized role in providing a proper calcium and chloride ion concentration for water splitting.
Collapse
Affiliation(s)
- Marjaana Suorsa
- Department of Biology, Plant Physiology and Molecular Biology, University of Turku, 20014 Turku, Finland
| | | |
Collapse
|
17
|
Function of two beta-carotenes near the D1 and D2 proteins in photosystem II dimers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1767:79-87. [PMID: 17123463 DOI: 10.1016/j.bbabio.2006.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 10/11/2006] [Accepted: 10/12/2006] [Indexed: 10/24/2022]
Abstract
The antenna proteins in photosystem II (PSII) not only promote energy transfer to the photosynthetic reaction center (RC) but provide also an efficient cation sink to re-reduce chlorophyll a if the electron transfer (ET) from the Mn-cluster is inhibited. Using the newest PSII dimer crystal structure (3.0 A resolution), in which 11 beta-carotene molecules (Car) and 14 lipids are visible in the PSII monomer, we calculated the redox potentials (Em) of one-electron oxidation for all Car (Em(Car)) by solving the Poisson-Boltzmann equation. In each PSII monomer, the D1 protein harbors a previously unlocated Car (CarD1) in van der Waals contact with the chlorin ring of ChlZ(D1). Each CarD1 in the PSII dimer complex is located in the interface between the D1 and CP47 subunits, together with another four Car of the other PSII monomer and several lipid molecules. The proximity of Car bridging between CarD1 and plastoquinone/Q(A) may imply a direct charge recombination of Car+Q(A)-. The calculated Em(CarD1) and Em(ChlZ(D1)) are, respectively, 83 and 126 mV higher than Em(CarD2) and Em(ChlZ(D2)), which could explain why CarD2+ and ChlZ(D2)+ are observed rather than the corresponding CarD1+ and ChlZ(D1)+.
Collapse
|
18
|
Li S, Chen G, Han G, Ling L, Huang D, Khorobrykh AA, Zharmukhamedov SK, Liu Q, Klimov VV, Kuang T. Coordination between manganese and nitrogen within the ligands in the manganese complexes facilitates the reconstitution of the water-oxidizing complex in manganese-depleted photosystem II preparations. J Biol Inorg Chem 2006; 11:783-90. [PMID: 16791637 DOI: 10.1007/s00775-006-0126-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Accepted: 06/07/2006] [Indexed: 10/24/2022]
Abstract
The water-oxidizing complex (WOC) within photosystem II (PSII) can be reconstituted with synthetic manganese complexes by a process called photoactivation; however, the key factors affecting the efficiency of synthetic manganese complexes in reconstitution of electron transport and oxygen evolution activity in manganese-depleted PSII remain unclear. In the present study, four complexes with different manganese coordination environments were used to reconstitute the WOC, and an interesting relationship was found between the coordination environment of the manganese atom in the complexes and their efficiency in restoring electron transport and oxygen evolution. If Mn(II) is coordinated to nitrogen atoms within the ligand, it can restore significant rates of electron transport and oxygen evolution; however, if the manganese atom is coordinated only to oxygen atoms instead of nitrogen atoms, it has no capability to restore electron transport and oxygen evolution. So, our results demonstrate that the capability of manganese complexes to reconstitute the WOC is mainly determined by the coordination between nitrogen atoms from ligands and the manganese atom. It is suggested from our results that the ligation between the nitrogen atom and the manganese atom within the manganese complex facilitates the photoligation of the manganese atom to histidyl residues on the apo-protein in manganese-depleted PSII during photoactivation.
