1
|
McNew SM, Loyola DC, Yepez J, Andreadis C, Gotanda K, Saulsberry A, Fessl B. Transcriptomic responses of Galápagos finches to avian poxvirus infection. Mol Ecol 2022; 31:5552-5567. [PMID: 36086992 DOI: 10.1111/mec.16690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022]
Abstract
Emerging pathogens can have devastating effects on naïve hosts, but disease outcomes often vary among host species. Comparing the cellular response of different hosts to infection can provide insight into mechanisms of host defence. Here, we used RNA-seq to characterize the transcriptomic response of Darwin's finches to avian poxvirus, a disease of concern in the Galápagos Islands. We tested whether gene expression differs between infected and uninfected birds, and whether transcriptomic differences were related either to known antiviral mechanisms and/or the co-option of the host cellular environment by the virus. We compared two species, the medium ground finch (Geospiza fortis) and the vegetarian finch (Platyspiza crassirostris), to determine whether endemic Galápagos species differ in their response to pox. We found that medium ground finches had a strong transcriptomic response to infection, upregulating genes involved in the innate immune response including interferon production, inflammation, and other immune signalling pathways. In contrast, vegetarian finches had a more limited response, and some changes in this species were consistent with viral manipulation of the host's cellular function and metabolism. Many of the transcriptomic changes mirrored responses documented in model and in vitro studies of poxviruses. Our results thus indicate that many pathways of host defence against poxviruses are conserved among vertebrates and present even in hosts without a long evolutionary history with the virus. At the same time, the differences we observed between closely related species suggests that some endemic species of Galápagos finch could be more susceptible to avian pox than others.
Collapse
Affiliation(s)
- Sabrina M McNew
- Cornell Laboratory of Ornithology, Cornell University, Ithaca, New York, USA.,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | | | - Janaí Yepez
- Charles Darwin Foundation, Santa Cruz, Galápagos, Ecuador
| | - Catherine Andreadis
- Cornell Laboratory of Ornithology, Cornell University, Ithaca, New York, USA
| | - Kiyoko Gotanda
- Department of Biological Sciences, Brock University, St. Catherines, Ontario, Canada.,Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Birgit Fessl
- Charles Darwin Foundation, Santa Cruz, Galápagos, Ecuador
| |
Collapse
|
2
|
Ikeda Y, Motokawa M. Phylogeography of the Japanese greater horseshoe bat Rhinolophus nippon (Mammalia: Chiroptera) in Northeast Asia: New insight into the monophyly of the Japanese populations. Ecol Evol 2021; 11:18181-18195. [PMID: 35003666 PMCID: PMC8717313 DOI: 10.1002/ece3.8414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
The Japanese greater horseshoe bat (Rhinolophus nippon) is distributed widely in East Asia. Within the species, R. nippon in Northeast Asia is regarded as the lineage that diverged most recently. However, the monophyly of the Japanese populations is unclear due to insufficient data about phylogenetic relationship of the western Japanese populations. To test the monophyly of the Japanese populations of R. nippon, we sampled R. nippon from western Japan and performed a phylogeographic analysis based on mitochondrial DNA cytochrome b and the D-loop. The Northeast Asian lineage consisted of three main clades in eastern Japan (clade I), western Japan (clade II), and the continent as well as the Kumamoto population in westernmost Japan (clade III). The results of this study do not support the monophyly of the Japanese population. The findings suggest the "reverse colonization" of R. nippon from the Japanese Archipelago to the Eurasian continent, and provide important insight into the role of the island system in creation and supply of diversity to the continent.
Collapse
Affiliation(s)
- Yugo Ikeda
- Graduate School of ScienceKyoto UniversitySakyoKyotoJapan
| | | |
Collapse
|
3
|
Adade EE, Al Lakhen K, Lemus AA, Valm AM. Recent progress in analyzing the spatial structure of the human microbiome: distinguishing biogeography and architecture in the oral and gut communities. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2021; 18:275-283. [PMID: 35936977 PMCID: PMC9351436 DOI: 10.1016/j.coemr.2021.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fueled by technological advances in methods for sample collection and preservation in sequencing studies, and in advances in computational analyses of high content image data, the spatial structure of the human microbiome is coming to light. In this mini-review, we summarize recent developments in our understanding of the structure of two human microbiomes: the lower gut and the oral cavity. We focus on only the most recent literature and we make an important distinction between two forms of spatial structure, governed by scale: biogeography and architecture. By segmenting the study of microbiome spatial structure into two categories, we demonstrate the potential to greatly advance our understanding of the mechanistic principles that link structure and function in the microbiome.
Collapse
Affiliation(s)
- Emmanuel E. Adade
- Department of Biological Sciences, State University of New York at Albany, Albany, NY 12222 USA
| | - Khalid Al Lakhen
- Department of Biological Sciences, State University of New York at Albany, Albany, NY 12222 USA
| | - Alex A. Lemus
- Department of Biological Sciences, State University of New York at Albany, Albany, NY 12222 USA
| | - Alex M. Valm
- Department of Biological Sciences, State University of New York at Albany, Albany, NY 12222 USA,Corresponding author.
| |
Collapse
|
4
|
Structural variation and phylogenetic relationship of Geospiza magnirostris based on mitochondrial control region. Biologia (Bratisl) 2021. [DOI: 10.2478/s11756-020-00669-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Evolutionary History of the Galápagos Rail Revealed by Ancient Mitogenomes and Modern Samples. DIVERSITY 2020. [DOI: 10.3390/d12110425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The biotas of the Galápagos Islands are one of the best studied island systems and have provided a broad model for insular species’ origins and evolution. Nevertheless, some locally endemic taxa, such as the Galápagos Rail Laterallus spilonota, remain poorly characterized. Owing to its elusive behavior, cryptic plumage, and restricted distribution, the Galápagos Rail is one of the least studied endemic vertebrates of the Galapagos Islands. To date, there is no genetic data for this species, leaving its origins, relationships to other taxa, and levels of genetic diversity uncharacterized. This lack of information is critical given the adverse fate of island rail species around the world in the recent past. Here, we examine the genetics of Galápagos Rails using a combination of mitogenome de novo assembly with multilocus nuclear and mitochondrial sequencing from both modern and historical samples. We show that the Galápagos Rail is part of the “American black rail clade”, sister to the Black Rail L. jamaicensis, with a colonization of Galápagos dated to 1.2 million years ago. A separate analysis of one nuclear and two mitochondrial markers in the larger population samples demonstrates a shallow population structure across the islands, possibly due to elevated island connectivity. Additionally, birds from the island Pinta possessed the lowest levels of genetic diversity, possibly reflecting past population bottlenecks associated with overgrazing of their habitat by invasive goats. The modern and historical data presented here highlight the low genetic diversity in this endemic rail species and provide useful information to guide conservation efforts.
Collapse
|
6
|
Marin J, Achaz G, Crombach A, Lambert A. The genomic view of diversification. J Evol Biol 2020; 33:1387-1404. [PMID: 32654283 DOI: 10.1111/jeb.13677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/11/2020] [Accepted: 06/17/2020] [Indexed: 11/29/2022]
Abstract
The process of species diversification is traditionally summarized by a single tree, the species tree, whose reconstruction from molecular data is hindered by frequent conflicts between gene genealogies. Here, we argue that instead of seeing these conflicts as nuisances, we can exploit them to inform the diversification process itself. We adopt a gene-based view of diversification to model the ubiquitous presence of gene flow between diverging lineages, one of the most important processes explaining disagreements among gene trees. We propose a new framework for modelling the joint evolution of gene and species lineages relaxing the hierarchy between the species tree and gene trees inherent to the standard view, as embodied in a popular model known as the multispecies coalescent (MSC). We implement this framework in two alternative models called the gene-based diversification models (GBD): (a) GBD-forward following all evolving genomes through time and (b) GBD-backward based on coalescent theory. They feature four parameters tuning colonization, gene flow, genetic drift and genetic differentiation. We propose an inference method based on differences between gene trees. Applied to two empirical data sets prone to gene flow, we find better support for the GBD-backward model than for the MSC model. Along with the increasing awareness of the extent of gene flow, this work shows the importance of considering the richer signal contained in genomic histories, rather than in the mere species tree, to better apprehend the complex evolutionary history of species.
