1
|
Song H, Lopes K, Orr A, Wickner W. After their membrane assembly, Sec18 (NSF) and Sec17 (SNAP) promote membrane fusion. Mol Biol Cell 2024; 35:ar150. [PMID: 39475713 DOI: 10.1091/mbc.e24-10-0439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
The energy that drives membrane fusion can come from either complete SNARE zippering, from Sec17 and Sec18, or both. Sec17 and Sec18 initially form a complex which binds membranes. Sec17, Sec18, and the apolarity of a loop on the N-domain of Sec17 are required for their interdependent membrane association. To determine whether Sec18 and the Sec17 loop apolarity are still required for fusion after their membrane arrival, a hydrophobic transmembrane (TM) anchor was affixed to the N-terminus of Sec17, forming TM-Sec17. Fusion without energy from complete SNARE zippering requires Sec18 as well as either Sec17 or TM-Sec17. Even without the need for membrane targeting, the TM-Sec17 apolar loop strongly stimulates Sec17/18-driven fusion. Thus, Sec18 and the Sec17 apolar loop are first required for membrane targeting, and once bound, drive rapid fusion. Each of these variables-the absence or presence of Sec17, its N-loop apolarity, addition or omission of Sec18, and unimpeded or diminished energy from SNARE zippering-has almost no effect on the amount of trans-SNARE complex, but instead regulates the capacity of docked membranes to fuse.
Collapse
Affiliation(s)
- Hongki Song
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Karina Lopes
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Amy Orr
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
2
|
Lopes K, Orr A, Wickner W. Membrane fusion reactions limited by defective SNARE zippering or stiff lipid fatty acyl composition have distinct requirements for Sec17, Sec18, and adenine nucleotide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623832. [PMID: 39605500 PMCID: PMC11601375 DOI: 10.1101/2024.11.15.623832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Intracellular membrane fusion is catalyzed by SNAREs, Rab GTPases, SM proteins, tethers, Sec18/NSF and Sec17/SNAP. Membrane fusion has been reconstituted with purified vacuolar proteins and lipids to address 3 salient questions: whether ATP hydrolysis by Sec18 affects its promotion of fusion, whether fusion promotion by Sec17 and Sec18 is only seen with mutant SNAREs or can also be seen with wild-type SNAREs, and whether Sec17 and Sec18 only promote fusion when they work together or whether they can each work separately. Fusion is driven by two engines, completion of SNARE zippering (which does not need Sec17/Sec18) and Sec17/Sec18-mediated fusion (needing SNAREs but not the energy from their complete zippering). Sec17 is required to rescue fusion that is blocked by incomplete zippering, though optimal rescue also needs the ATPase Sec18. ATP is an essential Sec18 ligand, but at limiting Sec17 levels Sec18 ATP hydrolysis also drives release of Sec17 without concomitant trans-SNARE complex disassembly. At higher (physiological) Sec17 levels, or without ATP hydrolysis, fusion prevails over Sec17 release. Stiff 16:0, 18:1 fatty acyl chain lipids provide an alternative route to suppressing fusion, with entirely wild-type SNAREs and without impediment to zippering. In this case, Sec17 and Sec18 restore comparable fusion with either ATP or a nonhydrolyzable analog. Fusion blocked by impaired zippering can be restored by concentrated Sec17 alone (but not by Sec18), while fusion inhibited by stiff fatty acyl chains is partially restored by Sec18 alone (but not by Sec17). With distinct fusion impediments, Sec18 and Sec17 have both shared roles and independent roles in promoting fusion.
Collapse
Affiliation(s)
- Karina Lopes
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, 7200 Vail Building, Hanover, N.H. 03755
| | - Amy Orr
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, 7200 Vail Building, Hanover, N.H. 03755
| | - William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, 7200 Vail Building, Hanover, N.H. 03755
| |
Collapse
|
3
|
Leih M, Plemel RL, West M, Angers CG, Merz AJ, Odorizzi G. Disordered hinge regions of the AP-3 adaptor complex promote vesicle budding from the late Golgi in yeast. J Cell Sci 2024; 137:jcs262234. [PMID: 39330471 PMCID: PMC11574352 DOI: 10.1242/jcs.262234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024] Open
Abstract
Vesicles bud from maturing Golgi cisternae in a programmed sequence. Budding is mediated by adaptors that recruit cargoes and facilitate vesicle biogenesis. In Saccharomyces cerevisiae, the AP-3 adaptor complex directs cargoes from the Golgi to the lysosomal vacuole. The AP-3 core consists of small and medium subunits complexed with two non-identical large subunits, β3 (Apl6) and δ (Apl5). The C-termini of β3 and δ were thought to be flexible hinges linking the core to ear domains that bind accessory proteins involved in vesicular transport. We found by computational modeling that the yeast β3 and δ hinges are intrinsically disordered and lack folded ear domains. When either hinge is truncated, AP-3 is recruited to the Golgi, but vesicle budding is impaired and cargoes normally sorted into the AP-3 pathway are mistargeted. This budding deficiency causes AP-3 to accumulate on ring-like Golgi structures adjacent to GGA adaptors that, in wild-type cells, bud vesicles downstream of AP-3 during Golgi maturation. Thus, each of the disordered hinges of yeast AP-3 has a crucial role in mediating transport vesicle formation at the Golgi.
