1
|
Chang X, Dong M, Mi X, Hu M, Lu J, Chen X. The Protective Effect of Trichilia catigua A. Juss. on DEHP-Induced Reproductive System Damage in Male Mice. Front Pharmacol 2022; 13:832789. [PMID: 35185586 PMCID: PMC8853101 DOI: 10.3389/fphar.2022.832789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/17/2022] [Indexed: 01/04/2023] Open
Abstract
The present study aimed to explore the protective effect and molecular mechanisms of Trichilia catigua A. Juss. extract (TCE) against di (2-ethylhexyl) phthalate (DEHP)-induced damage to the reproductive system of mice. Acute toxicity tests revealed that the maximum tolerated dose (MTD) in mice was up to 2.7 g kg−1. After induction with DEHP, TCE (L-TCE, M-TCE, H-TCE) was orally administered to mice for 28 days. Differences in indicators among groups showed that TCE significantly improved the anogenital distance and the organ indexes of the epididymides and testes. It also significantly reduced varicocele and interstitial cell lesions compared to the model group. H-TCE reduced the sperm abnormality rate, increased the levels of sex hormones, Na+K+ and Mg2+, Ca2+-ATPase enzyme activity, antioxidant enzyme vitality, coupled with a significant decrease in LH and MDA contents. The levels of testicular marker enzymes ACP and LDH were significantly augmented by both M-TCE and H-TCE. Further studies claimed that DEHP induction reduced the mRNA expression levels of Nrf2, SOD2, SOD3, CDC25C CDK1, CYP11A1, 3β-HSD, 5ɑ-R, AR, SF1, and CYP17A1, increased the level of Keap1, while TCE reversed the expression levels of these genes. Meanwhile, IHC results demonstrated a significant change in the expression activity of the relevant proteins compared to the control group. The results suggest that M-TCE and H-TCE enabled the recovery of DEHP-induced reproductive system damage in male mice by improving testicular histopathology, repairing testicular function, and reducing oxidative stress damage. The oxidation-related Keap1-Nrf2 pathway, SODs enzyme, the cell cycle control-related CDC25C-CDK1 pathway, and the steroidogenic-related pathway may contribute to this protective effects of TCE.
Collapse
Affiliation(s)
| | | | | | | | - Juan Lu
- *Correspondence: Xi Chen, ; Juan Lu,
| | - Xi Chen
- *Correspondence: Xi Chen, ; Juan Lu,
| |
Collapse
|
2
|
Mallipeddi PL, Zhang Y, Li H, Markowitz SD, Posner B. Structural Insights into Novel 15-Prostaglandin Dehydrogenase Inhibitors. Molecules 2021; 26:molecules26195903. [PMID: 34641449 PMCID: PMC8512612 DOI: 10.3390/molecules26195903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 11/16/2022] Open
Abstract
We discovered SW033291 in a high throughput chemical screen aimed at identifying 15-prostaglandin dehydrogenase (15-PGDH) modulators. The compound exhibited inhibitory activity in in vitro biochemical and cell-based assays of 15-PGDH activity. We subsequently demonstrated that this compound, and several analogs thereof, are effective in in vivo mouse models of bone marrow transplant, colitis, and liver regeneration, where increased levels of PGE2 positively potentiate tissue regeneration. To better understand the binding of SW033291, we carried out docking studies for both the substrate, PGE2, and an inhibitor, SW033291, to 15-PGDH. Our models suggest similarities in the ways that PGE2 and SW033291 interact with key residues in the 15-PGDH-NAD+ complex. We carried out molecular dynamics simulations (MD) of SW033291 bound to this complex, in order to understand the dynamics of the binding interactions for this compound. The butyl side chain (including the sulfoxide) of SW033291 participates in crucial binding interactions that are similar to those observed for the C15-OH and the C16-C20 alkyl chain of PGE2. In addition, interactions with residues Ser138, Tyr151, and Gln148 play key roles in orienting and stabilizing SW033291 in the binding site and lead to enantioselectivity for the R-enantiomer. Finally, we compare the binding mode of (R)-S(O)-SW033291 with the binding interactions of published 15-PGDH inhibitors.
Collapse
Affiliation(s)
- Prema L. Mallipeddi
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Yongyou Zhang
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (Y.Z.); (H.L.); (S.D.M.)
| | - Hongyun Li
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (Y.Z.); (H.L.); (S.D.M.)
| | - Sanford D. Markowitz
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (Y.Z.); (H.L.); (S.D.M.)
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bruce Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence:
| |
Collapse
|
3
|
Herman BE, Gardi J, Julesz J, Tömböly C, Szánti-Pintér E, Fehér K, Skoda-Földes R, Szécsi M. Steroidal ferrocenes as potential enzyme inhibitors of the estrogen biosynthesis. Biol Futur 2021; 71:249-264. [PMID: 34554507 DOI: 10.1007/s42977-020-00023-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 06/04/2020] [Indexed: 01/13/2023]
Abstract
The potential inhibitory effect of diverse triazolyl-ferrocene steroids on key enzymes of the estrogen biosynthesis was investigated. Test compounds were synthesized via copper-catalyzed cycloaddition of steroidal azides and ferrocenyl-alkynes using our efficient methodology published previously. Inhibition of human aromatase, steroid sulfatase (STS) and 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) activities was investigated with in vitro radiosubstrate incubations. Some of the test compounds were found to be potent inhibitors of the STS. A compound bearing ferrocenyl side chain on the C-2 displayed a reversible inhibition, whereas C-16 and C-17 derivatives displayed competitive irreversible binding mechanism toward the enzyme. 17α-Triazolyl-ferrocene derivatives of 17β-estradiol exerted outstanding inhibitory effect and experiments demonstrated a key role of the ferrocenyl moiety in the enhanced binding affinity. Submicromolar IC50 and Ki parameters enroll these compounds to the group of the most effective STS inhibitors published so far. STS inhibitory potential of the steroidal ferrocenes may lead to the development of novel compounds able to suppress in situ biosynthesis of 17β-estradiol in target tissues.
Collapse
Affiliation(s)
- Bianka Edina Herman
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, P. O. Box 427, Szeged, 6720, Hungary
| | - János Gardi
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, P. O. Box 427, Szeged, 6720, Hungary
| | - János Julesz
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, P. O. Box 427, Szeged, 6720, Hungary
| | - Csaba Tömböly
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári körút 62, P. O. Box 521, Szeged, 6726, Hungary
| | - Eszter Szánti-Pintér
- Department of Organic Chemistry, Institute of Chemistry, University of Pannonia, Egyetem utca 10, P. O. Box 158, Veszprém, 8200, Hungary
| | - Klaudia Fehér
- Department of Organic Chemistry, Institute of Chemistry, University of Pannonia, Egyetem utca 10, P. O. Box 158, Veszprém, 8200, Hungary
| | - Rita Skoda-Földes
- Department of Organic Chemistry, Institute of Chemistry, University of Pannonia, Egyetem utca 10, P. O. Box 158, Veszprém, 8200, Hungary.
| | - Mihály Szécsi
- 1st Department of Medicine, University of Szeged, Korányi fasor 8-10, P. O. Box 427, Szeged, 6720, Hungary.
| |
Collapse
|
4
|
Ferrante T, Adinolfi S, D'Arrigo G, Poirier D, Daga M, Lolli ML, Balliano G, Spyrakis F, Oliaro-Bosso S. Multiple catalytic activities of human 17β-hydroxysteroid dehydrogenase type 7 respond differently to inhibitors. Biochimie 2019; 170:106-117. [PMID: 31887335 DOI: 10.1016/j.biochi.2019.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/26/2019] [Indexed: 10/25/2022]
Abstract
Cholesterol biosynthesis is a multistep process in mammals that includes the aerobic removal of three methyl groups from the intermediate lanosterol, one from position 14 and two from position 4. During the demethylations at position 4, a 3-ketosteroid reductase catalyses the conversion of both 4-methylzymosterone and zymosterone to 4-methylzymosterol and zymosterol, respectively, restoring the alcoholic function of lanosterol, which is also maintained in cholesterol. Unlike other eukaryotes, mammals also use the same enzyme as an estrone reductase that can transform estrone (E1) into estradiol (E2). This enzyme, named 17β-hydroxysteroid dehydrogenase type 7 (HSD17B7), is therefore a multifunctional protein in mammals, and one that belongs to both the HSD17B family, which is involved in steroid-hormone metabolism, and to the family of post-squalene cholesterol biosynthesis enzymes. In the present study, a series of known inhibitors of human HSD17B7's E1-reductase activity have been assayed for potential inhibition against 3-ketosteroid reductase activity. Surprisingly, the assayed compounds lost their inhibition activity when tested in HepG2 cells that were incubated with radiolabelled acetate and against the recombinant overexpressed human enzyme incubated with 4-methylzymosterone (both radiolabelled and not). Preliminary kinetic analyses suggest a mixed or non-competitive inhibition on the E1-reductase activity, which is in agreement with Molecular Dynamics simulations. These results raise questions about the mechanism(s) of action of these possible inhibitors, the enzyme dynamic regulation and the interplay between the two activities.
Collapse
Affiliation(s)
- Terenzio Ferrante
- Department of Science and Drug Technology, University of Torino, Via P. Giuria 9, 10125, Turin, Italy
| | - Salvatore Adinolfi
- Department of Science and Drug Technology, University of Torino, Via P. Giuria 9, 10125, Turin, Italy
| | - Giulia D'Arrigo
- Department of Science and Drug Technology, University of Torino, Via P. Giuria 9, 10125, Turin, Italy
| | - Donald Poirier
- Laboratory of Medicinal Chemistry, CHU de Québec - Research Centre and Université Laval, 2705, Boulevard Laurier T-4-50 Québec, G1V 4G2, Canada
| | - Martina Daga
- Department of Science and Drug Technology, University of Torino, Via P. Giuria 9, 10125, Turin, Italy
| | - Marco Lucio Lolli
- Department of Science and Drug Technology, University of Torino, Via P. Giuria 9, 10125, Turin, Italy
| | - Gianni Balliano
- Department of Science and Drug Technology, University of Torino, Via P. Giuria 9, 10125, Turin, Italy
| | - Francesca Spyrakis
- Department of Science and Drug Technology, University of Torino, Via P. Giuria 9, 10125, Turin, Italy
| | - Simonetta Oliaro-Bosso
- Department of Science and Drug Technology, University of Torino, Via P. Giuria 9, 10125, Turin, Italy.
| |
Collapse
|
5
|
Crescitelli MC, Rauschemberger MB, Cepeda S, Sandoval M, Massheimer VL. Role of estrone on the regulation of osteoblastogenesis. Mol Cell Endocrinol 2019; 498:110582. [PMID: 31525430 DOI: 10.1016/j.mce.2019.110582] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 11/19/2022]
Abstract
Although estradiol bone contribution has been deeply studied, little is known about the action of estrone. We investigated the direct action of estrone on osteoblasts growth and differentiation, with focus on the biochemical mechanism displayed by the estrogen. Murine calvarial osteoblast cultures in vitro exposed to 10 nM estrone were employed. Estrone enhanced gene expression of the osteogenic differentiation marker, Runx2 mRNA (150% above control). The hormone significantly increased cell proliferation (38% above control), nitric oxide production (108% above control), alkaline phosphatase activity (50% above control), in addition to stimulation of extracellular matrix mineralization. Using specific antagonists, we found that the mechanism of action of estrone involves estrogen receptor, nitric oxide synthase and MAPK signalling pathways participation. The hormone acts by its own and probably not via conversion to estradiol, since 17 B HSD inhibition did not affect the hormonal action. This work shows a novel action of estrone on bone cells promoting osteoblastogenesis.
