1
|
Abou Azar F, Mugabo Y, Yuen S, Del Veliz S, Paré F, Rial SA, Lavoie G, Roux PP, Lim GE. Plakoglobin regulates adipocyte differentiation independently of the Wnt/β-catenin signaling pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119690. [PMID: 38367915 DOI: 10.1016/j.bbamcr.2024.119690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
The scaffold protein 14-3-3ζ is an established regulator of adipogenesis and postnatal adiposity. We and others have demonstrated the 14-3-3ζ interactome to be diverse and dynamic, and it can be examined to identify novel regulators of physiological processes, including adipogenesis. In the present study, we sought to determine if factors that influence adipogenesis during the development of obesity could be identified in the 14-3-3ζ interactome found in white adipose tissue of lean or obese TAP-tagged-14-3-3ζ overexpressing mice. Using mass spectrometry, differences in the abundance of novel, as well as established, adipogenic factors within the 14-3-3ζ interactome could be detected in adipose tissues. One novel candidate was revealed to be plakoglobin, the homolog of the known adipogenic inhibitor, β-catenin, and herein, we report that plakoglobin is involved in adipocyte differentiation. Plakoglobin is expressed in murine 3T3-L1 cells and is primarily localized to the nucleus, where its abundance decreases during adipogenesis. Depletion of plakoglobin by siRNA inhibited adipogenesis and reduced PPARγ2 expression, and similarly, plakoglobin depletion in human adipose-derived stem cells also impaired adipogenesis and reduced lipid accumulation post-differentiation. Transcriptional assays indicated that plakoglobin does not participate in Wnt/β-catenin signaling, as its depletion did not affect Wnt3a-mediated transcriptional activity. Taken together, our results establish plakoglobin as a novel regulator of adipogenesis in vitro and highlights the ability of using the 14-3-3ζ interactome to identify potential pro-obesogenic factors.
Collapse
Affiliation(s)
- F Abou Azar
- Department of Medicine, Université de Montréal, Montréal, QC, Canada; Cardiometabolic axis, Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Y Mugabo
- Department of Medicine, Université de Montréal, Montréal, QC, Canada; Cardiometabolic axis, Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - S Yuen
- Department of Medicine, Université de Montréal, Montréal, QC, Canada; Cardiometabolic axis, Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - S Del Veliz
- Department of Medicine, Université de Montréal, Montréal, QC, Canada; Cardiometabolic axis, Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - F Paré
- Cardiometabolic axis, Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - S A Rial
- Department of Medicine, Université de Montréal, Montréal, QC, Canada; Cardiometabolic axis, Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - G Lavoie
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - P P Roux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, Québec, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - G E Lim
- Department of Medicine, Université de Montréal, Montréal, QC, Canada; Cardiometabolic axis, Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada.
| |
Collapse
|
2
|
He C, Wang Y, Zhu J, Li Y, Chen J, Lin Y. Integrative Analysis of lncRNA-miRNA-mRNA Regulatory Network Reveals the Key lncRNAs Implicated Potentially in the Differentiation of Adipocyte in Goats. Front Physiol 2022; 13:900179. [PMID: 35600305 PMCID: PMC9117728 DOI: 10.3389/fphys.2022.900179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/20/2022] [Indexed: 12/03/2022] Open
Abstract
Goats are popular in China because of their superior meat quality, delicate flesh, and unique flavor. Long noncoding RNAs (lncRNAs) play important roles in transcriptional and post-transcriptional regulation of gene expression. However, the effects of lncRNAs on adipocyte differentiation in goat has not been fully elucidated yet. In this investigation, we performed RNA-Seq analysis of intramuscular and subcutaneous adipocytes from Jianzhou Daer goat before and after differentiation, including both intramuscular preadipocytes (IMPA) vs. intramuscular adipocytes (IMA) and subcutaneous preadipocytes (SPA) vs. subcutaneous adipocytes (SA). A total of 289.49 G clean reads and 12,519 lncRNAs were obtained from 20 samples. In total, 3,733 differentially expressed RNAs (182 lncRNAs and 3,551 mRNAs) were identified by pairwise comparison. There were 135 differentially expressed lncRNAs (DELs) specific to intramuscular adipocytes, 39 DELs specific to subcutaneous adipocytes, and 8 DELs common to both adipocytes in these 182 DELs. Some well-known and novel pathways associated with preadipocyte differentiation were identified: fat acid metabolism, TGF-beta signaling pathway and PI3K-Akt signaling pathway. By integrating miRNA-seq data from another study, we also identified hub miRNAs in both types of fat cells. Our analysis revealed the unique and common lncRNA-miRNA-mRNA networks of two kinds of adipocytes. Several lncRNAs that regulate potentially goat preadipocyte differentiation were identified, such as XR_001918 647.1, XR_001917728.1, XR_001297263.2 and LNC_004191. Furthermore, our findings from the present study may contribute to a better understanding of the molecular mechanisms underlying in goat meat quality and provide a theoretical basis for further goat molecular breeding.
Collapse
Affiliation(s)
- Changsheng He
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China
- College of Animal and Veterinary Science, Southwest Minzu University, Chengdu, China
| | - Yong Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yanyan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China
- College of Animal and Veterinary Science, Southwest Minzu University, Chengdu, China
| | - Juan Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- College of Food Science and Technology, Southwest Minzu University, Chengdu, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China
- College of Animal and Veterinary Science, Southwest Minzu University, Chengdu, China
- *Correspondence: Yaqiu Lin,
| |
Collapse
|
3
|
Ramalingam V, Hwang I. Zero valent zinc regulates adipocyte differentiation through calpain family protein and peroxisome proliferator-activated receptor gamma signaling in mouse 3T3-L1 cells. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Cui HX, Wang SL, Guo LP, Liu L, Liu RR, Li QH, Zheng MQ, Zhao GP, Wen J. Expression and effect of Calpain9 gene genetic polymorphism on slaughter indicators and intramuscular fat content in chickens. Poult Sci 2018; 97:3414-3420. [PMID: 29945255 PMCID: PMC6142865 DOI: 10.3382/ps/pey232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 05/24/2018] [Indexed: 11/20/2022] Open
Abstract
Calpain 9 (CAPN9) is expressed in the stomach and small intestine. CAPN9 has regulatory roles in hypertension, heart disease, gastric mucosal defense, and kidney disease. The involvement of CAPN9 has not been reported in the development of chickens. CAPN9 mRNA was found in adipose and muscle tissue in this study. Two linkage single nucleotide polymorphisms (SNP; G7518A and C7542G) in intron 4 were screened from 160 birds of the D2 chicken line. The 2 mutation sites were associated with carcass weight, evisceration weight, abdominal fat weight (AFW), abdominal fat percentage (AFP), and breast muscle percentage (all P < 0.05). Intramuscular fat (IMF) content was not significantly different in the 3 genotypes. But, the AA(7518)/GG(7542) genotype had the highest IMF content, highest breast muscle weight, and lower AFW and AFP. Moreover, the mRNA level of CAPN9 in abdominal fat tissue was significantly different (P < 0.05 or P < 0.01) between any 2 genotypes, consistent with AFW and AFP. In summary, the expression of CAPN9 in adipose and breast muscle tissue is reported for the first time. CAPN9 affected production performance of chickens. As a marker, the linkage G7518A and C7542G polymorphisms in intron 4 of CAPN9 could affect the production traits by regulating mRNA expression. The findings concerning the marker enrich the theoretical foundation for molecular breeding of high-quality broilers.