Collapse
Affiliation(s)
- Shuqin Li
- Photosynthesis Research Center, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ananyev G, Nguyen T, Putnam-Evans C, Dismukes GC. Mutagenesis of CP43-arginine-357 to serine reveals new evidence for (bi)carbonate functioning in the water oxidizing complex of Photosystem II. Photochem Photobiol Sci 2005; 4:991-8. [PMID: 16307112 DOI: 10.1039/b507519j] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chlorophyll-binding protein CP43 is an inner subunit of the Photosystem II (PSII) reaction center core complex of all oxygenic photoautotrophs. X-Ray structural evidence places the guanidinium cation of the conserved arginine 357 residue of CP43 within a few Angstroms to the Mn(4)Ca cluster of the water-oxidizing complex (WOC) and has been implicated as a possible carbonate binding site. To test the hypothesis, the serine mutant, CP43-R357S, from Synechocystis PCC 6803 was investigated by PSII variable fluorescence (F(v)/F(m)) and simultaneous flash O(2) yield measurements in cells and thylakoid membranes. The R357S mutant assembles PSII-WOC centers, but is unable to grow photoautotrophically. Reconstitution of O(2) evolution by photoactivation and the occurrence of period-four oscillations of F(v)/F(m) establishes that the R357S mutant contains an assembled Mn(4)Ca cluster, but turnover is impaired as seen by an 11-fold larger Kok double miss parameter and faster decay of upper S states. Using pulsed light to avoid photoinactivation, wild-type cells and thylakoid membranes exhibit a 2-4-fold loss in O(2) evolution rate upon partial bicarbonate depletion under multiple turnover conditions, while the R357S mutant is unaffected by bicarbonate. Arginine R357 appears to function in binding a (bi)carbonate ion essential to normal catalytic turnover of the WOC. The quantum yield of electron donation from the WOC into PSII increases with decreasing turnover rate in R357S mutant cells and involves an aborted two-flash pathway that is distinct from the classical four-flash pattern. We speculate that an altered photochemical mechanism for O(2) production occurs via formation of hydrogen peroxide, by analogy to other treatments that retard the kinetics of proton release into the lumen.
Collapse
Affiliation(s)
- Gennady Ananyev
- Princeton University, Department of Chemistry and Princeton Environmental Institute, Princeton, NJ 08544, USA.
| | | | | | | |
Collapse
|
20
|
Han G, Li J, Chen G, Ling L, Li S, Khorobrykh AA, Zharmukhamedov SK, Klimov VV, Kuang T. Reconstruction of the water-oxidizing complex in manganese-depleted Photosystem II using synthetic manganese complexes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2005; 81:114-20. [PMID: 16154756 DOI: 10.1016/j.jphotobiol.2005.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 04/27/2005] [Accepted: 04/27/2005] [Indexed: 11/26/2022]
Abstract
The efficiency of a trinuclear and two binuclear manganese complexes in reconstituting electron transport and O(2) evolution activity in Mn-depleted Photosystem II preparations is analyzed. The trinuclear Mn-complex is more efficient than two binuclear Mn-complexes in restoring oxygen evolution, but it is less effective as an electron donor than binuclear Mn-complexes. It is inferred from our results that recovery of electron transport and O(2) evolution with polynuclear Mn-complexes is affected with different factors. Moreover, the trinuclear Mn-complex is extremely sensitive to the addition of CaCl(2). It is suggested that there is an interaction between Ca(2+) and carboxyl within the trinuclear Mn-complex during photoactivation and this interaction benefits the ligation of Mn atom to the apo-WOC and form an active WOC. Binuclear Mn(III)Mn(III) complex shows slightly higher efficiency than binuclear Mn(III)Mn(IV) complex in restoration of O(2) evolution activity. The efficiency of three Mn-complexes in the reconstitution of WOC is in an order: trinuclear Mn(3)(III)>binuclear Mn(III)Mn(III)>binuclear Mn(III)Mn(IV).
Collapse
Affiliation(s)
- Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
van Gorkom HJ, Yocum CF. The Calcium and Chloride Cofactors. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2005. [DOI: 10.1007/1-4020-4254-x_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
22
|
Büchel C, Kühlbrandt W. Structural differences in the inner part of photosystem II between higher plants and cyanobacteria. PHOTOSYNTHESIS RESEARCH 2005; 85:3-13. [PMID: 15977056 DOI: 10.1007/s11120-004-3195-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Accepted: 09/13/2004] [Indexed: 05/03/2023]
Abstract
A detailed comparison of key components in the Photosystem II complexes of higher plants and cyanobacteria was carried out. While the two complexes are overall very similar, significant differences exist in the relative orientation of individual components relative to one another. We compared a three-dimensional map of the inner part of plant PS II at 8 A resolution, and a 5.5 A projection map of the same complex determined by electron crystallography, to the recent 3.5-3.8 A X-ray structures of cyanobacterial complexes. The largest differences were found in the rotational alignment of the cyt b(;)559 subcomplex, and of the CP47 core antenna with respect to the D1/D2 reaction centre. Within the D1/D2 proteins, there are clear differences between plants and cyanobacteria at the stromal ends of membrane-spanning helices, even though these proteins are highly homologous. Notwithstanding these differences in the protein scaffold, the distances between the critical photosynthetic pigment cofactors seem to be precisely conserved. The different protein arrangements in the two complexes may reflect an adaptation to the two very different antenna systems, membrane-extrinsic phycobilisomes for cyanobacteria, and membrane-embedded chlorophyll a/b proteins in plants.