Collapse
Affiliation(s)
- Julie Marin
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, PSL Research University, Paris, France
| | - Guillaume Achaz
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, PSL Research University, Paris, France.,Institut de Systématique, Évolution, Biodiversité (ISYEB), MNHN, CNRS, EPHE, Sorbonne Université, Paris, France.,UMR 7206 Eco-anthropologie, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Université de Paris, Paris, France
| | - Anton Crombach
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, PSL Research University, Paris, France.,Inria, Lyon Antenne La Doua, Villeurbanne, France.,INSA-Lyon, LIRIS, UMR 5205, Université de Lyon, Villeurbanne, France
| | - Amaury Lambert
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, PSL Research University, Paris, France.,Laboratoire de Probabilités, Statistique et Modélisation (LPSM), CNRS UMR 8001, Sorbonne Université, Paris, France
| |
Collapse
|
7
|
Lamichhaney S, Han F, Webster MT, Grant BR, Grant PR, Andersson L. Female-biased gene flow between two species of Darwin’s finches. Nat Ecol Evol 2020; 4:979-986. [DOI: 10.1038/s41559-020-1183-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 03/20/2020] [Indexed: 01/29/2023]
|
8
|
Zink RM, Vázquez-Miranda H. Species Limits and Phylogenomic Relationships of Darwin’s Finches Remain Unresolved: Potential Consequences of a Volatile Ecological Setting. Syst Biol 2018; 68:347-357. [DOI: 10.1093/sysbio/syy073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 10/25/2018] [Indexed: 12/21/2022] Open
Affiliation(s)
- Robert M Zink
- School of Natural Resources
- School of Biological Sciences
- Nebraska State Museum, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Hernán Vázquez-Miranda
- School of Natural Resources
- Nebraska State Museum, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Colección Nacional de Aves (CNAV), Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, C.P. 04500, Mexico
| |
Collapse
|
9
|
Sandoval-Huerta ER, Beltrán-López RG, Pedraza-Marrón CR, Paz-Velásquez MA, Angulo A, Robertson DR, Espinoza E, Domínguez-Domínguez O. The evolutionary history of the goby Elacatinus puncticulatus in the tropical eastern pacific: Effects of habitat discontinuities and local environmental variability. Mol Phylogenet Evol 2018; 130:269-285. [PMID: 30359746 DOI: 10.1016/j.ympev.2018.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/05/2018] [Accepted: 10/15/2018] [Indexed: 10/28/2022]
Abstract
Habitat discontinuities, temperature gradients, upwelling systems, and ocean currents, gyres and fronts, can affect distributions of species with narrow environmental tolerance or motility and influence the dispersal of pelagic larvae, with effects ranging from the isolation of adjacent populations to connections between them. The coast of the Tropical Eastern Pacific (TEP) is a highly dynamic environment, with various large gyres and upwelling systems, alternating currents and large rocky-habitat discontinuities, which may greatly influence the genetic connectivity of populations in different parts of the coast. Elacatinus puncticulatus is a cryptic, shallow-living goby that is distributed along the continental shore of virtually the entire TEP, which makes it a good model for testing the influence of these environmental characteristics in the molecular evolution of widespread species in this region. A multilocus phylogeny was used to evaluate the influence of habitat gaps, and oceanographic processes in the evolutionary history of E. puncticulatus throughout its geographical range in the TEP. Two well-supported allopatric clades (one with two allopatric subclades) were recovered, the geographic distribution of which does not correspond to any previously proposed major biogeographic provinces. These populations show strong genetic structure and substantial genetic distances between clades and sub-clades (cytb 0.8-7.3%), with divergence times between them ranging from 0.53 to 4.88 Mya, and recent population expansions dated at 170-130 Kya. The ancestral area of all populations appears to be the Gulf of Panama, while several isolation events have formed the phylogeographic patterns evident in this species. Local and regional oceanographic processes as well as habitat discontinuities have shaped the distribution patterns of the genetic lineages along the continental TEP. Large genetic distances, high genetic differentiation, and the results of species-tree and phylogenetic analyses indicate that E. puncticulatus comprises a complex of three allopatric species with an unusual geographic arrangement.
Collapse
Affiliation(s)
- E R Sandoval-Huerta
- Programa Institucional de Maestría en Ciencias Biológicas, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Edificio "R" planta baja, Ciudad Universitaria, Morelia, Michoacán 58030, Mexico; Laboratorio de Biología Acuática, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Edificio "R" planta baja, Ciudad Universitaria, Morelia, Michoacán 58030, Mexico
| | - R G Beltrán-López
- Programa Institucional de Doctorado en Ciencias Biológicas, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Edificio "R" planta baja, Ciudad Universitaria, Morelia, Michoacán 58030, Mexico; Laboratorio de Ictiología, Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad no. 1001, Cuernavaca, Morelos 62209, Mexico.
| | - C R Pedraza-Marrón
- Programa Institucional de Maestría en Ciencias Biológicas, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Edificio "R" planta baja, Ciudad Universitaria, Morelia, Michoacán 58030, Mexico; Laboratorio de Biología Acuática, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Edificio "R" planta baja, Ciudad Universitaria, Morelia, Michoacán 58030, Mexico
| | - M A Paz-Velásquez
- Centro de Estudios del Mar y Acuicultura, Universidad de San Carlos de Guatemala, Guatemala City, Guatemala
| | - A Angulo
- Museo de Zoología y Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica. 11501-2060, San Pedro de Montes de Oca, San José, Costa Rica
| | - D R Robertson
- Naos Marine Laboratory, Smithsonian Tropical Research Institute, Balboa, Panama.
| | - E Espinoza
- Dirección del Parque Nacional Galápagos, Puerto Ayora, Islas Galápagos, Ecuador.
| | - O Domínguez-Domínguez
- Laboratorio de Biología Acuática, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Edificio "R" planta baja, Ciudad Universitaria, Morelia, Michoacán 58030, Mexico.
| |
Collapse
|
10
|
Gomard Y, Cornuault J, Licciardi S, Lagadec E, Belqat B, Dsouli N, Mavingui P, Tortosa P. Evidence of multiple colonizations as a driver of black fly diversification in an oceanic island. PLoS One 2018; 13:e0202015. [PMID: 30096163 PMCID: PMC6086440 DOI: 10.1371/journal.pone.0202015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 07/26/2018] [Indexed: 11/19/2022] Open
Abstract
True oceanic islands typically host reduced species diversity together with high levels of endemism, which make these environmental set-ups ideal for the exploration of species diversification drivers. In the present study, we used black fly species (Diptera: Simuliidae) from Reunion Island as a model to highlight the main drivers of insect species diversification in this young and remote volcanic island located in the Southwestern Indian Ocean. Using local and regional (Comoros and Seychelles archipelagos) samples as well as specimens from continental Africa, we tested the likelihood of two distinct scenarios, i.e. multiple colonizations vs. in-situ diversification. For this, posterior odds were used to test whether species from Reunion did form a monophyletic group and we estimated divergence times between species. Three out of the four previously described Reunion black fly species could be sampled, namely Simulium ruficorne, Simulium borbonense and Simulium triplex. The phylogenies based on nuclear and mitochondrial markers showed that S. ruficorne and S. borbonense are the most closely related species. Interestingly, we report a probable mitochondrial introgression between these two species although they diverged almost six million years ago. Finally, we showed that the three Reunion species did not form a monophyletic group, and, combined with the molecular datation, the results indicated that Reunion black fly diversity resulted from multiple colonization events. Thus, multiple colonizations, rather than in-situ diversification, are likely responsible for an important part of black fly diversity found on this young Darwinian island.
Collapse
Affiliation(s)
- Yann Gomard
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), INSERM 1187, CNRS 9192, IRD 249, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
- * E-mail:
| | - Josselin Cornuault
- Department of Biodiversity and Conservation, Real Jardín Botánico, RJB-CSIC, Madrid, Spain
| | - Séverine Licciardi
- CIRAD, UMR ASTRE, Sainte-Clotilde, La Réunion, France
- ASTRE, Univ Montpellier, CIRAD, INRA, Montpellier, France
- Groupement d’Intérêt Public Cyclotron Reunion Océan Indien (GIP CYROI), Sainte-Clotilde, La Réunion, France
| | - Erwan Lagadec
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), INSERM 1187, CNRS 9192, IRD 249, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| | - Boutaïna Belqat
- Department of Biology, Faculty of Sciences, University Abdelmalek Essaâdi, Tétouan, Morocco
| | - Najla Dsouli
- Centre de Recherche et de Veille sur les maladies émergentes dans l’Océan Indien (CRVOI), Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| | - Patrick Mavingui
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), INSERM 1187, CNRS 9192, IRD 249, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
- Université de Lyon, Lyon, France; Université Lyon 1, Villeurbanne, France; CNRS, UMR 5557, Ecologie Microbienne, Villeurbanne, France; INRA, UMR1418, Villeurbanne, France
| | - Pablo Tortosa
- Université de La Réunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), INSERM 1187, CNRS 9192, IRD 249, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| |
Collapse
|
11
|
McNew SM, Beck D, Sadler-Riggleman I, Knutie SA, Koop JAH, Clayton DH, Skinner MK. Epigenetic variation between urban and rural populations of Darwin's finches. BMC Evol Biol 2017; 17:183. [PMID: 28835203 PMCID: PMC5569522 DOI: 10.1186/s12862-017-1025-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 07/26/2017] [Indexed: 11/10/2022] Open
Abstract
Background The molecular basis of evolutionary change is assumed to be genetic variation. However, growing evidence suggests that epigenetic mechanisms, such as DNA methylation, may also be involved in rapid adaptation to new environments. An important first step in evaluating this hypothesis is to test for the presence of epigenetic variation between natural populations living under different environmental conditions. Results In the current study we explored variation between populations of Darwin’s finches, which comprise one of the best-studied examples of adaptive radiation. We tested for morphological, genetic, and epigenetic differences between adjacent “urban” and “rural” populations of each of two species of ground finches, Geospiza fortis and G. fuliginosa, on Santa Cruz Island in the Galápagos. Using data collected from more than 1000 birds, we found significant morphological differences between populations of G. fortis, but not G. fuliginosa. We did not find large size copy number variation (CNV) genetic differences between populations of either species. However, other genetic variants were not investigated. In contrast, we did find dramatic epigenetic differences between the urban and rural populations of both species, based on DNA methylation analysis. We explored genomic features and gene associations of the differentially DNA methylated regions (DMR), as well as their possible functional significance. Conclusions In summary, our study documents local population epigenetic variation within each of two species of Darwin’s finches. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-1025-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sabrina M McNew
- Department of Biology, University of Utah, Salt Lake City, UT, 84112-0840, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Ingrid Sadler-Riggleman
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Sarah A Knutie
- Department of Biology, University of Utah, Salt Lake City, UT, 84112-0840, USA
| | - Jennifer A H Koop
- Department of Biology, University of Utah, Salt Lake City, UT, 84112-0840, USA
| | - Dale H Clayton
- Department of Biology, University of Utah, Salt Lake City, UT, 84112-0840, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA.