Collapse
Affiliation(s)
- H X Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - S L Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650224, China
| | - L P Guo
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - L Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - R R Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Q H Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - M Q Zheng
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - G P Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - J Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
5
|
Muñoz AM, Velásquez CM, Agudelo GM, Uscátegui RM, Estrada A, Patiño FA, Parra BE, Parra MV, Bedoya G. Examining for an association between candidate gene polymorphisms in the metabolic syndrome components on excess weight and adiposity measures in youth: a cross-sectional study. GENES AND NUTRITION 2017; 12:19. [PMID: 28690685 PMCID: PMC5496328 DOI: 10.1186/s12263-017-0567-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 04/28/2017] [Indexed: 01/14/2023]
Abstract
Background A polymorphism in a gene may exert its effects on multiple phenotypes. The aim of this study is to explore the association of 10 metabolic syndrome candidate genes with excess weight and adiposity and evaluate the effect of perinatal and socioeconomic factors on these associations. Methods The anthropometry, socioeconomic and perinatal conditions and 10 polymorphisms were evaluated in 1081 young people between 10 and 18 years old. Genotypic associations were calculated using logistic and linear models adjusted by age, gender, and pubertal maturation, and a genetic risk score (GRS) was calculated by summing the number of effect alleles. Results We found that AGT-rs699 and the IRS2-rs1805097 variants were significantly associated with excess weight, OR = 1.25 (CI 95% 1.01–1.54; p = 0.034); OR = 0.77 (CI 95% 0.62–0.96; p = 0.022), respectively. AGT-rs699 and FTO-rs17817449 variants were significantly and directly associated with body mass index (BMI) (p = 0.036 and p = 0.031), while IRS2-rs1805097 and UCP3-rs1800849 were significantly and negatively associated with BMI and waist circumference, correspondingly. Each additional effect allele in GRS was associated with an increase of 0.020 log(BMI) (p = 0.004). No effects from the socioeconomic and perinatal factors evaluated on the association of the candidate genes with the phenotypes were detected. Conclusions Our observation suggests that AGT-rs699 and FTO-rs17817449 variants may contribute to the risk development of excess weight and an increase in the BMI, while IRS2-rs1805097 showed a protector effect; in addition, UCP3- rs1800849 showed a decreasing waist circumference. Socioeconomic and perinatal factors had no effect on the associations of the candidate gene. Electronic supplementary material The online version of this article (doi:10.1186/s12263-017-0567-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Angélica María Muñoz
- Research Group on Food and Human Nutrition, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellin, Colombia
| | - Claudia María Velásquez
- Research Group on Food and Human Nutrition, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellin, Colombia.,Sede de Investigación Universitaria (SIU), Universidad de Antioquia (UdeA), Calle 62 No. 52-59, Laboratorio 413, Medellin, Colombia
| | - Gloria María Agudelo
- Research Group on Food and Human Nutrition, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellin, Colombia.,Vidarium Research Group, Nutrition, Health and Wellness Research Center, Nutresa Business Group (Grupo Empresarial Nutresa), Calle 8 Sur No. 50-67, Medellin, Colombia
| | | | - Alejandro Estrada
- Research Group on Demography and Health, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellin, Colombia
| | - Fredy Alonso Patiño
- Research Group of Sciences Applied to Physical Activity and Sports, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellin, Colombia
| | - Beatriz Elena Parra
- Research Group on Food and Human Nutrition, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellin, Colombia
| | - María Victoria Parra
- Molecular Genetics Group, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellin, Colombia
| | - Gabriel Bedoya
- Molecular Genetics Group, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellin, Colombia
| |
Collapse
|
6
|
Expression and localization of calpain 3 in the submandibular gland of mice. Arch Oral Biol 2016; 70:9-15. [DOI: 10.1016/j.archoralbio.2016.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/27/2016] [Accepted: 05/30/2016] [Indexed: 11/21/2022]
|
7
|
Davis ME, Stafford PL, Jergenson MJ, Bedi A, Mendias CL. Muscle fibers are injured at the time of acute and chronic rotator cuff repair. Clin Orthop Relat Res 2015; 473:226-32. [PMID: 25113269 PMCID: PMC4390944 DOI: 10.1007/s11999-014-3860-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 07/29/2014] [Indexed: 01/31/2023]
Abstract
BACKGROUND Rotator cuff tears are a common source of shoulder pain and disability. Even after surgical repair, some patients continue to have reduced function and progression of fatty degeneration. Because patients with chronic cuff tears often experience muscle shortening, it is possible that repairing the tendon to its anatomic footprint induces a stretch-induced muscle injury that could contribute to failures of the repair and perhaps ongoing pain. QUESTIONS/PURPOSES We hypothesized that, compared with acutely torn and repaired muscles, the stretch that is required to repair a chronically torn cuff would result in more muscle fiber damage. Specifically, we asked: (1) Is there muscle fiber damage that occurs from repair of an acutely torn rotator cuff and does it vary by location in the muscle; and (2) is the damage greater in the case of repair of a chronic injury? METHODS We used an open surgical approach to create a full-thickness rotator cuff tear in rats, and measured changes in muscle mass, length, and the number of fibers containing the membrane impermeable Evans Blue Dye after acute (1 day) or chronic (28 days) cuff tear or repair in rats. Differences between groups were tested using a one-way ANOVA followed by Tukey's post hoc sorting. RESULTS Chronic tears resulted in 24% to 35% decreases in mass and a 20% decrease in length. The repair of acutely and chronically torn muscles resulted in damage to 90% of fibers in the distal portion of the muscle. In the proximal portion, no differences between the acutely torn and repaired groups and controls were observed, whereas repairing the chronically torn group resulted in injury to almost 70% of fibers. CONCLUSIONS In a rat model, marked injury to muscle fibers is induced when the tendons of torn rotator cuffs are repaired to their anatomic footprint. CLINICAL RELEVANCE In this animal model, we found that repair of chronically torn cuff muscles results in extensive injury throughout the muscle. Based on these findings, we posit that inducing a widespread injury at the time of surgical repair of chronically torn rotator cuff muscles may contribute to the problems of failed repairs or continued progression of fatty degeneration that is observed in some patients that undergo rotator cuff repair. Therapeutic interventions to protect muscle fiber membranes potentially could enhance outcomes for patients undergoing rotator cuff repair. To evaluate this, future studies that evaluate the use of membrane sealing compounds or drugs that upregulate endogenous membrane-sealing proteins are warranted.
Collapse
Affiliation(s)
- Max E. Davis
- />Department of Orthopaedic Surgery, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 2017, Ann Arbor, MI 48109-2200 USA
| | - Patrick L. Stafford
- />Department of Orthopaedic Surgery, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 2017, Ann Arbor, MI 48109-2200 USA
| | - Matthew J. Jergenson
- />Department of Orthopaedic Surgery, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 2017, Ann Arbor, MI 48109-2200 USA , />Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI USA
| | - Asheesh Bedi
- />Department of Orthopaedic Surgery, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 2017, Ann Arbor, MI 48109-2200 USA
| | - Christopher L. Mendias
- />Department of Orthopaedic Surgery, University of Michigan Medical School, 109 Zina Pitcher Place, BSRB 2017, Ann Arbor, MI 48109-2200 USA , />Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI USA
| |
Collapse
|
8
|
Park J, Park J, Nahm SS, Choi I, Kim J. Identification of anti-adipogenic proteins in adult bovine serum suppressing 3T3-L1 preadipocyte differentiation. BMB Rep 2014; 46:582-7. [PMID: 24195790 PMCID: PMC4133865 DOI: 10.5483/bmbrep.2013.46.12.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/03/2013] [Accepted: 05/03/2013] [Indexed: 11/25/2022] Open
Abstract
Adipocyte differentiation is a complex developmental process forming adipocytes from various precursor cells. The murine 3T3-L1 preadipocyte cell line has been most frequently used in the studies of adipocyte differentiation. Differentiation of 3T3-L1 preadipocytes includes a medium containing fetal bovine serum (FBS) with hormonal induction. In this study, we observed that differentiation medium containing adult bovine serum (ABS) instead of FBS did not support differentiation of preadipocytes. Impaired adipocyte differentiation was due to the presence of a serum protein factor in ABS that suppresses differentiation of preadipocytes. Using a proteomic analysis, alpha-2-macroglobulin and paraoxonase/arylesterase 1, which were previously shown to suppress differentiation of preadipocytes, were identified as anti-adipogenic proteins. Although their functional mechanisms have not yet been elucidated, the anti-adipogenic effects of these proteins are discussed. [BMB Reports 2013; 46(12): 582-587]
Collapse
Affiliation(s)
| | | | | | | | - Jihoe Kim
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Korea
| |
Collapse
|
9
|
Differential functions of calpain 1 during epithelial cell death and adipocyte differentiation in mammary gland involution. Biochem J 2014; 459:355-68. [PMID: 24467364 DOI: 10.1042/bj20130847] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calpains become activated in the mammary gland early during weaning, cleaving several proteins located mainly in the cell membrane, but also in other organelles such as lysosomes, mitochondria and nuclei. By immunofluorescence and Western blot analysis, we have demonstrated the nuclear translocation of calpain-1 and calpain-2, together with the cleavage of several cytoplasmic nucleoporins in epithelial cells of the lobulo-alveolar compartment. In vivo and in vitro calpain inhibition prevented this nucleoporin degradation. In addition, calpain-1 was also present in the nucleus of non-epithelial mammary tissue cells, concomitant with adipocyte re-differentiation. Calpain-1 was internalized within nuclei and found to be present in the nuclear chromatin-enriched fraction, associated with histone H3. Furthermore, we have demonstrated, both in vivo and in vitro, the cleavage of the N-terminal residue of histone H3 by calpain-1. Calpain-1 co-localized with both H3K4me3 (histone H3 trimethylated at Lys4) and H3K27me3 (histone H3 trimethylated at Lys27) at the nuclear periphery, a bivalent epigenetic signal essential for cell differentiation. Using ChIP assays we could confirm the presence of calpain-1 in the promoters of key genes expressed in adipose tissue, such as Cebpa (CCAAT/enhancer-binding protein α) and Lep (leptin). The results of the present study highlight a dual role for calpain-1 in the weaned gland after the pregnancy/lactation cycle, controlling programmed cell death and participating in the epigenetic programme during adipocyte differentiation.
Collapse
|
10
|
Polymorphisms in twelve candidate genes are associated with growth, muscle lipid profile and meat quality traits in eleven European cattle breeds. Mol Biol Rep 2014; 41:4721-31. [DOI: 10.1007/s11033-014-3343-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 03/21/2014] [Indexed: 10/25/2022]
|
11
|
Effect of cortisol on calpains in the C2C12 and 3T3-L1 cells. Appl Biochem Biotechnol 2014; 172:3153-62. [PMID: 24497045 DOI: 10.1007/s12010-014-0753-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
Abstract
The present study was carried out to understand the effect of cortisol on calpain system in the C2C12 and 3T3-L1 adipocyte cells under co-culture system. Cells were co-cultured by using transwell inserts with a 0.4 μm porous membrane to separate C2C12 and 3T3-L1 preadipocyte cells. Each cell type was grown independently on the transwell plates. Following cell differentiation, inserts containing 3T3-L1 cells were transferred to C2C12 plates. Ten microgram per milliliter of cortisol was added to the medium. Following treatment for 3 days, the cells in the lower well were harvested for analysis. Calpains such as μ-calpain, m-calpain, and calpastatin were selected for the analysis. RT-PCR results indicated the significant increase in the mRNA expression of μ-calpain, m-calpain, and calpastatin. In addition, the confocal microscopical investigation indicated the cortisol treatment increases calpain expression in the C2C12 and 3T3-L1 cells. Taking all these together, cortisol treatment with co-culture system shows most reliable status of calpains expression in the cells, which is quite distinct from one-dimensional monocultured cells.