Collapse
Affiliation(s)
- Mitchell Leih
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Rachael L Plemel
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Matt West
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Cortney G Angers
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alexey J Merz
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Greg Odorizzi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
4
|
Vázquez Maldonado AL, Chen T, Rodriguez D, Zoltek M, Schepartz A. Earlier endosomal escape improves the catalytic activity of delivered enzyme cargo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615476. [PMID: 39386431 PMCID: PMC11463459 DOI: 10.1101/2024.09.27.615476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
There is enormous interest in strategies to efficiently traffic biologics-proteins, nucleic acids, and complexes thereof-into the mammalian cell cytosol and internal organelles. Not only must these materials reach the appropriate cellular locale fully intact and in therapeutically relevant concentrations, they must also retain activity upon arrival. The question of residual activity is especially critical when delivery involves exposure to the late endocytic pathway, whose acidic lumenal environment can denature and/or degrade internalized material. ZF5.3 is a compact, stable, rationally designed mini-protein that efficiently escapes intact from late endocytic vesicles, with or without covalently linked protein cargo. Here, using insights from mechanistic studies on the pathway of endosomal escape and classic knowledge regarding the bioinorganic chemistry of zinc(II) coordination in small proteins, we re-designed the sequence of ZF5.3 to successfully alter the timing (but not the efficiency) of endosomal escape. The new mini-protein we describe, AV5.3, escapes earlier than ZF5.3 along the endocytic pathway with no loss in efficiency, with or without enzyme cargo. More importantly, earlier endosomal escape translates into higher enzymatic activity upon arrival in the cytosol. Delivery of the pH-sensitive protein dihydrofolate reductase (DHFR) with AV5.3 results in substantial catalytic activity in the cytosol, whereas delivery with ZF5.3 does not. The activity of AV5.3-DHFR upon delivery is sufficient to rescue a genetic DHFR deletion in CHO cells. This work provides evidence that programmed trafficking through the endosomal pathway is a viable strategy for the efficient cytosolic delivery of therapeutic proteins. Abstract Figure
Collapse
|
5
|
Zhang C, Calderin JD, Hurst LR, Gokbayrak ZD, Hrabak MR, Balutowski A, Rivera-Kohr DA, Kazmirchuk TDD, Brett CL, Fratti RA. Sphingolipids containing very long-chain fatty acids regulate Ypt7 function during the tethering stage of vacuole fusion. J Biol Chem 2024; 300:107808. [PMID: 39307308 PMCID: PMC11530833 DOI: 10.1016/j.jbc.2024.107808] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/22/2024] [Accepted: 09/15/2024] [Indexed: 10/20/2024] Open
Abstract
Sphingolipids are essential in membrane trafficking and cellular homeostasis. Here, we show that sphingolipids containing very long-chain fatty acids (VLCFAs) promote homotypic vacuolar fusion in Saccharomyces cerevisiae. The elongase Elo3 adds the last two carbons to VLCFAs that are incorporated into sphingolipids. Cells lacking Elo3 have fragmented vacuoles, which is also seen when WT cells are treated with the sphingolipid synthesis inhibitor Aureobasidin-A. Isolated elo3Δ vacuoles show acidification defects and increased membrane fluidity, and this correlates with deficient fusion. Fusion arrest occurs at the tethering stage as elo3Δ vacuoles fail to cluster efficiently in vitro. Unlike HOPS and fusogenic lipids, GFP-Ypt7 does not enrich at elo3Δ vertex microdomains, a hallmark of vacuole docking prior to fusion. Pulldown assays using bacterially expressed GST-Ypt7 showed that HOPS from elo3Δ vacuole extracts failed to bind GST-Ypt7 while HOPS from WT extracts interacted strongly with GST-Ypt7. Treatment of WT vacuoles with the fluidizing anesthetic dibucaine recapitulates the elo3Δ phenotype and shows increased membrane fluidity, mislocalized GFP-Ypt7, inhibited fusion, and attenuated acidification. Together these data suggest that sphingolipids contribute to Rab-mediated tethering and docking required for vacuole fusion.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jorge D Calderin
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Logan R Hurst