| |
Collapse
|
12
|
Gante HF, Doadrio I, Alves MJ, Dowling TE. Semi-permeable species boundaries in Iberian barbels (Barbus and Luciobarbus, Cyprinidae). BMC Evol Biol 2015; 15:111. [PMID: 26066794 PMCID: PMC4465174 DOI: 10.1186/s12862-015-0392-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 05/28/2015] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The evolution of species boundaries and the relative impact of selection and gene flow on genomic divergence are best studied in populations and species pairs exhibiting various levels of divergence along the speciation continuum. We studied species boundaries in Iberian barbels, Barbus and Luciobarbus, a system of populations and species spanning a wide degree of genetic relatedness, as well as geographic distribution and range overlap. We jointly analyze multiple types of molecular markers and morphological traits to gain a comprehensive perspective on the nature of species boundaries in these cyprinid fishes. RESULTS Intraspecific molecular and morphological differentiation is visible among many populations. Genomes of all sympatric species studied are porous to gene flow, even if they are not sister species. Compared to their allopatric counterparts, sympatric representatives of different species share alleles and show an increase in all measures of nucleotide polymorphism (S, Hd, K, π and θ). High molecular diversity is particularly striking in L. steindachneri from the Tejo and Guadiana rivers, which co-varies with other sympatric species. Interestingly, different nuclear markers introgress across species boundaries at various levels, with distinct impacts on population trees. As such, some loci exhibit limited introgression and population trees resemble the presumed species tree, while alleles at other loci introgress more freely and population trees reflect geographic affinities and interspecific gene flow. Additionally, extent of introgression decreases with increasing genetic divergence in hybridizing species pairs. CONCLUSIONS We show that reproductive isolation in Iberian Barbus and Luciobarbus is not complete and species boundaries are semi-permeable to (some) gene flow, as different species (including non-sister) are exchanging genes in areas of sympatry. Our results support a speciation-with-gene-flow scenario with heterogeneous barriers to gene flow across the genome, strengthening with genetic divergence. This is consistent with observations coming from other systems and supports the notion that speciation is not instantaneous but a gradual process, during which different species are still able to exchange some genes, while selection prevents gene flow at other loci. We also provide evidence for a hybrid origin of a barbel ecotype, L. steindachneri, suggesting that ecology plays a key role in species coexistence and hybridization in Iberian barbels. This ecotype with intermediate, yet variable, molecular, morphological, trophic and ecological characteristics is the local product of introgressive hybridization of L. comizo with up to three different species (with L. bocagei in the Tejo, with L. microcephalus and L. sclateri in the Guadiana). In spite of the homogenizing effects of ongoing gene flow, species can still be discriminated using a combination of morphological and molecular markers. Iberian barbels are thus an ideal system for the study of species boundaries, since they span a wide range of genetic divergences, with diverse ecologies and degrees of sympatry.
Collapse
Affiliation(s)
- Hugo F Gante
- School of Life Sciences, Arizona State University, 85287-4601, Tempe, AZ, USA.
- Museu Nacional de História Natural e da Ciência, Centre for Ecology, Evolution and Environmental Changes (Ce3C), Universidade de Lisboa, Rua da Escola Politécnica 58, 1250-102, Lisbon, Portugal.
- Current address: Zoological Institute, University of Basel, 4051, Basel, Switzerland.
| | - Ignacio Doadrio
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, c/José Gutiérrez Abascal 2, 28006, Madrid, Spain.
| | - Maria Judite Alves
- Museu Nacional de História Natural e da Ciência, Centre for Ecology, Evolution and Environmental Changes (Ce3C), Universidade de Lisboa, Rua da Escola Politécnica 58, 1250-102, Lisbon, Portugal.
| | - Thomas E Dowling
- School of Life Sciences, Arizona State University, 85287-4601, Tempe, AZ, USA.
- Current address: Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, 48202, Detroit, MI, USA.
| |
Collapse
|
13
|
Zou Y, Jing MD, Bi XX, Zhang T, Huang L. The complete mitochondrial genome sequence of the little egret (Egretta garzetta). Genet Mol Biol 2015; 38:162-72. [PMID: 26273219 PMCID: PMC4530654 DOI: 10.1590/s1415-4757382220140203] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 12/02/2014] [Indexed: 11/22/2022] Open
Abstract
Many phylogenetic questions in the Ciconiiformes remain unresolved and complete mitogenome data are urgently needed for further molecular investigation. In this work, we determined the complete mitogenome sequence of the little egret (Egretta garzetta). The genome was 17,361 bp in length and the gene organization was typical of other avian mtDNA. In protein-coding genes (PCGs), a C insertion was found in ND3, and COIII and ND4 terminated with incomplete stop codons (T). tRNA-Val and tRNA-Ser (AGY) were unable to fold into canonical cloverleaf secondary structures because they had lost the DHU arms. Long repetitive sequences consisting of five types of tandem repeats were found at the 3' end of Domain III in the control region. A phylogenetic analysis of 11 species of Ciconiiformes was done using complete mitogenome data and 12 PCGs. The tree topologies obtained with these two strategies were identical, which strongly confirmed the monophyly of Ardeidae, Threskiorothidae and Ciconiidae. The phylogenetic analysis also revealed that Egretta was more closely related to Ardea than to Nycticorax in the Ardeidae, and Platalea was more closely related to Threskiornis than to Nipponia in the Threskiornithidae. These findings contribute to our understanding of the phylogenetic relationships of Ciconiiformes based on complete mitogenome data.
Collapse
Affiliation(s)
- Yi Zou
- College of Life Sciences, Ludong University, Yantai, Shandong, P.R. China
| | - Mei-Dong Jing
- College of Life Sciences, Ludong University, Yantai, Shandong, P.R. China
| | - Xiao-Xin Bi
- College of Life Sciences, Ludong University, Yantai, Shandong, P.R. China
| | - Ting Zhang
- College of Life Sciences, Ludong University, Yantai, Shandong, P.R. China
| | - Ling Huang
- College of Life Sciences, Ludong University, Yantai, Shandong, P.R. China
| |
Collapse
|
14
|
Bell G. Every inch a finch: a commentary on Grant (1993) 'Hybridization of Darwin's finches on Isla Daphne Major, Galapagos'. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140287. [PMID: 25750230 PMCID: PMC4360115 DOI: 10.1098/rstb.2014.0287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
One of the most familiar features of the natural world is that most animals and plants fall into distinct categories known as species. The attempt to understand the nature of species and the origin of new species was the enterprise that drove the early development of evolutionary biology and has continued to be a major focus of research. Individuals belonging to the same species usually share a distinctive appearance and way of life, and they can mate together successfully and produce viable offspring. New species may evolve, therefore, either through ecological divergence or through sexual isolation. The balance between these processes will depend on the extent of hybridization, especially in the early stages of divergence. Detecting and measuring hybridization in natural populations, however, requires intensive, long-term field programmes that are seldom undertaken, leaving a gap in our understanding of species formation. The finch community of a small, isolated island in the Galapagos provided an opportunity to discover how frequently hybridization takes place between closely related species in a pristine location, and Peter Grant's paper, published in Philosophical Transactions B in 1993, reports the observations that he and his collaborators made during the first 20 years of what is now one of the classical studies of evolution in action. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.
Collapse
Affiliation(s)
- Graham Bell
- Biology Department, McGill University, 1205 avenue Docteur Penfield, Montreal, Quebec, Canada H3A 1B1
| |
Collapse
|
15
|
Hinsinger DD, Debruyne R, Thomas M, Denys GPJ, Mennesson M, Utage J, Dettai A. Fishing for barcodes in the Torrent: from COI to complete mitogenomes on NGS platforms. ACTA ACUST UNITED AC 2015. [DOI: 10.1515/dna-2015-0019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe adoption of Next-Generation Sequencing (NGS) by the field of DNA barcoding of Metazoa has been hindered by the fit between the classical COI barcode and the Sanger-based sequencing method. Here we describe a framework for the sequencing and multiplexing of mitogenomes on NGS platforms that implements (I) a universal long-range PCR-based amplification technique, (II) a two-level multiplexing approach (i.e. divergence-based and specific tag indexing), and (III) a dedicated demultiplexing and assembling script from an Ion Torrent sequencing platform. We provide a case study of mitogenomes obtained for two vouchered individuals of daces Leuciscus burdigalensis and L. oxyrrhis and show that this workflow enables to recover over 100 mitogenomes per sequencing chip on a PGM sequencer, bringing the individual cost down below 7,50€ per mitogenome (as of current 2015 sequencing costs). The use of several kilobases for identification purposes, as involved in the improved DNA-barcode we propose, stress the need for data reliability, especially through metadata. Based on both scientific and economic considerations, this framework presents a relevant approach for multiplexing samples, adaptable on any desktop NGS platform. It enables to extend from the prevalent barcoding approach by shifting from the single COI to complete mitogenome sequencing
Collapse
|
16
|
Farrington HL, Lawson LP, Clark CM, Petren K. The evolutionary history of Darwin's finches: speciation, gene flow, and introgression in a fragmented landscape. Evolution 2014; 68:2932-44. [PMID: 24976076 DOI: 10.1111/evo.12484] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 06/13/2014] [Indexed: 11/27/2022]
Abstract
Many classic examples of adaptive radiations take place within fragmented systems such as islands or mountains, but the roles of mosaic landscapes and variable gene flow in facilitating species diversification is poorly understood. Here we combine phylogenetic and landscape genetic approaches to understand diversification in Darwin's finches, a model adaptive radiation. We combined sequence data from 14 nuclear introns, mitochondrial markers, and microsatellite variation from 51 populations of all 15 recognized species. Phylogenetic species-trees recovered seven major finch clades: ground, tree, vegetarian, Cocos Island, grey and green warbler finches, and a distinct clade of sharp-beaked ground finches (Geospiza cf. difficilis) basal to all ground and tree finches. The ground and tree finch clades lack species-level phylogenetic structure. Interisland gene flow and interspecies introgression vary geographically in predictable ways. First, several species exhibit concordant patterns of population divergence across the channel separating the Galápagos platform islands from the separate volcanic province of northern islands. Second, peripheral islands have more admixed populations while central islands maintain more distinct species boundaries. This landscape perspective highlights a likely role for isolation of peripheral populations in initial divergence, and demonstrates that peripheral populations may maintain genetic diversity through outbreeding during the initial stages of speciation.