Collapse
|
12
|
Dunner S, Sevane N, García D, Cortés O, Valentini A, Williams J, Mangin B, Cañón J, Levéziel H. Association of genes involved in carcass and meat quality traits in 15 European bovine breeds. Livest Sci 2013. [DOI: 10.1016/j.livsci.2013.02.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Lade A, Ranganathan S, Luo J, Monga SPS. Calpain induces N-terminal truncation of β-catenin in normal murine liver development: diagnostic implications in hepatoblastomas. J Biol Chem 2012; 287:22789-98. [PMID: 22613727 DOI: 10.1074/jbc.m112.378224] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatic competence, specification, and liver bud expansion during development depend on precise temporal modulation of the Wnt/β-catenin signaling. Also, loss- and gain-of-function studies have revealed pleiotropic roles of β-catenin in proliferation and hepatocyte and biliary epithelial cell differentiation, but precise mechanisms remain unknown. Here we utilize livers from different stages of murine development to determine β-catenin signaling and downstream targets. Although during early liver development full-length β-catenin is the predominant form, at late stages, where full-length β-catenin localizes to developing biliary epithelial cells only, a 75-kDa truncated β-catenin species is the principal form localizing at the membrane and in the nucleus of differentiating hepatocytes. The truncated species lacks 95 N-terminal amino acids and is transcriptionally active. Our evidence points to proteolytic cleavage of β-catenin by calpain as the mechanism of truncation in cell-free and cell-based assays. Intraperitoneal injection of a short term calpain inhibitor to timed pregnant female mice abrogated β-catenin truncation in the embryonic livers. RNA-seq revealed a unique set of targets transcribed in cells expressing truncated versus full-length β-catenin, consistent with different functionalities. A further investigation using N- and C-terminal-specific β-catenin antibodies on human hepatoblastomas revealed a correlation between full-length versus truncated β-catenin and differentiation status, with embryonal hepatoblastomas expressing full-length β-catenin and fetal hepatoblastomas expressing β-catenin lacking its N terminus. Thus we conclude that calpain-mediated cleavage of β-catenin plays a role in regulating hepatoblast differentiation in mouse and human liver, and the presence of the β-catenin N terminus correlates with differentiation status in hepatoblastomas.
Collapse
Affiliation(s)
- Abigale Lade
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
14
|
Abstract
Excessive caloric intake without a rise in energy expenditure promotes adipocyte hyperplasia and adiposity. The rise in adipocyte number is triggered by signaling factors that induce conversion of mesenchymal stem cells (MSCs) to preadipocytes that differentiate into adipocytes. MSCs, which are recruited from the vascular stroma of adipose tissue, provide an unlimited supply of adipocyte precursors. Members of the BMP and Wnt families are key mediators of stem cell commitment to produce preadipocytes. Following commitment, exposure of growth-arrested preadipocytes to differentiation inducers [insulin-like growth factor 1 (IGF1), glucocorticoid, and cyclic AMP (cAMP)] triggers DNA replication and reentry into the cell cycle (mitotic clonal expansion). Mitotic clonal expansion involves a transcription factor cascade, followed by the expression of adipocyte genes. Critical to these events are phosphorylations of the transcription factor CCATT enhancer-binding protein β (C/EBPβ) by MAP kinase and GSK3β to produce a conformational change that gives rise to DNA-binding activity. "Activated" C/EBPβ then triggers transcription of peroxisome proliferator-activated receptor-γ (PPARγ) and C/EBPα, which in turn coordinately activate genes whose expression produces the adipocyte phenotype.
Collapse
Affiliation(s)
- Qi Qun Tang
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
15
|
Santos DM, Xavier JM, Morgado AL, Solá S, Rodrigues CMP. Distinct regulatory functions of calpain 1 and 2 during neural stem cell self-renewal and differentiation. PLoS One 2012; 7:e33468. [PMID: 22432027 PMCID: PMC3303840 DOI: 10.1371/journal.pone.0033468] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 02/09/2012] [Indexed: 12/21/2022] Open
Abstract
Calpains are calcium regulated cysteine proteases that have been described in a wide range of cellular processes, including apoptosis, migration and cell cycle regulation. In addition, calpains have been implicated in differentiation, but their impact on neural differentiation requires further investigation. Here, we addressed the role of calpain 1 and calpain 2 in neural stem cell (NSC) self-renewal and differentiation. We found that calpain inhibition using either the chemical inhibitor calpeptin or the endogenous calpain inhibitor calpastatin favored differentiation of NSCs. This effect was associated with significant changes in cell cycle-related proteins and may be regulated by calcium. Interestingly, calpain 1 and calpain 2 were found to play distinct roles in NSC fate decision. Calpain 1 expression levels were higher in self-renewing NSC and decreased with differentiation, while calpain 2 increased throughout differentiation. In addition, calpain 1 silencing resulted in increased levels of both neuronal and glial markers, β-III Tubulin and glial fibrillary acidic protein (GFAP). Calpain 2 silencing elicited decreased levels of GFAP. These results support a role for calpain 1 in repressing differentiation, thus maintaining a proliferative NSC pool, and suggest that calpain 2 is involved in glial differentiation.
Collapse
Affiliation(s)
- Daniela M. Santos
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Joana M. Xavier
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Ana L. Morgado
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Susana Solá
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- * E-mail:
| | - Cecília M. P. Rodrigues
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
16
|
Wang DH, Xu GY, Wu DJ, Zheng CL. Molecular cloning and characterization of caprine calpastatin gene. Mol Biol Rep 2011; 38:3665-70. [DOI: 10.1007/s11033-010-0479-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 11/09/2010] [Indexed: 11/29/2022]
|
17
|
Tabata C, Tabata R, Nakano T. The calpain inhibitor calpeptin prevents bleomycin-induced pulmonary fibrosis in mice. Clin Exp Immunol 2010; 162:560-7. [PMID: 20846163 DOI: 10.1111/j.1365-2249.2010.04257.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Pulmonary fibrosis is characterized by progressive worsening of pulmonary function leading to a high incidence of death. Currently, however, there has been little progress in therapeutic strategies for pulmonary fibrosis. There have been several reports on cytokines being associated with lung fibrosis, including interleukin (IL)-6 and transforming growth factor (TGF)-β1. We reported recently that two substances (ATRA and thalidomide) have preventive effects on pulmonary fibrosis by inhibiting IL-6-dependent proliferation and TGF-β1-dependent transdifferentiation of lung fibroblasts. Rheumatoid arthritis is a chronic autoimmune disorder, and its pathogenesis is also characterized by an association with several cytokines. It has been reported that calpain, a calcium-dependent intracellular cysteine protease, plays an important role in the progression of rheumatoid arthritis. In this study, we examined the preventive effect of Calpeptin, a calpain inhibitor, on bleomycin-induced pulmonary fibrosis. We performed histological examinations and quantitative measurements of IL-6, TGF-β1, collagen type Iα1 and angiopoietin-1 in bleomycin-treated mouse lung tissues with or without the administration of Calpeptin. Calpeptin histologically ameliorated bleomycin-induced pulmonary fibrosis in mice. Calpeptin decreased the expression of IL-6, TGF-β1, angiopoietin-1 and collagen type Iα1 mRNA in mouse lung tissues. In vitro studies disclosed that Calpeptin reduced (i) production of IL-6, TGF-β1, angiopoietin-1 and collagen synthesis from lung fibroblasts; and (ii) both IL-6-dependent proliferation and angiopoietin-1-dependent migration of the cells, which could be the mechanism underlying the preventive effect of Calpeptin on pulmonary fibrosis. These data suggest the clinical use of Calpeptin for the prevention of pulmonary fibrosis.
Collapse
Affiliation(s)
- C Tabata
- Division of Respiratory Medicine, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan.
| | | | | |
Collapse
|
18
|
Ha DT, Trung TN, Phuong TT, Yim N, Chen QC, Bae K. The selected flavonol glycoside derived from Sophorae Flos improves glucose uptake and inhibits adipocyte differentiation via activation AMPK in 3T3-L1 cells. Bioorg Med Chem Lett 2010; 20:6076-81. [PMID: 20822902 DOI: 10.1016/j.bmcl.2010.08.054] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 08/07/2010] [Accepted: 08/11/2010] [Indexed: 11/16/2022]
Abstract
Among nine flavonols (1-9) obtained from Sophorae Flos, we first isolated compounds 4, 5, 8, and 9. These isolates (1-9) were evaluated for the phosphorylation of AMPK and ACC. Administered at 10 μM, 9 possessed high potent activity. Compound 9 displayed a dose-dependent stimulation of glucose uptake in 3T3-L1 cells, and this increase was obviously attenuated by compound C, an AMPK inhibitor. In addition, 9 also phosphorylated AMPK and its downstream substrate ACC in 3T3-L1 cells in a time- and dose-dependent manner. Moreover, we discovered that compound C inhibits 9-stimulated ACC phosphorylation and motivated the 9-inhibited C/EBPα and PPARγ, and FAS gene expression, significantly. These results revealed the role of the AMPK downstream signaling pathway in 9-improved glucose metabolism in 3T3-L1 cells and 9-inhibited adipocyte differentiation. Differentiation was investigated by Oil Red O staining activity after 9 administration (0-20 μM) in 6 days. Compound 9 decreased mean droplet size in a dose-dependent manner. The results revealed that 9 blocked adipogenic conversion in 3T3-L1 cells together with several significant downregulating adipocyte-specific transcription factors, including PPARγ, C/EBPα, and SREBP1. It also reduced FAS gene expression in a dose-dependent manner, which is crucial for adipogenesis in vitro.
