1
|
Vadon C, Magiera MM, Cimarelli A. TRIM Proteins and Antiviral Microtubule Reorganization: A Novel Component in Innate Immune Responses? Viruses 2024; 16:1328. [PMID: 39205302 DOI: 10.3390/v16081328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
TRIM proteins are a family of innate immune factors that play diverse roles in innate immunity and protect the cell against viral and bacterial aggression. As part of this special issue on TRIM proteins, we will take advantage of our findings on TRIM69, which acts by reorganizing the microtubules (MTs) in a manner that is fundamentally antiviral, to more generally discuss how host-pathogen interactions that take place for the control of the MT network represent a crucial facet of the struggle that opposes viruses to their cell environment. In this context, we will present several other TRIM proteins that are known to interact with microtubules in situations other than viral infection, and we will discuss evidence that may suggest a possible contribution to viral control. Overall, the present review will highlight the importance that the control of the microtubule network bears in host-pathogen interactions.
Collapse
Affiliation(s)
- Charlotte Vadon
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69364 Lyon, France
| | - Maria Magda Magiera
- Institut Curie, CNRS, UMR3348, Centre Universitaire, Bat 110, F-91405 Orsay, France
| | - Andrea Cimarelli
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69364 Lyon, France
| |
Collapse
|
2
|
Mascaro M, D'Ambrosio L, Lazzari E, Almoguera B, Swafiri ST, Zanchetta ME, Meroni G. A unique missense mutation in the RING domain impairs MID1 E3 ubiquitin ligase activity and localisation and is associated with uncommon Opitz Syndrome-like signs. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167126. [PMID: 38508475 DOI: 10.1016/j.bbadis.2024.167126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Affiliation(s)
- Martina Mascaro
- Department of Life Science, University of Trieste, Trieste 34127, Italy
| | - Luigi D'Ambrosio
- Department of Life Science, University of Trieste, Trieste 34127, Italy
| | - Elisa Lazzari
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste 34137, Italy
| | - Berta Almoguera
- Department of Genetics and Genomics Fundación Jiménez Díaz University Hospital, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid 28040, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), Spain
| | - Saoud Tahsin Swafiri
- Department of Genetics and Genomics Fundación Jiménez Díaz University Hospital, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid 28040, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), Spain
| | - Melania Eva Zanchetta
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste 34137, Italy.
| | - Germana Meroni
- Department of Life Science, University of Trieste, Trieste 34127, Italy.
| |
Collapse
|
3
|
Frank S, Gabassi E, Käseberg S, Bertin M, Zografidou L, Pfeiffer D, Brennenstuhl H, Falk S, Karow M, Schweiger S. Absence of the RING domain in MID1 results in patterning defects in the developing human brain. Life Sci Alliance 2024; 7:e202302288. [PMID: 38238086 PMCID: PMC10796562 DOI: 10.26508/lsa.202302288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/22/2024] Open
Abstract
The X-linked form of Opitz BBB/G syndrome (OS) is a monogenic disorder in which symptoms are established early during embryonic development. OS is caused by pathogenic variants in the X-linked gene MID1 Disease-associated variants are distributed across the entire gene locus, except for the N-terminal really interesting new gene (RING) domain that encompasses the E3 ubiquitin ligase activity. By using genome-edited human induced pluripotent stem cell lines, we here show that absence of isoforms containing the RING domain of MID1 causes severe patterning defects in human brain organoids. We observed a prominent neurogenic deficit with a reduction in neural tissue and a concomitant increase in choroid plexus-like structures. Transcriptome analyses revealed a deregulation of patterning pathways very early on, even preceding neural induction. Notably, the observed phenotypes starkly contrast with those observed in MID1 full-knockout organoids, indicating the presence of a distinct mechanism that underlies the patterning defects. The severity and early onset of these phenotypes could potentially account for the absence of patients carrying pathogenic variants in exon 1 of the MID1 gene coding for the N-terminal RING domain.
Collapse
Affiliation(s)
- Sarah Frank
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elisa Gabassi
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stephan Käseberg
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Marco Bertin
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Lea Zografidou
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Daniela Pfeiffer
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Sven Falk
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marisa Karow
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Susann Schweiger
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
4
|
Trim69 is a microtubule regulator that acts as a pantropic viral inhibitor. Proc Natl Acad Sci U S A 2022; 119:e2211467119. [PMID: 36251989 PMCID: PMC9618055 DOI: 10.1073/pnas.2211467119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Through a screen that combines functional and evolutionary analyses, we identified tripartite motif protein (Trim69), a poorly studied member of the Trim family, as a negative regulator of HIV-1 infection in interferon (IFN)-stimulated myeloid cells. Trim69 inhibits the early phases of infection of HIV-1, but also of HIV-2 and SIVMAC in addition to the negative and positive-strand RNA viruses vesicular stomatitis virus and severe acute respiratory syndrome coronavirus 2, with magnitudes that depend on the combination between cell type and virus. Mechanistically, Trim69 associates directly to microtubules and its antiviral activity is linked to its ability to promote the accumulation of stable microtubules, a program that we uncover to be an integral part of antiviral IFN-I responses in myeloid cells. Overall, our study identifies Trim69 as the antiviral innate defense factor that regulates the properties of microtubules to limit viral spread and highlights the cytoskeleton as an unappreciated battleground in the host-pathogen interactions that underlie viral infections.
Collapse
|
5
|
Migliore C, Vendramin A, McKee S, Prontera P, Faravelli F, Sachdev R, Dias P, Mascaro M, Licastro D, Meroni G. SPECC1L Mutations Are Not Common in Sporadic Cases of Opitz G/BBB Syndrome. Genes (Basel) 2022; 13:genes13020252. [PMID: 35205294 PMCID: PMC8871657 DOI: 10.3390/genes13020252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 12/31/2022] Open
Abstract
Opitz G/BBB syndrome (OS) is a rare genetic developmental condition characterized by congenital defects along the midline of the body. The main clinical signs are represented by hypertelorism, laryngo–tracheo–esophageal defects and hypospadias. The X-linked form of the disease is associated with mutations in the MID1 gene located in Xp22 whereas mutations in the SPECC1L gene in 22q11 have been linked to few cases of the autosomal dominant form of this disorder, as well as to other genetic syndromes. In this study, we have undertaken a mutation screening of the SPECC1L gene in samples of sporadic OS cases in which mutations in the MID1 gene were excluded. The heterozygous missense variants identified are already reported in variant databases raising the issue of their pathogenetic meaning. Recently, it was reported that some clinical manifestations peculiar to OS signs are not observed in patients carrying mutations in the SPECC1L gene, leading to the proposal of the designation of ‘SPECC1L syndrome’ to refer to this disorder. Our study confirms that patients with diagnosis of OS, mainly characterized by the presence of hypospadias and laryngo–tracheo–esophageal defects, do not carry pathogenic SPECC1L mutations. In addition, SPECC1L syndrome-associated mutations are clustered in two specific domains of the protein, whereas the missense variants detected in our work lies elsewhere and the impact of these variants in the function of this protein is difficult to ascertain with the current knowledge and will require further investigations. Nonetheless, our study provides further insight into the SPECC1L syndrome classification.
Collapse
Affiliation(s)
- Chiara Migliore
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (C.M.); (M.M.)
| | - Anna Vendramin
- Genomic and Bioinformatic Lab., Cluster in Biomedicine, S.c.r.l., 34149 Trieste, Italy;
| | - Shane McKee
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast BT9 7AB, UK;
| | - Paolo Prontera
- Medical Genetics Unit, University and Hospital of Perugia, 06129 Perugia, Italy;
| | - Francesca Faravelli
- The North East Thames Regional Genetics Service, Great Ormond Street Hospital, London WC1N 3JH, UK;
| | - Rani Sachdev
- St George and Sydney Children’s Hospital, Randwick, Sydney, NSW 2031, Australia;
| | - Patricia Dias
- Serviço de Genética Médica, Hospital de Santa Maria, Centro Universitário Hospitalar Lisboa Norte, 1649-028 Lisbon, Portugal;
| | - Martina Mascaro
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (C.M.); (M.M.)
| | | | - Germana Meroni
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (C.M.); (M.M.)
- Correspondence: ; Tel.: +39-040-5588679
| |
Collapse
|
6
|
Microtubular TRIM36 E3 Ubiquitin Ligase in Embryonic Development and Spermatogenesis. Cells 2022; 11:cells11020246. [PMID: 35053362 PMCID: PMC8773809 DOI: 10.3390/cells11020246] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 02/05/2023] Open
Abstract
TRIM36 is a member of the tripartite motif (TRIM) family of RING-containing proteins, also known as Haprin, which was first discovered for its abundance in testis and found to be implicated in the spermatozoa acrosome reaction. TRIM36 is a microtubule-associated E3 ubiquitin ligase that plays a role in cytoskeletal organization, and according to data gathered in different species, coordinates growth speed and stability, acting on the microtubules’ plus end, and impacting on cell cycle progression. TRIM36 is also crucial for early developmental processes, in Xenopus, where it is needed for dorso-ventral axis formation, but also in humans as bi-allelic mutations in the TRIM36 gene cause a form of severe neural tube closure defect, called anencephaly. Here, we review TRIM36-related mechanisms implicated in such composite physiological and pathological processes.
Collapse
|
7
|
Baldini R, Mascaro M, Meroni G. The MID1 gene product in physiology and disease. Gene 2020; 747:144655. [PMID: 32283114 PMCID: PMC8011326 DOI: 10.1016/j.gene.2020.144655] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/22/2020] [Accepted: 04/06/2020] [Indexed: 12/23/2022]
Abstract
MID1 is an E3 ubiquitin ligase of the Tripartite Motif (TRIM) subfamily of RING-containing proteins, hence also known as TRIM18. MID1 is a microtubule-binding protein found in complex with the catalytic subunit of PP2A (PP2Ac) and its regulatory subunit alpha 4 (α4). To date, several substrates and interactors of MID1 have been described, providing evidence for the involvement of MID1 in a plethora of essential biological processes, especially during embryonic development. Mutations in the MID1 gene are responsible of the X-linked form of Opitz syndrome (XLOS), a multiple congenital disease characterised by defects in the development of midline structures during embryogenesis. Here, we review MID1-related physiological mechanisms as well as the pathological implication of the MID1 gene in XLOS and in other clinical conditions.