Collapse
Affiliation(s)
- M Carla Crescitelli
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, B8000ICN, Bahía Blanca, Argentina; Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-UNS), Argentina
| | - M Belén Rauschemberger
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, B8000ICN, Bahía Blanca, Argentina; Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-UNS), Argentina
| | - Sabrina Cepeda
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, B8000ICN, Bahía Blanca, Argentina; Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-UNS), Argentina
| | - Marisa Sandoval
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, B8000ICN, Bahía Blanca, Argentina; Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-UNS), Argentina
| | - Virginia L Massheimer
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, B8000ICN, Bahía Blanca, Argentina; Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-UNS), Argentina.
| |
Collapse
|
6
|
Metabolic and Epigenetic Action Mechanisms of Antidiabetic Medicinal Plants. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3583067. [PMID: 31191707 PMCID: PMC6525884 DOI: 10.1155/2019/3583067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022]
Abstract
Diabetes is a predominant metabolic disease nowadays due to the off-beam lifestyle of diet and reduced physical activity. Complications of the illness include the gene-environment interactions and the downstream genetic and epigenetic consequences, e.g., cardiovascular diseases, tumor progression, retinopathy, nephropathy, neuropathy, polydipsia, polyphagia, polyuria, and weight loss. This review sheds the light on the mechanistic insights of antidiabetic medicinal plants in targeting key organs and tissues involved in regulating blood glucose homeostasis including the pancreas, liver, muscles, adipose tissues, and glucose absorption in the intestine. Diabetes is also involved in modulating major epigenetic pathways such as DNA methylation and histone modification. In this respect, we will discuss the phytochemicals as current and future epigenetic drugs in the treatment of diabetes. In addition, several proteins are common targets for the treatment of diabetes. Some phytochemicals are expected to directly interact with these targets. We lastly uncover modeling studies that predict such plausible interactions. In conclusion, this review article presents the mechanistic insight of phytochemicals in the treatment of diabetes by combining both the cellular systems biology and molecular modeling.
Collapse
|
7
|
Li T, Stephen P, Zhu DW, Shi R, Lin SX. Crystal structures of human 17β-hydroxysteroid dehydrogenase type 1 complexed with estrone and NADP + reveal the mechanism of substrate inhibition. FEBS J 2019; 286:2155-2166. [PMID: 30768851 DOI: 10.1111/febs.14784] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/28/2019] [Accepted: 02/13/2019] [Indexed: 12/22/2022]
Abstract
Human 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) catalyses the last step in estrogen activation and is thus involved in estrogen-dependent diseases (EDDs). Unlike other 17β-HSD members, 17β-HSD1 undergoes a significant substrate-induced inhibition that we have previously reported. Here we solved the binary and ternary crystal structures of 17β-HSD1 in complex with estrone (E1) and cofactor analog NADP+ , demonstrating critical enzyme-substrate-cofactor interactions. These complexes revealed a reversely bound E1 in 17β-HSD1 that provides the basis of the substrate inhibition, never demonstrated in estradiol complexes. Structural analysis showed that His221 is the key residue responsible for the reorganization and stabilization of the reversely bound E1, leading to the formation of a dead-end complex, which exists widely in NADP(H)-preferred enzymes for the regulation of their enzymatic activity. Further, a new inhibitor is proposed that may inhibit 17β-HSD1 through the formation of a dead-end complex. This finding indicates a simple mechanism of enzyme regulation in the physiological background and introduces a pioneer inhibitor of 17β-HSD1 based on the dead-end inhibition model for efficiently targeting EDDs. DATABASES: Coordinates and structure factors of 17β-HSD1-E1 and 17β-HSD1-E1-NADP+ have been deposited in the Protein Data Bank with accession code 6MNC and 6MNE respectively. ENZYMES: 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) EC 1.1.1.62.
Collapse
Affiliation(s)
- Tang Li
- Axe Molecular Endocrinology and Nephrology, CHU de Québec Research Center, Department of Molecular Medicine, Laval University, Québec, Canada
| | - Preyesh Stephen
- Axe Molecular Endocrinology and Nephrology, CHU de Québec Research Center, Department of Molecular Medicine, Laval University, Québec, Canada
| | - Dao-Wei Zhu
- Axe Molecular Endocrinology and Nephrology, CHU de Québec Research Center, Department of Molecular Medicine, Laval University, Québec, Canada
| | - Rong Shi
- Département de Biochimie, de Microbiologie et de Bio-Informatique, IBIS et PROTEO, Université Laval, Pavillon Charles-Eugène Marchand, Québec, Canada
| | - Sheng-Xiang Lin
- Axe Molecular Endocrinology and Nephrology, CHU de Québec Research Center, Department of Molecular Medicine, Laval University, Québec, Canada
| |
Collapse
|
8
|
Li T, Maltais R, Poirier D, Lin SX. Combined Biophysical Chemistry Reveals a New Covalent Inhibitor with a Low-Reactivity Alkyl Halide. J Phys Chem Lett 2018; 9:5275-5280. [PMID: 30148957 DOI: 10.1021/acs.jpclett.8b02225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1) plays a pivotal role in the progression of estrogen-related diseases because of its involvement in the biosynthesis of estradiol (E2), constituting a valuable therapeutic target for endocrine treatment. In the present study, we successfully cocrystallized the enzyme with the reversible inhibitor 2-methoxy-16β-( m-carbamoylbenzyl)-E2 (2-MeO-CC-156) as well as the enzyme with the irreversible inhibitor 3-(2-bromoethyl)-16β-( m-carbamoylbenzyl)-17β-hydroxy-1,3,5(10)-estratriene (PBRM). The structures of ternary complexes of 17β-HSD1-2-MeO-CC-156-NADP+ and 17β-HSD1-PBRM-NADP+ comparatively show the formation of a covalent bond between His221 and the bromoethyl side chain of the inhibitor in the PBRM structure. A dynamic process including beneficial molecular interactions that favor the specific binding of a low-reactivity inhibitor and subsequent N-alkylation event through the participation of His221 in the enzyme catalytic site clearly demonstrates the covalent bond formation. This finding opens the door to a new design of alkyl halide-based specific covalent inhibitors as potential therapeutic agents for different enzymes, contributing to the development of highly efficient inhibitors.
Collapse
Affiliation(s)
- Tang Li
- CHU de Québec - Research Center , 2705 Boulevard Laurier , Québec , QC G1V 4G2 , Canada
- Faculty of Medicine , Université Laval , Québec , QC G1V 0A6 , Canada
| | - René Maltais
- CHU de Québec - Research Center , 2705 Boulevard Laurier , Québec , QC G1V 4G2 , Canada
| | - Donald Poirier
- CHU de Québec - Research Center , 2705 Boulevard Laurier , Québec , QC G1V 4G2 , Canada
- Faculty of Medicine , Université Laval , Québec , QC G1V 0A6 , Canada
| | - Sheng-Xiang Lin
- CHU de Québec - Research Center , 2705 Boulevard Laurier , Québec , QC G1V 4G2 , Canada
- Faculty of Medicine , Université Laval , Québec , QC G1V 0A6 , Canada
| |
Collapse
|
9
|
Mao S, Wang JW, Liu F, Zhu Z, Gao D, Guo Q, Xu P, Ma Z, Hou Y, Cheng X, Sun D, Lu F, Qin HM. Engineering of 3-ketosteroid-∆ 1-dehydrogenase based site-directed saturation mutagenesis for efficient biotransformation of steroidal substrates. Microb Cell Fact 2018; 17:141. [PMID: 30200975 PMCID: PMC6130075 DOI: 10.1186/s12934-018-0981-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/24/2018] [Indexed: 12/17/2022] Open
Abstract
Background Biosynthesis of steroidal drugs is of great benefit in pharmaceutical manufacturing as the process involves efficient enzymatic catalysis at ambient temperature and atmospheric pressure compared to chemical synthesis. 3-ketosteroid-∆1-dehydrogenase from Arthrobacter simplex (KsdD3) catalyzes 1,2-desaturation of steroidal substrates with FAD as a cofactor. Results Recombinant KsdD3 exhibited organic solvent tolerance. W117, F296, W299, et al., which were located in substrate-binding cavity, were predicted to form hydrophobic interaction with the substrate. Structure-based site-directed saturation mutagenesis of KsdD3 was performed with W299 mutants, which resulted in improved catalytic activities toward various steroidal substrates. W299A showed the highest increase in catalytic efficiency (kcat/Km) compared with the wild-type enzyme. Homology modelling revealed that the mutants enlarged the active site cavity and relieved the steric interference facilitating recognition of C17 hydroxyl/carbonyl steroidal substrates. Steered molecular dynamics simulations revealed that W299A/G decreased the potential energy barrier of association of substrates and dissociation of the corresponding products. The biotransformation of AD with enzymatic catalysis and resting cells harbouring KsdD3 WT/mutants revealed that W299A catalyzed the maximum ADD yields of 71 and 95% by enzymatic catalysis and resting cell conversion respectively, compared with the wild type (38 and 75%, respectively). Conclusions The successful rational design of functional KsdD3 greatly advanced our understanding of KsdD family enzymes. Structure-based site-directed saturation mutagenesis and biochemical data were used to design KsdD3 mutants with a higher catalytic activity and broader selectivity. ![]() Electronic supplementary material The online version of this article (10.1186/s12934-018-0981-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuhong Mao
- State Key Laboratory of Food Nutrition and Safety, Tianjin, People's Republic of China.,Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, People's Republic of China.,Tianjin Key Laboratory of Industrial Microbiology, Tianjin, People's Republic of China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Jian-Wen Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Fufeng Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin, People's Republic of China.,Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, People's Republic of China.,Tianjin Key Laboratory of Industrial Microbiology, Tianjin, People's Republic of China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Zhangliang Zhu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Dengke Gao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Qianqian Guo
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Panpan Xu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Zheng Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Yali Hou
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Xiaotao Cheng
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Dengyue Sun
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Fuping Lu
- State Key Laboratory of Food Nutrition and Safety, Tianjin, People's Republic of China. .,Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, People's Republic of China. .,Tianjin Key Laboratory of Industrial Microbiology, Tianjin, People's Republic of China. .,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China. .,National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, People's Republic of China.
| | - Hui-Min Qin
- State Key Laboratory of Food Nutrition and Safety, Tianjin, People's Republic of China. .,Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, People's Republic of China. .,Tianjin Key Laboratory of Industrial Microbiology, Tianjin, People's Republic of China. .,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China. .,National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
10
|
Niinivehmas S, Postila PA, Rauhamäki S, Manivannan E, Kortet S, Ahinko M, Huuskonen P, Nyberg N, Koskimies P, Lätti S, Multamäki E, Juvonen RO, Raunio H, Pasanen M, Huuskonen J, Pentikäinen OT. Blocking oestradiol synthesis pathways with potent and selective coumarin derivatives. J Enzyme Inhib Med Chem 2018; 33:743-754. [PMID: 29620427 PMCID: PMC6010071 DOI: 10.1080/14756366.2018.1452919] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A comprehensive set of 3-phenylcoumarin analogues with polar substituents was synthesised for blocking oestradiol synthesis by 17-β-hydroxysteroid dehydrogenase 1 (HSD1) in the latter part of the sulphatase pathway. Five analogues produced ≥62% HSD1 inhibition at 5 µM and, furthermore, three of them produced ≥68% inhibition at 1 µM. A docking-based structure-activity relationship analysis was done to determine the molecular basis of the inhibition and the cross-reactivity of the analogues was tested against oestrogen receptor, aromatase, cytochrome P450 1A2, and monoamine oxidases. Most of the analogues are only modestly active with 17-β-hydroxysteroid dehydrogenase 2 – a requirement for lowering effective oestradiol levels in vivo. Moreover, the analysis led to the synthesis and discovery of 3-imidazolecoumarin as a potent aromatase inhibitor. In short, coumarin core can be tailored with specific ring and polar moiety substitutions to block either the sulphatase pathway or the aromatase pathway for treating breast cancer and endometriosis.