Collapse
Affiliation(s)
- Do Thi Ha
- College of Pharmacy, Chungnam National University, Daejeon, South Korea
| | | | | | | | | | | |
Collapse
|
19
|
Cheverud JM, Fawcett GL, Jarvis JP, Norgard EA, Pavlicev M, Pletscher LS, Polonsky KS, Ye H, Bell GI, Semenkovich CF. Calpain-10 is a component of the obesity-related quantitative trait locus Adip1. J Lipid Res 2010; 51:907-13. [PMID: 20388922 DOI: 10.1194/jlr.m900128] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We previously mapped Adip1, an obesity quantitative trait locus (QTL), to the central portion of murine chromosome 1 containing the calpain-10 (Capn10) gene. Human studies have associated calpain-10 (CAPN10) variants with type 2 diabetes and various metabolic traits. We performed a quantitative hybrid complementation test (QHCT) to determine whether differences attributed to Adip1 are the result of variant Capn10 alleles in LG/J and SM/J mice. We crossed LG/J and SM/J to wild-type (C57BL/6J) and Capn10 knockout (Capn10(-/-)) mice to form four F(1) hybrid groups: LG/J by wild-type, LG/J by Capn10(-/-), SM/J by wild-type, and SM/J by Capn10(-/-). We performed a two-way ANOVA with the experimental strain, tester strain, and their interaction as the factors. Significant interaction indicates a quantitative failure to complement. We found failure to complement for fat, organ, and body weights, and leptin, female free fatty acid, and triglyceride levels. Capn10(-/-) resulted in heavier weights and higher serum levels in LG/J crosses but not in SM/J crosses. For glucose tolerance and insulin response tests, the Capn10(-/-) allele resulted in lower glucose levels in crosses with SM/J but had no effect in the LG/J crosses. Differences between the LG/J and SM/J Capn10 alleles are the likely source of some of the QTL effects mapped to Adip1 in the LG/J-by-SM/J cross. Capn10 plays an important role in regulating obesity and diabetes in mice.
Collapse
Affiliation(s)
- James M Cheverud
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cheverud JM, Fawcett GL, Jarvis JP, Norgard EA, Pavlicev M, Pletscher LS, Polonsky KS, Ye H, Bell GI, Semenkovich CF. Calpain-10 is a component of the obesity-related quantitative trait locus Adip1. J Lipid Res 2010. [DOI: 10.1194/jlr.m900128-jlr200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
21
|
Randriamboavonjy V, Fleming I. The Role of Calpain in Diabetes-Associated Platelet Hyperactivation. CARDIOVASCULAR PHARMACOLOGY - HEART AND CIRCULATION 2010; 59:235-57. [DOI: 10.1016/s1054-3589(10)59008-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
ZHANG J, DU LX, WEI CH, LI HB. [Cloning and characterization of CAST transcript 2 and 4 in sheep]. YI CHUAN = HEREDITAS 2009; 31:1107-1112. [PMID: 19933091 DOI: 10.3724/sp.j.1005.2009.01107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
As an endogenous inhibitor of the calpain system activated by Ca2+, calpastatin (CAST) plays a regulatory role in muscle proteolysis. Based on the bovine mRNA sequences, part of cDNA fragments of sheep CAST transcript 2 and 4 were obtained by RT-PCR. Bioinformatic analysis showed that sheep CAST transcript 2 was 4 358 bp in length with an open reading frame (ORF) 2 361 bp long and encoded 786 amino acids, while sheep CAST transcript 4 was 1 467 bp in length with 1 317 bp ORF encoding 438 amino acids. It was predicted that CAST type II contained four conserved domains and CAST type IV contained three conserved domains, and their secondary structures were rich in both hydrophobic regions and helical regions, with certain conserved phosphorylation sites and phosphorylation sites of protein kinase C (PKC). RT-PCR was conducted to analyze the expression patterns of CAST transcript 2 and transcript 4. CAST transcript 2 was ex-pressed in ten tissues detected while CAST transcript 4 only in testis.
Collapse
Affiliation(s)
- Ju ZHANG
- National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | | | | | | |
Collapse
|
23
|
Stifanese R, Averna M, De Tullio R, Salamino F, Cantoni C, Mingari MC, Prato C, Pontremoli S, Melloni E. Role of the calpain–calpastatin system in the density-dependent growth arrest. Arch Biochem Biophys 2008; 479:145-52. [DOI: 10.1016/j.abb.2008.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 09/02/2008] [Accepted: 09/02/2008] [Indexed: 01/24/2023]
|
24
|
Vaisid T, Barnoy S, Kosower NS. Calpastatin overexpression attenuates amyloid-beta-peptide toxicity in differentiated PC12 cells. Neuroscience 2008; 156:921-31. [PMID: 18786620 DOI: 10.1016/j.neuroscience.2008.07.072] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Revised: 07/14/2008] [Accepted: 07/17/2008] [Indexed: 12/16/2022]
Abstract
Amyloid beta peptide (Abeta) plays a major role in the pathogenesis of Alzheimer's disease (AD). Abeta is toxic to neurons, possibly through causing initial synaptic dysfunction and neuronal membrane dystrophy, promoted by increased cellular Ca(2+). Calpain (Ca(2+)-dependent protease) and caspase have been implicated in AD. Previously, we used calpain and caspase pharmacological inhibitors to study effects of Abeta25-35 (sAbeta) on neuronal-like differentiated PC12 cells. We reported that sAbeta-treated cells exhibited calpain activation and protein degradation (due to both calpain and caspase-8). We have now found that overexpression of the calpain specific inhibitor calpastatin in differentiated PC12 cells significantly inhibited the sAbeta-induced calpain activation and decreased the protease activity. Calpastatin overexpression inhibited the sAbeta-promoted degradation of fodrin, protein kinase Cepsilon, beta-catenin (membrane structural proteins and proteins involved in signal transduction pathways), and prevented the sAbeta-induced alteration of neurite structure (manifested by varicosities). Overexpression of calpastatin also inhibited Ca(2+)-promoted calpain activation and protein degradation; this is consistent with the notion that the Abeta-induced increase in calpain activity results from a rise in cellular Ca(2+), provided the calpastatin level is not so high as to strongly inhibit calpain. Carrying out transfection without selection allowed the comparison in the same culture of calpastatin-overexpressing with non-overexpressing cells. In cultures transfected with green fluorescent protein (GFP)-calpastatin plasmid, calpastatin overexpression (indicated by GFP-labeling) led to inhibition in sAbeta-induced membrane propidium iodide (PI) permeability, whereas non-transfected, GFP-unlabeled cells exhibited PI permeability. Overall, the results demonstrate that the effects of Abeta-toxicity studied here were attenuated to a large extent by calpastatin overexpression, indicating that the protease calpain is involved in Abeta-toxicity (obviating a primary, direct role for caspases). Increased expression of calpastatin and/or decrease in calpain may serve as one of the means for ameliorating some of the early symptoms of AD.
Collapse
Affiliation(s)
- T Vaisid
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel
| | | | | |
Collapse
|
25
|
The genetics of gestational diabetes mellitus: evidence for relationship with type 2 diabetes mellitus. Genet Med 2008; 10:240-50. [PMID: 18414206 DOI: 10.1097/gim.0b013e31816b8710] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gestational diabetes is a major public health problem because of its prevalence, its associated complications during pregnancy, and its increased risk for type 2 diabetes later in life. Insulin resistance is one of many physiological changes occurring during pregnancy, and when insulin resistance is accompanied by pancreatic beta-cell insufficiency, gestational diabetes may develop. Several lines of evidence suggest that gestational diabetes shares a common etiology with type 2 diabetes and support the hypothesis that gestational diabetes serves as a window to reveal a predisposition to type 2 diabetes. Pregnancy is an environmental stressor that may catalyze the progression to a diabetic state in genetically predisposed women; therefore, identification of these women during pregnancy could decrease the occurrence of type 2 diabetes through targeted prevention. This review presents an overview of the genetics of gestational diabetes, focusing on human association studies with candidate genes common to both type 2 diabetes and gestational diabetes.
Collapse
|
26
|
Tan JTM, McLennan SV, Song WW, Lo LWY, Bonner JG, Williams PF, Twigg SM. Connective tissue growth factor inhibits adipocyte differentiation. Am J Physiol Cell Physiol 2008; 295:C740-51. [PMID: 18596209 DOI: 10.1152/ajpcell.00333.2007] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Adipocyte differentiation is a key process implicated in the pathogenesis of obesity and insulin resistance. Its regulation is triggered by a cascade of transcription factors, including the CCAAT/enhancer binding proteins (C/EBPs) and peroxisome proliferator-activated receptor-gamma (PPARgamma). Growth factors such as transforming growth factor-beta1 (TGF-beta1) are known to inhibit adipocyte differentiation in vitro, via the C/EBP pathway, and in vivo, but whether a downstream mediator of TGF-beta1, connective tissue growth factor (CTGF), also known as CCN2, has a similar role is unknown. Mouse 3T3-L1 cells were differentiated into adipocytes by using standard methods, and effects and regulation of CTGF were studied. Intervention with recombinant human CTGF during differing stages of differentiation caused an inhibition in the development of the adipocyte phenotype, according to the gene expression of the differentiation markers adiponectin and PPARgamma, as well as suppression of lipid accumulation and expression of the lipogenic enzyme glycerol-3-phosphate dehydrogenase. Whereas CTGF gene expression promptly fell by 90% as 3T3-L1 preadipocytes differentiated into mature adipocytes, CTGF mRNA expression was induced by added TGF-beta1. CTGF applied to cells early in the course of differentiation inhibited total cell protein levels and nuclear localization of the beta-isoform of C/EBP (C/EBP-beta) and, subsequently, total cell C/EBP-alpha levels. CTGF also inhibited the adipocyte differentiation program in primary cultures of mouse preadipocytes. Expression of CTGF mRNA was twofold higher in the central fat depots of mice compared with subcutaneous fat, suggesting a potential role for CTGF in vivo. In summary, these data show that CTGF inhibits the adipocyte differentiation program.