Collapse
Affiliation(s)
- Rossella Baldini
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Martina Mascaro
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Germana Meroni
- Department of Life Sciences, University of Trieste, Trieste, Italy.
| |
Collapse
|
8
|
Cisternas CD, Cabrera Zapata LE, Mir FR, Scerbo MJ, Arevalo MA, Garcia-Segura LM, Cambiasso MJ. Estradiol-dependent axogenesis and Ngn3 expression are determined by XY sex chromosome complement in hypothalamic neurons. Sci Rep 2020; 10:8223. [PMID: 32427857 PMCID: PMC7237695 DOI: 10.1038/s41598-020-65183-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/14/2020] [Indexed: 01/15/2023] Open
Abstract
Hypothalamic neurons show sex differences in neuritogenesis, female neurons have longer axons and higher levels of the neuritogenic factor neurogenin 3 (Ngn3) than male neurons in vitro. Moreover, the effect of 17-β-estradiol (E2) on axonal growth and Ngn3 expression is only found in male-derived neurons. To investigate whether sex chromosomes regulate these early sex differences in neuritogenesis by regulating the E2 effect on Ngn3, we evaluated the growth and differentiation of hypothalamic neurons derived from the “four core genotypes” mouse model, in which the factors of “gonadal sex” and “sex chromosome complement” are dissociated. We showed that sex differences in neurite outgrowth are determined by sex chromosome complement (XX > XY). Moreover, E2 increased the mRNA expression of Ngn3 and axonal length only in XY neurons. ERα/β expressions are regulated by sex chromosome complement; however, E2-effect on Ngn3 expression in XY neurons was only fully reproduced by PPT, a specific ligand of ERα, and prevented by MPP, a specific antagonist of ERα. Together our data indicate that sex chromosomes regulate early development of hypothalamic neurons by orchestrating not only sex differences in neuritogenesis, but also regulating the effect of E2 on Ngn3 expression through activation of ERα in hypothalamic neurons.
Collapse
Affiliation(s)
- Carla Daniela Cisternas
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.,Departamento de Biología Bucal, Facultad de Odontología -Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Lucas Ezequiel Cabrera Zapata
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Franco Rafael Mir
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Julia Scerbo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Angeles Arevalo
- Instituto Cajal, CSIC, Madrid, Spain.,Ciber de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, CSIC, Madrid, Spain.,Ciber de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - María Julia Cambiasso
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina. .,Departamento de Biología Bucal, Facultad de Odontología -Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
9
|
TRIM E3 Ubiquitin Ligases in Rare Genetic Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:311-325. [PMID: 32274764 DOI: 10.1007/978-3-030-38266-7_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The TRIM family comprises proteins characterized by the presence of the tripartite motif composed of a RING domain, one or two B-box domains and a coiled-coil region. The TRIM shared domain structure underscores a common biochemical function as E3 ligase within the ubiquitination cascade. The TRIM proteins represent one of the largest E3 ligase families counting in human more than 70 members. These proteins are implicated in a plethora of cellular processes such as apoptosis, cell cycle regulation, muscular physiology, and innate immune response. Consistently, their alteration results in several pathological conditions emphasizing their medical relevance. Here, the genetic and pathogenetic mechanisms of rare disorders directly caused by mutations in TRIM genes will be reviewed. These diseases fall into different pathological areas, from malformation birth defects due to developmental abnormalities, to neurological disorders and progressive teenage neuromuscular disorders. In many instances, TRIM E3 ligases act on several substrates thus exerting pleiotropic activities: the need of unraveling disease-specific TRIM pathways for a precise targeting therapy avoiding dramatic side effects will be discussed.
Collapse
|
10
|
Posey KL, Coustry F, Veerisetty AC, Hossain MG, Gambello MJ, Hecht JT. Novel mTORC1 Mechanism Suggests Therapeutic Targets for COMPopathies. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:132-146. [PMID: 30553437 DOI: 10.1016/j.ajpath.2018.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/20/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023]
Abstract
Cartilage oligomeric matrix protein (COMP) is a large, multifunctional extracellular protein that, when mutated, is retained in the rough endoplasmic reticulum (ER). This retention elicits ER stress, inflammation, and oxidative stress, resulting in dysfunction and death of growth plate chondrocytes. While identifying the cellular pathologic mechanisms underlying the murine mutant (MT)-COMP model of pseudoachondroplasia, increased midline-1 (MID1) expression and mammalian target of rapamycin complex 1 (mTORC1) signaling was found. This novel role for MID1/mTORC1 signaling was investigated since treatments shown to repress the pathology also reduced Mid1/mTORC1. Although ER stress-inducing drugs or tumor necrosis factor α (TNFα) in rat chondrosarcoma cells increased Mid1, oxidative stress did not, establishing that ER stress- or TNFα-driven inflammation alone is sufficient to elevate MID1 expression. Since MID1 ubiquitinates protein phosphatase 2A (PP2A), a negative regulator of mTORC1, PP2A was evaluated in MT-COMP growth plate chondrocytes. PP2A was decreased, indicating de-repression of mTORC1 signaling. Rapamycin treatment in MT-COMP mice reduced mTORC1 signaling and intracellular retention of COMP, and increased proliferation, but did not change inflammatory markers IL-16 and eosinophil peroxidase. Lastly, mRNA from tuberous sclerosis-1/2-null mice brain tissue exhibiting ER stress had increased Mid1 expression, confirming the relationship between ER stress and MID1/mTORC1 signaling. These findings suggest a mechanistic link between ER stress and MID1/mTORC1 signaling that has implications extending to other conditions involving ER stress.
Collapse
Affiliation(s)
- Karen L Posey
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas.
| | - Francoise Coustry
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas
| | - Alka C Veerisetty
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas
| | - Mohammad G Hossain
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas
| | - Michael J Gambello
- Human Genetics and Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Jacqueline T Hecht
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas; School of Dentistry, University of Texas Health Science Center, Houston, Texas
| |
Collapse
|
11
|
Sarno L, Maruotti GM, Izzo A, Mazzaccara C, Carbone L, Esposito G, Di Cresce M, Saccone G, Sirico A, Genesio R, Mollo N, Martinelli P, Conti A, Zullo F, Frisso G. First trimester ultrasound features of X-linked Opitz syndrome and early molecular diagnosis: case report and review of the literature. J Matern Fetal Neonatal Med 2019; 34:3089-3093. [PMID: 31630581 DOI: 10.1080/14767058.2019.1677594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
X-linked Opitz G/BBB syndrome (XLOS) is a multiple congenital disorder inherited in an X-linked manner. XLOS may be suspected, in prenatal age, on the basis of sonographic findings in the second and/or third trimester of gestation. Pathogenetic variants in MID1 gene have been reported in individuals with XLOS. Prenatal genetic testing is offered for pregnancies at risk, in which the mutation in the family has been identified. To date no cases of prenatal diagnosis, based on first-trimester ultrasound data, have been reported. We present a case of a fetus at 12 gestational weeks with ultrasound multiple anomalies, including increased nuchal translucency, heart defects, cleft lip and palate, enlarged fourth ventricle absence of ductus venosus and family hystory of XLOS. The genetic prenatal test detected the c(0).1286-1G > T mutation of MID1 gene. Data about prenatal ultrasonographic findings consistent with XLOS are limited to second and third trimester. This is the first case reporting ultrasound detectable midline defects suggestive of XLOS as early as the first trimester of gestation. This case also suggests that when multiple anomalies are detected in a fetus with normal chromosomal structure, the possibility of a monogenic disorder must be considered.
Collapse
Affiliation(s)
- Laura Sarno
- Department of Neurosciences, Reproductive Sciences and Dentistry, University Federico II, Naples, Italy
| | - Giuseppe Maria Maruotti
- Department of Neurosciences, Reproductive Sciences and Dentistry, University Federico II, Naples, Italy
| | - Antonella Izzo
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Naples, Italy
| | - Cristina Mazzaccara
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Naples, Italy.,CEINGE, Advanced Biotechnologies, Naples, Italy
| | - Luigi Carbone
- Department of Neurosciences, Reproductive Sciences and Dentistry, University Federico II, Naples, Italy
| | - Giuseppina Esposito
- Department of Neurosciences, Reproductive Sciences and Dentistry, University Federico II, Naples, Italy
| | - Marco Di Cresce
- Department of Neurosciences, Reproductive Sciences and Dentistry, University Federico II, Naples, Italy
| | - Gabriele Saccone
- Department of Neurosciences, Reproductive Sciences and Dentistry, University Federico II, Naples, Italy
| | - Angelo Sirico
- Department of Neurosciences, Reproductive Sciences and Dentistry, University Federico II, Naples, Italy
| | - Rita Genesio
- Department of Neurosciences, Reproductive Sciences and Dentistry, University Federico II, Naples, Italy
| | - Nunzia Mollo
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Naples, Italy
| | - Pasquale Martinelli
- Department of Neurosciences, Reproductive Sciences and Dentistry, University Federico II, Naples, Italy
| | - Anna Conti
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Naples, Italy
| | - Fulvio Zullo
- Department of Neurosciences, Reproductive Sciences and Dentistry, University Federico II, Naples, Italy
| | - Giulia Frisso
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Naples, Italy.,CEINGE, Advanced Biotechnologies, Naples, Italy
| |
Collapse
|
12
|
McCallum-Loudeac J, Anderson G, Wilson MJ. Age and Sex-Related Changes to Gene Expression in the Mouse Spinal Cord. J Mol Neurosci 2019; 69:419-432. [PMID: 31267314 DOI: 10.1007/s12031-019-01371-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Abstract
The spinal cord is essential for neuronal communication between the brain and rest of the body. To gain further insight into the molecular changes underpinning maturation of the mouse spinal cord, we analysed gene expression differences between 4 weeks of age (prior to puberty onset) and adulthood (8 weeks). We found 800 genes were significantly differentially expressed between juvenile and adult spinal cords. Gene ontology analysis revealed an overrepresentation of genes with roles in myelination and signal transduction among others. The expression of a further 19 genes was sexually dimorphic; these included both autosomal and sex-linked genes. Given the presence of steroid hormone receptors in the spinal cord, we also looked at the impact of two major steroid hormones, oestradiol and dihydrotestosterone (DHT) on spinal cord gene expression for selected genes. In gonadectomised male animals, implants with oestradiol and DHT produced significant changes to spinal cord gene expression. This study provides an overview of the global gene expression changes that occur as the spinal cord matures, over a key period of maturation. This confirms that both age and sex are important considerations in studies involving the spinal cord.