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | | | - Michael R Hrabak
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Adam Balutowski
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - David A Rivera-Kohr
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | | | | | - Rutilio A Fratti
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; Center for Biophysics & Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
6
|
Shvarev D, König C, Susan N, Langemeyer L, Walter S, Perz A, Fröhlich F, Ungermann C, Moeller A. Structure of the endosomal CORVET tethering complex. Nat Commun 2024; 15:5227. [PMID: 38898033 PMCID: PMC11187117 DOI: 10.1038/s41467-024-49137-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Cells depend on their endolysosomal system for nutrient uptake and downregulation of plasma membrane proteins. These processes rely on endosomal maturation, which requires multiple membrane fusion steps. Early endosome fusion is promoted by the Rab5 GTPase and its effector, the hexameric CORVET tethering complex, which is homologous to the lysosomal HOPS. How these related complexes recognize their specific target membranes remains entirely elusive. Here, we solve the structure of CORVET by cryo-electron microscopy and revealed its minimal requirements for membrane tethering. As expected, the core of CORVET and HOPS resembles each other. However, the function-defining subunits show marked structural differences. Notably, we discover that unlike HOPS, CORVET depends not only on Rab5 but also on phosphatidylinositol-3-phosphate (PI3P) and membrane lipid packing defects for tethering, implying that an organelle-specific membrane code enables fusion. Our data suggest that both shape and membrane interactions of CORVET and HOPS are conserved in metazoans, thus providing a paradigm how tethering complexes function.
Collapse
Affiliation(s)
- Dmitry Shvarev
- Department of Biology/Chemistry, Structural Biology Section, Osnabrück University, 49076, Osnabrück, Germany
| | - Caroline König
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, 49076, Osnabrück, Germany
| | - Nicole Susan
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, 49076, Osnabrück, Germany
| | - Lars Langemeyer
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, 49076, Osnabrück, Germany
- Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Stefan Walter
- Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
| | - Angela Perz
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, 49076, Osnabrück, Germany
| | - Florian Fröhlich
- Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany
- Department of Biology/Chemistry, Bioanalytical Chemistry Section, Osnabrück University, 49076, Osnabrück, Germany
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, 49076, Osnabrück, Germany.
- Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany.
| | - Arne Moeller
- Department of Biology/Chemistry, Structural Biology Section, Osnabrück University, 49076, Osnabrück, Germany.
- Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, 49076, Osnabrück, Germany.
| |
Collapse
|
7
|
Duan M, Gao G, Lin A, Mackey EJ, Banfield DK, Merz AJ. SM protein Sly1 and a SNARE Habc domain promote membrane fusion through multiple mechanisms. J Cell Biol 2024; 223:e202001034. [PMID: 38478017 PMCID: PMC10943372 DOI: 10.1083/jcb.202001034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 12/20/2023] [Accepted: 02/22/2024] [Indexed: 03/17/2024] Open
Abstract
SM proteins including Sly1 are essential cofactors of SNARE-mediated membrane fusion. Using SNARE and Sly1 mutants and chemically defined in vitro assays, we separate and assess proposed mechanisms through which Sly1 augments fusion: (i) opening the closed conformation of the Qa-SNARE Sed5; (ii) close-range tethering of vesicles to target organelles, mediated by the Sly1-specific regulatory loop; and (iii) nucleation of productive trans-SNARE complexes. We show that all three mechanisms are important and operate in parallel, and that close-range tethering promotes trans-complex assembly when cis-SNARE assembly is a competing process. Further, we demonstrate that the autoinhibitory N-terminal Habc domain of Sed5 has at least two positive activities: it is needed for correct Sed5 localization, and it directly promotes Sly1-dependent fusion. "Split Sed5," with Habc presented solely as a soluble fragment, can function both in vitro and in vivo. Habc appears to facilitate events leading to lipid mixing rather than promoting opening or stability of the fusion pore.