Collapse
Affiliation(s)
- Heather L Farrington
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, 45221; North Carolina Museum of Natural Sciences, Raleigh, North Carolina, 27601
| | | | | | | |
Collapse
|
17
|
McKay BD, Zink RM. Sisyphean evolution in Darwin's finches. Biol Rev Camb Philos Soc 2014; 90:689-98. [DOI: 10.1111/brv.12127] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 05/15/2014] [Accepted: 05/28/2014] [Indexed: 12/01/2022]
Affiliation(s)
- Bailey D. McKay
- Department of Ornithology; American Museum of Natural History; Central Park West at 79th St. New York NY 10024 U.S.A
| | - Robert M. Zink
- Bell Museum; University of Minnesota; St. Paul MN 55108 U.S.A
- Department of Ecology, Evolution, and Behavior; University of Minnesota; St. Paul MN 55108 U.S.A
| |
Collapse
|
18
|
Burns KJ, Shultz AJ, Title PO, Mason NA, Barker FK, Klicka J, Lanyon SM, Lovette IJ. Phylogenetics and diversification of tanagers (Passeriformes: Thraupidae), the largest radiation of Neotropical songbirds. Mol Phylogenet Evol 2014; 75:41-77. [DOI: 10.1016/j.ympev.2014.02.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 02/05/2014] [Accepted: 02/12/2014] [Indexed: 11/26/2022]
|
19
|
Kleindorfer S, O’Connor JA, Dudaniec RY, Myers SA, Robertson J, Sulloway FJ. Species Collapse via Hybridization in Darwin’s Tree Finches. Am Nat 2014; 183:325-41. [DOI: 10.1086/674899] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Barrientos R, Kvist L, Barbosa A, Valera F, Khoury F, Varela S, Moreno E. Refugia, colonization and diversification of an arid-adapted bird: coincident patterns between genetic data and ecological niche modelling. Mol Ecol 2013; 23:390-407. [PMID: 24215522 DOI: 10.1111/mec.12588] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 11/05/2013] [Accepted: 11/06/2013] [Indexed: 11/30/2022]
Abstract
Phylogeographical studies are common in boreal and temperate species from the Palaearctic, but scarce in arid-adapted species. We used nuclear and mitochondrial markers to investigate phylogeography and to estimate chronology of colonization events of the trumpeter finch Bucanetes githagineus, an arid-adapted bird. We used 271 samples from 16 populations, most of which were fresh samples but including some museum specimens. Microsatellite data showed no clear grouping according to the sampling locations. Microsatellite and mitochondrial data showed the clearest differentiation between Maghreb and Canary Islands and between Maghreb and Western Sahara. Mitochondrial data suggest differentiation between different Maghreb populations and among Maghreb and Near East populations, between Iberian Peninsula and Canary Islands, as well as between Western Sahara and Maghreb. Our coalescence analyses indicate that the trumpeter finch colonized North Africa during the humid Marine Isotope Stage 5 (MIS5) period of the Sahara region 125 000 years ago. We constructed an ecological niche model (ENM) to estimate the geographical distribution of climatically suitable habitats for the trumpeter finch. We tested whether changes in the species range in relation to glacial-interglacial cycles could be responsible for observed patterns of genetic diversity and structure. Modelling results matched with those from genetic data as the species' potential range increases in interglacial scenarios (in the present climatic scenario and during MIS5) and decreases in glacial climates (during the last glacial maximum, LGM, 21 000 years ago). Our results suggest that the trumpeter finch responded to Pleistocene climatic changes by expanding and contracting its range.
Collapse
Affiliation(s)
- Rafael Barrientos
- Estación Experimental de Zonas Áridas (EEZA-CSIC), Ctra. de Sacramento s/n, La Cañada de San Urbano, E-04120, Almería, Spain
| | - Laura Kvist
- Department of Biology, University of Oulu, POB 3000, FIN-90014, Oulu, Finland
| | - Andrés Barbosa
- Estación Experimental de Zonas Áridas (EEZA-CSIC), Ctra. de Sacramento s/n, La Cañada de San Urbano, E-04120, Almería, Spain
| | - Francisco Valera
- Estación Experimental de Zonas Áridas (EEZA-CSIC), Ctra. de Sacramento s/n, La Cañada de San Urbano, E-04120, Almería, Spain
| | - Fares Khoury
- Department of Biology and Biotechnology, American University of Madaba, Madaba, Jordan
| | - Sara Varela
- Department of Ecology, Faculty of Science, Charles University, Viničná, 7, 128 44, Praha 2, Praha, Czech Republic
| | - Eulalia Moreno
- Estación Experimental de Zonas Áridas (EEZA-CSIC), Ctra. de Sacramento s/n, La Cañada de San Urbano, E-04120, Almería, Spain
| |
Collapse
|
21
|
Baker AJ, Tavares ES, Elbourne RF. Countering criticisms of single mitochondrial DNA gene barcoding in birds. Mol Ecol Resour 2013; 9 Suppl s1:257-68. [PMID: 21564985 DOI: 10.1111/j.1755-0998.2009.02650.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
General criticisms of a single mtDNA gene barcodes include failure to identify newly evolved species, use of species-delimitation thresholds, effects of selective sweeps and chance occurrence of reciprocal monophyly within species, inability to deal with hybridization and incomplete lineage sorting, and superiority of multiple genes in species identification. We address these criticisms in birds because most species are known and thus provide an ideal test data set, and we argue with selected examples that with the exception of thresholds these criticisms are not problematic for avian taxonomy. Even closely related sister species of birds have distinctive COI barcodes, but it is not possible to universally apply distance thresholds based on ratios of within-species and among-species variation. Instead, more rigorous methods of species delimitation should be favoured using coalescent-based techniques that include tests of chance reciprocal monophyly, and times of lineage separation and sequence divergence. Incomplete lineage sorting is also easily detected with DNA barcodes, and usually at a younger time frame than a more slowly evolving nuclear gene. Where DNA barcodes detect divergent reciprocally monophyletic lineages, the COI sequences can be combined with multiple nuclear genes to distinguish between speciation or population subdivision arising from high female philopatry or regional selective sweeps. Although selective sweeps are increasingly invoked to explain patterns of shallow within-species coalescences in COI gene trees, caution is warranted in this conjecture because of limited sampling of individuals and the reduced power to detect additional mtDNA haplotypes with one gene.
Collapse
Affiliation(s)
- Allan J Baker
- Department of Natural History, Royal Ontario Museum, 100 Queen's Park, Toronto, ON, Canada M5S 2C6, and Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada M5S 3B2
| | | | | |
Collapse
|
22
|
Sato A, Klein J. East–West relations in the mouse world: A historical perspective. Isr J Ecol Evol 2013. [DOI: 10.1080/15659801.2013.898404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Population genetics of the house mouse, Mus musculus/domesticus, has become a “hot” area of research, in which the biochemical–molecular approach has largely replaced the more traditional morphological–anatomical methods of investigation. In this essay – commemorating Professor Uzi Ritte’s recent passing – the authors, one of whom abandoned mouse genetics some 30 years ago, offer a historical perspective in which they point out the confusion that has accompanied mouse taxonomy from its modern beginnings. They then tender their view of the problems associated with the biochemical–molecular studies of mouse taxonomy and speciation. They conclude with a plea to rely less on abstract models and more on empirical data and mouse biology, and for a return to the Heraclitean–Darwinian view of nature in taxonomy.
Collapse
Affiliation(s)
- Akie Sato
- Department of Anatomy and Histology, Tsurumi University, School of Dental Medicine
| | - Jan Klein
- Department of Biology, The Pennsylvania State University
| |
Collapse
|
23
|
A multilocus coalescent analysis of the speciational history of the Australo-Papuan butcherbirds and their allies. Mol Phylogenet Evol 2013; 66:941-52. [DOI: 10.1016/j.ympev.2012.11.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 11/19/2012] [Accepted: 11/23/2012] [Indexed: 11/16/2022]
|
24
|
More than meets the eye: functionally salient changes in internal bone architecture accompany divergence in cichlid feeding mode. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:538146. [PMID: 22666625 PMCID: PMC3362014 DOI: 10.1155/2012/538146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/14/2012] [Indexed: 11/23/2022]
Abstract
African cichlids have undergone extensive and repeated adaptive radiations in foraging habitat. While the external morphology of the cichlid craniofacial skeleton has been studied extensively, biomechanically relevant changes to internal bone architecture have been largely overlooked. Here we explore two fundamental questions: (1) Do changes in the internal architecture of bone accompany shifts in foraging mode? (2) What is the genetic basis for this trait? We focus on the maxilla, which is an integral part of the feeding apparatus and an element that should be subjected to significant bending forces during biting. Analyses of μCT scans revealed clear differences between the maxilla of two species that employ alternative foraging strategies (i.e., biting versus suction feeding). Hybrids between the two species exhibit maxillary geometries that closely resemble those of the suction feeding species, consistent with a dominant mode of inheritance. This was supported by the results of a genetic mapping experiment, where suction feeding alleles were dominant to biting alleles at two loci that affect bone architecture. Overall, these data suggest that the internal structure of the cichlid maxilla has a tractable genetic basis and that discrete shifts in this trait have accompanied the evolution of alternate feeding modes.