Collapse
Affiliation(s)
- Jeremy McCallum-Loudeac
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Greg Anderson
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Megan J Wilson
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
13
|
Uli N, Michelen-Gomez E, Ramos EI, Druley TE. Age-specific changes in genome-wide methylation enrich for Foxa2 and estrogen receptor alpha binding sites. PLoS One 2018; 13:e0203147. [PMID: 30256791 PMCID: PMC6157835 DOI: 10.1371/journal.pone.0203147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/15/2018] [Indexed: 12/26/2022] Open
Abstract
The role of DNA methylation patterns in complex phenotypes remains unclear. To explore this question, we adapted our methods for rare variant analysis to characterize genome-wide murine DNA hybridization array to investigate methylation at CpG islands, shores, and regulatory elements. We have applied this platform to compare age and tissue- specific methylation differences in the brain and spleen of young and aged mice. As expected from prior studies, there are clear global differences in organ-specific, but not age-specific, methylation due mostly to changes at repetitive elements. Surprisingly, out of 200,000 loci there were only 946 differentially methylated cytosines (DMCs) between young and old samples (529 hypermethylated, 417 hypomethylated in aged mice) compared to thousands of tissue-specific DMCs. Hypermethylated loci were clustered around the promoter region of Sfi1, exon 2 of Slc11a2, Drg1, Esr1 and Foxa2 transcription factor binding sites. In particular, there were 75 hypermethylated Foxa2 binding sites across a 2.7 Mb region of chromosome 11. Hypomethylated loci were clustered around Mid1, Isoc2b and genome-wide loci with binding sites for Foxa2 and Esr1, which are known to play important roles in development and aging. These data suggest discreet tissue-independent methylation changes associated with aging processes such as cell division (Sfi1, Mid1), energy production (Drg1, Isoc2b) and cell death (Foxa2, Esr1).
Collapse
Affiliation(s)
- Nishanth Uli
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Eduardo Michelen-Gomez
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Enrique I. Ramos
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Todd E. Druley
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
14
|
Kumari A, Panda D. Regulation of microtubule stability by centrosomal proteins. IUBMB Life 2018; 70:602-611. [DOI: 10.1002/iub.1865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Anuradha Kumari
- Department of Biosciences and Bioengineering; Indian Institute of Technology Bombay; Mumbai India
| | - Dulal Panda
- Department of Biosciences and Bioengineering; Indian Institute of Technology Bombay; Mumbai India
| |
Collapse
|
15
|
Zanchetta ME, Napolitano LMR, Maddalo D, Meroni G. The E3 ubiquitin ligase MID1/TRIM18 promotes atypical ubiquitination of the BRCA2-associated factor 35, BRAF35. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2017; 1864:1844-1854. [PMID: 28760657 DOI: 10.1016/j.bbamcr.2017.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/20/2017] [Accepted: 07/27/2017] [Indexed: 01/27/2023]
Abstract
MID1/TRIM18 is a member of the TRIM family of ubiquitin E3 ligases characterized by the presence of a conserved RING-containing N-terminal tripartite motif. Mutations in the MID1 gene have been associated with the X-linked form of Opitz Syndrome, a developmental disorder characterized by midline defects and intellectual disability. The effect of MID1 E3 ligase activity within the cell and the role in the pathogenesis of the disease is still not completely unraveled. Here, we report BRAF35, a non-canonical HMG nuclear factor, as a novel MID1 substrate. MID1 is implicated in BRAF35 ubiquitination promoting atypical poly-ubiquitination via K6-, K27- and K29-linkages. We observed a partial co-localization of the two proteins within cytoplasmic bodies. We found that MID1 depletion alters BRAF35 localization in these structures and increases BRAF35 stability affecting its cytoplasmic abundance. Our data reveal a novel role for MID1 and for atypical ubiquitination in balancing BRAF35 presence, and likely its activity, within nuclear and cytoplasmic compartments.
Collapse
Affiliation(s)
- Melania E Zanchetta
- Department of Life Sciences, University of Trieste, Italy; Institute for Maternal and Child Health e IRCCS "Burlo Garofolo", Trieste, Italy
| | | | - Danilo Maddalo
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Germana Meroni
- Department of Life Sciences, University of Trieste, Italy; Institute for Maternal and Child Health e IRCCS "Burlo Garofolo", Trieste, Italy.
| |
Collapse
|
16
|
Maia N, Nabais Sá MJ, Tkachenko N, Soares G, Marques I, Rodrigues B, Fortuna AM, Santos R, de Brouwer APM, Jorge P. Two Novel Pathogenic MID1 Variants and Genotype-Phenotype Correlation Reanalysis in X-Linked Opitz G/BBB Syndrome. Mol Syndromol 2017; 9:45-51. [PMID: 29456483 DOI: 10.1159/000479177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2017] [Indexed: 01/15/2023] Open
Abstract
X-linked Opitz G/BBB syndrome (XLOS) is a multisystemic congenital condition, caused by mutations in the midline-1 gene (MID1), characterized by a large inter- and intrafamilial phenotypic variability and often associated with intellectual disability (ID). We report clinical, genetic, and molecular findings in 4 patients with typical XLOS dysmorphic features belonging to 2 unrelated families. Two novel pathogenic loss-of-function MID1 variants, a maternally inherited c.1656del and a de novo c.1215_1228dup, were identified. Subsequently, we performed a genotype-phenotype analysis using data from 91 male XLOS patients. To test the mutation impact on the phenotype; the type of mutation, the MID1-impaired domain and function were compared with the presence of each of the major clinical features (hypertelorism, clefts of the lip and/or palate, laryngo-tracheo-esophageal abnormalities, hypospadias and ID) and minor clinical features (brain, heart, and anal defects). No statistically significant correlation was found with these features. Further investigations, as well as exhaustive and unequivocal phenotyping, may be required to improve our knowledge of the biological mechanisms underlying this syndrome and to provide more adequate disease management.
Collapse
Affiliation(s)
- Nuno Maia
- Unidade de Genética Molecular, Centro de Genética Médica Doutor Jacinto de Magalhães (CGMJM), Centro Hospitalar do Porto, EPE, Porto, Portugal.,Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Maria J Nabais Sá
- Serviço de Genética Médica, Centro de Genética Médica Doutor Jacinto de Magalhães (CGMJM), Centro Hospitalar do Porto, EPE, Porto, Portugal.,Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Nataliya Tkachenko
- Serviço de Genética Médica, Centro de Genética Médica Doutor Jacinto de Magalhães (CGMJM), Centro Hospitalar do Porto, EPE, Porto, Portugal
| | - Gabriela Soares
- Serviço de Genética Médica, Centro de Genética Médica Doutor Jacinto de Magalhães (CGMJM), Centro Hospitalar do Porto, EPE, Porto, Portugal
| | - Isabel Marques
- Unidade de Genética Molecular, Centro de Genética Médica Doutor Jacinto de Magalhães (CGMJM), Centro Hospitalar do Porto, EPE, Porto, Portugal.,Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Bárbara Rodrigues
- Unidade de Genética Molecular, Centro de Genética Médica Doutor Jacinto de Magalhães (CGMJM), Centro Hospitalar do Porto, EPE, Porto, Portugal.,Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Departamento de Biologia, Universidade de Aveiro, Aveiro, Portugal
| | - Ana M Fortuna
- Serviço de Genética Médica, Centro de Genética Médica Doutor Jacinto de Magalhães (CGMJM), Centro Hospitalar do Porto, EPE, Porto, Portugal.,Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Rosário Santos
- Unidade de Genética Molecular, Centro de Genética Médica Doutor Jacinto de Magalhães (CGMJM), Centro Hospitalar do Porto, EPE, Porto, Portugal.,Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Arjan P M de Brouwer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Paula Jorge
- Unidade de Genética Molecular, Centro de Genética Médica Doutor Jacinto de Magalhães (CGMJM), Centro Hospitalar do Porto, EPE, Porto, Portugal.,Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
17
|
Hedgehog-dependent E3-ligase Midline1 regulates ubiquitin-mediated proteasomal degradation of Pax6 during visual system development. Proc Natl Acad Sci U S A 2016; 113:10103-8. [PMID: 27555585 DOI: 10.1073/pnas.1600770113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pax6 is a key transcription factor involved in eye, brain, and pancreas development. Although pax6 is expressed in the whole prospective retinal field, subsequently its expression becomes restricted to the optic cup by reciprocal transcriptional repression of pax6 and pax2 However, it remains unclear how Pax6 protein is removed from the eyestalk territory on time. Here, we report that Mid1, a member of the RBCC/TRIM E3 ligase family, which was first identified in patients with the X-chromosome-linked Opitz BBB/G (OS) syndrome, interacts with Pax6. We found that the forming eyestalk is a major domain of mid1 expression, controlled by the morphogen Sonic hedgehog (Shh). Here, Mid1 regulates the ubiquitination and proteasomal degradation of Pax6 protein. Accordantly, when Mid1 levels are knocked down, Pax6 expression is expanded and eyes are enlarged. Our findings indicate that remaining or misaddressed Pax6 protein is cleared from the eyestalk region to properly set the border between the eyestalk territory and the retina via Mid1. Thus, we identified a posttranslational mechanism, regulated by Sonic hedgehog, which is important to suppress Pax6 activity and thus breaks pax6 autoregulation at defined steps during the formation of the visual system.