Collapse
Affiliation(s)
- Claudia Büchel
- Max Planck Institute of Biophysics, Marie Curie Strasse 13-15, 60439, Frankfurt, Germany.
| | | |
Collapse
|
23
|
Plücken H, Müller B, Grohmann D, Westhoff P, Eichacker LA. The HCF136 protein is essential for assembly of the photosystem II reaction center in Arabidopsis thaliana. FEBS Lett 2002; 532:85-90. [PMID: 12459468 DOI: 10.1016/s0014-5793(02)03634-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hcf136 encodes a hydrophilic protein localized in the lumen of stroma thylakoids. Its mutational inactivation in Arabidopsis thaliana results in a photosystem II (PHII)-less phenotype. Under standard illumination, PSII is not detectable and the amount of photosystem I (PSI) is reduced, which implies that HCF136p may be required for photosystem biogenesis in general. However, at low light, a comparison of mutants with defects in PSII, PSI, and the cytochrome b(6)f complex reveals that HCF136p regulates selectively biogenesis of PSII. We demonstrate by in vivo radiolabeling of hcf136 that biogenesis of the reaction center (RC) of PSII is blocked. Gel blot analysis and affinity chromatography of solubilized thylakoid membranes suggest that HCF136p associates with a PSII precomplex containing at least D2 and cytochrome b(559). We conclude that HCF136p is essential for assembly of the RC of PSII and discuss its function as a chaperone-like assembly factor.
Collapse
Affiliation(s)
- Henning Plücken
- Institut für Entwicklungs, Heinrich-Heine-Universität, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
24
|
Anderson JM, Chow WS. Structural and functional dynamics of plant photosystem II. Philos Trans R Soc Lond B Biol Sci 2002; 357:1421-30; discussion 1469-70. [PMID: 12437881 PMCID: PMC1693045 DOI: 10.1098/rstb.2002.1138] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Given the unique problem of the extremely high potential of the oxidant P(+)(680) that is required to oxidize water to oxygen, the photoinactivation of photosystem II in vivo is inevitable, despite many photoprotective strategies. There is, however, a robustness of photosystem II, which depends partly on the highly dynamic compositional and structural heterogeneity of the cycle between functional and non-functional photosystem II complexes in response to light level. This coordinated regulation involves photon usage (energy utilization in photochemistry) and excess energy dissipation as heat, photoprotection by many molecular strategies, photoinactivation followed by photon damage and ultimately the D1 protein dynamics involved in the photosystem II repair cycle. Compelling, though indirect evidence suggests that the radical pair P(+)(680)Pheo(-) in functional PSII should be protected from oxygen. By analogy to the tentative oxygen channel of cytochrome c oxidase, oxygen may be liberated from the two water molecules bound to the catalytic site of the Mn cluster, via a specific pathway to the membrane surface. The function of the proposed oxygen pathway is to prevent O(2) from having direct access to P(+)(680)Pheo(-) and prevent the generation of singlet oxygen via the triplet-P(680) state in functional photosytem IIs. Only when the, as yet unidentified, potential trigger with a fateful first oxidative step destroys oxygen evolution, will the ensuing cascade of structural perturbations of photosystem II destroy the proposed oxygen, water and proton pathways. Then oxygen has direct access to P(+)(680)Pheo(-), singlet oxygen will be produced and may successively oxidize specific amino acids of the phosphorylated D1 protein of photosystem II dimers that are confined to appressed granal domains, thereby targeting D1 protein for eventual degradation and replacement in non-appressed thylakoid domains.