Collapse
|
25
|
Rosenblum EB, Sarver BAJ, Brown JW, Des Roches S, Hardwick KM, Hether TD, Eastman JM, Pennell MW, Harmon LJ. Goldilocks Meets Santa Rosalia: An Ephemeral Speciation Model Explains Patterns of Diversification Across Time Scales. Evol Biol 2012; 39:255-261. [PMID: 22707806 PMCID: PMC3364415 DOI: 10.1007/s11692-012-9171-x] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/24/2012] [Indexed: 11/30/2022]
Abstract
Understanding the rate at which new species form is a key question in studying the evolution of life on earth. Here we review our current understanding of speciation rates, focusing on studies based on the fossil record, phylogenies, and mathematical models. We find that speciation rates estimated from these different studies can be dramatically different: some studies find that new species form quickly and often, while others find that new species form much less frequently. We suggest that instead of being contradictory, differences in speciation rates across different scales can be reconciled by a common model. Under the "ephemeral speciation model", speciation is very common and very rapid but the new species produced almost never persist. Evolutionary studies should therefore focus on not only the formation but also the persistence of new species.
Collapse
Affiliation(s)
- Erica Bree Rosenblum
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844 USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720-3114 USA
- BEACON Center for the Study of Evolution in Action, East Lansing, MI USA
| | - Brice A. J. Sarver
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844 USA
| | - Joseph W. Brown
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844 USA
| | - Simone Des Roches
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844 USA
| | - Kayla M. Hardwick
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844 USA
| | - Tyler D. Hether
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844 USA
| | - Jonathan M. Eastman
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844 USA
| | - Matthew W. Pennell
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844 USA
| | - Luke J. Harmon
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844 USA
- BEACON Center for the Study of Evolution in Action, East Lansing, MI USA
| |
Collapse
|
26
|
Jønsson KA, Fabre PH, Fritz SA, Etienne RS, Ricklefs RE, Jørgensen TB, Fjeldså J, Rahbek C, Ericson PGP, Woog F, Pasquet E, Irestedt M. Ecological and evolutionary determinants for the adaptive radiation of the Madagascan vangas. Proc Natl Acad Sci U S A 2012; 109:6620-5. [PMID: 22505736 PMCID: PMC3340096 DOI: 10.1073/pnas.1115835109] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adaptive radiation is the rapid diversification of a single lineage into many species that inhabit a variety of environments or use a variety of resources and differ in traits required to exploit these. Why some lineages undergo adaptive radiation is not well-understood, but filling unoccupied ecological space appears to be a common feature. We construct a complete, dated, species-level phylogeny of the endemic Vangidae of Madagascar. This passerine bird radiation represents a classic, but poorly known, avian adaptive radiation. Our results reveal an initial rapid increase in evolutionary lineages and diversification in morphospace after colonizing Madagascar in the late Oligocene some 25 Mya. A subsequent key innovation involving unique bill morphology was associated with a second increase in diversification rates about 10 Mya. The volume of morphospace occupied by contemporary Madagascan vangas is in many aspects as large (shape variation)--or even larger (size variation)--as that of other better-known avian adaptive radiations, including the much younger Galapagos Darwin's finches and Hawaiian honeycreepers. Morphological space bears a close relationship to diet, substrate use, and foraging movements, and thus our results demonstrate the great extent of the evolutionary diversification of the Madagascan vangas.
Collapse
Affiliation(s)
- Knud A Jønsson
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, 2100 Copenhagen Ø, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Caetano S, Currat M, Pennington RT, Prado D, Excoffier L, Naciri Y. Recent colonization of the Galápagos by the tree Geoffroea spinosa Jacq. (Leguminosae). Mol Ecol 2012; 21:2743-60. [PMID: 22509817 DOI: 10.1111/j.1365-294x.2012.05562.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study puts together genetic data and an approximate bayesian computation (ABC) approach to infer the time at which the tree Geoffroea spinosa colonized the Galápagos Islands. The genetic diversity and differentiation between Peru and Galápagos population samples, estimated using three chloroplast spacers and six microsatellite loci, reveal significant differences between two mainland regions separated by the Andes mountains (Inter Andean vs. Pacific Coast) as well as a significant genetic differentiation of island populations. Microsatellites identify two distinct geographical clusters, the Galápagos and the mainland, and chloroplast markers show a private haplotype in the Galápagos. The nuclear distinctiveness of the Inter Andean populations suggests current restricted pollen flow, but chloroplast points to cross-Andean dispersals via seeds, indicating that the Andes might not be an effective biogeographical barrier. The ABC analyses clearly point to the colonization of the Galápagos within the last 160,000 years and possibly as recently as 4750 years ago (475 generations). Founder events associated with colonization of the two islands where the species occurs are detected, with Española having been colonized after Floreana. We discuss two nonmutually exclusive possibilities for the colonization of the Galápagos, recent natural dispersal vs. human introduction.
Collapse
Affiliation(s)
- S Caetano
- Plant Systematics and Biodiversity Laboratory, Molecular Phylogeny and Genetics Unit, Conservatoire et Jardin botaniques, 1 Chemin de l'Impératrice, CP 60, CH-1292 Chambésy, Genève, Switzerland
| | | | | | | | | | | |
Collapse
|
28
|
JOHNSON MICHAELS, HAMILTON ZOËR, TEALE ROY, KENDRICK PETERG. Endemic evolutionary radiation of Rhagada land snails (Pulmonata: Camaenidae) in a continental archipelago in northern Western Australia. Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2012.01882.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 2012; 29:1969-73. [PMID: 22367748 PMCID: PMC3408070 DOI: 10.1093/molbev/mss075] [Citation(s) in RCA: 6641] [Impact Index Per Article: 553.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Computational evolutionary biology, statistical phylogenetics and coalescent-based population genetics are becoming increasingly central to the analysis and understanding of molecular sequence data. We present the Bayesian Evolutionary Analysis by Sampling Trees (BEAST) software package version 1.7, which implements a family of Markov chain Monte Carlo (MCMC) algorithms for Bayesian phylogenetic inference, divergence time dating, coalescent analysis, phylogeography and related molecular evolutionary analyses. This package includes an enhanced graphical user interface program called Bayesian Evolutionary Analysis Utility (BEAUti) that enables access to advanced models for molecular sequence and phenotypic trait evolution that were previously available to developers only. The package also provides new tools for visualizing and summarizing multispecies coalescent and phylogeographic analyses. BEAUti and BEAST 1.7 are open source under the GNU lesser general public license and available at http://beast-mcmc.googlecode.com and http://beast.bio.ed.ac.uk
Collapse
Affiliation(s)
- Alexei J Drummond
- Department of Computer Science, University of Auckland, Auckland, New Zealand.
| | | | | | | |
Collapse
|
30
|
Campagna L, Benites P, Lougheed SC, Lijtmaer DA, Di Giacomo AS, Eaton MD, Tubaro PL. Rapid phenotypic evolution during incipient speciation in a continental avian radiation. Proc Biol Sci 2011; 279:1847-56. [PMID: 22130601 DOI: 10.1098/rspb.2011.2170] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adaptive radiations have helped shape how we view animal speciation, particularly classic examples such as Darwin's finches, Hawaiian fruitflies and African Great Lakes cichlids. These 'island' radiations are comparatively recent, making them particularly interesting because the mechanisms that caused diversification are still in motion. Here, we identify a new case of a recent bird radiation within a continentally distributed species group; the capuchino seedeaters comprise 11 Sporophila species originally described on the basis of differences in plumage colour and pattern in adult males. We use molecular data together with analyses of male plumage and vocalizations to understand species limits of the group. We find marked phenotypic variation despite lack of mitochondrial DNA monophyly and few differences in other putatively neutral nuclear markers. This finding is consistent with the group having undergone a recent radiation beginning in the Pleistocene, leaving genetic signatures of incomplete lineage sorting, introgressive hybridization and demographic expansions. We argue that this apparent uncoupling between neutral DNA homogeneity and phenotypic diversity is expected for a recent group within the framework of coalescent theory. Finally, we discuss how the ecology of open habitats in South America during the Pleistocene could have helped promote this unique and ongoing radiation.