Collapse
|
18
|
Wright KM, Du H, Dagnachew M, Massiah MA. Solution structure of the microtubule-targeting COS domain of MID1. FEBS J 2016; 283:3089-102. [PMID: 27367845 DOI: 10.1111/febs.13795] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/27/2016] [Accepted: 06/29/2016] [Indexed: 11/27/2022]
Abstract
UNLABELLED The human MID1 protein is required for the proper development during embryogenesis. Mutations of MID1 are associated with X-linked Opitz G syndrome, characterized by midline anomalies. MID1 associates with the microtubules and functions as an ubiquitin E3 ligase, targeting protein phosphatase 2A for ubiquitin-mediated regulation. The mechanism of microtubule association is not known. Recently, a 60-amino acid region termed the C-terminal subgroup One Signature (COS) box/domain was identified at the C-terminal end of the coiled-coil (CC) domain that facilitates microtubule localization. Insertion of the MID1 COS domain at the C-terminal end of the CC domain of a nonmicrotubule-associated TRIM protein confers microtubule localization. Here, we report the solution structure of the COS domain of MID1. The domain adopts a helix-loop-helix structure in which the N- and C-terminal ends are in close proximity. Hydrophobic residues stabilizing the interaction of the two α-helices form a central hydrophobic core. The loop separating the α-helices is structured, with two of its hydrophobic residues making contact with the central core. On the outer surface, positively charged residues form a distinct basic patch near the termini that we postulate is important for microtubule binding. A model of the structure of the preceding coiled-coil and COS domains (CC-COS) show that the COS domain forms a helical bundle at the C-terminal end of the CC domain similar to the spectrin-like fold observed with some known microtubule-binding proteins. Interestingly, the CC-COS domains bind to microtubules, demonstrating for the first time that MID1 can directly associate with the microtubules. DATABASE Structural data are available in PDB database under the accession number 5IM8.
Collapse
Affiliation(s)
- Katharine M Wright
- Department of Chemistry and Center of Biomolecular Sciences, George Washington University, DC, USA
| | - Haijuan Du
- Department of Chemistry and Center of Biomolecular Sciences, George Washington University, DC, USA
| | - Mesgana Dagnachew
- Department of Chemistry and Center of Biomolecular Sciences, George Washington University, DC, USA
| | - Michael A Massiah
- Department of Chemistry and Center of Biomolecular Sciences, George Washington University, DC, USA
| |
Collapse
|
19
|
Massiah MA, Wright KM, Du H. Obtaining Soluble Folded Proteins from Inclusion Bodies Using Sarkosyl, Triton X‐100, and CHAPS: Application to LB and M9 Minimal Media. ACTA ACUST UNITED AC 2016; 84:6.13.1-6.13.24. [DOI: 10.1002/0471140864.ps0613s84] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | | | - Haijuan Du
- Department of Chemistry, George Washington University Washington D.C
| |
Collapse
|
20
|
Li B, Zhou T, Zou Y. Mid1/Mid2 expression in craniofacial development and a literature review of X-linked opitz syndrome. Mol Genet Genomic Med 2015; 4:95-105. [PMID: 26788540 PMCID: PMC4707030 DOI: 10.1002/mgg3.183] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 12/15/2022] Open
Abstract
Background Opitz syndrome (OS) is a genetic disorder that affects mainly the development of midline structures, including the craniofacial region, embryonic heart, and urogenital system. The manifestations of X‐linked OS are believed to be results of a malfunctioned gene, MID1, whose product has been shown to have ubiquitin E3 ligase activity and regulate the turnover of microtubular protein phosphatase 2Ac. MID2, a homolog of MID1, shares high structural and functional similarities with MID1. Identification of a missense mutation in MID2 in an Indian family causing overlapping phenotypes with OS provided the first evidence that MID2 might be involved in similar pathogenesis. Methods The clinic features and the genetic findings of all reported X‐linked OS were collectively summarized in this research. Real‐time RT‐PCR and in situ hybridization were used in the expression studies of Mid1/Mid2 in mouse embryos. Results Up‐to‐date, 88 different mutations have been identified in MID1 and most mutations occurred on the conserved amino acids of MID1 and MID2. Expression studies using real‐time RT‐PCR implicated a tendency of a mutually repressive expression pattern between Mid1 and Mid2 in mouse embryos. Further investigations using in situ hybridization revealed strong expressions of Mid1 and Mid2 in the epithelium of approaching facial prominences and downregulated expressions after fusion in mouse embryos. Conclusions Our results support the hypothesis of functional redundancy of Mid1/Mid2 and their potential roles in regulating tissue remodelling in early development.
Collapse
Affiliation(s)
- Bijun Li
- Department of Biology Jinan University Guangzhou China
| | - Tianhong Zhou
- Department of Biology Jinan University Guangzhou China
| | - Yi Zou
- Department of Biology Jinan University Guangzhou China
| |
Collapse
|
21
|
Maryoung LA, Lavado R, Bammler TK, Gallagher EP, Stapleton PL, Beyer RP, Farin FM, Hardiman G, Schlenk D. Differential Gene Expression in Liver, Gill, and Olfactory Rosettes of Coho Salmon (Oncorhynchus kisutch) After Acclimation to Salinity. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:703-17. [PMID: 26260986 PMCID: PMC4636457 DOI: 10.1007/s10126-015-9649-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/15/2015] [Indexed: 05/28/2023]
Abstract
Most Pacific salmonids undergo smoltification and transition from freshwater to saltwater, making various adjustments in metabolism, catabolism, osmotic, and ion regulation. The molecular mechanisms underlying this transition are largely unknown. In the present study, we acclimated coho salmon (Oncorhynchus kisutch) to four different salinities and assessed gene expression through microarray analysis of gills, liver, and olfactory rosettes. Gills are involved in osmotic regulation, liver plays a role in energetics, and olfactory rosettes are involved in behavior. Between all salinity treatments, liver had the highest number of differentially expressed genes at 1616, gills had 1074, and olfactory rosettes had 924, using a 1.5-fold cutoff and a false discovery rate of 0.5. Higher responsiveness of liver to metabolic changes after salinity acclimation to provide energy for other osmoregulatory tissues such as the gills may explain the differences in number of differentially expressed genes. Differentially expressed genes were tissue- and salinity-dependent. There were no known genes differentially expressed that were common to all salinity treatments and all tissues. Gene ontology term analysis revealed biological processes, molecular functions, and cellular components that were significantly affected by salinity, a majority of which were tissue-dependent. For liver, oxygen binding and transport terms were highlighted. For gills, muscle, and cytoskeleton-related terms predominated and for olfactory rosettes, immune response-related genes were accentuated. Interaction networks were examined in combination with GO terms and determined similarities between tissues for potential osmosensors, signal transduction cascades, and transcription factors.
Collapse
Affiliation(s)
- Lindley A Maryoung
- Department of Environmental Sciences, University of California, 2258 Geology Building, 900 University Ave, Riverside, CA, 92521, USA.
| | - Ramon Lavado
- Department of Environmental Sciences, University of California, 2258 Geology Building, 900 University Ave, Riverside, CA, 92521, USA
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Evan P Gallagher
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Patricia L Stapleton
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Richard P Beyer
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Federico M Farin
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Gary Hardiman
- Department of Medicine and Public Health and Center for Genomics Medicine, Medical University of South Carolina, 135 Cannon Street, Suite 303 MSC 835, Charleston, SC, 29425, USA
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, 2258 Geology Building, 900 University Ave, Riverside, CA, 92521, USA
| |
Collapse
|
22
|
Kruszka P, Li D, Harr MH, Wilson NR, Swarr D, McCormick EM, Chiavacci RM, Li M, Martinez AF, Hart RA, McDonald-McGinn DM, Deardorff MA, Falk MJ, Allanson JE, Hudson C, Johnson JP, Saadi I, Hakonarson H, Muenke M, Zackai EH. Mutations in SPECC1L, encoding sperm antigen with calponin homology and coiled-coil domains 1-like, are found in some cases of autosomal dominant Opitz G/BBB syndrome. J Med Genet 2015; 52:104-10. [PMID: 25412741 PMCID: PMC4393015 DOI: 10.1136/jmedgenet-2014-102677] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Opitz G/BBB syndrome is a heterogeneous disorder characterised by variable expression of midline defects including cleft lip and palate, hypertelorism, laryngealtracheoesophageal anomalies, congenital heart defects, and hypospadias. The X-linked form of the condition has been associated with mutations in the MID1 gene on Xp22. The autosomal dominant form has been linked to chromosome 22q11.2, although the causative gene has yet to be elucidated. METHODS AND RESULTS In this study, we performed whole exome sequencing on DNA samples from a three-generation family with characteristics of Opitz G/BBB syndrome with negative MID1 sequencing. We identified a heterozygous missense mutation c.1189A>C (p.Thr397Pro) in SPECC1L, located at chromosome 22q11.23. Mutation screening of an additional 19 patients with features of autosomal dominant Opitz G/BBB syndrome identified a c.3247G>A (p.Gly1083Ser) mutation segregating with the phenotype in another three-generation family. CONCLUSIONS Previously, SPECC1L was shown to be required for proper facial morphogenesis with disruptions identified in two patients with oblique facial clefts. Collectively, these data demonstrate that SPECC1L mutations can cause syndromic forms of facial clefting including some cases of autosomal dominant Opitz G/BBB syndrome and support the original linkage to chromosome 22q11.2.