Collapse
Affiliation(s)
- Joanne T M Tan
- Discipline of Medicine, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | | | | | |
Collapse
|
27
|
Zhang P, O'Loughlin L, Brindley DN, Reue K. Regulation of lipin-1 gene expression by glucocorticoids during adipogenesis. J Lipid Res 2008; 49:1519-28. [PMID: 18362392 DOI: 10.1194/jlr.m800061-jlr200] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Lipin-1 deficiency in the mouse causes generalized lipodystrophy, characterized by impaired adipose tissue development and insulin resistance. Lipin-1 expression in differentiating preadipocytes is required for normal expression of adipogenic transcription factors, including peroxisome proliferator-activated receptor gamma and CCAAT enhancer binding protein alpha, and for the synthesis of triacylglycerol. The requirement of lipin-1 for adipocyte differentiation can be explained, in part, by its activity as the sole adipocyte phosphatidic acid phosphatase-1 enzyme, which converts phosphatidate to diacylglycerol, the immediate precursor of triacylglycerol. Here we identify glucocorticoids as the stimulus for the induction of lipin-1 expression in differentiating adipocytes, and characterize a glucocorticoid response element (GRE) in the Lpin1 promoter. The Lpin1 GRE binds to the glucocorticoid receptor and leads to transcriptional activation in adipocytes and hepatocytes, as demonstrated by reporter gene transcription, electrophoretic mobility shift, and chromatin immunoprecipitation assays. This represents the first gene regulatory element identified to directly influence lipin-1 expression levels, and may modulate lipin-1 mRNA levels in adipose tissue and liver in conditions associated with increased local glucocorticoid concentrations in vivo, such as obesity and fasting.
Collapse
Affiliation(s)
- Peixiang Zhang
- Department of Human Genetics and Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
28
|
Variations in the calpain-10 gene are associated with the risk of type 2 diabetes and hypertension in northern Han Chinese population. Chin Med J (Engl) 2007. [DOI: 10.1097/00029330-200712020-00012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
29
|
Li JJ, Xie D. Cleavage of focal adhesion kinase (FAK) is essential in adipocyte differentiation. Biochem Biophys Res Commun 2007; 357:648-54. [PMID: 17442274 DOI: 10.1016/j.bbrc.2007.03.184] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 03/29/2007] [Indexed: 12/26/2022]
Abstract
During adipocyte differentiation, the cells experience dramatic alterations in morphology, motility and cell-ECM contact. Focal adhesion kinase (pp125FAK), a widely expressed non-receptor tyrosine kinase in integrin signaling, has been reported to participate in these events in various cells. Utilizing 3T3-L1 cells and primary rat preadipocytes, we explored the role of FAK in adipocyte differentiation. Gradual cleavage of FAK was demonstrated during adipcoyte differentiation, both in vitro and in vivo. This cleavage of FAK was mediated by calpain. Inhibition of calpain activity resulted in the rescue of FAK degradation, accompanied with the disturbance of final maturation of adipocyte. Our study revealed that FAK participated in adipocyte differentiation, and its cleavage by calpain was required to fulfill the final maturation of adipocytes.
Collapse
Affiliation(s)
- Jing-Jing Li
- Laboratory of Molecular Oncology, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences, 294 Tai-Yuan Rd., Shanghai 200031, China
| | | |
Collapse
|
30
|
Harris F, Biswas S, Singh J, Dennison S, Phoenix DA. Calpains and their multiple roles in diabetes mellitus. Ann N Y Acad Sci 2007; 1084:452-80. [PMID: 17151322 DOI: 10.1196/annals.1372.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Type 2 diabetes mellitus (T2DM) can lead to death without treatment and it has been predicted that the condition will affect 215 million people worldwide by 2010. T2DM is a multifactorial disorder whose precise genetic causes and biochemical defects have not been fully elucidated, but at both levels, calpains appear to play a role. Positional cloning studies mapped T2DM susceptibility to CAPN10, the gene encoding the intracellular cysteine protease, calpain 10. Further studies have shown a number of noncoding polymorphisms in CAPN10 to be functionally associated with T2DM while the identification of coding polymorphisms, suggested that mutant calpain 10 proteins may also contribute to the disease. Here we review recent studies, which in addition to the latter enzyme, have linked calpain 5, calpain 3, and its splice variants, calpain 2 and calpain 1 to T2DM-related metabolic pathways along with T2DM-associated phenotypes, such as obesity and impaired insulin secretion, and T2DM-related complications, such as epithelial dysfunction and diabetic cataract.
Collapse
Affiliation(s)
- Frederick Harris
- Department of Forensic and Investigative Science, University of Central Lancashire, Preston, PR1 2HE, United Kingdom
| | | | | | | | | |
Collapse
|
31
|
Wiltgen D, Furtado L, Kohek MBF, Spritzer PM. CAPN10 UCSNP-43, UCSNP-19 and UCSNP-63 polymorphisms and metabolic syndrome in polycystic ovary syndrome. Gynecol Endocrinol 2007; 23:173-8. [PMID: 17454172 DOI: 10.1080/09513590701233661] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine disorder with individual susceptibility determined by genetic and environmental risk factors. Recently, studies have evaluated the CAPN10 gene in PCOS patients, suggesting that different alleles may play a role in PCOS susceptibility. We performed a cross-sectional study with 88 southern Brazilian hirsute patients with PCOS or idiopathic hirsutism (IH) to assess the influence of CAPN10 genetic variants on clinical and biochemical features of metabolic syndrome. PCOS patients were defined by oligo/amenorrheic cycles (<9 cycles/year), increased levels of serum testosterone and/or free androgen index, and exclusion of other disorders associated with hyperandrogenism. IH was diagnosed in hirsute patients with regular ovulatory cycles (luteal-phase progesterone levels >3.8 ng/ml), normal androgen levels, and without any known underlying disease (n = 29). Metabolic syndrome was defined according to the 2001 criteria of the National Cholesterol Education Program, Adult Treatment Panel III. UCSNP-43 polymorphism of CAPN10 was related to metabolic syndrome (p = 0.047) in PCOS; UCSNP-19 and UCSNP-63 were not associated with phenotypic traits in PCOS. These results provide evidence that CAPN10 gene UCSNP-43 polymorphisms may influence the PCOS metabolic phenotype. This should be further confirmed in large population-based studies.
Collapse
Affiliation(s)
- Denusa Wiltgen
- Gynecological Endocrinology Unit, Division of Endocrinology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | | | | |
Collapse
|
32
|
Vollmert C, Hahn S, Lamina C, Huth C, Kolz M, Schöpfer-Wendels A, Mann K, Bongardt F, Mueller JC, Kronenberg F, Wichmann HE, Herder C, Holle R, Löwel H, Illig T, Janssen OE. Calpain-10 variants and haplotypes are associated with polycystic ovary syndrome in Caucasians. Am J Physiol Endocrinol Metab 2007; 292:E836-44. [PMID: 17106059 DOI: 10.1152/ajpendo.00584.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
PCOS is known to be associated with an increased risk of T2DM and has been proposed to share a common genetic background with T2DM. Recent studies suggest that the Calpain-10 gene (CAPN10) is an interesting candidate gene for PCOS susceptibility. However, contradictory results were reported concerning the contribution of certain CAPN10 variants, especially of UCSNP-44, to genetic predisposition to T2DM, hirsutism, and PCOS. By means of MALDI-TOF MS technique, we genotyped an expanded single nucleotide polymorphism panel, including the CAPN10 UCSNP-44, -43, -56, ins/del-19, -110, -58, -63, and -22 in a sample of 146 German PCOS women and 606 population-based controls. Statistical analysis revealed an association between UCSNP-56 and susceptibility to PCOS with an odds ratio (OR) of 2.91 (95% CI=1.51-5.61) for women carrying an AA genotype compared with GG. As expected, the 22-genotype of the ins/del-19 variant, which is in high linkage disequilibrium (r2=0.98) with UCSNP-56, was also significantly associated (OR=2.98, 95% CI=1.55-5.73). None of the additionally tested variants alone showed any significant association with PCOS. A meta-analysis including our study (altogether 623 PCOS cases and 1,224 controls) also showed significant association only with ins/del-19. The most common haplotype TGG3AGCA was significantly associated with a lower risk for PCOS (OR=0.487, P=0.0057). In contrast, the TGA2AGCA haplotype was associated with an increased risk for PCOS (OR=3.557, P=0.0011). By investigating a broad panel of CAPN10 variants, our results pointed to an allele dose-dependent association of UCSNP-56 and ins/del-19 with PCOS.
Collapse
Affiliation(s)
- Caren Vollmert
- Institute of Epidemiology, GSF-National Research Center for Environment and Health, Institute of Epidemiology, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sáez ME, Martínez-Larrad MT, Ramírez-Lorca R, González-Sánchez JL, Zabena C, Martinez-Calatrava MJ, González A, Morón FJ, Ruiz A, Serrano-Ríos M. Calpain-5 gene variants are associated with diastolic blood pressure and cholesterol levels. BMC MEDICAL GENETICS 2007; 8:1. [PMID: 17227582 PMCID: PMC1783645 DOI: 10.1186/1471-2350-8-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 01/16/2007] [Indexed: 11/16/2022]
Abstract
Background Genes implicated in common complex disorders such as obesity, type 2 diabetes mellitus (T2DM) or cardiovascular diseases are not disease specific, since clinically related disorders also share genetic components. Cysteine protease Calpain 10 (CAPN10) has been associated with T2DM, hypertension, hypercholesterolemia, increased body mass index (BMI) and polycystic ovary syndrome (PCOS), a reproductive disorder of women in which isunlin resistance seems to play a pathogenic role. The calpain 5 gene (CAPN5) encodes a protein homologue of CAPN10. CAPN5 has been previously associated with PCOS by our group. In this new study, we have analysed the association of four CAPN5 gene variants(rs948976A>G, rs4945140G>A, rs2233546C>T and rs2233549G>A) with several cardiovascular risk factors related to metabolic syndrome in general population. Methods Anthropometric measurements, blood pressure, insulin, glucose and lipid profiles were determined in 606 individuals randomly chosen from a cross-sectional population-based epidemiological survey in the province of Segovia in Central Spain (Castille), recruited to investigate the prevalence of anthropometric and physiological parameters related to obesity and other components of the metabolic syndrome. Genotypes at the four polymorphic loci in CAPN5 gene were detected by polymerase chain reaction (PCR). Results Genotype association analysis was significant for BMI (p ≤ 0.041), diastolic blood pressure (p = 0.015) and HDL-cholesterol levels (p = 0.025). Different CAPN5 haplotypes were also associated with diastolic blood pressure (DBP) (0.0005 ≤ p ≤ 0.006) and total cholesterol levels (0.001 ≤ p ≤ 0.029). In addition, the AACA haplotype, over-represented in obese individuals, is also more frequent in individuals with metabolic syndrome defined by ATPIII criteria (p = 0.029). Conclusion As its homologue CAPN10, CAPN5 seems to influence traits related to increased risk for cardiovascular diseases. Our results also may suggest CAPN5 as a candidate gene for metabolic syndrome.