Collapse
Affiliation(s)
- Mengtong Duan
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Guanbin Gao
- The Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Ariel Lin
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Emma J. Mackey
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - David K. Banfield
- The Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Alexey J. Merz
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
8
|
Sőth Á, Molnár M, Lőrincz P, Simon-Vecsei Z, Juhász G. CORVET-specific subunit levels determine the balance between HOPS/CORVET endosomal tethering complexes. Sci Rep 2024; 14:10146. [PMID: 38698024 PMCID: PMC11066007 DOI: 10.1038/s41598-024-59775-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024] Open
Abstract
The closely related endolysosomal tethering complexes HOPS and CORVET play pivotal roles in the homo- and heterotypic fusion of early and late endosomes, respectively, and HOPS also mediates the fusion of lysosomes with incoming vesicles including late endosomes and autophagosomes. These heterohexameric complexes share their four core subunits that assemble with additional two, complex-specific subunits. These features and the similar structure of the complexes could allow the formation of hybrid complexes, and the complex specific subunits may compete for binding to the core. Indeed, our biochemical analyses revealed the overlap of binding sites for HOPS-specific VPS41 and CORVET-specific VPS8 on the shared core subunit VPS18. We found that the overexpression of CORVET-specific VPS8 or Tgfbrap1 decreased the amount of core proteins VPS11 and VPS18 that are assembled with HOPS-specific subunits VPS41 or VPS39, indicating reduced amount of assembled HOPS. In line with this, we observed the elevation of both lipidated, autophagosome-associated LC3 protein and the autophagic cargo p62 in these cells, suggesting impaired autophagosome-lysosome fusion. In contrast, overexpression of HOPS-specific VPS39 or VPS41 did not affect the level of assembled CORVET or autophagy. VPS8 or Tgfbrap1 overexpression also induced Cathepsin D accumulation, suggesting that HOPS-dependent biosynthetic delivery of lysosomal hydrolases is perturbed, too. These indicate that CORVET-specific subunit levels fine-tune HOPS assembly and activity in vivo.
Collapse
Affiliation(s)
- Ármin Sőth
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University (ELTE), Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
| | - Márton Molnár
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University (ELTE), Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
- Momentum Vesicle Trafficking Research Group, Hungarian Academy of Sciences-Eötvös Loránd University, Budapest, Hungary
| | - Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University (ELTE), Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
- Momentum Vesicle Trafficking Research Group, Hungarian Academy of Sciences-Eötvös Loránd University, Budapest, Hungary
| | - Zsófia Simon-Vecsei
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University (ELTE), Pázmány Péter sétány 1/C, Budapest, 1117, Hungary.
- Momentum Vesicle Trafficking Research Group, Hungarian Academy of Sciences-Eötvös Loránd University, Budapest, Hungary.
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University (ELTE), Pázmány Péter sétány 1/C, Budapest, 1117, Hungary.
- Momentum Lysosomal Degradation Research Group, Institute of Genetics, HUN-REN Biological Research Centre Szeged, Szeged, Hungary.
| |
Collapse
|
9
|
Orr A, Wickner W. Sec18 binds the tethering/SM complex HOPS to engage the Qc-SNARE for membrane fusion. Mol Biol Cell 2024; 35:ar71. [PMID: 38536444 PMCID: PMC11151092 DOI: 10.1091/mbc.e24-02-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/18/2024] Open
Abstract
Membrane fusion is regulated by Rab GTPases, their tethering effectors such as HOPS, SNARE proteins on each fusion partner, SM proteins to catalyze SNARE assembly, Sec17 (SNAP), and Sec18 (NSF). Though concentrated HOPS can support fusion without Sec18, we now report that fusion falls off sharply at lower HOPS levels, where direct Sec18 binding to HOPS restores fusion. This Sec18-dependent fusion needs adenine nucleotide but neither ATP hydrolysis nor Sec17. Sec18 enhances HOPS recognition of the Qc-SNARE. With high levels of HOPS, Qc has a Km for fusion of a few nM. Either lower HOPS levels, or substitution of a synthetic tether for HOPS, strikingly increases the Km for Qc to several hundred nM. With dilute HOPS, Sec18 returns the Km for Qc to low nM. In contrast, HOPS concentration and Sec18 have no effect on Qb-SNARE recognition. Just as Qc is required for fusion but not for the initial assembly of SNAREs in trans, impaired Qc recognition by limiting HOPS without Sec18 still allows substantial trans-SNARE assembly. Thus, in addition to the known Sec18 functions of disassembling SNARE complexes, oligomerizing Sec17 for membrane association, and allowing Sec17 to drive fusion without complete SNARE zippering, we report a fourth Sec18 function, the Sec17-independent binding of Sec18 to HOPS to enhance functional Qc-SNARE engagement.