Collapse
Affiliation(s)
- Leonardo Campagna
- División de Ornitología, Museo Argentino de Ciencias Naturales Bernardino Rivadavia, Avenida Ángel Gallardo 470, Ciudad de Buenos Aires C1405DJR, Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
31
|
Fritz SA, Jønsson KA, Fjeldså J, Rahbek C. Diversification and biogeographic patterns in four island radiations of passerine birds. Evolution 2011; 66:179-90. [PMID: 22220873 DOI: 10.1111/j.1558-5646.2011.01430.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Declining diversification rates over time are a well-established evolutionary pattern, often interpreted as indicating initial rapid radiation with filling of ecological niche space. Here, we test the hypothesis that island radiations may show constant net diversification rates over time, due to continued expansion into new niche space in highly dispersive taxa. We investigate diversification patterns of four passerine bird families originating from the Indo-Pacific archipelagos, and link these to biogeographic patterns to provide independent indications of niche filling. We find a declining diversification rate for only one family, the Paradisaeidae (41 species). These are almost completely restricted to New Guinea, and have on average smaller species ranges and higher levels of species richness within grid cells than the other three families. In contrast, we cannot reject constant diversification rates for Campephagidae (93 species), Oriolidae (35 species), and Pachycephalidae (53 species), groups that have independently colonized neighboring archipelagos and continents. We propose that Paradisaeidae have reached the diversity limit imposed by their restricted distribution, whereas high dispersal and colonization success across the geologically dynamic Indo-Pacific archipelagos may have sustained high speciation rates for the other three families. Alternatively, increasing extinction rates may have obscured declining speciation rates in those three phylogenies.
Collapse
Affiliation(s)
- Susanne A Fritz
- Center for Macroecology, Evolution and Climate, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 København Ø, Denmark.
| | | | | | | |
Collapse
|
32
|
Campagna L, Geale K, Handford P, Lijtmaer DA, Tubaro PL, Lougheed SC. A molecular phylogeny of the Sierra-Finches (Phrygilus, Passeriformes): extreme polyphyly in a group of Andean specialists. Mol Phylogenet Evol 2011; 61:521-33. [PMID: 21807104 DOI: 10.1016/j.ympev.2011.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 11/29/2022]
Abstract
The unparalleled avian diversity of the Neotropics has long been argued to be in large part the evolutionary consequence of the incredible habitat diversity and rugged topography of the Andes mountains. Various scenarios have been proposed to explain how the Andean context could have generated lineage diversification (e.g. vicariant speciation or parapatric speciation across vertical ecological gradients), yet further study on Andean taxa is needed to reveal the relative importance of the different processes. Here we use mitochondrial and nuclear DNA sequences to derive the first phylogenetic hypothesis for Phrygilus (Sierra-Finches), one of the most species-rich genera of mainly Andean passerines. We find strong evidence that the genus is polyphyletic, comprising four distantly related clades with at least nine other genera interspersed between them (Acanthidops, Catamenia, Diglossa, Haplospiza, Idiopsar, Melanodera, Rowettia, Sicalis and Xenodacnis). These four Phrygilus clades coincide with groups previously established mainly on the basis of plumage characters, suggesting single evolutionary origins for each of these. We consider the history of diversification of each clade, analyzing the timing of splitting events, ancestral reconstruction of altitudinal ranges and current geographical distributions. Phrygilus species origins date mainly to the Pleistocene, with representatives diversifying within, out of, and into the Andes. Finally, we explored whether Phrygilus species, especially those with broad altitudinal and latitudinal Andean distributions, showed phylogeographic structure. Our best-sampled taxon (Phrygilus fruticeti) exhibited no clear pattern; however, we found deep genetic splits within other surveyed species, with Phrygilus unicolor being the most extreme case and deserving of further research.
Collapse
Affiliation(s)
- Leonardo Campagna
- División de Ornitología, Museo Argentino de Ciencias Naturales Bernardino Rivadavia, Av. Ángel Gallardo 470, Ciudad de Buenos Aires, C1405DJR Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
33
|
Sato A, Tichy H, Grant PR, Grant BR, Sato T, O'hUigin C. Spectrum of MHC class II variability in Darwin's finches and their close relatives. Mol Biol Evol 2011; 28:1943-56. [PMID: 21273633 PMCID: PMC3144023 DOI: 10.1093/molbev/msr015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The study describes >400 major histocompatibility complex (MHC) class II B exon 2 and 114 intron 2 sequences of 36 passerine bird species, 13 of which belong to the group of Darwin's finches (DFs) and the remaining 23 to close or more distant relatives of DFs in Central and South America. The data set is analyzed by a combination of judiciously selected statistical methods. The analysis reveals that reliable information concerning MHC organization, including the assignment of sequences to loci, and evolution, as well as the process of species divergence, can be obtained in the absence of genomic sequence data, if the analysis is taken several steps beyond the standard phylogenetic tree construction approach. The main findings of the present study are these: The MHC class II B region of the passerine birds is as elaborate in its organization, divergence, and genetic diversity as the MHC of the eutherian mammals, specifically the primates. Hence, the reported simplicity of the fowl MHC is an oddity. With the help of appropriate markers, the divergence of the MHC genes can be traced deep in the phylogeny of the bird taxa. Transspecies polymorphism is rampant at many of the bird MHC loci. In this respect, the DFs behave as if they were a single, genetically undifferentiated population. There is thus far no indication of alleles that could be considered species, genus, or even DF group specific. The implication of these findings is that DFs are in the midst of adaptive radiations, in which morphological differentiation into species is running ahead of genetic differentiation in genetic systems such as the MHC or the mitochondrial DNA. The radiations are so young that there has not been enough time to sort out polymorphisms at most of the loci among the morphologically differentiating species. These findings parallel those on Lake Victoria haplochromine fishes. Several of the DF MHC allelic lineages can be traced back to the MHC genes of the species Tiaris obscura, which we identified previously as the closest extant relative of DFs in continental America.
Collapse
Affiliation(s)
- Akie Sato
- Department of Anatomy, School of Dental Medicine, Tsurumi University, Yokohama, Japan.
| | | | | | | | | | | |
Collapse
|
34
|
Genbrugge A, Heyde AS, Adriaens D, Boone M, Van Hoorebeke L, Dirckx J, Aerts P, Podos J, Herrel A. Ontogeny of the cranial skeleton in a Darwin's finch (Geospiza fortis). J Anat 2011; 219:115-31. [PMID: 21599660 DOI: 10.1111/j.1469-7580.2011.01388.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Darwin's finches are a model system in ecological and evolutionary research, but surprisingly little is known about their skull morphology and development. Indeed, only the early beak development and external variation in adult beak shape has been studied. Understanding the development of the skull from embryo up to the adult is important to gain insights into how selection acts upon, and drives, variation in beak shape. Here, we provide a detailed description of the skeletal development of the skull in the medium ground finch (Geospiza fortis). Although the ossification sequence of the cranial elements is broadly similar to that observed for other birds, some differences can be observed. Unexpectedly, our data show that large changes in skull shape take place between the nestling and the juvenile phases. The reorientation of the beak, the orbit and the formation of well-developed processes and cristae suggest that these changes are likely related to the use of the beak after leaving the nest. This suggests that the active use of the jaw muscles during seed cracking plays an important role in shaping the adult skull morphology and may be driving some of the intra-specific variation observed in species such as G. fortis. Investigating the development of the jaw muscles and their interaction with the observed ossification and formation of the skull and lower jaw would allow further insights into the ecology and evolution of beak morphology in Darwin's finches.
Collapse
Affiliation(s)
- Annelies Genbrugge
- Laboratory of Biomedical Physics, University of Antwerp, Groenenborgerlaan, Antwerpen, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
De León LF, Raeymaekers JAM, Bermingham E, Podos J, Herrel A, Hendry AP. Exploring possible human influences on the evolution of Darwin's finches. Evolution 2011; 65:2258-72. [PMID: 21790573 DOI: 10.1111/j.1558-5646.2011.01297.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Humans are an increasingly common influence on the evolution of natural populations. Potential arenas of influence include altered evolutionary trajectories within populations and modifications of the process of divergence among populations. We consider this second arena in the medium ground finch (Geospiza fortis) on Santa Cruz Island, Galápagos, Ecuador. Our study compared the G. fortis population at a relatively undisturbed site, El Garrapatero, to the population at a severely disturbed site, Academy Bay, which is immediately adjacent to the town of Puerto Ayora. The El Garrapatero population currently shows beak size bimodality that is tied to assortative mating and disruptive selection, whereas the Academy Bay population was historically bimodal but has lost this property in conjunction with a dramatic increase in local human population density. We here evaluate potential ecological-adaptive drivers of the differences in modality by quantifying relationships between morphology (beak and head dimensions), functional performance (bite force), and environmental characteristics (diet). Our main finding is that associations among these variables are generally weaker at Academy Bay than at El Garrapatero, possibly because novel foods are used at the former site irrespective of individual morphology and performance. These results are consistent with the hypothesis that the rugged adaptive landscapes promoting and maintaining diversification in nature can be smoothed by human activities, thus hindering ongoing adaptive radiation.
Collapse
Affiliation(s)
- Luis Fernando De León
- Redpath Museum & Department of Biology, McGill University, 859 Sherbrooke St. W, Montréal, QC H3A 2K6, Canada.
| | | | | | | | | | | |
Collapse
|
36
|
González-Wevar CA, Nakano T, Cañete JI, Poulin E. Concerted genetic, morphological and ecological diversification in Nacella limpets in the Magellanic Province. Mol Ecol 2011; 20:1936-51. [PMID: 21418364 DOI: 10.1111/j.1365-294x.2011.05065.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Common inhabitants of Antarctic and Subantarctic rocky shores, the limpet genus Nacella, includes 15 nominal species distributed in different provinces of the Southern Ocean. The Magellanic Province represents the area with the highest diversity of the genus. Phylogenetic reconstructions showed an absence of reciprocal monophyly and high levels of genetic identity among nominal species in this Province and therefore imply a recent diversification in southern South America. Because most of these taxa coexist along their distribution range with clear differences in their habitat preferences, Nacella is a suitable model to explore diversification mechanisms in an area highly affected by recurrent Pleistocene continental ice cap advances and retreats. Here, we present genetic and morphological comparisons among sympatric Magellanic nominal species of Nacella. We amplified a fragment of the COI gene for 208 individuals belonging to seven sympatric nominal species and performed geometric morphometric analyses of their shells. We detected a complete congruence between genetic and morphological results, leading us to suggest four groups of Nacella among seven analysed nominal species. Congruently, each of these groups was related to different habitat preferences such as bathymetric range and substrate type. A plausible explanation for these results includes an ecologically based allopatric speciation process in Nacella. Major climatic changes during the Plio-Pleistocene glacial cycles may have enhanced differentiation processes. Finally, our results indicate that the systematics of the group requires a deep revision to re-evaluate the taxonomy of Nacella and to further understand the Pleistocene legacy of the glacial cycles in the southern tip of South America.