Collapse
Affiliation(s)
- María E Sáez
- Departamento de Genómica Estructural. Neocodex. Sevilla, Spain
| | | | | | | | - Carina Zabena
- Departamento de Medicina Interna II. Hospital Clínico San Carlos. Madrid, Spain
| | | | - Alejandro González
- Unidad de reproducción y genética humana. Centro Avanzado de Fertilidad (CAF). Jerez de la Frontera, Cádiz, Spain
| | | | - Agustín Ruiz
- Departamento de Genómica Estructural. Neocodex. Sevilla, Spain
| | - Manuel Serrano-Ríos
- Departamento de Medicina Interna II. Hospital Clínico San Carlos. Madrid, Spain
| |
Collapse
|
34
|
De Barros S, Zakaroff-Girard A, Lafontan M, Galitzky J, Bourlier V. Inhibition of human preadipocyte proteasomal activity by HIV protease inhibitors or specific inhibitor lactacystin leads to a defect in adipogenesis, which involves matrix metalloproteinase-9. J Pharmacol Exp Ther 2006; 320:291-9. [PMID: 17038510 DOI: 10.1124/jpet.106.111849] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In a previous publication, we reported that human immunodeficiency virus (HIV) protease inhibitors (PIs) inhibited the differentiation of human preadipocytes in primary culture, reducing the expression and secretion of matrix metalloproteinase 9 (MMP-9). The present work was performed to clarify this mechanism. Interestingly, HIV-PIs have been reported to be inhibitors of the proteasome complex, which is known to regulate nuclear factor (NF)-kappaB activation and transcription of its target genes, among them MMP-9. We thus investigated the potential involvement of the proteasome in the antiadipogenic effects of HIV-PIs. The effect of four HIV-PIs was tested on preadipocyte proteasomal activity, and chronic treatment with the specific proteasome inhibitor lactacystin was performed to evaluate alterations of adipogenesis and MMP-9 expression/secretion. Finally, modifications of the NF-kappaB pathway induced by either HIV-PIs or lactacystin were studied. We demonstrated that preadipocyte proteasomal activity was decreased by several HIV-PIs and that chronic treatment with lactacystin mimicked the effects of HIV-PIs by reducing adipogenesis and MMP-9 expression/secretion. Furthermore, we observed an intracellular accumulation of the NF-kappaB inhibitor, IkappaBbeta, with chronic treatment with HIV-PIs or lactacystin as well as a decrease in MMP-9 expression induced by acute tumor necrosis factor-alpha stimulation. These results indicate that inhibition of the proteasome by specific (lactacystin) or nonspecific (HIV-PIs) inhibitors leads to a reduction of human adipogenesis, and they therefore implicate deregulation of the NF-kappaB pathway and the related decrease of the key adipogenic factor, MMP-9. This study adds significantly to recent reports that have linked HIV-PI-related lipodystrophic syndrome with altered proteasome function, endoplasmic reticulum stress, and metabolic disorders.
Collapse
Affiliation(s)
- Sandra De Barros
- Unité de Recherche sur les Obésites, Institut National de la Santé et de la Recherche Médical Unité 586, Institut Louis Bugnard, Hopital Rangueil, Université Paul Sabatier, Toulouse, France
| | | | | | | | | |
Collapse
|
35
|
Yajima Y, Sato M, Sorimachi H, Inomata M, Maki M, Kawashima S. Calpain system regulates the differentiation of adult primitive mesenchymal ST-13 adipocytes. Endocrinology 2006; 147:4811-9. [PMID: 16857754 DOI: 10.1210/en.2005-1647] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The activity of calpain, a calcium-activated protease, is required during the mitotic clonal expansion phase of 3T3-L1 embryonic preadipocyte differentiation. Here we examined the role of calpain in the adipogenesis of ST-13 preadipocytes established from adult primitive mesenchymal cells, which do not require mitotic clonal expansion. After exposure to the calpain inhibitor, N-benzyloxycarbonyl-L-leucyl-L-leucinal or overexpression of calpastatin, a specific endogenous inhibitor of calpain, ST-13 preadipocytes acquired the adipocyte phenotype. Overexpression of calpastatin in ST-13 adipocytes stimulated the expression of adipocyte-specific CCAAT/enhancer-binding protein-alpha (C/EBPalpha), peroxisome proliferator-activated receptor (PPAR)-gamma, sterol regulatory element-binding protein 1, and the insulin signaling molecules, insulin receptor alpha, insulin-receptor substrates, and GLUT4. However, insulin-stimulated glucose uptake was reduced by approximately 52%. The addition of calpain to the nuclear fraction of ST-13 adipocytes resulted in the Ca(2+)-dependent degradation of PPARgamma and C/EBPalpha but not sterol regulatory element-binding protein 1. Exposing ST-13 adipocytes to A23187 also led to losses of endogenous PPARgamma and C/EBPalpha. Under both conditions, calpain inhibitors almost completely prevented C/EBPalpha cleavage but partially blocked the decrease of PPARgamma. Two ubiquitous forms of calpain, mu- and m-calpain, localized to the cytosol and the nucleus, whereas the activated form of mu- but not m-calpain was found in the nucleus. Finally, stable dominant-negative mu-calpain transfectants showed accelerated adipogenesis and increase in the levels of PPARgamma and C/EBPalpha during adipocyte program. These results support evidence that the calpain system is involved in regulating the differentiation of adult primitive mesenchymal ST-13 preadipocytes.
Collapse
Affiliation(s)
- Yukiko Yajima
- Tokyo Metropolitan Institute of Medical Science, 18-22 Honkomagome 3-chome, Tokyo 113-8613, Japan.
| | | | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Yukio Horikawa
- Department of Diabetes and Endocrinology, Gifu University School of Medicine, Yanagido, Gifu, Japan
| |
Collapse
|
37
|
Kang ES, Nam M, Kim HJ, Kim HJ, Myoung SM, Rhee Y, Ahn CW, Cha BS, Lee HC. Haplotype combination of Calpain-10 gene polymorphism is associated with metabolic syndrome in type 2 diabetes. Diabetes Res Clin Pract 2006; 73:268-75. [PMID: 16546286 DOI: 10.1016/j.diabres.2006.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 01/04/2006] [Accepted: 01/27/2006] [Indexed: 01/08/2023]
Abstract
Patients with metabolic syndrome are at increased risk of developing cardiovascular disease. The combinations of the haplotype created by the alleles of three single nucleotide polymorphisms (SNPs): SNP-43, -19, and -63 of the Calpain-10 gene (CAPN10), have been reported to be associated with the risk of type 2 diabetes in many populations. The aim of this study was to examine the association of the CAPN10 polymorphism with metabolic syndrome in patients with type 2 diabetes in Korea. Overall, 382 patients with type 2 diabetes were enrolled in this study. All the subjects were genotyped according to CAPN10 SNP-43, -19, and -63. The restriction fragment length polymorphism method was used for the three SNPs. The baseline presence of components of metabolic syndrome was determined. Two hundred and sixty-five (69.4%) patients had metabolic syndrome. Patients with the 111/121 haplotype combination showed a higher risk of hypertension than the other haplotype combinations (odd ratio (OR)=2.334, P=0.010). Patients with the 111/121 haplotype combination had a significantly high risk of metabolic syndrome (OR=1.927, P=0.042). The results of this study suggest that a novel 111/121 haplotype combination created by the CAPN10 SNP-43, -19, and -63 increases the susceptibility to the metabolic syndrome in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Eun Seok Kang
- Department of Internal Medicine, Yonsei University College of Medicine, 134 Shinchon-Dong, Seodaemun-Gu, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wang HC, Ko YH, Mersmann HJ, Chen CL, Ding ST. The expression of genes related to adipocyte differentiation in pigs1. J Anim Sci 2006; 84:1059-66. [PMID: 16612007 DOI: 10.2527/2006.8451059x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The purpose of this study was to detect differential expression of genes related to adipocyte differentiation in pigs by suppression subtractive hybridization. Adipocytes and stromal vascular cells (a fraction containing preadipocytes) from pig adipose tissue were isolated for mRNA extraction. The cDNA from preadipocytes was subtracted from the cDNA from adipocytes. The subtracted gene fragments were cloned into pGEM-T Easy TA cloning vector. We selected 384 clones for gene sequence determination and for further analysis. These genes were subjected to a differential screening procedure to confirm the differential expression of genes between the 2 cell types. We found that at least 36 genes were highly expressed in the adipocytes compared with preadipocytes. Among these, 6 genes including 2 novel genes with the greatest differences were selected and confirmed by Northern analysis. We found that angiotensin I-converting enzyme (ACE), ataxia-telangiectasia mutated protein (ATM), calpain 1, and stearoyl coenzyme A desaturase 1 (SCD1) were highly expressed in adipocytes compared with preadipocytes (P < 0.05). The relative mRNA abundance of ACE, ATM, calpain 1, SCD1, and 2 novel genes discovered in the current study was increased at the later stages of adipocyte differentiation (P < 0.05). The results confirmed that the genes involved in lipid metabolism and adipocyte differentiation were highly expressed in porcine adipocytes. However, further investigation is needed to demonstrate specific functions of the novel genes discovered in the current study.