Collapse
Affiliation(s)
- Amy Orr
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844
| | - William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844
| |
Collapse
|
10
|
Hoffman HK, Prekeris R. HOPS-dependent lysosomal fusion controls Rab19 availability for ciliogenesis in polarized epithelial cells. J Cell Sci 2024; 137:jcs261047. [PMID: 37665101 PMCID: PMC10499034 DOI: 10.1242/jcs.261047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/20/2023] [Indexed: 09/05/2023] Open
Abstract
Primary cilia are sensory cellular organelles crucial for organ development and homeostasis. Ciliogenesis in polarized epithelial cells requires Rab19-mediated clearing of apical cortical actin to allow the cilium to grow from the apically docked basal body into the extracellular space. Loss of the lysosomal membrane-tethering homotypic fusion and protein sorting (HOPS) complex disrupts this actin clearing and ciliogenesis, but it remains unclear how the ciliary function of HOPS relates to its canonical function in regulating late endosome-lysosome fusion. Here, we show that disruption of HOPS-dependent lysosomal fusion indirectly impairs actin clearing and ciliogenesis by disrupting the targeting of Rab19 to the basal body, and that this effect is specific to polarized epithelial cells. We also find that Rab19 functions in endolysosomal cargo trafficking in addition to having its previously identified role in ciliogenesis. In summary, we show that inhibition of lysosomal fusion leads to the abnormal accumulation of Rab19 on late endosomes, thus depleting Rab19 from the basal body and thereby disrupting Rab19-mediated actin clearing and ciliogenesis in polarized epithelial cells.
Collapse
Affiliation(s)
- Huxley K. Hoffman
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
11
|
van der Beek J, de Heus C, Sanza P, Liv N, Klumperman J. Loss of the HOPS complex disrupts early-to-late endosome transition, impairs endosomal recycling and induces accumulation of amphisomes. Mol Biol Cell 2024; 35:ar40. [PMID: 38198575 PMCID: PMC10916860 DOI: 10.1091/mbc.e23-08-0328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024] Open
Abstract
The multisubunit HOPS tethering complex is a well-established regulator of lysosome fusion with late endosomes and autophagosomes. However, the role of the HOPS complex in other stages of endo-lysosomal trafficking is not well understood. To address this, we made HeLa cells knocked out for the HOPS-specific subunits Vps39 or Vps41, or the HOPS-CORVET-core subunits Vps18 or Vps11. In all four knockout cells, we found that endocytosed cargos were trapped in enlarged endosomes that clustered in the perinuclear area. By correlative light-electron microscopy, these endosomes showed a complex ultrastructure and hybrid molecular composition, displaying markers for early (Rab5, PtdIns3P, EEA1) as well as late (Rab7, CD63, LAMP1) endosomes. These "HOPS bodies" were not acidified, contained enzymatically inactive cathepsins and accumulated endocytosed cargo and cation-independent mannose-6-phosphate receptor (CI-MPR). Consequently, CI-MPR was depleted from the TGN, and secretion of lysosomal enzymes to the extracellular space was enhanced. Strikingly, HOPS bodies also contained the autophagy proteins p62 and LC3, defining them as amphisomes. Together, these findings show that depletion of the lysosomal HOPS complex has a profound impact on the functional organization of the entire endosomal system and suggest the existence of a HOPS-independent mechanism for amphisome formation.
Collapse
Affiliation(s)
- Jan van der Beek
- Center for Molecular Medicine, University Medical Center Utrecht, Institute of Biomembranes, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Cecilia de Heus
- Center for Molecular Medicine, University Medical Center Utrecht, Institute of Biomembranes, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Paolo Sanza
- Center for Molecular Medicine, University Medical Center Utrecht, Institute of Biomembranes, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Nalan Liv
- Center for Molecular Medicine, University Medical Center Utrecht, Institute of Biomembranes, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Judith Klumperman
- Center for Molecular Medicine, University Medical Center Utrecht, Institute of Biomembranes, Utrecht University, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
12
|
Obara K, Nishimura K, Kamura T. E3 Ligases Regulate Organelle Inheritance in Yeast. Cells 2024; 13:292. [PMID: 38391905 PMCID: PMC10887072 DOI: 10.3390/cells13040292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/25/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
Saccharomyces cerevisiae proliferates by budding, which includes the formation of a cytoplasmic protrusion called the 'bud', into which DNA, RNA, proteins, organelles, and other materials are transported. The transport of organelles into the growing bud must be strictly regulated for the proper inheritance of organelles by daughter cells. In yeast, the RING-type E3 ubiquitin ligases, Dma1 and Dma2, are involved in the proper inheritance of mitochondria, vacuoles, and presumably peroxisomes. These organelles are transported along actin filaments toward the tip of the growing bud by the myosin motor protein, Myo2. During organelle transport, organelle-specific adaptor proteins, namely Mmr1, Vac17, and Inp2 for mitochondria, vacuoles, and peroxisomes, respectively, bridge the organelles and myosin. After reaching the bud, the adaptor proteins are ubiquitinated by the E3 ubiquitin ligases and degraded by the proteasome. Targeted degradation of the adaptor proteins is necessary to unload vacuoles, mitochondria, and peroxisomes from the actin-myosin machinery. Impairment of the ubiquitination of adaptor proteins results in the failure of organelle release from myosin, which, in turn, leads to abnormal dynamics, morphology, and function of the inherited organelles, indicating the significance of proper organelle unloading from myosin. Herein, we summarize the role and regulation of E3 ubiquitin ligases during organelle inheritance in yeast.