Collapse
Affiliation(s)
- C A González-Wevar
- Instituto de Ecología y Biodiversidad, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras # 3425, Ñuñoa, Santiago, Chile.
| | | | | | | |
Collapse
|
37
|
Brumm H, Farrington H, Petren K, Fessl B. Evolutionary dead end in the Galápagos: divergence of sexual signals in the rarest of Darwin's finches. PLoS One 2010; 5:e11191. [PMID: 20585648 PMCID: PMC2890412 DOI: 10.1371/journal.pone.0011191] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 05/20/2010] [Indexed: 11/18/2022] Open
Abstract
Understanding the mechanisms underlying speciation remains a challenge in evolutionary biology. The adaptive radiation of Darwin's finches is a prime example of species formation, and their study has revealed many important insights into evolutionary processes. Here, we report striking differences in mating signals (songs), morphology and genetics between the two remnant populations of Darwin's mangrove finch Camarhynchus heliobates, one of the rarest species in the world. We also show that territorial males exhibited strong discrimination of sexual signals by locality: in response to foreign songs, males responded weaker than to songs from their own population. Female responses were infrequent and weak but gave approximately similar results. Our findings not only suggest speciation in the mangrove finch, thereby providing strong support for the central role of sexual signals during speciation, but they have also implications for the conservation of this iconic bird. If speciation is complete, the eastern species will face imminent extinction, because it has a population size of only 5-10 individuals.
Collapse
Affiliation(s)
- Henrik Brumm
- Communication and Social Behaviour Group, Max Planck Institute for Ornithology, Seewiesen, Germany.
| | | | | | | |
Collapse
|
38
|
Abzhanov A. Darwin's finches: analysis of beak morphological changes during evolution. Cold Spring Harb Protoc 2010; 2009:pdb.emo119. [PMID: 20147092 DOI: 10.1101/pdb.emo119] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Arhat Abzhanov
- Department of Organismic and Evolutionary Biology/FAS Biological Laboratories 4105, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
39
|
Abzhanov A. Darwin's Galapagos finches in modern biology. Philos Trans R Soc Lond B Biol Sci 2010; 365:1001-7. [PMID: 20194163 DOI: 10.1098/rstb.2009.0321] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
One of the classic examples of adaptive radiation under natural selection is the evolution of 15 closely related species of Darwin's finches (Passeriformes), whose primary diversity lies in the size and shape of their beaks. Since Charles Darwin and other members of the Beagle expedition collected these birds on the Galápagos Islands in 1835 and introduced them to science, they have been the subjects of intense research. Many biology textbooks use Darwin's finches to illustrate a variety of topics of evolutionary theory, such as speciation, natural selection and niche partitioning. Today, as this Theme Issue illustrates, Darwin's finches continue to be a very valuable source of biological discovery. Certain advantages of studying this group allow further breakthroughs in our understanding of changes in recent island biodiversity, mechanisms of speciation and hybridization, evolution of cognitive behaviours, principles of beak/jaw biomechanics as well as the underlying developmental genetic mechanisms in generating morphological diversity. Our objective was to bring together some of the key workers in the field of ecology and evolutionary biology who study Darwin's finches or whose studies were inspired by research on Darwin's finches. Insights provided by papers collected in this Theme Issue will be of interest to a wide audience.
Collapse
Affiliation(s)
- Arhat Abzhanov
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.
| |
Collapse
|
40
|
de León LF, Bermingham E, Podos J, Hendry AP. Divergence with gene flow as facilitated by ecological differences: within-island variation in Darwin's finches. Philos Trans R Soc Lond B Biol Sci 2010; 365:1041-52. [PMID: 20194167 DOI: 10.1098/rstb.2009.0314] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Divergence and speciation can sometimes proceed in the face of, and even be enhanced by, ongoing gene flow. We here study divergence with gene flow in Darwin's finches, focusing on the role of ecological/adaptive differences in maintaining/promoting divergence and reproductive isolation. To this end, we survey allelic variation at 10 microsatellite loci for 989 medium ground finches (Geospiza fortis) on Santa Cruz Island, Galápagos. We find only small genetic differences among G. fortis from different sites. We instead find noteworthy genetic differences associated with beak. Moreover, G. fortis at the site with the greatest divergence in beak size also showed the greatest divergence at neutral markers; i.e. the lowest gene flow. Finally, morphological and genetic differentiation between the G. fortis beak-size morphs was intermediate to that between G. fortis and its smaller (Geospiza fuliginosa) and larger (Geospiza magnirostris) congeners. We conclude that ecological differences associated with beak size (i.e. foraging) influence patterns of gene flow within G. fortis on a single island, providing additional support for ecological speciation in the face of gene flow. Patterns of genetic similarity within and between species also suggest that interspecific hybridization might contribute to the formation of beak-size morphs within G. fortis.
Collapse
Affiliation(s)
- Luis Fernando de León
- Redpath Museum and Department of Biology, McGill University, 859 Sherbrooke Street West, Montréal, QC, Canada , H3A 2K6.
| | | | | | | |
Collapse
|
41
|
JOHNSON MICHAELS, O'BRIEN ELEANORK, FITZPATRICK JEREMYJ. Deep, hierarchical divergence of mitochondrial DNA in Amplirhagada land snails (Gastropoda: Camaenidae) from the Bonaparte Archipelago, Western Australia. Biol J Linn Soc Lond 2010. [DOI: 10.1111/j.1095-8312.2010.01407.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
CAMPAGNA LEONARDO, LIJTMAER DARÍOA, KERR KEVINCR, BARREIRA ANAS, HEBERT PAULDN, LOUGHEED STEPHENC, TUBARO PABLOL. DNA barcodes provide new evidence of a recent radiation in the genus
Sporophila
(Aves: Passeriformes). Mol Ecol Resour 2010; 10:449-58. [DOI: 10.1111/j.1755-0998.2009.02799.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- LEONARDO CAMPAGNA
- División de Ornitología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Av. Ángel Gallardo 470, Ciudad de Buenos Aires, C1405DJR Buenos Aires, Argentina
| | - DARÍO A. LIJTMAER
- División de Ornitología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Av. Ángel Gallardo 470, Ciudad de Buenos Aires, C1405DJR Buenos Aires, Argentina
| | - KEVIN C. R. KERR
- Department of Integrative Biology, Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON, Canada N1G 2W1
| | - ANA S. BARREIRA
- División de Ornitología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Av. Ángel Gallardo 470, Ciudad de Buenos Aires, C1405DJR Buenos Aires, Argentina
| | - PAUL D. N. HEBERT
- Department of Integrative Biology, Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON, Canada N1G 2W1
| | - STEPHEN C. LOUGHEED
- Department of Biology, Queen’s University, 116 Barrie Street, Kingston, ON, Canada K7L 3N6
| | - PABLO L. TUBARO
- División de Ornitología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Av. Ángel Gallardo 470, Ciudad de Buenos Aires, C1405DJR Buenos Aires, Argentina
| |
Collapse
|
43
|
Steinfartz S, Glaberman S, Lanterbecq D, Russello MA, Rosa S, Hanley TC, Marquez C, Snell HL, Snell HM, Gentile G, Dell'Olmo G, Powell AM, Caccone A. Progressive colonization and restricted gene flow shape island-dependent population structure in Galápagos marine iguanas (Amblyrhynchus cristatus). BMC Evol Biol 2009; 9:297. [PMID: 20028547 PMCID: PMC2807874 DOI: 10.1186/1471-2148-9-297] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 12/22/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Marine iguanas (Amblyrhynchus cristatus) inhabit the coastlines of large and small islands throughout the Galápagos archipelago, providing a rich system to study the spatial and temporal factors influencing the phylogeographic distribution and population structure of a species. Here, we analyze the microevolution of marine iguanas using the complete mitochondrial control region (CR) as well as 13 microsatellite loci representing more than 1200 individuals from 13 islands. RESULTS CR data show that marine iguanas occupy three general clades: one that is widely distributed across the northern archipelago, and likely spread from east to west by way of the South Equatorial current, a second that is found mostly on the older eastern and central islands, and a third that is limited to the younger northern and western islands. Generally, the CR haplotype distribution pattern supports the colonization of the archipelago from the older, eastern islands to the younger, western islands. However, there are also signatures of recurrent, historical gene flow between islands after population establishment. Bayesian cluster analysis of microsatellite genotypes indicates the existence of twenty distinct genetic clusters generally following a one-cluster-per-island pattern. However, two well-differentiated clusters were found on the easternmost island of San Cristóbal, while nine distinct and highly intermixed clusters were found on youngest, westernmost islands of Isabela and Fernandina. High mtDNA and microsatellite genetic diversity were observed for populations on Isabela and Fernandina that may be the result of a recent population expansion and founder events from multiple sources. CONCLUSIONS While a past genetic study based on pure FST analysis suggested that marine iguana populations display high levels of nuclear (but not mitochondrial) gene flow due to male-biased dispersal, the results of our sex-biased dispersal tests and the finding of strong genetic differentiation between islands do not support this view. Therefore, our study is a nice example of how recently developed analytical tools such as Bayesian clustering analysis and DNA sequence-based demographic analyses can overcome potential biases introduced by simply relying on FST estimates from markers with different inheritance patterns.