Collapse
Affiliation(s)
- H C Wang
- Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan
| | | | | | | | | |
Collapse
|
39
|
Ohguchi K, Akao Y, Nozawa Y. Involvement of calpain in melanogenesis of mouse B16 melanoma cells. Mol Cell Biochem 2006; 275:103-7. [PMID: 16335789 DOI: 10.1007/s11010-005-1081-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In the current study, the involvement of calpain, a cysteine proteinase in the regulation of melanogenesis was examined using mouse B16 melanoma cells. In response to alpha-melanocyte-stimulating hormone (a-MSH), B16 melanoma cells underwent differentiation characterized by increased melanin biosynthesis. The total calapain activity was decreased within 2 h following alpha-MSH-treatment, and restored to the initial level in 6-12 h. To further investigate the involvement of calpain in the regulation of melanogenesis, the effect of calpain inhibitors on alpha-MSH-induced melanogenesis was examined. Inhibition of calpain by either N-acetyl-Leu-Leu-norleucinal (ALLN) or calpastatin (CS) peptide blocked alpha-MSH-induced melanogenesis. The magnitude of inhibition of melanin biosynthesis was well correlated with a decrease in the activity of tyrosinase, a key regulatory enzyme in melanogenesis. Treatment of B16 cells with ALLN caused marked decrease in both tyrosinase protein and mRNA levels. These results indicate that calpain would be involved in the melanogenic signaling by modulating the expression of tyrosinase in mouse B16 melanoma cells.
Collapse
Affiliation(s)
- Kenji Ohguchi
- Gifu International Institute of Biotechnology, 1-1 Naka-Fudogaoka, Kakamigahara, Gifu, Japan.
| | | | | |
Collapse
|
40
|
Deng J, Hua K, Caveney EJ, Takahashi N, Harp JB. Protein inhibitor of activated STAT3 inhibits adipogenic gene expression. Biochem Biophys Res Commun 2006; 339:923-31. [PMID: 16329991 DOI: 10.1016/j.bbrc.2005.10.217] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 10/30/2005] [Indexed: 10/25/2022]
Abstract
Protein inhibitor of activated STAT3 (PIAS3), a cytokine-induced repressor of signal transducer and activator of transcription 3 (STAT3) and a modulator of a broad array of nuclear proteins, is expressed in white adipose tissue, but its role in adipogenesis is not known. Here, we determined that PIAS3 was constitutively expressed in 3T3-L1 cells at all stages of adipogenesis. However, it translocated from the nucleus to the cytoplasm 4 days after induction of differentiation by isobutylmethylxanthine, dexamethasone, and insulin (MDI). In ob/ob mice, PIAS3 expression was increased in white adipose tissue depots compared to lean mice and was found in the cytoplasm of adipocytes. Overexpression of PIAS3 in differentiating preadipocytes, which localized primarily to the nucleus, inhibited mRNA level gene expression of adipogenic transcription factors C/EBPalpha and PPARgamma, as well as their downstream target genes aP2 and adiponectin. PIAS3 also inhibited C/EBPalpha promoter activation mediated specifically by insulin, but not dexamethasone or isobutylmethylxanthine. Taken together, these data suggest that PIAS3 may play an inhibitory role in adipogenesis by modulating insulin-activated transcriptional activation events. Increased PIAS3 expression in adipose tissue may play a role in the metabolic disturbances of obesity.
Collapse
Affiliation(s)
- Jianbei Deng
- Department of Nutrition, CB# 7461, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
41
|
Abstract
Evidence for a genetic basis for type 2 diabetes and the metabolic syndrome has been derived from studies of families, twins and populations with genetic admixture. Identification of genes associated with disease pathogenesis is now underway using techniques such as genome scanning by positional cloning and the candidate gene approach. Genome scanning in several different ethnic groups has identified chromosome regions harbouring type 2 diabetes susceptibility genes such as the novel gene, calpain 10 (CAPN10). The hepatic nuclear factor 4alpha (HNF4alpha) gene partly explains the linkage peak on chromosome 20, while the upstream transcription factor (USF1) is associated with familial combined hyperlipidaemia (FCHL) and maps close to the type 2 diabetes associated 1q peak. Peroxisome proliferator-activated receptor gamma (PPARgamma) was identified as a candidate gene based on its biology. A Pro12Ala variant of this gene has been associated with an increased risk of type 2 diabetes. Many genes accounting for monogenic forms of diabetes have been identified--such as maturity onset diabetes of the young (MODY); glucokinase (GCK) and HNF1alpha mutations being the most common causes of MODY. GCK variants result in 'mild' diabetes or impaired glucose tolerance (IGT) and relatively few cardiovascular complications, while HNF1alpha-associated MODY is more typical of type 2 diabetes, frequently being treated with sulphonylureas or insulin and resulting in microvascular complications. Testing for single gene disorders associated with type 2 diabetes and obesity may determine cause, prognosis and appropriate treatment; however, for the more common polygenic diseases this is not the case. In type 2 diabetes, molecular genetics has the potential to enhance understanding of disease pathogenesis, and help formulate preventative and treatment strategies.
Collapse
Affiliation(s)
- G A Hitman
- Centre for Diabetes and Metabolic Medicine, Institute of Cell and Molecular Science, Barts and the London Queen Mary's School of Medicine and Dentistry, London, UK.
| | | |
Collapse
|
42
|
Barnoy S, Maki M, Kosower NS. Overexpression of calpastatin inhibits L8 myoblast fusion. Biochem Biophys Res Commun 2005; 332:697-701. [PMID: 15904894 DOI: 10.1016/j.bbrc.2005.05.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Accepted: 05/05/2005] [Indexed: 11/25/2022]
Abstract
The formation of skeletal muscle fibers involves cessation of myoblast division, myoblast alignment, and fusion to multinucleated myofibers. Calpain is one of the factors shown to be involved in myoblast fusion. Using L8 rat myoblasts, we found that calpain levels did not change significantly during myoblast differentiation, whereas calpastatin diminished prior to myoblast fusion and reappeared after fusion. The transient diminution in calpastatin allows the Ca2+-promoted activation of calpain and calpain-induced membrane proteolysis, which is required for myoblast fusion. Here we show that calpastatin overexpression in L8 myoblasts does not inhibit cell proliferation and alignment, but prevents myoblast fusion and fusion-associated protein degradation. In addition, calpastatin appears to modulate myogenic gene expression, as indicated by the lack of myogenin (a transcription factor expressed in differentiating myoblasts) in myoblasts overexpressing calpastatin. These results suggest that, in addition to the role in membrane disorganization in the fusing myoblasts, the calpain-calpastatin system may also modulate the levels of factors required for myoblast differentiation.
Collapse
Affiliation(s)
- Sivia Barnoy
- Department of Nursing, School of Health Professions, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel Aviv 69978, Israel.
| | | | | |
Collapse
|
43
|
Affiliation(s)
- M Daniel Lane
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
44
|
Gantt K, Cherry J, Tenney R, Karschner V, Pekala PH. An early event in adipogenesis, the nuclear selection of the CCAAT enhancer-binding protein {beta} (C/EBP{beta}) mRNA by HuR and its translocation to the cytosol. J Biol Chem 2005; 280:24768-74. [PMID: 15863502 DOI: 10.1074/jbc.m502011200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HuR is a ligand for nuclear mRNAs containing adenylate-uridylate-rich elements in the 3'-untranslated region. Once bound to the mRNA, HuR is recognized by adapter proteins that then facilitate nuclear export of the complex. In the cytosol, HuR is thought to function to control stability and translation of its ligand message. In the 3T3-L1 cells HuR is constitutively expressed and localized predominantly to the nucleus in the preadipocytes. However, within 30 min of exposure to the differentiation stimulus the HuR content in the cytosol increases, consistent with HuR regulating the availability of relevant mRNAs for translation. Using in vitro RNA gel shifts, we have demonstrated that the CCAAT enhancer-binding protein beta (C/EBPbeta) message is a ligand for HuR. Within 2 h of initiation of the differentiation process, HuR complexes containing C/EBPbeta mRNA could be isolated from the cytosolic compartment. Importantly, the process appears to be highly selective, as cyclin D1, which contains a putative HuR binding site and is expressed on the same time frame as C/EBPbeta, was not found in the immunoprecipitated messenger ribonucleoprotein complexes. The proximity of this event to adipogenic stimuli and the importance of C/EBPbeta to the differentiation process have led us to hypothesize a role for HuR in the regulation of the onset of adipogenesis. In support of this hypothesis, small interfering RNA suppression of HuR protein content resulted in an inhibition of C/EBPbeta protein expression and an attenuation of the differentiation process.