Collapse
Affiliation(s)
- Keisuke Obara
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya 464-8602, Japan;
| | | | - Takumi Kamura
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya 464-8602, Japan;
| |
Collapse
|
13
|
Orr A, Wickner W. MARCKS Effector Domain, a reversible lipid ligand, illuminates late stages of membrane fusion. Mol Biol Cell 2023; 34:ar123. [PMID: 37672336 PMCID: PMC10846624 DOI: 10.1091/mbc.e23-06-0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023] Open
Abstract
Yeast vacuolar HOPS tethers membranes, catalyzes trans-SNARE assembly between R- and Q-SNAREs, and shepherds SNAREs past early inhibition by Sec17. After partial SNARE zippering, fusion is driven slowly by either completion of SNARE zippering or by Sec17/Sec18, but rapid fusion needs zippering and Sec17/Sec18. Using reconstituted-vacuolar fusion, we find that MARCKS Effector Domain (MED) peptide, a lipid ligand, blocks fusion reversibly at a late reaction stage. The MED fusion blockade is overcome by either salt extraction, inactivation with the MED ligand calmodulin, or addition of Sec17/Sec18. During incubation with MED, SNAREs assemble stable complexes in trans and fusion becomes resistant to antibody to the Qa SNARE. When Q-SNAREs are preassembled, a synthetic tether can replace HOPS for fusion. With a synthetic tether, fusion needs both complete SNARE zippering and Sec17/Sec18 to overcome a MED block. In contrast, when SNARE domains are only two-third zippered, only HOPS will support Sec17/Sec18 driven fusion without needing complete zippering. HOPS thus remains engaged with SNAREs during zippering. MED facilitates the study of distinct fusion stages: tethering, initial trans-SNARE assembly and its sensitivity to Sec17, SNARE zippering, Sec17/Sec18 engagement, and lipid and lumenal mixing.
Collapse
Affiliation(s)
- Amy Orr
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844
| | - William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844
| |
Collapse
|
14
|
Zhang S, Tong M, Zheng D, Huang H, Li L, Ungermann C, Pan Y, Luo H, Lei M, Tang Z, Fu W, Chen S, Liu X, Zhong Q. C9orf72-catalyzed GTP loading of Rab39A enables HOPS-mediated membrane tethering and fusion in mammalian autophagy. Nat Commun 2023; 14:6360. [PMID: 37821429 PMCID: PMC10567733 DOI: 10.1038/s41467-023-42003-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
The multi-subunit homotypic fusion and vacuole protein sorting (HOPS) membrane-tethering complex is required for autophagosome-lysosome fusion in mammals, yet reconstituting the mammalian HOPS complex remains a challenge. Here we propose a "hook-up" model for mammalian HOPS complex assembly, which requires two HOPS sub-complexes docking on membranes via membrane-associated Rabs. We identify Rab39A as a key small GTPase that recruits HOPS onto autophagic vesicles. Proper pairing with Rab2 and Rab39A enables HOPS complex assembly between proteoliposomes for its tethering function, facilitating efficient membrane fusion. GTP loading of Rab39A is important for the recruitment of HOPS to autophagic membranes. Activation of Rab39A is catalyzed by C9orf72, a guanine exchange factor associated with amyotrophic lateral sclerosis and familial frontotemporal dementia. Constitutive activation of Rab39A can rescue autophagy defects caused by C9orf72 depletion. These results therefore reveal a crucial role for the C9orf72-Rab39A-HOPS axis in autophagosome-lysosome fusion.