Collapse
Affiliation(s)
- Jan M Anderson
- Photobioenergetics, Research School of Biological Sciences, Australian National University, GPO Box 475, Canberra ACT 2601, Australia.
| | | |
Collapse
|
25
|
Bricker TM, Frankel LK. The structure and function of CP47 and CP43 in Photosystem II. PHOTOSYNTHESIS RESEARCH 2002; 72:131-46. [PMID: 16228513 DOI: 10.1023/a:1016128715865] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This Minireview presents a summary of recent investigations examining the structure and functions of the Photosystem II chlorophyll-proteins CP47 and CP43, updating our previous review which appeared in 1990 (TM Bricker, Photosynth Res 24: 1-13). Since this time, numerous studies have clarified the roles of these chlorophyll-proteins within the photosystem. Biochemical, molecular and structural studies (electron and X-ray diffraction) have demonstrated the close association of these components with the photochemical reaction center of the photosystem and with the extrinsic oxygen evolution enhancer proteins.
Collapse
Affiliation(s)
- Terry M Bricker
- Department of Biological Sciences, Division of Biochemistry and Molecular Biology, Louisiana State University, Baton Rouge, LA, 70803, USA,
| | | |
Collapse
|
26
|
Ananyev GM, Zaltsman L, Vasko C, Dismukes GC. The inorganic biochemistry of photosynthetic oxygen evolution/water oxidation. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1503:52-68. [PMID: 11115624 DOI: 10.1016/s0005-2728(00)00215-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
At the request of the organizer of this special edition, we have attempted to do several things in this manuscript: (1) we present a mini-review of recent, selected, works on the light-induced inorganic biogenesis (photoactivation), composition and structure of the inorganic core responsible for photosynthetic water oxidation; (2) we summarize a new proposal for the evolutionary origin of the water oxidation catalyst which postulates a key role for bicarbonate in formation of the inorganic core; (3) we summarize published studies and present new results on what has been learned from studies of 'inorganic mutants' in which the endogenous cofactors (Mn(n+), Ca2+, Cl-) are substituted; (4) the first DeltapH changes measured during the photoactivation process are reported and used to develop a model for the stepwise photo-assembly process; (5) a comparative analysis is given of data in the literature on the kinetics of substrate water exchange and peroxide binding/dismutation which support a mechanistic model for water oxidation in general; (6) we discuss alternative interpretations of data in the literature with a view to forecast new avenues where progress is needed.
Collapse
Affiliation(s)
- G M Ananyev
- Princeton University Department of Chemistry, Hoyt Laboratory, Princeton, NJ 09544, USA
| | | | | | | |
Collapse
|
27
|
Debus RJ. Amino acid residues that modulate the properties of tyrosine Y(Z) and the manganese cluster in the water oxidizing complex of photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1503:164-86. [PMID: 11115632 DOI: 10.1016/s0005-2728(00)00221-8] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The catalytic site for photosynthetic water oxidation is embedded in a protein matrix consisting of nearly 30 different polypeptides. Residues from several of these polypeptides modulate the properties of the tetrameric Mn cluster and the redox-active tyrosine residue, Y(Z), that are located at the catalytic site. However, most or all of the residues that interact directly with Y(Z) and the Mn cluster appear to be contributed by the D1 polypeptide. This review summarizes our knowledge of the environments of Y(Z) and the Mn cluster as obtained from the introduction of site-directed, deletion, and other mutations into the photosystem II polypeptides of the cyanobacterium Synechocystis sp. PCC 6803 and the green alga Chlamydomonas reinhardtii.