Collapse
Affiliation(s)
- Sanna Niinivehmas
- a Department of Biological and Environmental Science and Nanoscience Center , University of Jyvaskyla , Jyvaskyla , Finland
| | - Pekka A Postila
- a Department of Biological and Environmental Science and Nanoscience Center , University of Jyvaskyla , Jyvaskyla , Finland
| | - Sanna Rauhamäki
- a Department of Biological and Environmental Science and Nanoscience Center , University of Jyvaskyla , Jyvaskyla , Finland
| | - Elangovan Manivannan
- a Department of Biological and Environmental Science and Nanoscience Center , University of Jyvaskyla , Jyvaskyla , Finland.,b School of Pharmacy , Devi Ahilya University , Indore , India
| | - Sami Kortet
- a Department of Biological and Environmental Science and Nanoscience Center , University of Jyvaskyla , Jyvaskyla , Finland.,c Department of Chemistry and Nanoscience Center , University of Jyvaskyla , Jyvaskyla , Finland
| | - Mira Ahinko
- a Department of Biological and Environmental Science and Nanoscience Center , University of Jyvaskyla , Jyvaskyla , Finland
| | - Pasi Huuskonen
- d School of Pharmacy , University of Eastern Finland , Kuopio , Finland
| | - Niina Nyberg
- d School of Pharmacy , University of Eastern Finland , Kuopio , Finland
| | | | - Sakari Lätti
- a Department of Biological and Environmental Science and Nanoscience Center , University of Jyvaskyla , Jyvaskyla , Finland
| | - Elina Multamäki
- a Department of Biological and Environmental Science and Nanoscience Center , University of Jyvaskyla , Jyvaskyla , Finland
| | - Risto O Juvonen
- d School of Pharmacy , University of Eastern Finland , Kuopio , Finland
| | - Hannu Raunio
- d School of Pharmacy , University of Eastern Finland , Kuopio , Finland
| | - Markku Pasanen
- d School of Pharmacy , University of Eastern Finland , Kuopio , Finland
| | - Juhani Huuskonen
- c Department of Chemistry and Nanoscience Center , University of Jyvaskyla , Jyvaskyla , Finland
| | - Olli T Pentikäinen
- a Department of Biological and Environmental Science and Nanoscience Center , University of Jyvaskyla , Jyvaskyla , Finland.,f Institute of Biomedicine, University of Turku , Turku , Finland
| |
Collapse
|
11
|
Shigehara Y, Okuda S, Nemer G, Chedraoui A, Hayashi R, Bitar F, Nakai H, Abbas O, Daou L, Abe R, Sleiman MB, Kibbi AG, Kurban M, Shimomura Y. Mutations in SDR9C7 gene encoding an enzyme for vitamin A metabolism underlie autosomal recessive congenital ichthyosis. Hum Mol Genet 2018; 25:4484-4493. [PMID: 28173123 DOI: 10.1093/hmg/ddw277] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/16/2016] [Accepted: 08/15/2016] [Indexed: 11/14/2022] Open
Abstract
Autosomal recessive congenital ichthyosis (ARCI) is a heterogeneous group of hereditary skin disorder characterized by an aberrant cornification of the epidermis. ARCI is classified into a total of 11 subtypes (ARCI1-ARCI11) based on their causative genes or loci. Of these, the causative gene for only ARCI7 has not been identified, while it was previously mapped on chromosome 12p11.2-q13.1. In this study, we performed genetic analyses for three Lebanese families with ARCI, and successfully determined the linkage interval to 9.47 Mb region on chromosome 12q13.13-q14.1, which was unexpectedly outside of the ARCI7 locus. Whole-exome sequencing and the subsequent Sanger sequencing led to the identification of missense mutations in short chain dehydrogenase/reductase family 9C, member 7 (SDR9C7) gene on chromosome 12q13.3, i.e. two families shared an identical homozygous mutation c.599T > C (p.Ile200Thr) and one family had another homozygous mutation c.214C > T (p.Arg72Trp). In cultured cells, expression of both the mutant SDR9C7 proteins was markedly reduced as compared to wild-type protein, suggesting that the mutations severely affected a stability of the protein. In normal human skin, the SDR9C7 was abundantly expressed in granular and cornified layers of the epidermis. By contrast, in a patient’s skin, its expression in the cornified layer was significantly decreased. It has previously been reported that SDR9C7 is an enzyme to convert retinal into retinol. Therefore, our study not only adds a new gene responsible for ARCI, but also further suggests a potential role of vitamin A metabolism in terminal differentiation of the epidermis in humans.
Collapse
Affiliation(s)
- Yohya Shigehara
- Divisions of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shujiro Okuda
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Georges Nemer
- Biochemistry & molecular genetics, American University of Beirut Medical Center, Beirut, Lebanon
| | - Adele Chedraoui
- Department of Dermatology, Lebanese American University-Hospital Rizk, Beirut, Lebanon
| | - Ryota Hayashi
- Divisions of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Fadi Bitar
- Department of Pediatrics, American University of Beirut Medical Center, Beirut, Lebanon
| | - Hiroyuki Nakai
- Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Ossama Abbas
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Laetitia Daou
- Department of Laboratory medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Riichiro Abe
- Divisions of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Maria Bou Sleiman
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Abdul Ghani Kibbi
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mazen Kurban
- Biochemistry & molecular genetics, American University of Beirut Medical Center, Beirut, Lebanon.,Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon.,Department of Dermatology, Columbia University, New York, NY, USA
| | - Yutaka Shimomura
- Divisions of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
12
|
Li T, Zhu D, Labrie F, Lin S. Crystal Structures of Human 17<i>β</i>-Hydroxysteroid Dehydrogenase Type 1 Complexed with the Dual-Site Inhibitor EM-139. Health (London) 2018. [DOI: 10.4236/health.2018.108081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Yu B, Liu Z, Mao J, Wang X, Zheng J, Xiong S, Cui M, Ma W, Huang Q, Xu H, Huang B, Nie M, Wu X. Novel mutations of HSD17B3 in three Chinese patients with 46,XY Disorders of Sex Development. Steroids 2017; 126:1-6. [PMID: 28774765 DOI: 10.1016/j.steroids.2017.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/03/2017] [Accepted: 07/26/2017] [Indexed: 11/16/2022]
Abstract
17β-Hydroxysteroid dehydrogenase type 3 (17β-HSD3) converts the inactive Δ4-androstenedione (A) to testosterone (T). Its deficiency is the most common testosterone biosynthesis defect that results in 46,XY Disorders Of Sex Development (DSD). However, the disease is difficult to distinguish from other 46,XY DSD for similar clinical phenotypes. Therefore, genetic testing provides good criteria for the diagnosis of the disease. In this study, HSD17B3 gene was examined in 3 unrelated Chinese patients with 46,XY DSD. Direct sequencing and quantitative PCR of HSD17B3 gene revealed the presence of a compound heterozygous mutation (p.I60T/exon1 deletion) in Patient 1, a homozygous (p.I60T) mutation in Patient 2 and a frameshift mutation (p.V25Efs∗54) and an exon1 deletion in Patient 3. All of the mutations have not been reported previously. These novel mutations may expand the mutation database of HSD17B3 gene and provide us new insights into the molecular mechanism of 17β-HSD3 deficiency. It is noteworthy that when direct sequence analysis showed a rare homozygous mutation in patients with non-consanguineous parents, "apparent homozygosity" should be taken into an account and the intragenic deletion should be screened. In addition, when single mutation was found in patients with disease in recessive heredity mode, the intragenic deletion should also be screened.
Collapse
Affiliation(s)
- Bingqing Yu
- Department of Endocrinology, Peking Union Medical College Hospital, Key Laboratory of Endocrinology, National Health and Family Planning Commission of People's Republic of China, Beijing, China
| | - Zhaoxiang Liu
- Department of Endocrinology, Peking Union Medical College Hospital, Key Laboratory of Endocrinology, National Health and Family Planning Commission of People's Republic of China, Beijing, China
| | - Jiangfeng Mao
- Department of Endocrinology, Peking Union Medical College Hospital, Key Laboratory of Endocrinology, National Health and Family Planning Commission of People's Republic of China, Beijing, China
| | - Xi Wang
- Department of Endocrinology, Peking Union Medical College Hospital, Key Laboratory of Endocrinology, National Health and Family Planning Commission of People's Republic of China, Beijing, China
| | - Junjie Zheng
- Department of Endocrinology, Peking Union Medical College Hospital, Key Laboratory of Endocrinology, National Health and Family Planning Commission of People's Republic of China, Beijing, China
| | - Shuyu Xiong
- Department of Endocrinology, Peking Union Medical College Hospital, Key Laboratory of Endocrinology, National Health and Family Planning Commission of People's Republic of China, Beijing, China
| | - Mingxuan Cui
- Department of Endocrinology, Peking Union Medical College Hospital, Key Laboratory of Endocrinology, National Health and Family Planning Commission of People's Republic of China, Beijing, China
| | - Wanlu Ma
- Department of Endocrinology, Peking Union Medical College Hospital, Key Laboratory of Endocrinology, National Health and Family Planning Commission of People's Republic of China, Beijing, China
| | - Qibin Huang
- Department of Endocrinology, Peking Union Medical College Hospital, Key Laboratory of Endocrinology, National Health and Family Planning Commission of People's Republic of China, Beijing, China
| | - Hongli Xu
- Department of Endocrinology, Peking Union Medical College Hospital, Key Laboratory of Endocrinology, National Health and Family Planning Commission of People's Republic of China, Beijing, China
| | - Bingkun Huang
- Department of Endocrinology, Peking Union Medical College Hospital, Key Laboratory of Endocrinology, National Health and Family Planning Commission of People's Republic of China, Beijing, China
| | - Min Nie
- Department of Endocrinology, Peking Union Medical College Hospital, Key Laboratory of Endocrinology, National Health and Family Planning Commission of People's Republic of China, Beijing, China.
| | - Xueyan Wu
- Department of Endocrinology, Peking Union Medical College Hospital, Key Laboratory of Endocrinology, National Health and Family Planning Commission of People's Republic of China, Beijing, China.
| |
Collapse
|
14
|
Cassetta A, Stojan J, Krastanova I, Kristan K, Brunskole Švegelj M, Lamba D, Lanišnik Rižner T. Structural basis for inhibition of 17β-hydroxysteroid dehydrogenases by phytoestrogens: The case of fungal 17β-HSDcl. J Steroid Biochem Mol Biol 2017; 171:80-93. [PMID: 28259640 DOI: 10.1016/j.jsbmb.2017.02.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/10/2017] [Accepted: 02/28/2017] [Indexed: 01/03/2023]
Abstract
Phytoestrogens are plant-derived compounds that functionally and structurally mimic mammalian estrogens. Phytoestrogens have broad inhibitory activities toward several steroidogenic enzymes, such as the 17β-hydroxysteroid dehydrogenases (17β-HSDs), which modulate the biological potency of androgens and estrogens in mammals. However, to date, no crystallographic data are available to explain phytoestrogens binding to mammalian 17β-HSDs. NADP(H)-dependent 17β-HSD from the filamentous fungus Cochliobolus lunatus (17β-HSDcl) has been the subject of extensive biochemical, kinetic and quantitative structure-activity relationship studies that have shown that the flavonols are the most potent inhibitors. In the present study, we investigated the structure-activity relationships of the ternary complexes between the holo form of 17β-HSDcl and the flavonols kaempferol and 3,7-dihydroxyflavone, in comparison with the isoflavones genistein and biochanin A. Crystallographic data are accompanied by kinetic analysis of the inhibition mechanisms for six flavonols (3-hydroxyflavone, 3,7-dihydroxyflavone, kaempferol, quercetin, fisetin, myricetin), one flavanone (naringenin), one flavone (luteolin), and two isoflavones (genistein, biochanin A). The kinetics analysis shows that the degree of hydroxylation of ring B significantly influences the overall inhibitory efficacy of the flavonols. A distinct binding mode defines the interactions between 17β-HSDcl and the flavones and isoflavones. Moreover, the complex with biochanin A reveals an unusual binding mode that appears to account for its greater inhibition of 17β-HSDcl with respect to genistein. Overall, these data provide a blueprint for identification of the distinct molecular determinants that underpin 17β-HSD inhibition by phytoestrogens.