Collapse
Affiliation(s)
- Shen Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mindan Tong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Denghao Zheng
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiying Huang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linsen Li
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Christian Ungermann
- Osnabrück University, Department of Biology/Chemistry, Biochemistry section, Osnabrück, Germany
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Yi Pan
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanyan Luo
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Lei
- State Key Laboratory of Oncogenes and Related Genes, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
- Shanghai Institute of Precision Medicine, 200125, Shanghai, China
| | - Zaiming Tang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wan Fu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - She Chen
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Xiaoxia Liu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
15
|
Mulligan RJ, Winckler B. Regulation of Endosomal Trafficking by Rab7 and Its Effectors in Neurons: Clues from Charcot-Marie-Tooth 2B Disease. Biomolecules 2023; 13:1399. [PMID: 37759799 PMCID: PMC10527268 DOI: 10.3390/biom13091399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Intracellular endosomal trafficking controls the balance between protein degradation and synthesis, i.e., proteostasis, but also many of the cellular signaling pathways that emanate from activated growth factor receptors after endocytosis. Endosomal trafficking, sorting, and motility are coordinated by the activity of small GTPases, including Rab proteins, whose function as molecular switches direct activity at endosomal membranes through effector proteins. Rab7 is particularly important in the coordination of the degradative functions of the pathway. Rab7 effectors control endosomal maturation and the properties of late endosomal and lysosomal compartments, such as coordination of recycling, motility, and fusion with downstream compartments. The spatiotemporal regulation of endosomal receptor trafficking is particularly challenging in neurons because of their enormous size, their distinct intracellular domains with unique requirements (dendrites vs. axons), and their long lifespans as postmitotic, differentiated cells. In Charcot-Marie-Tooth 2B disease (CMT2B), familial missense mutations in Rab7 cause alterations in GTPase cycling and trafficking, leading to an ulcero-mutilating peripheral neuropathy. The prevailing hypothesis to account for CMT2B pathologies is that CMT2B-associated Rab7 alleles alter endocytic trafficking of the neurotrophin NGF and its receptor TrkA and, thereby, disrupt normal trophic signaling in the peripheral nervous system, but other Rab7-dependent pathways are also impacted. Here, using TrkA as a prototypical endocytic cargo, we review physiologic Rab7 effector interactions and control in neurons. Since neurons are among the largest cells in the body, we place particular emphasis on the temporal and spatial regulation of endosomal sorting and trafficking in neuronal processes. We further discuss the current findings in CMT2B mutant Rab7 models, the impact of mutations on effector interactions or balance, and how this dysregulation may confer disease.
Collapse
Affiliation(s)
- Ryan J. Mulligan
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22903, USA
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA 22903, USA
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
16
|
Wickner W, Lopes K, Song H, Rizo J, Orr A. Efficient fusion requires a membrane anchor on the vacuolar Qa-SNARE. Mol Biol Cell 2023; 34:ar88. [PMID: 37314849 PMCID: PMC10398888 DOI: 10.1091/mbc.e23-02-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023] Open
Abstract
As a prelude to fusion, the R-SNARE on one membrane zippers with Qa-, Qb-, and Qc-SNAREs from its apposed fusion partner, forming a four-helical bundle that draws the two membranes together. Because Qa- and Qb-SNAREs are anchored to the same membrane and are adjacent in the 4-SNARE bundle, their two anchors might be redundant. Using the recombinant pure protein catalysts of yeast vacuole fusion, we now report that the specific distribution of transmembrane (TM) anchors on the Q-SNAREs is critical for efficient fusion. A TM anchor on the Qa-SNARE supports rapid fusion even when the other two Q-SNAREs are unanchored, while a TM anchor on the Qb-SNARE is dispensable and is insufficient for rapid fusion as the sole Q-SNARE anchor. This does not depend on which specific TM domain is attached to the Qa-SNARE but rather is due to the Qa-SNARE being anchored per se. The need for Qa-SNARE anchoring is even seen when the homotypic fusion and vacuole protein sorting protein (HOPS), the physiological catalyst of tethering and SNARE assembly, is replaced by an artificial tether. The need for a Qa TM anchor is thus a fundamental property of vacuolar SNARE zippering-induced fusion and may reflect the need for the Qa juxtamembrane (JxQa) region to be anchored between its SNARE and TM domains. This requirement for Qa-SNARE anchoring and correct JxQa position is bypassed by Sec17/Sec18, exploiting a platform of partially zippered SNAREs. Because Qa is the only synaptic Q-SNARE with a TM anchor, the need for Qa-specific anchoring may reflect a general requirement for SNARE-mediated fusion.