Collapse
Affiliation(s)
- R J Debus
- Department of Biochemistry, University of California, Riverside, CA 92521-0129, USA.
| |
Collapse
|
28
|
Ono T. Metallo-radical hypothesis for photoassembly of (Mn)4-cluster of photosynthetic oxygen evolving complex. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1503:40-51. [PMID: 11115623 DOI: 10.1016/s0005-2728(00)00226-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A new hypothetical mechanism is proposed for photoassembly of the (Mn)4-cluster of the photosynthetic oxygen evolving complex (OEC). In this process, a neutral radical of Y(Z) tyrosine plays a role in oxidizing Mn2+ associated with an apo-OEC, and also in abstracting a proton from a water molecule bound to the Mn2+ ion, together with D1-His190. This is in a similar fashion to the metallo-radical mechanism proposed for photosynthetic water oxidation by the (Mn)4-cluster. The model insists that a common mechanism participates in the photoassembly of the (Mn)4-cluster and the photosynthetic water oxidation.
Collapse
Affiliation(s)
- T Ono
- Laboratory for Photo-Biology, RIKEN Photodynamics Research Center, The Institute of Physical and Chemical Research, 519-1399 Aoba, Aramaki, Sendai 980-0845, Aoba, Japan.
| |
Collapse
|
29
|
Barber J, Morris E, Büchel C. Revealing the structure of the photosystem II chlorophyll binding proteins, CP43 and CP47. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1459:239-47. [PMID: 11004436 DOI: 10.1016/s0005-2728(00)00158-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A review of the structural properties of the photosystem II chlorophyll binding proteins, CP47 and CP43, is given and a model of the transmembrane helical domains of CP47 has been constructed. The model is based on (i) the amino acid sequence of the spinach protein, (ii) an 8 A three-dimensional electron density map derived from electron crystallography and (iii) the structural homology which the membrane spanning region of CP47 shares with the six N-terminal transmembrane helices of the PsaA/PsaB proteins of photosystem I. Particular emphasis has been placed on the position of chlorophyll molecules assigned in the 8 A three-dimensional map of CP47 (K.-H. Rhee, E.P. Morris, J. Barber, W. Kühlbrandt, Nature 396 (1998) 283-286) relative to histidine residues located in the transmembrane regions of this protein which are likely to form axial ligands for chlorophyll binding. Of the 14 densities assigned to chlorophyll, the model predicted that five have their magnesium ions within 4 A of the imidazole nitrogens of histidine residues. For the remaining seven histidine residues the densities attributed to chlorophylls were within 4-8 A of the imidazole nitrogens and thus too far apart for direct ligation with the magnesium ion within the tetrapyrrole head group. Improved structural resolution and reconsiderations of the orientation of the porphyrin rings will allow further refinement of the model.
Collapse
Affiliation(s)
- J Barber
- Biochemistry Department, Wolfson Laboratories, Imperial College of Science, Technology and Medicine, SW7 2AY, London, UK.
| | | | | |
Collapse
|
30
|
Gregor W, Britt RD. Nitrogen ligation to the manganese cluster of Photosystem II in the absence of the extrinsic proteins and as a function of pH. PHOTOSYNTHESIS RESEARCH 2000; 65:175-85. [PMID: 16228484 DOI: 10.1023/a:1006435432185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Three extrinsic proteins (PsbO, PsbP and PsbQ), with apparent molecular weights of 33, 23 and 17 kDa, bind to the lumenal side of Photosystem II (PS II) and stabilize the manganese, calcium and chloride cofactors of the oxygen evolving complex (OEC). The effect of these proteins on the structure of the tetramanganese cluster, especially their possible involvement in manganese ligation, is investigated in this study by measuring the reported histidine-manganese coupling [Tang et al. (1994) Proc Natl Acad Sci USA 91: 704-708] of PS II membranes depleted of none, two or three of these proteins using ESEEM (electron spin echo envelope modulation) spectroscopy. The results show that neither of the three proteins influence the histidine ligation of manganese. From this, the conserved histidine of the 23 kDa protein can be ruled out as a manganese ligand. Whereas the 33 and 17 kDa proteins lack conserved histidines, the existence of a 33 kDa protein-derived carboxylate ligand has been posited; our results show no evidence for a change of the manganese co-ordination upon removal of this protein. Studies of the pH-dependence of the histidine-manganese coupling show that the histidine ligation is present in PS II centers showing the S(2) multiline EPR signal in the pH-range 4.2-9.5.
Collapse
Affiliation(s)
- W Gregor
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | | |
Collapse
|