Collapse
Affiliation(s)
- Alberto Cassetta
- Istituto di Cristallografia, UOS Trieste, Consiglio Nazionale delle Ricerche, S. S. 14-Km 163.5, I-34149, Trieste, Italy.
| | - Jure Stojan
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia.
| | - Ivet Krastanova
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste S. C. p. A., S. S. 14-Km 163.5, I-34149, Trieste, Italy
| | - Katja Kristan
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Mojca Brunskole Švegelj
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Doriano Lamba
- Istituto di Cristallografia, UOS Trieste, Consiglio Nazionale delle Ricerche, S. S. 14-Km 163.5, I-34149, Trieste, Italy
| | - Tea Lanišnik Rižner
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
15
|
Frampton CS, MacNicol DD. Structure of Equilenin at 100 K: an estrone-related steroid. Acta Crystallogr E Crystallogr Commun 2017; 73:1223-1226. [PMID: 28932441 PMCID: PMC5598853 DOI: 10.1107/s2056989017010532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 07/16/2017] [Indexed: 11/24/2022]
Abstract
The structure of the estrone-related steroid, Equilenin, C18H18O2 (systematic name 3-hy-droxy-13-methyl-11,12,13,14,15,16-hexa-hydro-cyclo-penta-[a]phen-anthren-17-one), has been determined at 100 K. The crystals are ortho-rhom-bic, P212121, and the absolute structure of the mol-ecule in the crystal has been determined by resonant scattering [Flack parameter = -0.05 (4)]. The C atoms of the A and B rings are almost coplanar, with an r.m.s. deviation from planarity of 0.0104 Å. The C ring has a sofa conformation, while the D ring has an envelope conformation with the methine C atom as the flap. The keto O atom and the methyl group are translated 0.78 and 0.79 Å, respectively, from the equivalent positions on 17β-estrone. In the crystal, mol-ecules are linked by O-H⋯O hydrogen bonds, forming chains parallel to the c-axis direction.
Collapse
Affiliation(s)
- Christopher S. Frampton
- Wolfson Centre for Materials Processing, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, England
| | - David D. MacNicol
- Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland
| |
Collapse
|
16
|
Herman BE, Szabó J, Bacsa I, Wölfling J, Schneider G, Bálint M, Hetényi C, Mernyák E, Szécsi M. Comparative investigation of the in vitro inhibitory potencies of 13-epimeric estrones and D-secoestrones towards 17β-hydroxysteroid dehydrogenase type 1. J Enzyme Inhib Med Chem 2016; 31:61-69. [PMID: 27424610 DOI: 10.1080/14756366.2016.1204610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The inhibitory effects of 13-epimeric estrones, D-secooxime and D-secoalcohol estrone compounds on human placental 17β-hydroxysteroid dehydrogenase type 1 isozyme (17β-HSD1) were investigated. The transformation of estrone to 17β-estradiol was studied by an in vitro radiosubstrate incubation method. 13α-Estrone inhibited the enzyme activity effectively with an IC50 value of 1.2 μM, which indicates that enzyme affinity is similar to that of the natural estrone substrate. The 13β derivatives and the compounds bearing a 3-hydroxy group generally exerted stronger inhibition than the 13α and 3-ether counterparts. The 3-hydroxy-13β-D-secoalcohol and the 3-hydroxy-13α-D-secooxime displayed an outstanding cofactor dependence, i.e. more efficient inhibition in the presence of NADH than NADPH. The 3-hydroxy-13β-D-secooxime has an IC50 value of 0.070 μM and is one of the most effective 17β-HSD1 inhibitors reported to date in the literature.
Collapse
Affiliation(s)
| | - Johanna Szabó
- b Department of Organic Chemistry , University of Szeged , Szeged , Hungary
| | - Ildikó Bacsa
- b Department of Organic Chemistry , University of Szeged , Szeged , Hungary
| | - János Wölfling
- b Department of Organic Chemistry , University of Szeged , Szeged , Hungary
| | - Gyula Schneider
- b Department of Organic Chemistry , University of Szeged , Szeged , Hungary
| | - Mónika Bálint
- c Department of Biochemistry , Eötvös Loránd University , Budapest , Hungary , and
| | - Csaba Hetényi
- d MTA-ELTE Molecular Biophysics Research Group, Hungarian Academy of Sciences , Budapest , Hungary
| | - Erzsébet Mernyák
- b Department of Organic Chemistry , University of Szeged , Szeged , Hungary
| | - Mihály Szécsi
- a 1st Department of Medicine, University of Szeged , Szeged , Hungary
| |
Collapse
|
17
|
Pharmacophore Models and Pharmacophore-Based Virtual Screening: Concepts and Applications Exemplified on Hydroxysteroid Dehydrogenases. Molecules 2015; 20:22799-832. [PMID: 26703541 PMCID: PMC6332202 DOI: 10.3390/molecules201219880] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/03/2015] [Accepted: 12/09/2015] [Indexed: 01/06/2023] Open
Abstract
Computational methods are well-established tools in the drug discovery process and can be employed for a variety of tasks. Common applications include lead identification and scaffold hopping, as well as lead optimization by structure-activity relationship analysis and selectivity profiling. In addition, compound-target interactions associated with potentially harmful effects can be identified and investigated. This review focuses on pharmacophore-based virtual screening campaigns specifically addressing the target class of hydroxysteroid dehydrogenases. Many members of this enzyme family are associated with specific pathological conditions, and pharmacological modulation of their activity may represent promising therapeutic strategies. On the other hand, unintended interference with their biological functions, e.g., upon inhibition by xenobiotics, can disrupt steroid hormone-mediated effects, thereby contributing to the development and progression of major diseases. Besides a general introduction to pharmacophore modeling and pharmacophore-based virtual screening, exemplary case studies from the field of short-chain dehydrogenase/reductase (SDR) research are presented. These success stories highlight the suitability of pharmacophore modeling for the various application fields and suggest its application also in futures studies.
Collapse
|
18
|
Srungboonmee K, Songtawee N, Monnor T, Prachayasittikul V, Nantasenamat C. Probing the origins of 17β-hydroxysteroid dehydrogenase type 1 inhibitory activity via QSAR and molecular docking. Eur J Med Chem 2015; 96:231-7. [DOI: 10.1016/j.ejmech.2015.04.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 11/29/2022]
|
19
|
Chakrabarti M, Haque A, Banik NL, Nagarkatti P, Nagarkatti M, Ray SK. Estrogen receptor agonists for attenuation of neuroinflammation and neurodegeneration. Brain Res Bull 2014; 109:22-31. [PMID: 25245209 DOI: 10.1016/j.brainresbull.2014.09.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 01/05/2023]
Abstract
Recent results from laboratory investigations and clinical trials indicate important roles for estrogen receptor (ER) agonists in protecting the central nervous system (CNS) from noxious consequences of neuroinflammation and neurodegeneration. Neurodegenerative processes in several CNS disorders including spinal cord injury (SCI), multiple sclerosis (MS), Parkinson's disease (PD), and Alzheimer's disease (AD) are associated with activation of microglia and astrocytes, which drive the resident neuroinflammatory response. During neurodegenerative processes, activated microglia and astrocytes cause deleterious effects on surrounding neurons. The inhibitory activity of ER agonists on microglia activation might be a beneficial therapeutic option for delaying the onset or progression of neurodegenerative injuries and diseases. Recent studies suggest that ER agonists can provide neuroprotection by modulation of cell survival mechanisms, synaptic reorganization, regenerative responses to axonal injury, and neurogenesis process. The anti-inflammatory and neuroprotective actions of ER agonists are mediated mainly via two ERs known as ERα and ERβ. Although some studies have suggested that ER agonists may be deleterious to some neuronal populations, the potential clinical benefits of ER agonists for augmenting cognitive function may triumph over the associated side effects. Also, understanding the modulatory activities of ER agonists on inflammatory pathways will possibly lead to the development of selective anti-inflammatory molecules with neuroprotective roles in different CNS disorders such as SCI, MS, PD, and AD in humans. Future studies should be concentrated on finding the most plausible molecular pathways for enhancing protective functions of ER agonists in treating neuroinflammatory and neurodegenerative injuries and diseases in the CNS.
Collapse
Affiliation(s)
- Mrinmay Chakrabarti
- University of South Carolina School of Medicine, Department of Pathology, Microbiology, and Immunology, Columbia, SC 29209, USA
| | - Azizul Haque
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Naren L Banik
- Department of Neurosurgery and Neurology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Prakash Nagarkatti
- University of South Carolina School of Medicine, Department of Pathology, Microbiology, and Immunology, Columbia, SC 29209, USA
| | - Mitzi Nagarkatti
- University of South Carolina School of Medicine, Department of Pathology, Microbiology, and Immunology, Columbia, SC 29209, USA
| | - Swapan K Ray
- University of South Carolina School of Medicine, Department of Pathology, Microbiology, and Immunology, Columbia, SC 29209, USA.
| |
Collapse
|
20
|
Son M, Bang WY, Park C, Lee Y, Kwon SG, Kim SW, Kim CW, Lee KW. Functional mechanism of C-terminal tail in the enzymatic role of porcine testicular carbonyl reductase: a combined experiment and molecular dynamics simulation study of the C-terminal tail in the enzymatic role of PTCR. PLoS One 2014; 9:e90712. [PMID: 24646606 PMCID: PMC3960098 DOI: 10.1371/journal.pone.0090712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/03/2014] [Indexed: 12/02/2022] Open
Abstract
Porcine testicular carbonyl reductase, PTCR which is one of the short chain dehydrogenases/reductases (SDR) superfamily catalyzes the NADPH-dependent reduction of carbonyl compounds including steroids and prostaglandins. Previously we reported C- terminal tail of PTCR was deleted due to a nonsynonymous single nucleotide variation (nsSNV). Here we identified from kinetic studies that the enzymatic properties for 5α-dihydrotestosterone (5α-DHT) were different between wild-type and C-terminal-deleted PTCRs. Compared to wild-type PTCR, C-terminal-deleted PTCR has much higher reduction rate. To investigate structural difference between wild-type and C-terminal-deleted PTCRs upon 5α-DHT binding, we performed molecular dynamics simulations for two complexes. Using trajectories, molecular interactions including hydrogen bonding patterns, distance between 5α-DHT and catalytic Tyr193, and interaction energies are analyzed and compared. During the MD simulation time, the dynamic behavior of C-terminal tail in wild-type PTCR is also examined using essential dynamics analysis. The results of our simulations reveal that the binding conformation of 5α-DHT in C-terminal-deleted PTCR is more favorable for reduction reaction in PTCR, which shows strong agreement with kinetic data. These structural findings provide valuable information to understand substrate specificity of PTCR and further kinetic properties of enzymes belonging to the SDR superfamily.