Collapse
Affiliation(s)
- Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Dong Li
- The Center for Applied Genomics, The Children’s Hospital of Philadelphia, and the Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Margaret H Harr
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Clinical Genetics Center, and the Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nathan R Wilson
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Daniel Swarr
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Clinical Genetics Center, and the Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth M McCormick
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Clinical Genetics Center, and the Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rosetta M Chiavacci
- The Center for Applied Genomics, The Children’s Hospital of Philadelphia, and the Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mindy Li
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Clinical Genetics Center, and the Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ariel F Martinez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rachel A Hart
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Donna M McDonald-McGinn
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Clinical Genetics Center, and the Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew A Deardorff
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Clinical Genetics Center, and the Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marni J Falk
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Clinical Genetics Center, and the Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Cindy Hudson
- Shodair Children’s Hospital, Helena, Montana, USA
| | - John P Johnson
- Shodair Children’s Hospital, Helena, Montana, USA
- Clinical Genetics and Metabolism, Floating Hospital for Children, Tufts Medical Center, Boston, Massachusetts, USA
| | - Irfan Saadi
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hakon Hakonarson
- The Center for Applied Genomics, The Children’s Hospital of Philadelphia, and the Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Elaine H Zackai
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Clinical Genetics Center, and the Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
23
|
Boding L, Hansen AK, Nielsen MM, Meroni G, Braunstein TH, Woetmann A, Ødum N, Bonefeld CM, Geisler C. Midline 1 controls polarization and migration of murine cytotoxic T cells. IMMUNITY INFLAMMATION AND DISEASE 2015; 2:262-71. [PMID: 25866633 PMCID: PMC4386920 DOI: 10.1002/iid3.44] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 11/13/2014] [Accepted: 11/15/2014] [Indexed: 11/24/2022]
Abstract
Midline 1 (MID1) is a microtubule-associated ubiquitin ligase that regulates protein phosphatase 2 A levels. Loss-of-function mutations in MID1 lead to the human X-linked Opitz G/BBB (OS) syndrome characterized by defective midline development during embryogenesis. We have recently shown that MID1 is strongly up-regulated in murine cytotoxic T lymphocytes (CTLs), and that it has a significant impact on exocytosis of lytic granules and the killing capacity of CTLs. The aims of the present study were to determine the localization of MID1 in migrating CTLs, and to investigate whether MID1 affects CTL polarization and migration. We found that MID1 mainly localizes to the uropod of migrating CTLs and that it has a substantial impact on CTL polarization and migration in vitro. Furthermore, analysis of contact hypersensitivity responses supported that MID1 controls effector functions of CTLs in hapten-challenged skin in vivo. These results provide significant new knowledge on the role of MID1 in CTL biology.
Collapse
Affiliation(s)
- Lasse Boding
- Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Ann K Hansen
- Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Morten M Nielsen
- Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Germana Meroni
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo" Trieste, Italy
| | - Thomas H Braunstein
- Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Anders Woetmann
- Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Niels Ødum
- Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Charlotte M Bonefeld
- Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Carsten Geisler
- Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
24
|
Wright KM, Wu K, Babatunde O, Du H, Massiah MA. XLOS-observed mutations of MID1 Bbox1 domain cause domain unfolding. PLoS One 2014; 9:e107537. [PMID: 25216264 PMCID: PMC4162623 DOI: 10.1371/journal.pone.0107537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 08/20/2014] [Indexed: 12/13/2022] Open
Abstract
MID1 catalyzes the ubiquitination of the protein alpha4 and the catalytic subunit of protein phosphatase 2A. Mutations within the MID1 Bbox1 domain are associated with X-linked Opitz G syndrome (XLOS). Our functional assays have shown that mutations of Ala130 to Val or Thr, Cys142 to Ser and Cys145 to Thr completely disrupt the polyubiquitination of alpha4. Using NMR spectroscopy, we characterize the effect of these mutations on the tertiary structure of the Bbox1 domain by itself and in tandem with the Bbox2 domain. The mutation of either Cys142 or Cys145, each of which is involved in coordinating one of the two zinc ions, results in the collapse of signal dispersion in the HSQC spectrum of the Bbox1 domain indicating that the mutant protein structure is unfolded. Each mutation caused the coordination of both zinc ions, which are ∼ 13 Å apart, to be lost. Although Ala130 is not involved in the coordination of a zinc ion, the Ala130Thr mutant Bbox1 domain yields a poorly dispersed HSQC spectrum similar to those of the Cys142Ser and Cys145Thr mutants. Interestingly, neither cysteine mutation affects the structure of the adjacent Bbox2 domain when the two Bbox domains are engineered in their native tandem Bbox1-Bbox2 protein construct. Dynamic light scattering measurements suggest that the mutant Bbox1 domain has an increased propensity to form aggregates compared to the wild type Bbox1 domain. These studies provide insight into the mechanism by which mutations observed in XLOS affect the structure and function of the MID1 Bbox1 domain.
Collapse
Affiliation(s)
- Katharine M. Wright
- Department of Chemistry, George Washington University, Washington, D.C., United States of America
| | - Kuanlin Wu
- Department of Chemistry, George Washington University, Washington, D.C., United States of America
| | - Omotolani Babatunde
- Department of Chemistry, George Washington University, Washington, D.C., United States of America
| | - Haijuan Du
- Department of Chemistry, George Washington University, Washington, D.C., United States of America
| | - Michael A. Massiah
- Department of Chemistry, George Washington University, Washington, D.C., United States of America
| |
Collapse
|
25
|
D'Cruz AA, Babon JJ, Norton RS, Nicola NA, Nicholson SE. Structure and function of the SPRY/B30.2 domain proteins involved in innate immunity. Protein Sci 2014; 22:1-10. [PMID: 23139046 DOI: 10.1002/pro.2185] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/16/2012] [Accepted: 10/19/2012] [Indexed: 11/12/2022]
Abstract
The SPRY domain is a protein interaction module found in 77 murine and ~100 human proteins, and is implicated in important biological pathways, including those that regulate innate and adaptive immunity. The current definition of the SPRY domain is based on a sequence repeat discovered in the splA kinase and ryanodine receptors. The greater SPRY family is divided into the B30.2 (which contains a PRY extension at the N-terminus) and "SPRY-only" sub-families. In this brief review, we examine the current structural and biochemical literature on SPRY/B30.2 domain involvement in key immune processes and highlight a PRY-like 60 amino acid region in the N-terminus of "SPRY-only" proteins. Phylogenetic, structural, and functional analyses suggest that this N-terminal region is related to the PRY region of B30.2 and should be characterized as part of an extended SPRY domain. Greater understanding of the functional importance of the N-terminal region in "SPRY only" proteins will enhance our ability to interrogate SPRY interactions with their respective binding partners.
Collapse
Affiliation(s)
- Akshay A D'Cruz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
26
|
Du H, Wu K, Didoronkute A, Levy MVA, Todi N, Shchelokova A, Massiah MA. MID1 catalyzes the ubiquitination of protein phosphatase 2A and mutations within its Bbox1 domain disrupt polyubiquitination of alpha4 but not of PP2Ac. PLoS One 2014; 9:e107428. [PMID: 25207814 PMCID: PMC4160256 DOI: 10.1371/journal.pone.0107428] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 08/14/2014] [Indexed: 01/05/2023] Open
Abstract
MID1 is a microtubule-associated protein that belongs to the TRIM family. MID1 functions as an ubiquitin E3 ligase, and recently was shown to catalyze the polyubiquitination of, alpha4, a protein regulator of protein phosphatase 2A (PP2A). It has been hypothesized that MID1 regulates PP2A, requiring the intermediary interaction with alpha4. Here we report that MID1 catalyzes the in vitro ubiquitination of the catalytic subunit of PP2A (PP2Ac) in the absence of alpha4. In the presence of alpha4, the level of PP2Ac ubiquitination is reduced. Using the MID1 RING-Bbox1-Bbox2 (RB1B2) construct containing the E3 ligase domains, we investigate the functional effects of mutations within the Bbox domains that are identified in patients with X-linked Opitz G syndrome (XLOS). The RB1B2 proteins harboring the C142S, C145T, A130V/T mutations within the Bbox1 domain and C195F mutation within the Bbox2 domain maintain auto-polyubiquitination activity. Qualitatively, the RB1B2 proteins containing these mutations are able to catalyze the ubiquitination of PP2Ac. In contrast, the RB1B2 proteins with mutations within the Bbox1 domain are unable to catalyze the polyubiquitination of alpha4. These results suggest that unregulated alpha4 may be the direct consequence of these natural mutations in the Bbox1 domain of MID1, and hence alpha4 could play a greater role to account for the increased amount of PP2A observed in XLOS-derived fibroblasts.
Collapse
Affiliation(s)
- Haijuan Du
- Department of Chemistry, George Washington University, Washington, District of Columbia, United States of America
| | - Kuanlin Wu
- Department of Chemistry, George Washington University, Washington, District of Columbia, United States of America
| | - Alma Didoronkute
- Department of Chemistry, George Washington University, Washington, District of Columbia, United States of America
| | - Marcus V. A. Levy
- Department of Chemistry, George Washington University, Washington, District of Columbia, United States of America
| | - Nimish Todi
- Department of Chemistry, George Washington University, Washington, District of Columbia, United States of America
| | - Anna Shchelokova
- Department of Chemistry, George Washington University, Washington, District of Columbia, United States of America
| | - Michael A. Massiah
- Department of Chemistry, George Washington University, Washington, District of Columbia, United States of America
| |
Collapse
|
27
|
Boding L, Hansen AK, Meroni G, Johansen BB, Braunstein TH, Bonefeld CM, Kongsbak M, Jensen BAH, Woetmann A, Thomsen AR, Ødum N, von Essen MR, Geisler C. Midline 1 directs lytic granule exocytosis and cytotoxicity of mouse killer T cells. Eur J Immunol 2014; 44:3109-18. [DOI: 10.1002/eji.201344388] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 05/27/2014] [Accepted: 07/08/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Lasse Boding
- Department of International Health, Immunology and Microbiology; University of Copenhagen; Copenhagen Denmark
| | - Ann K. Hansen
- Department of International Health, Immunology and Microbiology; University of Copenhagen; Copenhagen Denmark
| | - Germana Meroni
- Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”; Trieste Italy
| | - Bo B. Johansen
- Core Facility for Integrated Microscopy; University of Copenhagen; Copenhagen Denmark
| | - Thomas H. Braunstein
- Department of Biomedical Sciences; Danish National Research Foundation Centre for Cardiac Arrhythmia; University of Copenhagen; Copenhagen Denmark
| | - Charlotte M. Bonefeld
- Department of International Health, Immunology and Microbiology; University of Copenhagen; Copenhagen Denmark
| | - Martin Kongsbak
- Department of International Health, Immunology and Microbiology; University of Copenhagen; Copenhagen Denmark
| | - Benjamin A. H. Jensen
- Department of International Health, Immunology and Microbiology; University of Copenhagen; Copenhagen Denmark
| | - Anders Woetmann
- Department of International Health, Immunology and Microbiology; University of Copenhagen; Copenhagen Denmark
| | - Allan R. Thomsen
- Department of International Health, Immunology and Microbiology; University of Copenhagen; Copenhagen Denmark
| | - Niels Ødum
- Department of International Health, Immunology and Microbiology; University of Copenhagen; Copenhagen Denmark
| | - Marina R. von Essen
- Department of International Health, Immunology and Microbiology; University of Copenhagen; Copenhagen Denmark
| | - Carsten Geisler
- Department of International Health, Immunology and Microbiology; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
28
|
X-linked microtubule-associated protein, Mid1, regulates axon development. Proc Natl Acad Sci U S A 2013; 110:19131-6. [PMID: 24194544 DOI: 10.1073/pnas.1303687110] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Opitz syndrome (OS) is a genetic neurological disorder. The gene responsible for the X-linked form of OS, Midline-1 (MID1), encodes an E3 ubiquitin ligase that regulates the degradation of the catalytic subunit of protein phosphatase 2A (PP2Ac). However, how Mid1 functions during neural development is largely unknown. In this study, we provide data from in vitro and in vivo experiments suggesting that silencing Mid1 in developing neurons promotes axon growth and branch formation, resulting in a disruption of callosal axon projections in the contralateral cortex. In addition, a similar phenotype of axonal development was observed in the Mid1 knockout mouse. This defect was largely due to the accumulation of PP2Ac in Mid1-depleted cells as further down-regulation of PP2Ac rescued the axonal phenotype. Together, these data demonstrate that Mid1-dependent PP2Ac turnover is important for normal axonal development and that dysregulation of this process may contribute to the underlying cause of OS.