Collapse
Affiliation(s)
- Sebastian Steinfartz
- Department of Ecology and Evolutionary Biology and Yale Institute for Biospheric Studies - Molecular Systematics and Conservation Genetics Laboratory, New Haven, Connecticut 06511, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
McCormack JE, Huang H, Knowles LL. Maximum Likelihood Estimates of Species Trees: How Accuracy of Phylogenetic Inference Depends upon the Divergence History and Sampling Design. Syst Biol 2009; 58:501-8. [DOI: 10.1093/sysbio/syp045] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- John E. McCormack
- Department of Ecology and Evolutionary Biology, and the Museum of Zoology, University of Michigan, Ann Arbor, MI 48109-1079, USA
| | - Huateng Huang
- Department of Ecology and Evolutionary Biology, and the Museum of Zoology, University of Michigan, Ann Arbor, MI 48109-1079, USA
| | - L. Lacey Knowles
- Department of Ecology and Evolutionary Biology, and the Museum of Zoology, University of Michigan, Ann Arbor, MI 48109-1079, USA
| |
Collapse
|
45
|
Abstract
Adaptive radiations were central to Darwin's formation of his theory of natural selection, and today they are still the centerpiece for many studies of adaptation and speciation. Here, we review the advantages of adaptive radiations, especially recent ones, for detecting evolutionary trends and the genetic dissection of adaptive traits. We focus on Aquilegia as a primary example of these advantages and highlight progress in understanding the genetic basis of flower color. Phylogenetic analysis of Aquilegia indicates that flower color transitions proceed by changes in the types of anthocyanin pigments produced or their complete loss. Biochemical, crossing, and gene expression studies have provided a wealth of information about the genetic basis of these transitions in Aquilegia. To obtain both enzymatic and regulatory candidate genes for the entire flavonoid pathway, which produces anthocyanins, we used a combination of sequence searches of the Aquilegia Gene Index, phylogenetic analyses, and the isolation of novel sequences by using degenerate PCR and RACE. In total we identified 34 genes that are likely involved in the flavonoid pathway. A number of these genes appear to be single copy in Aquilegia and thus variation in their expression may have been key for floral color evolution. Future studies will be able to use these sequences along with next-generation sequencing technologies to follow expression and sequence variation at the population level. The genetic dissection of other adaptive traits in Aquilegia should also be possible soon as genomic resources such as whole-genome sequencing become available.
Collapse
Affiliation(s)
- Scott A Hodges
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA.
| | | |
Collapse
|
46
|
Kerr KCR, Lijtmaer DA, Barreira AS, Hebert PDN, Tubaro PL. Probing evolutionary patterns in neotropical birds through DNA barcodes. PLoS One 2009; 4:e4379. [PMID: 19194495 PMCID: PMC2632745 DOI: 10.1371/journal.pone.0004379] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 12/29/2008] [Indexed: 11/18/2022] Open
Abstract
Background The Neotropical avifauna is more diverse than that of any other biogeographic region, but our understanding of patterns of regional divergence is limited. Critical examination of this issue is currently constrained by the limited genetic information available. This study begins to address this gap by assembling a library of mitochondrial COI sequences, or DNA barcodes, for Argentinian birds and comparing their patterns of genetic diversity to those of North American birds. Methodology and Principal Findings Five hundred Argentinian species were examined, making this the first major examination of DNA barcodes for South American birds. Our results indicate that most southern Neotropical bird species show deep sequence divergence from their nearest-neighbour, corroborating that the high diversity of this fauna is not based on an elevated incidence of young species radiations. Although species ages appear similar in temperate North and South American avifaunas, patterns of regional divergence are more complex in the Neotropics, suggesting that the high diversity of the Neotropical avifauna has been fueled by greater opportunities for regional divergence. Deep genetic splits were observed in at least 21 species, though distribution patterns of these lineages were variable. The lack of shared polymorphisms in species, even in species with less than 0.5M years of reproductive isolation, further suggests that selective sweeps could regularly excise ancestral mitochondrial polymorphisms. Conclusions These findings confirm the efficacy of species delimitation in birds via DNA barcodes, even when tested on a global scale. Further, they demonstrate how large libraries of a standardized gene region provide insight into evolutionary processes.
Collapse
Affiliation(s)
- Kevin C R Kerr
- Department of Integrative Biology, Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada.
| | | | | | | | | |
Collapse
|
47
|
Grant BR, Grant PR. Fission and fusion of Darwin's finches populations. Philos Trans R Soc Lond B Biol Sci 2008; 363:2821-9. [PMID: 18508750 DOI: 10.1098/rstb.2008.0051] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study addresses the causes and evolutionary consequences of introgressive hybridization in the sympatric species of Darwin's ground finches (Geospiza) on the small island of Daphne Major in the Galápagos archipelago. Hybridization occurs rarely (less than 2% of breeding pairs) but persistently across years, usually as a result of imprinting on the song of another species. Hybrids survive well under some ecological conditions, but not others. Hybrids mate according to song type. The resulting introgression increases phenotypic and genetic variation in the backcrossed populations. Effects of introgression on beak shape are determined by the underlying developmental genetic pathways. Introgressive hybridization has been widespread throughout the archipelago in the recent past, and may have been a persistent feature throughout the early history of the radiation, episodically affecting both the speed and direction of evolution. We discuss how fission through selection and fusion through introgression in contemporary Darwin's finch populations may be a reflection of processes occurring in other young radiations. We propose that introgression has the largest effect on the evolution of interbreeding species after they have diverged in morphology, but before the point is reached when genetic incompatibilities incur a severe fitness cost.
Collapse
Affiliation(s)
- B Rosemary Grant
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| | | |
Collapse
|
48
|
Sequeira AS, Sijapati M, Lanteri AA, Roque Albelo L. Nuclear and mitochondrial sequences confirm complex colonization patterns and clear species boundaries for flightless weevils in the Galápagos archipelago. Philos Trans R Soc Lond B Biol Sci 2008; 363:3439-51. [PMID: 18765362 PMCID: PMC2607370 DOI: 10.1098/rstb.2008.0109] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nuclear sequence data were collected from endemic Galápagos species and an introduced close relative, and contrasted with mitochondrial DNA sequences, continuing investigation into the colonization history and modes of diversification in the weevil genus Galapaganus. The current combined phylogeny together with previously published penalized likelihood age estimates builds a complex picture of the archipelago's colonization history. The present reconstruction relies on submerged platforms to explain the early divergence of the young southern Isabela endemics or the Española or San Cristobal populations. Diversity is later built through inter-island divergence starting on older islands and continuing on two simultaneous tracks towards younger islands. The amount of diversity generated through intra-island processes is skewed towards older islands, suggesting that island age significantly influences diversity. Phylogenetic concordance between nuclear and mitochondrial datasets and well-supported monophyletic species in mitochondrial derived topologies appear to reject the possibility of inter-species hybridization. These clear species boundaries might be related to the tight host associations of adult weevils in discrete ecological zones. If shared hosts facilitate hybridization, then host- or habitat-promoted divergences could prevent it, even in the case of species that share islands, since the altitudinal partitioning of habitats minimizes range overlap.
Collapse
Affiliation(s)
- A S Sequeira
- Department of Biological Sciences, Wellesley College, 106 Central Street, Wellesley, MA 02481, USA.
| | | | | | | |
Collapse
|
49
|
Abstract
Darwin's finches in the Galápagos archipelago are an unusual example of adaptive radiation in that the basal split separates two lineages of warbler finches (Certhidea olivacea and Certhidea fusca) believed until recently to be only one species. The large genetic difference between them contrasts with their similarity in plumage, size, shape, and courtship behavior. They differ in song, which is a key factor in premating isolation of other sympatric Darwin's finches. We conducted playback experiments to see whether members of the population of C. olivacea on Santa Cruz Island would respond to songs of C. fusca from two islands, Genovesa and Pinta, and songs of C. olivacea from another island (Isabela). Another set of experiments was performed, using the same playback tapes, with C. fusca on Genovesa. Some members of both populations responded to all playbacks; therefore, the hypothesis of complete premating isolation on the basis of song is rejected. Discrimination between songs of the two lineages was inconsistent. We conclude that premating barriers to interbreeding among the tested populations have not arisen in the 1.5-2.0 m.yr. of their geographical isolation on different islands. This contrasts with strong premating barriers between more recently derived sympatric species. Early learning of song associated with morphology is later used in mate recognition. This explains why sympatric species that are vocally and morphologically distinct yet genetically less differentiated than Certhidea do not interbreed, whereas the Certhidea lineages that are genetically well differentiated but vocally and morphologically similar have no apparent premating barrier. We discuss this unusual situation in terms of the forces that have produced similarities and differences in song, morphology, and ecology and their relevance to phylogenetic and biological species concepts. Neither principles nor details are unique to Darwin's finches, and we conclude by pointing out strong parallels with some continental birds.
Collapse
Affiliation(s)
- B Rosemary Grant
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544-1003, USA
| | | |
Collapse
|
50
|
Gillespie RG. Adaptive Radiation: Innovations and Insights. DIVERS DISTRIB 2008. [DOI: 10.1111/j.1472-4642.2001.100-3.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|