Collapse
Affiliation(s)
- Minky Son
- Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Gazha-dong, Jinju, Republic of Korea
| | - Woo Young Bang
- Industry-Academic Cooperation Foundation, Gyeongnam National University of Science & Technology, Jinju, Republic of Korea
| | - Chanin Park
- Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Gazha-dong, Jinju, Republic of Korea
| | - Yuno Lee
- Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Gazha-dong, Jinju, Republic of Korea
| | - Seul Gi Kwon
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, Republic of Korea
| | - Sam Woong Kim
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, Republic of Korea
| | - Chul Wook Kim
- Swine Science and Technology Center, Gyeongnam National University of Science & Technology, Jinju, Republic of Korea
| | - Keun Woo Lee
- Division of Applied Life Science (BK21 Plus Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Gazha-dong, Jinju, Republic of Korea
| |
Collapse
|
21
|
Obiorah I, Sengupta S, Curpan R, Jordan VC. Defining the conformation of the estrogen receptor complex that controls estrogen-induced apoptosis in breast cancer. Mol Pharmacol 2014; 85:789-99. [PMID: 24608856 DOI: 10.1124/mol.113.089250] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Development of acquired antihormone resistance exposes a vulnerability in breast cancer: estrogen-induced apoptosis. Triphenylethylenes (TPEs), which are structurally similar to 4-hydroxytamoxifen (4OHT), were used for mechanistic studies of estrogen-induced apoptosis. These TPEs all stimulate growth in MCF-7 cells, but unlike the planar estrogens they block estrogen-induced apoptosis in the long-term estrogen-deprived MCF7:5C cells. To define the conformation of the TPE:estrogen receptor (ER) complex, we employed a previously validated assay using the induction of transforming growth factor α (TGFα) mRNA in situ in MDA-MB 231 cells stably transfected with wild-type ER (MC2) or D351G ER mutant (JM6). The assays discriminate ligand fit in the ER based on the extremes of published crystallography of planar estrogens or TPE antiestrogens. We classified the conformation of planar estrogens or angular TPE complexes as "estrogen-like" or "antiestrogen-like" complexes, respectively. The TPE:ER complexes did not readily recruit the coactivator steroid receptor coactivator-3 (SRC3) or ER to the PS2 promoter in MCF-7 and MCF7:5C cells, and molecular modeling showed that they prefer to bind to the ER in an antagonistic fashion, i.e., helix 12 not sealing the ligand binding domain (LBD) effectively, and therefore reduce critical SRC3 binding. The fully activated ER complex with helix 12 sealing the LBD is suggested to be the appropriate trigger to initiate rapid estrogen-induced apoptosis.
Collapse
Affiliation(s)
- Ifeyinwa Obiorah
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia (I.O., S.S., V.C.J.); and Institute of Chemistry, Romanian Academy, Timisoara, Romania (R.C.)
| | | | | | | |
Collapse
|
22
|
Thomas MP, Potter BVL. The structural biology of oestrogen metabolism. J Steroid Biochem Mol Biol 2013; 137:27-49. [PMID: 23291110 PMCID: PMC3866684 DOI: 10.1016/j.jsbmb.2012.12.014] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 02/07/2023]
Abstract
Many enzymes catalyse reactions that have an oestrogen as a substrate and/or a product. The reactions catalysed include aromatisation, oxidation, reduction, sulfonation, desulfonation, hydroxylation and methoxylation. The enzymes that catalyse these reactions must all recognise and bind oestrogen but, despite this, they have diverse structures. This review looks at each of these enzymes in turn, describing the structure and discussing the mechanism of the catalysed reaction. Since oestrogen has a role in many disease states inhibition of the enzymes of oestrogen metabolism may have an impact on the state or progression of the disease and inhibitors of these enzymes are briefly discussed. This article is part of a Special Issue entitled 'CSR 2013'.
Collapse
Key Words
- 17β-HSD
- 17β-Hydroxysteroid dehydrogenase
- 17β-hydroxysteroid dehydrogenase
- 3,5-dinitrocatechol
- 3-(((8R,9S,13S,14S,16R,17S)-3,17-dihydroxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-16-yl)methyl)benzamide
- 3′-phosphoadenosine-5′-phosphate
- 3′-phosphoadenosine-5′-phosphosulfate
- Aromatase
- COMT
- DHEA(S)
- DHETNA
- DNC
- E1(S)
- E2(S)
- E2B
- E3
- E4
- ER
- FAD/FMN
- FG
- HFG(S)
- NADP(+)
- NADPH
- O5′-[9-(3,17β-dihydroxy-1,3,5(10)-estratrien-16β-yl)-nonanoyl]adenosine
- Oestrogen
- PAP
- PAPS
- Protein structure
- Reaction mechanism
- S-adenosyl methionine
- SAM
- SDR
- Sulfatase
- Sulfotransferase
- catechol-O-methyl transferase
- dehydroepiandrosterone (sulfate)
- estetrol
- estradiol (sulfate)
- estriol
- estrogen receptor
- estrone (sulfate)
- flavin adenine dinucleotide/flavin mononucleotide
- formylglycine
- hydroxyformylglycine (sulfate)
- mb-COMT
- membrane-bound COMT
- nicotinamide adenine dinucleotide phosphate (oxidised)
- nicotinamide adenine dinucleotide phosphate (reduced)
- s-COMT
- short-chain dehydrogenase/reductase
- soluble COMT
Collapse
Affiliation(s)
- Mark P Thomas
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | | |
Collapse
|
23
|
Farhane S, Fournier MA, Poirier D. Chemical synthesis, characterisation and biological evaluation of lactonic-estradiol derivatives as inhibitors of 17β-hydroxysteroid dehydrogenase type 1. J Steroid Biochem Mol Biol 2013; 137:322-31. [PMID: 23685015 DOI: 10.1016/j.jsbmb.2013.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/28/2013] [Accepted: 05/01/2013] [Indexed: 11/17/2022]
Abstract
To control estradiol (E2) formation, we are interested in synthesizing inhibitors of 17β-hydroxyteroid dehydrogenase type 1 (17β-HSD1). Since the results of docking experiments have shown that E2-lactone derivatives substituted in position 19 or 20 (E-ring) could generate interactions with the active site of the enzyme, we carried out their chemical synthesis. After having prepared the 16β,17β-γ-lactone-E2 in four steps starting from estrone (E1), we introduced the molecular diversity by adding a hydroxymethyl, a methylcarboxylate, a carboxy or an allyl group. The allyl derivative was used as a key intermediate to generate a hydroxyethyl side chain in α or β position. Two lactols were also obtained from two hydroxyalkyl lactones. Enzymatic assays revealed that lactone and lactol derivatives weakly inhibited 17β-HSD1 in homogenized HEK-293 cells overexpressing 17β-HSD1 (34-60% at 1 μM) and in intact T-47D cells expressing 17β-HSD1 (10-40% at 10 μM). This article is part of a Special Issue entitled "Synthesis and biological testing of steroid derivatives as inhibitors".
Collapse
Affiliation(s)
- Siham Farhane
- Laboratory of Medicinal Chemistry, CHU de Québec (CHUL) - Research Center and Laval University, Québec (Québec), G1V 4G2, Canada
| | | | | |
Collapse
|
24
|
Wuxiuer Y, Morgunova E, Cols N, Popov A, Karshikoff A, Sylte I, Gonzàlez-Duarte R, Ladenstein R, Winberg JO. An intact eight-membered water chain in drosophilid alcohol dehydrogenases is essential for optimal enzyme activity. FEBS J 2012; 279:2940-56. [PMID: 22741949 DOI: 10.1111/j.1742-4658.2012.08675.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
All drosophilid alcohol dehydrogenases contain an eight-member water chain connecting the active site with the solvent at the dimer interface. A similar water chain has also been shown to exist in other short-chain dehydrogenase/reductase (SDR) enzymes, including therapeutically important SDRs. The role of this water chain in the enzymatic reaction is unknown, but it has been proposed to be involved in a proton relay system. In the present study, a connecting link in the water chain was removed by mutating Thr114 to Val114 in Scaptodrosophila lebanonensis alcohol dehydrogenase (SlADH). This threonine is conserved in all drosophilid alcohol dehydrogenases but not in other SDRs. X-ray crystallography of the SlADH(T114V) mutant revealed a broken water chain, the overall 3D structure of the binary enzyme-NAD(+) complex was almost identical to the wild-type enzyme (SlADH(wt) ). As for the SlADH(wt) , steady-state kinetic studies revealed that catalysis by the SlADH(T114V) mutant was consistent with a compulsory ordered reaction mechanism where the co-enzyme binds to the free enzyme. The mutation caused a reduction of the k(on) velocity for NAD(+) and its binding strength to the enzyme, as well as the rate of hydride transfer (k) in the ternary enzyme-NAD(+) -alcohol complex. Furthermore, it increased the pK(a) value of the group in the binary enzyme-NAD(+) complex that regulates the k(on) velocity of alcohol and alcohol-competitive inhibitors. Overall, the results indicate that an intact water chain is essential for optimal enzyme activity and participates in a proton relay system during catalysis.
Collapse
Affiliation(s)
- Yimingjiang Wuxiuer
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Spadaro A, Negri M, Marchais-Oberwinkler S, Bey E, Frotscher M. Hydroxybenzothiazoles as new nonsteroidal inhibitors of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1). PLoS One 2012; 7:e29252. [PMID: 22242164 PMCID: PMC3252304 DOI: 10.1371/journal.pone.0029252] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 11/23/2011] [Indexed: 01/25/2023] Open
Abstract
17β-estradiol (E2), the most potent estrogen in humans, known to be involved in the development and progession of estrogen-dependent diseases (EDD) like breast cancer and endometriosis. 17β-HSD1, which catalyses the reduction of the weak estrogen estrone (E1) to E2, is often overexpressed in breast cancer and endometriotic tissues. An inhibition of 17β-HSD1 could selectively reduce the local E2-level thus allowing for a novel, targeted approach in the treatment of EDD. Continuing our search for new nonsteroidal 17β-HSD1 inhibitors, a novel pharmacophore model was derived from crystallographic data and used for the virtual screening of a small library of compounds. Subsequent experimental verification of the virtual hits led to the identification of the moderately active compound 5. Rigidification and further structure modifications resulted in the discovery of a novel class of 17β-HSD1 inhibitors bearing a benzothiazole-scaffold linked to a phenyl ring via keto- or amide-bridge. Their putative binding modes were investigated by correlating their biological data with features of the pharmacophore model. The most active keto-derivative 6 shows IC₅₀-values in the nanomolar range for the transformation of E1 to E2 by 17β-HSD1, reasonable selectivity against 17β-HSD2 but pronounced affinity to the estrogen receptors (ERs). On the other hand, the best amide-derivative 21 shows only medium 17β-HSD1 inhibitory activity at the target enzyme as well as fair selectivity against 17β-HSD2 and ERs. The compounds 6 and 21 can be regarded as first benzothiazole-type 17β-HSD1 inhibitors for the development of potential therapeutics.
Collapse
Affiliation(s)
- Alessandro Spadaro
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
- ElexoPharm GmbH, Saarbrücken, Germany
| | - Matthias Negri
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
| | | | | | - Martin Frotscher
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
- * E-mail:
| |
Collapse
|
26
|
Starčević Š, Turk S, Brus B, Cesar J, Lanišnik Rižner T, Gobec S. Discovery of highly potent, nonsteroidal 17β-hydroxysteroid dehydrogenase type 1 inhibitors by virtual high-throughput screening. J Steroid Biochem Mol Biol 2011; 127:255-61. [PMID: 21920439 DOI: 10.1016/j.jsbmb.2011.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 07/15/2011] [Accepted: 08/14/2011] [Indexed: 01/03/2023]
Abstract
17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1) catalyzes the formation of the potent proliferation-stimulating hormone estradiol, and it is thus involved in the development of hormone-dependent breast cancer. Due to its high substrate specificity and the known relationships between its overexpression and disease incidence, 17β-HSD1 is considered an attractive target for drug development. Here, we have used structure-based virtual high-throughput screening to successfully identify potent nonsteroidal 17β-HSD1 inhibitors. Computational screening of a drug-like database containing 13 million compounds identified hits with a 2-benzylidenebenzofuran-3(2H)-one scaffold that we show to be highly potent 17β-HSD1 inhibitors. The most potent in the series, compound 1, showed an IC(50) of 45nM in our 17β-HSD1 inhibition assay, and also showed good selectivity for 17β-HSD1 over 17β-HSD2.