Collapse
|
29
|
Migliore C, Athanasakis E, Dahoun S, Wonkam A, Lees M, Calabrese O, Connell F, Lynch SA, Izzi C, Pompilii E, Thakur S, van Maarle M, Wilson LC, Meroni G. Complex rearrangement of the exon 6 genomic region among Opitz G/BBB Syndrome MID1 alterations. Eur J Med Genet 2013; 56:404-10. [PMID: 23791568 DOI: 10.1016/j.ejmg.2013.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/27/2013] [Indexed: 11/25/2022]
Abstract
Opitz G/BBB Syndrome (OS) is a multiple congenital anomaly disorder characterized by developmental defects of midline structures. The most relevant clinical signs are ocular hypertelorism, hypospadias, cleft lip and palate, laryngo-tracheo-esophageal abnormalities, imperforate anus, and cardiac defects. Developmental delay, intellectual disability and brain abnormalities are also present. The X-linked form of this disorder is caused by mutations in the MID1 gene coding for a member of the tripartite motif family of E3 ubiquitin ligases. Here, we describe 12 novel patients that carry MID1 mutations emphasizing that laryngo-tracheo-esophageal defects are very common in OS patients and, together with hypertelorism and hypospadias, are the most frequent findings among the full spectrum of OS clinical manifestations. Besides missense and nonsense mutations, small insertions and deletions scattered along the entire length of the gene, we found that a consistent number of MID1 alterations are represented by the deletion of single coding exons. Deep characterization of one of these deletions reveals, for the first time within the MID1 gene, a complex rearrangement composed of two deletions, an inversion and a small insertion that may suggest the involvement of concurrent non-homologous mechanisms in the generation of the observed structural variant.
Collapse
Affiliation(s)
- Chiara Migliore
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Morf MK, Rimann I, Alexander M, Roy P, Hajnal A. The Caenorhabditis elegans homolog of the Opitz syndrome gene, madd-2/Mid1, regulates anchor cell invasion during vulval development. Dev Biol 2013; 374:108-14. [PMID: 23201576 DOI: 10.1016/j.ydbio.2012.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 11/19/2012] [Accepted: 11/20/2012] [Indexed: 01/30/2023]
Abstract
Mutations in the human Mid1 gene cause Opitz G/BBB syndrome, which is characterized by various midline closure defects. The Caenorhabditis elegans homolog of Mid1, madd-2, positively regulates signaling by the unc-40 Netrin receptor during the extension of muscle arms to the midline and in axon guidance and branching. During uterine development, a specialized cell called anchor cell (AC) breaches the basal laminae separating the uterus from the epidermis and invades the underlying vulval tissue. AC invasion is guided by an UNC-6 Netrin signal from the ventral nerve cord and an unknown guidance signal from the vulval cells. Using genetic epistasis analysis, we show that madd-2 regulates AC invasion downstream of or in parallel with the Netrin signaling pathway. Measurements of AC shape, polarity and dynamics indicate that MADD-2 prevents the formation of ectopic AC protrusions in the absence of guidance signals. We propose that MADD-2 represses the intrinsic invasive capacity of the AC, while the Netrin and vulval guidance cues locally overcome this inhibitory activity of MADD-2 to guide the AC ventrally into the vulval tissue. Therefore, developmental cell invasion depends on a precise balance between pro- and anti-invasive factors.
Collapse
Affiliation(s)
- Matthias K Morf
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
31
|
Exploring the diversity of SPRY/B30.2-mediated interactions. Trends Biochem Sci 2012; 38:38-46. [PMID: 23164942 DOI: 10.1016/j.tibs.2012.10.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 10/02/2012] [Accepted: 10/05/2012] [Indexed: 11/21/2022]
Abstract
The SPla/Ryanodine receptor (SPRY)/B30.2 domain is one of the most common folds in higher eukaryotes. The human genome encodes 103 SPRY/B30.2 domains, several of which are involved in the immune response. Approximately 45% of human SPRY/B30.2-containing proteins are E3 ligases. The role and function of the majority of SPRY/B30.2 domains are still poorly understood, however, in several cases mutations in this domain have been linked to congenital disorders. The recent characterization of SPRY/B30.2-mediated protein interactions has provided evidence for a role of this domain as an adaptor module to assemble macromolecular complexes, analogous to Src homology (SH)2, SH3, and WW domains. However, functional and structural evidence suggests that SPRY/B30.2 is a more versatile fold, allowing a wide range of binding modes.
Collapse
|
32
|
Watkins GR, Wang N, Mazalouskas MD, Gomez RJ, Guthrie CR, Kraemer BC, Schweiger S, Spiller BW, Wadzinski BE. Monoubiquitination promotes calpain cleavage of the protein phosphatase 2A (PP2A) regulatory subunit α4, altering PP2A stability and microtubule-associated protein phosphorylation. J Biol Chem 2012; 287:24207-15. [PMID: 22613722 DOI: 10.1074/jbc.m112.368613] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multiple neurodegenerative disorders are linked to aberrant phosphorylation of microtubule-associated proteins (MAPs). Protein phosphatase 2A (PP2A) is the major MAP phosphatase; however, little is known about its regulation at microtubules. α4 binds the PP2A catalytic subunit (PP2Ac) and the microtubule-associated E3 ubiquitin ligase MID1, and through unknown mechanisms can both reduce and enhance PP2Ac stability. We show MID1-dependent monoubiquitination of α4 triggers calpain-mediated cleavage and switches α4's activity from protective to destructive, resulting in increased Tau phosphorylation. This regulatory mechanism appears important in MAP-dependent pathologies as levels of cleaved α4 are decreased in Opitz syndrome and increased in Alzheimer disease, disorders characterized by MAP hypophosphorylation and hyperphosphorylation, respectively. These findings indicate that regulated inter-domain cleavage controls the dual functions of α4, and dysregulation of α4 cleavage may contribute to Opitz syndrome and Alzheimer disease.
Collapse
Affiliation(s)
- Guy R Watkins
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6600, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hu CH, Liu YF, Yu JS, Ng YY, Chen SJ, Su PH, Chen JY. A MID1 gene mutation in a patient with Opitz G/BBB syndrome that altered the 3D structure of SPRY domain. Am J Med Genet A 2012; 158A:726-31. [PMID: 22407675 DOI: 10.1002/ajmg.a.35216] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 12/05/2011] [Indexed: 11/08/2022]
Abstract
Mutations in the MID1 gene result in X-linked Opitz G/BBB syndrome (OS), a disorder that affects development of midline structures and comprises hypertelorism, cleft lip/palate, hypospadias, and laryngo-tracheo-esophageal abnormalities, and, at times, neurological, anal, and cardiac defects. MID1 gene abnormalities include missense, nonsense, and splicing mutations, small insertions, small deletions, and complex rearrangements. Here, we present a patient with Opitz G/BBB syndrome and a unique MID1 gene point mutation c.1703T
Collapse
Affiliation(s)
- Ching-Hsuan Hu
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
34
|
Zhao Z, Yang L, Ding YQ, Yu Q. Prognostic significance of MID1 expression in colorectal carcinoma. Shijie Huaren Xiaohua Zazhi 2012; 20:113-118. [DOI: 10.11569/wcjd.v20.i2.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the expression of midline 1 (MID1) in human colorectal carcinoma and to assess its prognostic significance.
METHODS: Immunohistochemistry was used to detect the expression of MID1 protein in colorectal carcinoma specimens (n = 109). The relationship between the survival of patients with colorectal cancer and the expression of MID1 was investigated. Survival analyses were performed using the Kaplan-Meier method and Cox regression model.
RESULTS: MID1 expression significantly affected the survival of patients with colorectal carcinoma (P < 0.05). MID1 expression had a significantly negative correlation with lymph node metastasis (r = -0.204, P = 0.034) and depth of invasion (r = -0.223, P = 0.020), but was significantly positively correlated with differentiation degree (r = 0.236, P = 0.014). MID1 expression had no relationship with sex, age or tumor pathologic type. Kaplan-Meier analysis indicated that the 7-year cumulative survival rates for patients with high, medium and low MID1 expression were 69.2%, 45.0% and 30.0%, respectively, and their mean survival time was 91.101 mo ± 6.127 mo, 69.389 mo ± 7.512 mo, 50.358 mo ± 8.091 mo.
CONCLUSION: MID1 expression can be used as a parameter for the judgment of colorectal carcinoma differentiation, invasion and lymph node metastasis, and as a useful prognostic marker in patient with colorectal carcinoma.