Collapse
Affiliation(s)
- Kira Gantt
- Department of Biochemistry and Molecular Biology, The Brody School of Medicine at East Carolina University, Greenville, North Carolina 27858-4354, USA
| | | | | | | | | |
Collapse
|
45
|
Naaz A, Holsberger DR, Iwamoto GA, Nelson A, Kiyokawa H, Cooke PS. Loss of cyclin-dependent kinase inhibitors produces adipocyte hyperplasia and obesity. FASEB J 2004; 18:1925-7. [PMID: 15469964 DOI: 10.1096/fj.04-2631fje] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Adipocyte hyperplasia is characteristic of some forms of human obesity, but the role of adipocyte number in obesity and how normal adipocyte number is established are unclear. Preadipocytes proliferate and then differentiate to become mitotically quiescent adipocytes. This involves exit from the cell cycle, a process regulated by cell cycle inhibitors such as the cyclin-dependent kinase inhibitors (CDKIs) p27 and p21. 3T3-L1 preadipocytes show marked changes in p27 and p21 during differentiation, suggesting CDKIs may regulate establishment of adipocyte number in vivo. To study the role of these CDKIs in adipogenesis, we analyzed adult p27 knockout (p27KO), p21 knockout (p21KO), p27/p21 double knockout (DBKO), and wild-type (WT) mice. Adult DBKO mice weighed 100% more and had fourfold increases in body fat percentage compared with WT. Fat pad weights were increased 80, 90, and 500% in p27KO, p21KO, and DBKO mice, respectively, compared with WT. Adipocyte numbers of p27KO, p21KO, and DBKO mice were 1.9-, 1.7-, and 6.1-fold, respectively, that of WT; adipocyte size was not increased. DBKO mice showed glucose intolerance, insulin insensitivity, hepatic steatosis and dyslipidemia; gradations of these effects occurred in p27KO and p21KO mice. In conclusion, p27KO and p21KO mice are obese because of adipocyte hyperplasia, and DBKO mice have further increases in obesity and adipocyte hyperplasia, indicating that their functions in establishing adipocyte number are not redundant. p27 and p21 are major regulators of adipocyte number in vivo, and knockouts lacking one or both of these proteins provide models for producing adipocyte hyperplasia and understanding its metabolic consequences.
Collapse
Affiliation(s)
- Afia Naaz
- Department of Veterinary Biosciences, University of Illinois-Urbana, Urbana, Illinois 61802, USA
| | | | | | | | | | | |
Collapse
|
46
|
da Costa KA, Badea M, Fischer LM, Zeisel SH. Elevated serum creatine phosphokinase in choline-deficient humans: mechanistic studies in C2C12 mouse myoblasts. Am J Clin Nutr 2004; 80:163-70. [PMID: 15213044 DOI: 10.1093/ajcn/80.1.163] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Choline is a required nutrient, and humans deprived of choline develop liver damage. OBJECTIVE This study examined the effect of choline deficiency on muscle cells and the release of creatine phosphokinase (CPK) as a sequela of that deficiency. DESIGN Four men were fed diets containing adequate and deficient amounts of choline, and serum was collected at intervals for measurement of CPK. C2C12 mouse myoblasts were cultured in a defined medium containing 0 or 70 micromol choline/L for up to 96 h, and CPK was measured in the media; choline and metabolites were measured in cells. Apoptosis was assessed by using terminal deoxynucleotidyl transferase-mediated dUTP-biotin end labeling and activated caspase-3 immunohistochemistry. Cell fragility in response to hypo-osmotic stress was also assessed. RESULTS Three of 4 humans fed a choline-deficient diet had significantly elevated serum CPK activity derived from skeletal muscle (up to 66-fold; P < 0.01) that resolved when choline was restored to their diets. Cells grown in choline-deficient medium for 72 h leaked 3.5-fold more CPK than did cells grown in medium with 70 micromol choline/L (control medium; P < 0.01). Apoptosis was induced in cells grown in choline-deficient medium. Phosphatidylcholine concentrations were diminished in choline-deficient cells (to 43% of concentrations in control cells at 72 h; P < 0.01), as were concentrations of intracellular choline, phosphocholine, and glycerophosphocholine. Cells grown in choline-deficient medium had greater membrane osmotic fragility than did cells grown in control medium. CONCLUSIONS Choline deficiency results in diminished concentrations of membrane phosphatidylcholine in myocytes, which makes them more fragile and results in increased leakage of CPK from cells. Serum CPK may be a useful clinical marker for choline deficiency in humans.
Collapse
Affiliation(s)
- Kerry-Ann da Costa
- Department of Nutrition, School of Public Health and School of Medicine, University of North Carolina at Chapel Hill, 27599, USA
| | | | | | | |
Collapse
|
47
|
Uesaka T, Kageyama N, Watanabe H. Identifying target genes regulated downstream of Cdx2 by microarray analysis. J Mol Biol 2004; 337:647-60. [PMID: 15019784 DOI: 10.1016/j.jmb.2004.01.061] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Revised: 01/20/2004] [Accepted: 01/23/2004] [Indexed: 01/12/2023]
Abstract
The caudal-related homeobox transcription factor (Cdx2) plays an important role in intestinal development, differentiation, and homeostasis. However, only a limited number of Cdx2-regulated target genes have been elucidated. To delineate the molecular mechanism regulated downstream of Cdx2, we aimed to define Cdx2-regulated genes. We engineered a rat intestinal epithelial cell line, IEC-6, with minimal endogenous Cdx2 expression to express exogenous Cdx2. The gene expression patterns for Cdx2-inducing cells and control cells were examined using oligonucleotide arrays. In the present study, differential expression of 23 genes was confirmed by a semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis using gene-specific primers. Increased expression of genes was involved in the Notch signaling pathway, xenobiotic metabolism, enzymes associated with tumor suppression, RNA binding protein, receptors, signal transduction, and transcription factors. The wide-ranging collection of such inducing genes suggests to the functions of Cdx2 in cell fate decision and maintenance of intestinal epithelia.
Collapse
Affiliation(s)
- Toshihiro Uesaka
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, 1-2-3 Kasumi, Minami-Ku, Hiroshima University, Hiroshima 734-8553, Japan.
| | | | | |
Collapse
|
48
|
Choi KL, Wang Y, Tse CA, Lam KSL, Cooper GJS, Xu A. Proteomic analysis of adipocyte differentiation: Evidence that α2 macroglobulin is involved in the adipose conversion of 3T3 L1 preadipocytes. Proteomics 2004; 4:1840-8. [PMID: 15174150 DOI: 10.1002/pmic.200300697] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adipogenesis is an important aspect of energy homeostasis. Here we have used a differential proteome mapping strategy to identify intracellular proteins that are differentially expressed during adipose conversion of 3T3 L1 preadipocytes. Two-dimensional gel electrophoresis analysis identified 8 proteins that are induced following hormone-evoked differentiation. In addition, we found that a alpha2 macroglobulin fragment was abundantly present in 3T3 L1 preadipocytes, but was virtually undetectable in fully differentiated adipocytes. Metabolic radiolabeling with (35S)methionine and Northern blot analysis indicated that the intracellular alpha2 macroglobulin fragment in preadipocytes was derived from the extracellular culture medium, not de novo synthesis. Incubation of preadipocytes with an antialpha2 macroglobulin polyclonal antibody caused depletion of the intracellular alpha2 macroglobulin fragments, and also enhanced spontaneous adipose conversion. These results suggest that intracellular alpha2 macroglobulin fragment inhibits adipocyte differentiation, and that hormone treatment induces differentiation at least in part by suppression of intracellular alpha2 macroglobulin activity in 3T3 L1 preadipocytes.
Collapse
Affiliation(s)
- Kai-Luk Choi
- The School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
49
|
Cole KA, Harmon AW, Harp JB, Patel YM. Rb regulates C/EBPβ-DNA-binding activity during 3T3-L1 adipogenesis. Am J Physiol Cell Physiol 2004; 286:C349-54. [PMID: 14576085 DOI: 10.1152/ajpcell.00255.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two pathways are initiated upon 3T3-L1 preadipocyte differentiation: the reentry of cells into the cell cycle and the initiation of a cascade of transcriptional events that “prime” the cell for differentiation. The “priming” event involves the synthesis of members of the CCAAT/enhancer binding protein (C/EBP) family of transcription factors. However, the relationship between these two pathways is unknown. Here we report that in the 3T3-L1 preadipocytes induced to differentiate, cell cycle progression and the initiation of differentiation are linked by a cell cycle-dependent Rb-C/EBPβ interaction. Cell cycle arrest in G1 by l-mimosine inhibited differentiation-induced C/EBPβ-DNA-binding activity and Rb phosphorylation. However, cell cycle arrest after the G1/S transition by aphidicolin or nocodazole did not prevent C/EBPβ-DNA-binding activity or Rb phosphorylation. Furthermore, hypophosphorylated Rb and C/EBPβ coimmunoprecipitated, whereas phosphorylated Rb and C/EBPβ did not. Electrophoretic mobility shift assays demonstrated that recombinant hypophosphorylated Rb decreased C/EBPβ-DNA-binding activity and that Rb overexpression inhibited C/EBPβ-induced transcriptional activation of a C/EBPα-promoter-luciferase reporter gene. We conclude that C/EBPβ-DNA-binding activity is regulated by its interaction with hypophosphorylated Rb, thereby linking the progression of the cell cycle to the initiation of differentiation during 3T3-L1 adipogenesis.
Collapse
Affiliation(s)
- Kathryn A Cole
- Department of Nutrition, University of North Carolina, School of Public Health, 2216A McGavran-Greenberg, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
50
|
Abstract
Variation in the calpain 10 gene has recently been shown to be associated with type 2 diabetes by positional cloning. Since then, studies on calpain 10 have been started in correlation with diabetes and insulin-mediated signaling. In this review, the activation mechanism of calpain by calcium ions, which is essential to understand its physiological functions, is discussed on the basis of recent X-ray structural analyses. Further, special features of the structure of calpain 10 that differ from those of typical micro - or m-calpain used in most studies are summarized together with discussion of the physiological function of calpain with respect to type 2 diabetes.
Collapse
Affiliation(s)
- Koichi Suzuki
- Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.
| | | | | | | |
Collapse
|