Collapse
Affiliation(s)
- Štefan Starčević
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
27
|
Hong Y, Chen S. Aromatase, estrone sulfatase, and 17β-hydroxysteroid dehydrogenase: structure-function studies and inhibitor development. Mol Cell Endocrinol 2011; 340:120-6. [PMID: 20888390 PMCID: PMC3035767 DOI: 10.1016/j.mce.2010.09.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 09/15/2010] [Accepted: 09/18/2010] [Indexed: 11/23/2022]
Abstract
Aromatase, estrone sulfatase, and 17β-hydroxysteroid dehydrogenase type 1 are involved in the key steps of 17β-estradiol biosynthesis. Structure-function studies of aromatase, estrone sulfatase and 17β-hydroxysteroid dehydrogenase type 1 are important to evaluate the molecular basis of the interaction between these enzymes and their inhibitors. Selective and potent inhibitors of the three enzymes have been developed as antiproliferative agents in hormone-dependent breast carcinoma. New treatment strategies for hormone-dependent breast cancer are discussed.
Collapse
Affiliation(s)
- Yanyan Hong
- Division of Tumor Cell Biology, Beckman Research Institute of the City of Hope, 1450 E. Duarte Road, Duarte, CA 91010, United States
| | | |
Collapse
|
28
|
Rauschemberger MB, Sandoval MJ, Massheimer VL. Cellular and molecular actions displayed by estrone on vascular endothelium. Mol Cell Endocrinol 2011; 339:136-43. [PMID: 21536098 DOI: 10.1016/j.mce.2011.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 04/04/2011] [Accepted: 04/13/2011] [Indexed: 01/08/2023]
Abstract
In this work we provide evidence that estrone "per se" modulates cellular endothelial growth and survival, events that play key roles in the development of vascular disease. Moreover, under oxidative stress conditions the hormone prevented apoptosis triggered by hydrogen peroxide. Although estrone did not affect E-selectin and VCAM-1 mRNAs synthesis, the hormone prevented the expression of these adhesion molecules induced by the proinflammatory agent LPS. The steroid partially attenuated leukocyte adhesion not only under basal conditions but also in the presence of LPS. Using ICI182780 compound as estrogen receptor antagonist, and PD98059 as MAPK inhibitor we obtained evidence that the mitogenic action of estrone involved the participation of ER and MAPK transduction pathway activation. The presence of estradiol impaired the effect of estrone on cell proliferation and vasoactive production. These results suggest that estrone exhibits a remarkable biological action on endothelial cells, modulating vasoactive production, proliferation, apoptosis, and cell adhesion events.
Collapse
Affiliation(s)
- M Belén Rauschemberger
- Cátedra de Bioquímica Clínica II, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, B8000ICN Bahía Blanca, Argentina
| | | | | |
Collapse
|
29
|
Biochemical and biological evaluation of novel potent coumarin inhibitor of 17β-HSD type 1. Chem Biol Interact 2011; 191:60-5. [DOI: 10.1016/j.cbi.2011.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 12/23/2010] [Accepted: 01/04/2011] [Indexed: 01/23/2023]
|
30
|
Starčević Š, Božnar P, Turk S, Gobec S, Rižner TL. Design and synthesis of substrate mimetics based on an indole scaffold: potential inhibitors of 17β-HSD type 1. Horm Mol Biol Clin Investig 2011; 6:201-9. [PMID: 25961256 DOI: 10.1515/hmbci.2011.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 02/07/2011] [Indexed: 11/15/2022]
Abstract
BACKGROUND Human 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) acts at a pre-receptor level. It catalyzes NADPH-dependent reduction of the weak estrogen estrone into the most potent estrogen estradiol, which exerts its proliferative effects via estrogen receptors. Overexpression of 17β-HSD1 in estrogen-responsive tissues is related to the development of hormone-dependent diseases, such as breast cancer and endometriosis. 17β-HSD1 thus represents an attractive target for development of new drugs. METHODS We designed and synthesized a series of 3-, 5- and 6-phenyl indole derivatives as mimetics of the steroid substrate estrone. All of these compounds were evaluated for inhibition of recombinant human 17β-HSD1 from Escherichia coli, at concentrations of 0.6 μM and 6.0 μM. RESULTS Among 14 indole derivatives, compound 9 was an initial hit inhibitor of 17β-HSD1, with moderate inhibition (64% at 6 μM). Molecular docking into the crystal structure of 17β-HSD1 (1A27) revealed that this 5-phenyl indole derivative binds to 17β-HSD1 similarly to co-crystalized E2. Compound 9 forms two H-bonds with 17β-HSD1: one between the indole nitrogen and His222, and the second between the phenolic OH group and catalytic Tyr155. CONCLUSIONS The indole scaffold is one of the possible starting points for the design of substrate mimetics of the steroid substrate estrone. Our study shows that these 6- and, especially, 5-phenol indole derivatives can act as moderate inhibitors of 17β-HSD1. Based on inhibition assays and docking simulations, we can infer further improvements of the 5-phenol indole derivatives that might result in better inhibition profiles.
Collapse
|
31
|
Oster A, Klein T, Henn C, Werth R, Marchais‐Oberwinkler S, Frotscher M, Hartmann RW. Bicyclic Substituted Hydroxyphenylmethanone Type Inhibitors of 17 β‐Hydroxysteroid Dehydrogenase Type 1 (17 β‐HSD1): The Role of the Bicyclic Moiety. ChemMedChem 2011; 6:476-87. [DOI: 10.1002/cmdc.201000457] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/01/2011] [Indexed: 11/11/2022]
Affiliation(s)
- Alexander Oster
- Pharmaceutical and Medicinal Chemistry, Saarland University, & the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2 3, P.O. Box 151150, 66123 Saarbrücken (Germany), Fax: (+49) 681‐302‐70308
| | - Tobias Klein
- Pharmaceutical and Medicinal Chemistry, Saarland University, & the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2 3, P.O. Box 151150, 66123 Saarbrücken (Germany), Fax: (+49) 681‐302‐70308
| | - Claudia Henn
- Pharmaceutical and Medicinal Chemistry, Saarland University, & the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2 3, P.O. Box 151150, 66123 Saarbrücken (Germany), Fax: (+49) 681‐302‐70308
| | - Ruth Werth
- Pharmaceutical and Medicinal Chemistry, Saarland University, & the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2 3, P.O. Box 151150, 66123 Saarbrücken (Germany), Fax: (+49) 681‐302‐70308
| | - Sandrine Marchais‐Oberwinkler
- Pharmaceutical and Medicinal Chemistry, Saarland University, & the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2 3, P.O. Box 151150, 66123 Saarbrücken (Germany), Fax: (+49) 681‐302‐70308
| | - Martin Frotscher
- Pharmaceutical and Medicinal Chemistry, Saarland University, & the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2 3, P.O. Box 151150, 66123 Saarbrücken (Germany), Fax: (+49) 681‐302‐70308
| | - Rolf W. Hartmann
- Pharmaceutical and Medicinal Chemistry, Saarland University, & the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2 3, P.O. Box 151150, 66123 Saarbrücken (Germany), Fax: (+49) 681‐302‐70308
| |
Collapse
|
32
|
Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev 2011; 32:81-151. [PMID: 21051590 PMCID: PMC3365799 DOI: 10.1210/er.2010-0013] [Citation(s) in RCA: 1469] [Impact Index Per Article: 104.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 08/20/2010] [Indexed: 02/08/2023]
Abstract
Steroidogenesis entails processes by which cholesterol is converted to biologically active steroid hormones. Whereas most endocrine texts discuss adrenal, ovarian, testicular, placental, and other steroidogenic processes in a gland-specific fashion, steroidogenesis is better understood as a single process that is repeated in each gland with cell-type-specific variations on a single theme. Thus, understanding steroidogenesis is rooted in an understanding of the biochemistry of the various steroidogenic enzymes and cofactors and the genes that encode them. The first and rate-limiting step in steroidogenesis is the conversion of cholesterol to pregnenolone by a single enzyme, P450scc (CYP11A1), but this enzymatically complex step is subject to multiple regulatory mechanisms, yielding finely tuned quantitative regulation. Qualitative regulation determining the type of steroid to be produced is mediated by many enzymes and cofactors. Steroidogenic enzymes fall into two groups: cytochrome P450 enzymes and hydroxysteroid dehydrogenases. A cytochrome P450 may be either type 1 (in mitochondria) or type 2 (in endoplasmic reticulum), and a hydroxysteroid dehydrogenase may belong to either the aldo-keto reductase or short-chain dehydrogenase/reductase families. The activities of these enzymes are modulated by posttranslational modifications and by cofactors, especially electron-donating redox partners. The elucidation of the precise roles of these various enzymes and cofactors has been greatly facilitated by identifying the genetic bases of rare disorders of steroidogenesis. Some enzymes not principally involved in steroidogenesis may also catalyze extraglandular steroidogenesis, modulating the phenotype expected to result from some mutations. Understanding steroidogenesis is of fundamental importance to understanding disorders of sexual differentiation, reproduction, fertility, hypertension, obesity, and physiological homeostasis.
Collapse
Affiliation(s)
- Walter L Miller
- Distinguished Professor of Pediatrics, University of California San Francisco, San Francisco, California 94143-0978, USA.
| | | |
Collapse
|
33
|
Marchais-Oberwinkler S, Wetzel M, Ziegler E, Kruchten P, Werth R, Henn C, Hartmann RW, Frotscher M. New Drug-Like Hydroxyphenylnaphthol Steroidomimetics As Potent and Selective 17β-Hydroxysteroid Dehydrogenase Type 1 Inhibitors for the Treatment of Estrogen-Dependent Diseases. J Med Chem 2010; 54:534-47. [DOI: 10.1021/jm1009082] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Marie Wetzel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, D-66123 Saarbrücken, Germany
| | - Erika Ziegler
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, D-66123 Saarbrücken, Germany
| | - Patricia Kruchten
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, D-66123 Saarbrücken, Germany
| | - Ruth Werth
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, D-66123 Saarbrücken, Germany
| | - Claudia Henn
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, D-66123 Saarbrücken, Germany
| | - Rolf W. Hartmann
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, D-66123 Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Campus C2 3, D-66123 Saarbrücken, Germany
| | - Martin Frotscher
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, D-66123 Saarbrücken, Germany
| |
Collapse
|
34
|
Starčević Š, Brožič P, Turk S, Cesar J, Lanišnik Rižner T, Gobec S. Synthesis and Biological Evaluation of (6- and 7-Phenyl) Coumarin Derivatives as Selective Nonsteroidal Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 1. J Med Chem 2010; 54:248-61. [PMID: 21138273 DOI: 10.1021/jm101104z] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Štefan Starčević
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Petra Brožič
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Samo Turk
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Jožko Cesar
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Tea Lanišnik Rižner
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
35
|
Negri M, Recanatini M, Hartmann RW. Insights in 17beta-HSD1 enzyme kinetics and ligand binding by dynamic motion investigation. PLoS One 2010; 5:e12026. [PMID: 20706575 PMCID: PMC2919385 DOI: 10.1371/journal.pone.0012026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 07/06/2010] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Bisubstrate enzymes, such as 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1), exist in solution as an ensemble of conformations. 17beta-HSD1 catalyzes the last step of the biosynthesis of estradiol and, thus, it is a potentially attractive target for breast cancer treatment. METHODOLOGY/PRINCIPAL FINDINGS To elucidate the conformational transitions of its catalytic cycle, a structural analysis of all available crystal structures was performed and representative conformations were assigned to each step of the putative kinetic mechanism. To cover most of the conformational space, all-atom molecular dynamic simulations were performed using the four crystallographic structures best describing apoform, opened, occluded and closed state of 17beta-HSD1 as starting structures. With three of them, binary and ternary complexes were built with NADPH and NADPH-estrone, respectively, while two were investigated as apoform. Free energy calculations were performed in order to judge more accurately which of the MD complexes describes a specific kinetic step. CONCLUSIONS/SIGNIFICANCE Remarkably, the analysis of the eight long range trajectories resulting from this multi-trajectory/-complex approach revealed an essential role played by the backbone and side chain motions, especially of the betaF alphaG'-loop, in cofactor and substrate binding. Thus, a selected-fit mechanism is suggested for 17beta-HSD1, where ligand-binding induced concerted motions of the FG-segment and the C-terminal part guide the enzyme along its preferred catalytic pathway. Overall, we could assign different enzyme conformations to the five steps of the random bi-bi kinetic cycle of 17beta-HSD1 and we could postulate a preferred pathway for it. This study lays the basis for more-targeted biochemical studies on 17beta-HSD1, as well as for the design of specific inhibitors of this enzyme. Moreover, it provides a useful guideline for other enzymes, also characterized by a rigid core and a flexible region directing their catalysis.