Collapse
|
35
|
Regulation of PP2A activity by Mid1 controls cranial neural crest speed and gangliogenesis. Mech Dev 2012; 128:560-76. [DOI: 10.1016/j.mod.2012.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 01/05/2012] [Accepted: 01/11/2012] [Indexed: 12/22/2022]
|
36
|
|
37
|
Du H, Massiah MA. NMR studies of the C-terminus of alpha4 reveal possible mechanism of its interaction with MID1 and protein phosphatase 2A. PLoS One 2011; 6:e28877. [PMID: 22194938 PMCID: PMC3237570 DOI: 10.1371/journal.pone.0028877] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 11/16/2011] [Indexed: 12/17/2022] Open
Abstract
Alpha4 is a regulatory subunit of the protein phosphatase family of enzymes and plays an essential role in regulating the catalytic subunit of PP2A (PP2Ac) within the rapamycin-sensitive signaling pathway. Alpha4 also interacts with MID1, a microtubule-associated ubiquitin E3 ligase that appears to regulate the function of PP2A. The C-terminal region of alpha4 plays a key role in the binding interaction of PP2Ac and MID1. Here we report on the solution structure of a 45-amino acid region derived from the C-terminus of alpha4 (alpha45) that binds tightly to MID1. In aqueous solution, alpha45 has properties of an intrinsically unstructured peptide although chemical shift index and dihedral angle estimation based on chemical shifts of backbone atoms indicate the presence of a transient α-helix. Alpha45 adopts a helix-turn-helix HEAT-like structure in 1% SDS micelles, which may mimic a negatively charged surface for which alpha45 could bind. Alpha45 binds tightly to the Bbox1 domain of MID1 in aqueous solution and adopts a structure consistent with the helix-turn-helix structure observed in 1% SDS. The structure of alpha45 reveals two distinct surfaces, one that can interact with a negatively charged surface, which is present on PP2A, and one that interacts with the Bbox1 domain of MID1.
Collapse
Affiliation(s)
- Haijuan Du
- Department of Chemistry, George Washington University, Washington, D.C., United States of America
| | - Michael A. Massiah
- Department of Chemistry, George Washington University, Washington, D.C., United States of America
| |
Collapse
|
38
|
Song S, Ge Q, Wang J, Chen H, Tang S, Bi J, Li X, Xie Q, Huang X. TRIM-9 functions in the UNC-6/UNC-40 pathway to regulate ventral guidance. J Genet Genomics 2011; 38:1-11. [PMID: 21338947 DOI: 10.1016/j.jcg.2010.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 12/06/2010] [Accepted: 12/07/2010] [Indexed: 10/18/2022]
Abstract
TRIpartite Motif (TRIM) family proteins are ring finger domain-containing, multi-domain proteins implicated in many biological processes. Members of the TRIM-9/C-I subfamily of TRIM proteins, including TRIM-9, MID1 and MID2, have neuronal functions and are associated with neurological diseases. To explore whether the functions of C-I TRIM proteins are conserved in invertebrates, we analyzed Caenorhabditis elegans and Drosophila trim-9 mutants. C. elegans trim-9 mutants exhibit defects in the ventral guidance of hermaphrodite specific neuron (HSN) and the touch neuron AVM. Further genetic analyses indicate that TRIM-9 participates in the UNC-6-UNC-40 attraction pathway. Asymmetric distribution of UNC-40 during HSN development is normal in trim-9 mutants. However, the asymmetric localization of MIG-10, a downstream effector of UNC-40, is abolished in trim-9 mutants. These results suggest that TRIM-9 functions upstream of MIG-10 in the UNC-40 pathway. Moreover, we showed that TRIM-9 exhibits E3 ubiquitin ligase activity in vitro and this activity is important for TRIM-9 function in vivo. Additionally, we found that Drosophila trim-9 is required for the midline attraction of a group of sensory neuron axons. Over-expression of the Netrin/UNC-6 receptor Frazzled suppresses the guidance defects in trim-9 mutants. Our study reveals an evolutionarily conserved function of TRIM-9 in the UNC-40/Frazzled-mediated UNC-6/Netrin attraction pathway.
Collapse
Affiliation(s)
- Song Song
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Macaulay EC, Weeks RJ, Andrews S, Morison IM. Hypomethylation of functional retrotransposon-derived genes in the human placenta. Mamm Genome 2011; 22:722-35. [PMID: 21874386 DOI: 10.1007/s00335-011-9355-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 07/29/2011] [Indexed: 11/25/2022]
Abstract
DNA hypomethylation is assumed to be a feature of the mammalian placenta; however, its role in regulating placental gene expression is not well defined. In this study, MeDIP and Sequenom MassARRAY were used to identify hypomethylated gene promoters in the human placenta. Among the genes identified, the hypomethylation of an alternative promoter for KCNH5 was found to be restricted to the placenta and chorion. Complete methylation of this promoter correlates with a silenced KCNH5 transcript in embryonic tissues, including the amnion. Unusually, this hypomethylated promoter and the alternative first exon are derived from a SINE (AluY) retrotransposon. Examination of additional retrotransposon-derived gene promoters in the placenta confirmed that retrotransposon hypomethylation permits the placenta-specific expression of these genes. Furthermore, the lineage-specific methylation displayed by KCNH5, INSL4, and ERVWE1 revealed that dichotomous methylation establishes differential retrotransposon silencing between the extra-embryonic and embryonic lineages. The hypomethylation of the retrotransposons that regulate these genes, each of which arose during recent primate evolution, is consistent with these genes having functional roles that are unique to the invasive haemochorial placentas of humans and recent primates.
Collapse
Affiliation(s)
- Erin C Macaulay
- Department of Pathology, Dunedin School of Medicine and National Research Centre for Growth and Development, University of Otago, New Zealand
| | | | | | | |
Collapse
|
40
|
Greenwood AD, Vincendeau M, Schmädicke AC, Montag J, Seifarth W, Motzkus D. Bovine spongiform encephalopathy infection alters endogenous retrovirus expression in distinct brain regions of cynomolgus macaques (Macaca fascicularis). Mol Neurodegener 2011; 6:44. [PMID: 21699683 PMCID: PMC3152937 DOI: 10.1186/1750-1326-6-44] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 06/23/2011] [Indexed: 01/10/2023] Open
Abstract
Background Prion diseases such as bovine spongiform encephalopathies (BSE) are transmissible neurodegenerative diseases which are presumably caused by an infectious conformational isoform of the cellular prion protein. Previous work has provided evidence that in murine prion disease the endogenous retrovirus (ERV) expression is altered in the brain. To determine if prion-induced changes in ERV expression are a general phenomenon we used a non-human primate model for prion disease. Results Cynomolgus macaques (Macaca fasicularis) were infected intracerebrally with BSE-positive brain stem material from cattle and allowed to develop prion disease. Brain tissue from the basis pontis and vermis cerebelli of the six animals and the same regions from four healthy controls were subjected to ERV expression profiling using a retrovirus-specific microarray and quantitative real-time PCR. We could show that Class I gammaretroviruses HERV-E4-1, ERV-9, and MacERV-4 increase expression in BSE-infected macaques. In a second approach, we analysed ERV-K-(HML-2) RNA and protein expression in extracts from the same cynomolgus macaques. Here we found a significant downregulation of both, the macaque ERV-K-(HML-2) Gag protein and RNA in the frontal/parietal cortex of BSE-infected macaques. Conclusions We provide evidence that dysregulation of ERVs in response to BSE-infection can be detected on both, the RNA and the protein level. To our knowledge, this is the first report on the differential expression of ERV-derived structural proteins in prion disorders. Our findings suggest that endogenous retroviruses may induce or exacerbate the pathological consequences of prion-associated neurodegeneration.
Collapse
Affiliation(s)
- Alex D Greenwood
- German Primate Center, Leibniz-Institute for Primate Research, Unit of Infection Models, D-37077 Göttingen, Germany.
| | | | | | | | | | | |
Collapse
|
41
|
Liu E, Knutzen CA, Krauss S, Schweiger S, Chiang GG. Control of mTORC1 signaling by the Opitz syndrome protein MID1. Proc Natl Acad Sci U S A 2011; 108:8680-5. [PMID: 21555591 PMCID: PMC3102420 DOI: 10.1073/pnas.1100131108] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in the MID1 gene are causally linked to X-linked Opitz BBB/G syndrome (OS), a congenital disorder that primarily affects the formation of diverse ventral midline structures. The MID1 protein has been shown to function as an E3 ligase targeting the catalytic subunit of protein phosphatase 2A (PP2A-C) for ubiquitin-mediated degradation. However, the molecular pathways downstream of the MID1/PP2A axis that are dysregulated in OS and that translate dysfunctional MID1 and elevated levels of PP2A-C into the OS phenotype are poorly understood. Here, we show that perturbations in MID1/PP2A affect mTORC1 signaling. Increased PP2A levels, resulting from proteasome inhibition or depletion of MID1, lead to disruption of the mTOR/Raptor complex and down-regulated mTORC1 signaling. Congruously, cells derived from OS patients that carry MID1 mutations exhibit decreased mTORC1 formation, S6K1 phosphorylation, cell size, and cap-dependent translation, all of which is rescued by expression of wild-type MID1 or an activated mTOR allele. Our findings define mTORC1 signaling as a downstream pathway regulated by the MID1/PP2A axis, suggesting that mTORC1 plays a key role in OS pathogenesis.
Collapse
Affiliation(s)
- Enbo Liu
- Signal Transduction Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Christine A. Knutzen
- Signal Transduction Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Sybille Krauss
- Max-Planck-Institute for Molecular Genetics, 14195 Berlin, Germany
- DZNE (German Center for Neurodegenerative Disorders), 53127 Bonn, Germany; and
| | - Susann Schweiger
- Max-Planck-Institute for Molecular Genetics, 14195 Berlin, Germany
- Division of Medical Sciences, University of Dundee Medical School, Dundee DD1 9SY, United Kingdom
| | - Gary G. Chiang
- Signal Transduction Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| |
Collapse
|
42
|
Zhang X, Chen Y, Zhao S, Markljung E, Nordenskjöld A. Hypospadias associated with hypertelorism, the mildest phenotype of Opitz syndrome. J Hum Genet 2011; 56:348-51. [PMID: 21326312 DOI: 10.1038/jhg.2011.17] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hypospadias is a common congenital malformation in boys in which the urethral meatus opens on the underside of the penis. It is considered a complex disorder with several genes involved and the molecular etiology is just beginning to be revealed. As more than 85% of Opitz G/BBB syndrome (OS) patients with MID1 mutations are manifested with hypospadias, we have investigated the association between the MID1 gene and hypospadias. DNA from 114 hypospadias cases was analyzed with direct sequencing of the MID1 gene. Genotyping analysis was performed for the single-nucleotide polymorphism (SNP) c.1230G>A in 370 individuals with varying degrees of hypospadias and compared with 759 healthy controls. We identified one nonsense mutation c.712G>T (p.E238X), one missense mutation c.1679A>G (p.K560R) and two synonymous variants c.1230G>A (p.S410S) and c.1284T>G (p.V428V). We also detected a significant difference in the rare allele frequency of SNP c.1230G>A in hypospadias patients as compared with controls (P=0.016). Our finding suggests that hypospadias associated with hypertelorism is the mildest phenotype in OS caused by MID1 mutations.