Collapse
Affiliation(s)
- Matthias Negri
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
| | - Maurizio Recanatini
- Department of Pharmaceutical Sciences, University of Bologna, Bologna, Italy
| | - Rolf W. Hartmann
- Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany
| |
Collapse
|
36
|
Oster A, Klein T, Werth R, Kruchten P, Bey E, Negri M, Marchais-Oberwinkler S, Frotscher M, Hartmann RW. Novel estrone mimetics with high 17β-HSD1 inhibitory activity. Bioorg Med Chem 2010; 18:3494-505. [DOI: 10.1016/j.bmc.2010.03.065] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 03/23/2010] [Accepted: 03/25/2010] [Indexed: 10/19/2022]
|
37
|
Binary and ternary crystal structure analyses of a novel inhibitor with 17β-HSD type 1: a lead compound for breast cancer therapy. Biochem J 2009; 424:357-66. [DOI: 10.1042/bj20091020] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Oestradiol is a well-characterized sex hormone that stimulates breast cancer and other oestrogen-related diseases. 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) catalyses the last step in the synthesis of oestradiol and androstenediol in breast tumour tissue. The enzyme's high expression and activity after simultaneous blockade of oestrogen receptors and inhibition of aromatase in the tumour shows the necessity for its inhibition as a requirement for breast cancer therapy. In the present paper, we report structures of the binary and ternary complexes of 17β-HSD1 with a new inhibitor E2B {3-[3′,17′β-dihydroxyestra-1′,3′,5′(10′)-trien-16′β-methyl]benzamide}, and the enzyme inhibition by the later. The IC50 value for E2B was determined to be 42 nM in T47D cells. Multiple interactions between E2B and the enzyme include hydrogen bonds and hydrophobic interactions, as well as π–π interactions. A kinetic study demonstrated that E2B inhibits the enzyme's reduction forming oestradiol from oestrone, with a Ki of 0.9±0.15 nM. Such strong inhibition is in agreement with its extensive interaction with the enzyme, suggesting its potential as a lead compound for breast cancer therapy. In fact, this possibility is enhanced by its capacity for cell penetration similar to natural steroids. Such inhibitors that block oestrogen synthesis to suppress the sulfatase pathway producing oestradiol can be used in adjuvant therapies with oestrogen receptor blockade, opening a new orientation of breast cancer treatment.
Collapse
|
38
|
Michiels PJA, Ludwig C, Stephan M, Fischer C, Möller G, Messinger J, van Dongen M, Thole H, Adamski J, Günther UL. Ligand-based NMR spectra demonstrate an additional phytoestrogen binding site for 17beta-hydroxysteroid dehydrogenase type 1. J Steroid Biochem Mol Biol 2009; 117:93-8. [PMID: 19631742 DOI: 10.1016/j.jsbmb.2009.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 07/13/2009] [Accepted: 07/15/2009] [Indexed: 01/21/2023]
Abstract
The enzyme 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) has become an important drug target for breast cancer because it catalyzes the interconversion of estrone to the biologically more potent estradiol which also plays a crucial role in the etiology of breast cancer. Patients with an increased expression of the 17beta-HSD1 gene have a significantly worse outcome than patients without. Inhibitors for 17beta-HSD1 are therefore included in therapy development. Here we have studied binding of 17beta-HSD1 to substrates and a number of inhibitors using NMR spectroscopy. Ligand observed NMR spectra show a strong pH dependence for the phytoestrogens luteolin and apigenin but not for the natural ligands estradiol and estrone. Moreover, NMR competition experiments show that the phytoestrogens do not replace the estrogens despite their similar inhibition levels in the in vitro assay. These results strongly support an additional 17beta-HSD1 binding site for phytoestrogens which is neither the substrate nor the co-factor binding site. Docking experiments suggest the dimer interface as a possible location. An additional binding site for the phytoestrogens may open new opportunities for the design of inhibitors, not only for 17beta-HSD1, but also for other family members of the short chain dehydrogenases.
Collapse
Affiliation(s)
- Paul J A Michiels
- HWB-NMR, CR UK Institute of Cancer Sciences, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lilienkampf A, Karkola S, Alho-Richmond S, Koskimies P, Johansson N, Huhtinen K, Vihko K, Wähälä K. Synthesis and Biological Evaluation of 17β-Hydroxysteroid Dehydrogenase Type 1 (17β-HSD1) Inhibitors Based on a Thieno[2,3-d]pyrimidin-4(3H)-one Core. J Med Chem 2009; 52:6660-71. [DOI: 10.1021/jm900928k] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Annamaria Lilienkampf
- Laboratory of Organic Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki, Finland
| | - Sampo Karkola
- Laboratory of Organic Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki, Finland
| | - Sari Alho-Richmond
- Laboratory of Organic Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki, Finland
| | - Pasi Koskimies
- Hormos Medical Ltd., PharmaCity, FIN-20520 Turku, Finland
| | - Nina Johansson
- Hormos Medical Ltd., PharmaCity, FIN-20520 Turku, Finland
| | - Kaisa Huhtinen
- Hormos Medical Ltd., PharmaCity, FIN-20520 Turku, Finland
| | - Kimmo Vihko
- Hormos Medical Ltd., PharmaCity, FIN-20520 Turku, Finland
| | - Kristiina Wähälä
- Laboratory of Organic Chemistry, Department of Chemistry, P.O. Box 55, FIN-00014 University of Helsinki, Finland
| |
Collapse
|
40
|
Moeller G, Adamski J. Integrated view on 17beta-hydroxysteroid dehydrogenases. Mol Cell Endocrinol 2009; 301:7-19. [PMID: 19027824 DOI: 10.1016/j.mce.2008.10.040] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 10/27/2008] [Accepted: 10/27/2008] [Indexed: 10/21/2022]
Abstract
17beta-Hydroxysteroid dehydrogenases (17beta-HSDs) are important enzymes in steroid metabolism. Long known members of the protein family seemed to be well characterised concerning their role in the regulation of the biological potency of steroid hormones, but today more and more evidence points to pivotal contributions of these enzymes in a variety of other metabolic pathways. Therefore, studies on 17beta-HSDs develop towards metabolomic survey. Latest research results give new insights into the complex metabolic interconnectivity of the 17beta-HSDs. In this paper metabolic activities of 17beta-HSDs will be compared, their interplay with endogenous substrates summarised, and interlacing pathways depicted. Strategies on deciphering the physiological role of 17beta-HSDs and the genetic predisposition for associated diseases will be presented.
Collapse
Affiliation(s)
- Gabriele Moeller
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Neuherberg, Germany.
| | | |
Collapse
|
41
|
Karkola S, Alho-Richmond S, Wahala K. Pharmacophore modelling of 17beta-HSD1 enzyme based on active inhibitors and enzyme structure. Mol Cell Endocrinol 2009; 301:225-8. [PMID: 18822344 DOI: 10.1016/j.mce.2008.08.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2008] [Revised: 08/20/2008] [Accepted: 08/25/2008] [Indexed: 11/29/2022]
Abstract
The 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) enzyme regulates the conversion of estrone (E1) to the biologically active estradiol (E2). Due to its role as a key enzyme in female hormone production, it has emerged as an attractive drug target for inhibitor development in relation to hormone-dependent breast cancer. Herein, we report four pharmacophore models of 17beta-HSD1 based on a crystal structure, a relaxed crystal structure, a library of 17beta-HSD1 inhibitors and on a docked complex of 17betaHSD1 enzyme and a potent inhibitor. The models were used in screening two databases, which produced novel compounds to be used as leads in our drug design project. The results were validated by docking the compounds to the active site of the 17beta-HSD1 enzyme. With the help of our 3D-QSAR model, these results will be used to develop new inhibitors of 17beta-HSD1 as drug candidates.
Collapse
Affiliation(s)
- Sampo Karkola
- Laboratory of Organic Chemistry, Department of Chemistry, PO Box 55, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | |
Collapse
|
42
|
Characterization of key residues and membrane association domains in retinol dehydrogenase 10. Biochem J 2009; 419:113-22, 1 p following 122. [PMID: 19102727 DOI: 10.1042/bj20080812] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
RDH10 (retinol dehydrogenase 10) was originally identified from the retinal pigment epithelium and retinal Müller cells. It has retinoid oxidoreductase activity and is thought to play a role in the retinoid visual cycle. A recent study showed that RDH10 is essential for generating retinoic acid at early embryonic stages. The present study demonstrated that wild-type RDH10 catalysed both oxidation of all-trans-retinol and reduction of all-trans-retinal in a cofactor-dependent manner In vitro. In cultured cells, however, oxidation is the favoured reaction catalysed by RDH10. Substitution of any of the predicted key residues in the catalytic centre conserved in the RDH family abolished the enzymatic activity of RDH10 without affecting its protein level. Unlike other RDH members, however, replacement of Ser(197), a key residue for stabilizing the substrate, by glycine and alanine did not abolish the enzymatic activity of RDH10, whereas RDH10 mutants S197C, S197T and S197V completely lost their enzymatic activity. These results suggest that the size of the residue at position 197 is critical for the activity of RDH10. Mutations of the three glycine residues (Gly(43), Gly(47) and Gly(49)) in the predicted cofactor-binding motif (Gly-Xaa(3)-Gly-Xaa-Gly) of RDH10 abolished its enzymatic activity, suggesting that the cofactor-binding motif is essential for its activity. Deletion of the two hydrophobic domains dissociated RDH10 from the membrane and abolished its activity. These studies identified the key residues for the activity of RDH10 and will contribute to the further elucidation of mechanism of this important enzyme.
Collapse
|
43
|
Abstract
The enzymes and pathways of steroidogenesis are central to an understanding of adrenarche. The quantitative regulation of steroidogenesis occurs at the first step, the conversion of cholesterol to pregnenolone. Chronic quantitative regulation is principally at the level of transcription of the CYP11A1 gene encoding P450scc, which is the enzymatically rate-limiting step. Acute regulation is mediated by the steroidogenic acute regulatory protein (StAR), which facilitates the rapid influx of cholesterol into mitochondria, where P450scc resides. Qualitative regulation, which determines the type of steroid produced in a cell, is principally at the level of P450c17 (CYP17). In the absence of P450c17 in the zona glomerulosa, C21 deoxy steroids are produced, leading to the mineralocorticoid, aldosterone. In the presence of the 17alpha-hydroxylase but not the 17,20 lyase activity of P450c17 in the zona fasciculata, C21, 17-hydroxy steroids are produced, leading to the glucocorticoid, cortisol. When both the 17alpha-hydroxylase and 17,20 lyase activities of P450c17 are present in the zona reticularis, the androgen precursor DHEA is produced. The discrimination between 17alpha-hydroxylase and 17,20 lyase activities is regulated by two post-translational events, the serine phosphorylation of P450c17 and the allosteric action of cytochrome b5, both of which act to optimize the interaction of P450c17 with its obligatory electron donor, P450 oxidoreductase. In the adrenal zona reticularis, the abundant expression of P450 oxidoreductase and cytochrome b5, and the low expression of 3beta-hydroxysteroid dehydrogenase (HSD3B2) result in the production of the large amounts of DHEA that characterize adrenarche.
Collapse
Affiliation(s)
- Walter L Miller
- Department of Pediatrics, University of California, Room 672-S, San Francisco, CA 94143-0978, USA.
| |
Collapse
|
44
|
Abstract
Positive selection for protein function can lead to multiple mutations within a small stretch of DNA, i.e., to a cluster of mutations. Recently, Wagner proposed a method to detect such mutation clusters. His method, however, did not take into account that residues with high solvent accessibility are inherently more variable than residues with low solvent accessibility. Here, we propose a new algorithm to detect clustered evolution. Our algorithm controls for different substitution probabilities at buried and exposed sites in the tertiary protein structure, and uses random permutations to calculate accurate P values for inferred clusters. We apply the algorithm to genomes of bacteria, fly, and mammals, and find several clusters of mutations in functionally important regions of proteins. Surprisingly, clustered evolution is a relatively rare phenomenon. Only between 2% and 10% of the genes we analyze contain a statistically significant mutation cluster. We also find that not controlling for solvent accessibility leads to an excess of clusters in terminal and solvent-exposed regions of proteins. Our algorithm provides a novel method to identify functionally relevant divergence between groups of species. Moreover, it could also be useful to detect artifacts in automatically assembled genomes.
Collapse
Affiliation(s)
- Tong Zhou
- Center for Computational Biology and Bioinformatics, Section of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Peter J. Enyeart
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Claus O. Wilke
- Center for Computational Biology and Bioinformatics, Section of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
45
|
Bey E, Marchais-Oberwinkler S, Werth R, Negri M, Al-Soud YA, Kruchten P, Oster A, Frotscher M, Birk B, Hartmann RW. Design, synthesis, biological evaluation and pharmacokinetics of bis(hydroxyphenyl) substituted azoles, thiophenes, benzenes, and aza-benzenes as potent and selective nonsteroidal inhibitors of 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1). J Med Chem 2008; 51:6725-39. [PMID: 18855374 DOI: 10.1021/jm8006917] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
17beta-Estradiol (E2), the most potent female sex hormone, stimulates the growth of mammary tumors and endometriosis via activation of the estrogen receptor alpha (ERalpha). 17beta-Hydroxysteroid dehydrogenase type 1 (17beta-HSD1), which is responsible for the catalytic reduction of the weakly active estrogen estrone (E1) into E2, is therefore discussed as a novel drug target. Recently, we have discovered a 2,5-bis(hydroxyphenyl) oxazole to be a potent inhibitor of 17beta-HSD1. In this paper, further structural optimizations were performed: 39 bis(hydroxyphenyl) azoles, thiophenes, benzenes, and aza-benzenes were synthesized and their biological properties were evaluated. The most promising compounds of this study show enhanced IC 50 values in the low nanomolar range, a high selectivity toward 17beta-HSD2, a low binding affinity to ERalpha, a good metabolic stability in rat liver microsomes, and a reasonable pharmacokinetic profile after peroral application. Calculation of the molecular electrostatic potentials revealed a correlation between 17beta-HSD1 inhibition and the electron density distribution.
Collapse
Affiliation(s)
- Emmanuel Bey
- Pharmaceutical and Medicinal Chemistry, Saarland University, PO Box 15 11 50, D-66041, Saarbrucken, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Distinctive molecular inhibition mechanisms for selective inhibitors of human 11beta-hydroxysteroid dehydrogenase type 1. Bioorg Med Chem 2008; 16:8922-31. [PMID: 18789704 DOI: 10.1016/j.bmc.2008.08.065] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 08/20/2008] [Accepted: 08/26/2008] [Indexed: 11/22/2022]
Abstract
11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) catalyzes the NADPH dependent interconversion of inactive cortisone to active cortisol. Excess 11beta-HSD1 or cortisol leads to insulin resistance and metabolic syndrome in animal models and in humans. Inhibiting 11beta-HSD1 activity signifies a promising therapeutic strategy in the treatment of Type 2 diabetes and related diseases. Herein, we report two highly potent and selective small molecule inhibitors of human 11beta-HSD1. While compound 1, a sulfonamide, functions as a simple substrate competitive inhibitor, compound 2, a triazole, shows the kinetic profile of a mixed inhibitor. Co-crystal structures reveal that both compounds occupy the 11beta-HSD1 catalytic site, but present distinct molecular interactions with the protein. Strikingly, compound 2 interacts much closer to the cofactor NADP+ and likely modifies its binding. Together, the structural and kinetic analyses demonstrate two distinctive molecular inhibition mechanisms, providing valuable information for future inhibitor design.
Collapse
|
47
|
Karkola S, Lilienkampf A, Wähälä K. A 3D QSAR model of 17beta-HSD1 inhibitors based on a thieno[2,3-d]pyrimidin-4(3H)-one core applying molecular dynamics simulations and ligand-protein docking. ChemMedChem 2008; 3:461-72. [PMID: 18224704 DOI: 10.1002/cmdc.200700271] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) enzyme plays a crucial role in female hormonal regulation by catalysing the NADPH-dependent reduction of the less potent estrone E1 into the biologically active estradiol E2. Because 17beta-HSD1 is a key enzyme in E2 biosynthesis, it has emerged as an attractive drug target for inhibitor development. Herein we report the plausible binding modes and a 3D QSAR model of 17beta-HSD1 inhibitors based on a (di)cycloalkenothieno[2,3-d]pyrimidin-4(3H)-one core. Two generated enzyme complexes with potent inhibitors were subjected to molecular dynamics simulation to mimic the dynamic process of inhibitor binding. A set of 17beta-HSD1 inhibitors based on the thieno[2,3-d]pyrimidin-4(3H)-one core were docked into the resulting active site, and a CoMFA model employing the most extensive training set to date was generated. The model was validated with an external test set. Active site residues involved in inhibitor binding and CoMFA fields for steric and electrostatic interactions were identified. The model will be used to guide structural modifications of 17beta-HSD1 inhibitors based on a thieno[2,3-d]pyrimidin-4(3H)-one core in order to improve the biological activity as well as in the design of novel 17beta-HSD1 inhibitors.
Collapse
Affiliation(s)
- Sampo Karkola
- Laboratory of Organic Chemistry, Department of Chemistry, University of Helsinki, PO Box 55, 00014 Helsinki, Finland
| | | | | |
Collapse
|
48
|
Marchais-Oberwinkler S, Kruchten P, Frotscher M, Ziegler E, Neugebauer A, Bhoga U, Bey E, Müller-Vieira U, Messinger J, Thole H, Hartmann RW. Substituted 6-Phenyl-2-naphthols. Potent and Selective Nonsteroidal Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 1 (17β-HSD1): Design, Synthesis, Biological Evaluation, and Pharmacokinetics. J Med Chem 2008; 51:4685-98. [DOI: 10.1021/jm800367k] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Sandrine Marchais-Oberwinkler
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals Research Laboratories, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Patricia Kruchten
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals Research Laboratories, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Martin Frotscher
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals Research Laboratories, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Erika Ziegler
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals Research Laboratories, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Alexander Neugebauer
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals Research Laboratories, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Umadevi Bhoga
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals Research Laboratories, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Emmanuel Bey
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals Research Laboratories, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Ursula Müller-Vieira
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals Research Laboratories, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Josef Messinger
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals Research Laboratories, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Hubert Thole
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals Research Laboratories, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Rolf W. Hartmann
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals Research Laboratories, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| |
Collapse
|
49
|
Schuster D, Nashev LG, Kirchmair J, Laggner C, Wolber G, Langer T, Odermatt A. Discovery of Nonsteroidal 17β-Hydroxysteroid Dehydrogenase 1 Inhibitors by Pharmacophore-Based Screening of Virtual Compound Libraries. J Med Chem 2008; 51:4188-99. [DOI: 10.1021/jm800054h] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniela Schuster
- Computer-Aided Molecular Design Group, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria, and Center of Molecular Biosciences Innsbruck—CMBI, Peter-Mayr-Strasse 1a, A-6020 Innsbruck, Austria, Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Inte:Ligand Software-Entwicklungs and Consulting GmbH, Marihilferstrasse 74B/11, A-1070 Wien, Austria
| | - Lyubomir G. Nashev
- Computer-Aided Molecular Design Group, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria, and Center of Molecular Biosciences Innsbruck—CMBI, Peter-Mayr-Strasse 1a, A-6020 Innsbruck, Austria, Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Inte:Ligand Software-Entwicklungs and Consulting GmbH, Marihilferstrasse 74B/11, A-1070 Wien, Austria
| | - Johannes Kirchmair
- Computer-Aided Molecular Design Group, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria, and Center of Molecular Biosciences Innsbruck—CMBI, Peter-Mayr-Strasse 1a, A-6020 Innsbruck, Austria, Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Inte:Ligand Software-Entwicklungs and Consulting GmbH, Marihilferstrasse 74B/11, A-1070 Wien, Austria
| | - Christian Laggner
- Computer-Aided Molecular Design Group, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria, and Center of Molecular Biosciences Innsbruck—CMBI, Peter-Mayr-Strasse 1a, A-6020 Innsbruck, Austria, Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Inte:Ligand Software-Entwicklungs and Consulting GmbH, Marihilferstrasse 74B/11, A-1070 Wien, Austria
| | - Gerhard Wolber
- Computer-Aided Molecular Design Group, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria, and Center of Molecular Biosciences Innsbruck—CMBI, Peter-Mayr-Strasse 1a, A-6020 Innsbruck, Austria, Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Inte:Ligand Software-Entwicklungs and Consulting GmbH, Marihilferstrasse 74B/11, A-1070 Wien, Austria
| | - Thierry Langer
- Computer-Aided Molecular Design Group, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria, and Center of Molecular Biosciences Innsbruck—CMBI, Peter-Mayr-Strasse 1a, A-6020 Innsbruck, Austria, Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Inte:Ligand Software-Entwicklungs and Consulting GmbH, Marihilferstrasse 74B/11, A-1070 Wien, Austria
| | - Alex Odermatt
- Computer-Aided Molecular Design Group, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria, and Center of Molecular Biosciences Innsbruck—CMBI, Peter-Mayr-Strasse 1a, A-6020 Innsbruck, Austria, Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Inte:Ligand Software-Entwicklungs and Consulting GmbH, Marihilferstrasse 74B/11, A-1070 Wien, Austria
| |
Collapse
|
50
|
Bey E, Marchais-Oberwinkler S, Kruchten P, Frotscher M, Werth R, Oster A, Algül O, Neugebauer A, Hartmann RW. Design, synthesis and biological evaluation of bis(hydroxyphenyl) azoles as potent and selective non-steroidal inhibitors of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) for the treatment of estrogen-dependent diseases. Bioorg Med Chem 2008; 16:6423-35. [DOI: 10.1016/j.bmc.2008.04.073] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 04/24/2008] [Accepted: 04/30/2008] [Indexed: 11/15/2022]
|