Collapse
Affiliation(s)
- Xufeng Zhang
- Department of Urology, The Second Hospital, Shandong University, Jinan, PR China
| | | | | | | | | |
Collapse
|
43
|
Pisanu S, Ghisaura S, Pagnozzi D, Biosa G, Tanca A, Roggio T, Uzzau S, Addis MF. The sheep milk fat globule membrane proteome. J Proteomics 2010; 74:350-8. [PMID: 21147282 DOI: 10.1016/j.jprot.2010.11.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 11/24/2010] [Accepted: 11/29/2010] [Indexed: 02/07/2023]
Abstract
Milk fat globule membranes (MFGM) are three-layered structures that enclose fat droplets, and are composed by an internal monolayer of endoplasmic reticulum origin, surrounded by a bilayer derived from the apical membrane of the lactating cell. In this work, an optimized protein extraction method was applied to sheep MFGM, and extracts were subjected to SDS-PAGE separation followed by shotgun LC tandem mass spectrometry (GeLC-MS/MS) for identification and characterization. In total, 140 unique sheep MFGM proteins (MFGMPs) were identified. All protein identification data were subjected to Gene Ontology (GO) classification for localization and function. Moreover, the relative abundance of all identified MFGMPs was estimated by means of the normalized spectral abundance factor (NSAF) approach, and GO abundance classes were obtained. The data gathered in this work provide a detailed picture of the proteome expressed in healthy sheep MFGs, and lay the foundations for future studies on sheep lactation physiology and on its alterations in pathological conditions.
Collapse
|
44
|
The tripartite motif protein MADD-2 functions with the receptor UNC-40 (DCC) in Netrin-mediated axon attraction and branching. Dev Cell 2010; 18:950-60. [PMID: 20627077 DOI: 10.1016/j.devcel.2010.02.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 12/22/2009] [Accepted: 02/05/2010] [Indexed: 02/06/2023]
Abstract
Neurons innervate multiple targets by sprouting axon branches from a primary axon shaft. We show here that the ventral guidance factor unc-6 (Netrin), its receptor unc-40 (DCC), and the gene madd-2 stimulate ventral axon branching in C. elegans chemosensory and mechanosensory neurons. madd-2 also promotes attractive axon guidance to UNC-6 and assists unc-6- and unc-40-dependent ventral recruitment of the actin regulator MIG-10 in nascent axons. MADD-2 is a tripartite motif protein related to MID-1, the causative gene for the human developmental disorder Opitz syndrome. MADD-2 and UNC-40 proteins preferentially localize to a ventral axon branch that requires their function; genetic results indicate that MADD-2 potentiates UNC-40 activity. Our results identify MADD-2 as an UNC-40 cofactor in axon attraction and branching, paralleling the role of UNC-5 in repulsion, and provide evidence that targeting of a guidance factor to specific axonal branches can confer differential responsiveness to guidance cues.
Collapse
|
45
|
Suzuki M, Hara Y, Takagi C, Yamamoto TS, Ueno N. MID1 and MID2 are required for Xenopus neural tube closure through the regulation of microtubule organization. Development 2010; 137:2329-39. [DOI: 10.1242/dev.048769] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Closure of the neural tube requires both the change and maintenance of cell shape. The change occurs mainly through two coordinated morphogenetic events: cell elongation and apical constriction. How cytoskeletal elements, including microtubules, are regulated in this process in vivo is largely unknown. Here, we show that neural tube closure in Xenopus depends on orthologs of two proteins: MID1, which is responsible for Opitz G/BBB syndrome in humans, and its paralog MID2. Depletion of the Xenopus MIDs (xMIDs) by morpholino-mediated knockdown disrupted epithelial morphology in the neural plate, leading to neural tube defects. In the xMID-depleted neural plate, the normal epithelial organization was perturbed without affecting neural fate. Furthermore, the xMID knockdown destabilized and caused the disorganization of microtubules, which are normally apicobasally polarized, accounting for the abnormal phenotypes. We also found that the xMIDs and their interacting protein Mig12 were coordinately required for microtubule stabilization during remodeling of the neural plate. Finally, we showed that the xMIDs are required for the formation of multiple epithelial organs. We propose that similar MID-governed mechanisms underlie the normal morphogenesis of epithelial tissues and organs, including the tissues affected in patients with Opitz G/BBB syndrome.
Collapse
Affiliation(s)
- Makoto Suzuki
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Aichi, Japan
- Department of Basic Biology, School of Life Science, the Graduate University for Advanced Studies (SOKENDAI), Nishigonaka 38, Myodaiji, Okazaki 444-8585, Aichi, Japan
| | - Yusuke Hara
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Aichi, Japan
- Department of Basic Biology, School of Life Science, the Graduate University for Advanced Studies (SOKENDAI), Nishigonaka 38, Myodaiji, Okazaki 444-8585, Aichi, Japan
| | - Chiyo Takagi
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Aichi, Japan
| | - Takamasa S. Yamamoto
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Aichi, Japan
| | - Naoto Ueno
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Aichi, Japan
- Department of Basic Biology, School of Life Science, the Graduate University for Advanced Studies (SOKENDAI), Nishigonaka 38, Myodaiji, Okazaki 444-8585, Aichi, Japan
| |
Collapse
|
46
|
Lack of Mid1, the mouse ortholog of the Opitz syndrome gene, causes abnormal development of the anterior cerebellar vermis. J Neurosci 2010; 30:2880-7. [PMID: 20181585 DOI: 10.1523/jneurosci.4196-09.2010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Opitz G/BBB syndrome (OS) is a genetic disorder characterized by midline developmental defects. Male patients with the X-linked form of OS, caused by loss-of-function mutations in the MID1 gene, show high variability of the clinical signs. MID1 encodes a ubiquitin ligase that controls phosphatase 2A, but its role in the pathogenesis of the disease is still unclear. Here, we report a mouse line carrying a nonfunctional ortholog of the human MID1 gene, Mid1. Mid1-null mice show the brain anatomical defect observed in patients (i.e., hypoplasia of the anterior portion of the medial cerebellum, the vermis). We found that the presence of this defect correlates with motor coordination and procedural and nonassociative learning impairments. The defect is limited to the most anterior lobes of the vermis, the region of the developing cerebellum adjacent to the dorsal midbrain. Analyses at midgestation reveal that lack of Mid1 causes the shortening of the posterior dorsal midbrain, the rostralization of the midbrain/cerebellum boundary, and the downregulation of a key player in the development of this region, Fgf17. Thus, lack of Mid1 causes a misspecification of the midbrain/cerebellar boundary that results in an abnormal development of the most anterior cerebellar lobes. This animal model provides a tool for additional in vivo studies of the physiological and pathological role of the Mid1 gene and a system to investigate the development and function of anterior cerebellar domains.
Collapse
|
47
|
Lessons from GNE-deficient embryonic stem cells: sialic acid biosynthesis is involved in proliferation and gene expression. Glycobiology 2009; 20:107-17. [DOI: 10.1093/glycob/cwp153] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
48
|
Sivaramakrishnan G, Sun Y, Rajmohan R, Lin VCL. B30.2/SPRY domain in tripartite motif-containing 22 is essential for the formation of distinct nuclear bodies. FEBS Lett 2009; 583:2093-9. [PMID: 19481078 DOI: 10.1016/j.febslet.2009.05.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 04/23/2009] [Accepted: 05/18/2009] [Indexed: 01/14/2023]
Abstract
Tripartite motif-containing 22 (TRIM22) is an important antiviral protein that forms distinct nuclear bodies (NB) in many cell types. This study aims to identify functional domains/residues for TRIM22's nuclear localization and NB formation. Deletion of the really-interesting-new-gene (RING) domain, which is essential for its antiviral property, abolished TRIM22 NB formation. However, mutation of two critical residues Cys15 and Cys18 to alanine in the RING domain, did not affect NB formation notably. Although the deletion of the putative bipartite nuclear localization signal (NLS) abolished TRIM22 localization and NB formation, the B30.2/SplA and ryanodine receptor (SPRY) domain, and residues 491-494 specifically are also essential for nuclear localization and NB formation.
Collapse
|
49
|
Ubiquitous SPRY domains and their role in the skeletal type ryanodine receptor. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:51-9. [DOI: 10.1007/s00249-009-0455-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 03/28/2009] [Accepted: 04/07/2009] [Indexed: 10/20/2022]
|
50
|
Cheong R, Wang CJ, Levchenko A. High content cell screening in a microfluidic device. Mol Cell Proteomics 2008; 8:433-42. [PMID: 18953019 DOI: 10.1074/mcp.m800291-mcp200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A comprehensive, systems level understanding of cell signaling networks requires methods to efficiently assay multiple signaling species, at the level of single cells, responding to a variety of stimulation protocols. Here we describe a microfluidic device that enables quantitative interrogation of signaling networks in thousands of individual cells using immunofluorescence-based readouts. The device is especially useful for measuring the signaling activity of kinases, transcription factors, and/or target genes in a high throughput, high content manner. We demonstrate how the device may be used to measure detailed time courses of signaling responses to one or more soluble stimuli and/or chemical inhibitors as well as responses to a complex temporal pattern of multiple stimuli. Furthermore we show how the throughput and resolution of the device may be exploited in investigating the differences, if any, of signaling at the level of a single cell versus at the level of the population. In particular, we show that NF-kappaB activity dynamics in individual cells are not asynchronous and instead resemble the dynamics of the population average in contrast to studies of cells overexpressing p65-EGFP.
Collapse
Affiliation(s)
- Raymond Cheong
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|