Collapse
Affiliation(s)
- William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Karina Lopes
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Hongki Song
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
- Insmed, Inc, Lebanon, NH 03756
| | - Josep Rizo
- Departments of Biophysics, Biochemistry, and Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Amy Orr
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
17
|
Liu RJY, Al-Molieh Y, Chen SZ, Drobac M, Urban D, Chen CH, Yao HHY, Geng RSQ, Li L, Pluthero FG, Benlekbir S, Rubinstein JL, Kahr WHA. The Sec1/Munc18 protein VPS33B forms a uniquely bidirectional complex with VPS16B. J Biol Chem 2023; 299:104718. [PMID: 37062417 DOI: 10.1016/j.jbc.2023.104718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/03/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023] Open
Abstract
Loss of function variants of VPS33B and VIPAS39 (encoding VPS16B) are causative for arthrogryposis, renal dysfunction and cholestasis (ARC) syndrome, where early lethality of patients indicates that VPS33B and VPS16B play essential cellular roles. VPS33B is a member of the Sec1/Munc18 (SM) protein family, and thus thought to facilitate vesicular fusion via interaction with SNARE complexes, as does its paralog VPS33A in the homotypic fusion and vacuole sorting (HOPS) complex. VPS33B and VPS16B have been shown to associate, but little is known about the composition, structure or function of the VPS33B/VPS16B complex. We show here that human VPS33B/VPS16B is a high molecular weight complex, which we expressed in yeast to obtain material for structural, composition and stability analysis. Circular dichroism data indicate VPS33B/VPS16B has a well-folded α-helical secondary structure, for which size exclusion chromatography-multi angle light scattering revealed a MW of ∼315 kDa. Quantitative immunoblotting indicated the complex has a VPS33B:VPS16B ratio of 2:3. Expression of ARC syndrome-causing VPS33B missense variants showed that L30P disrupts complex formation, but not S243F or H344D. Truncated VPS16B containing amino acids 143-316 was sufficient to form a complex with VPS33B. Small angle X-ray scattering and negative staining electron microscopy revealed a two-lobed shape for VPS33B/VPS16B. Avidin tagging indicated that each lobe contains a VPS33B molecule, and they are oriented in opposite directions. From this we propose a structure for VPS33B/VPS16B that allows the copies of VPS33B at each end to interact with separate SNARE bundles and/or SNAREpins, plus their associated membrane components. Thus our observations reveal the only known potentially bidirectional SM protein complex.
Collapse
Affiliation(s)
- Richard J Y Liu
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Yusef Al-Molieh
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Shao Z Chen
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Marko Drobac
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Denisa Urban
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Chang H Chen
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Helen H Y Yao
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Ryan S Q Geng
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Ling Li
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Fred G Pluthero
- Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Samir Benlekbir
- Molecular Medicine Program, Research Institute, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - John L Rubinstein
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada; Molecular Medicine Program, Research Institute, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Walter H A Kahr
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada; Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada; Division of Haematology/Oncology, Department of Paediatrics, University of Toronto and The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
18
|
Abstract
Cargo delivery from one compartment to the next relies on the fusion of vesicles with different cellular organelles in a process that requires the concerted action of tethering factors. Although all tethers act to bridge vesicle membranes to mediate fusion, they form very diverse groups as they differ in composition, and in their overall architecture and size, as well as their protein interactome. However, their conserved function relies on a common design. Recent data on class C Vps complexes indicates that tethers play a significant role in membrane fusion beyond vesicle capturing. Furthermore, these studies provide additional mechanistic insights into membrane fusion events and reveal that tethers should be considered as key players of the fusion machinery. Moreover, the discovery of the novel tether FERARI complex has changed our understanding of cargo transport in the endosomal system as it has been shown to mediate 'kiss-and-run' vesicle-target membrane interactions. In this Cell Science at a Glance and the accompanying poster, we compare the structure of the coiled-coil and the multisubunit CATCHR and class C Vps tether families on the basis of their functional analogy. We discuss the mechanism of membrane fusion, and summarize how tethers capture vesicles, mediate membrane fusion at different cellular compartments and regulate cargo traffic.
Collapse
Affiliation(s)
| | - Anne Spang
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
19
|
Orr A, Wickner W. PI3P regulates multiple stages of membrane fusion. Mol Biol Cell 2023; 34:ar17. [PMID: 36735517 PMCID: PMC10011722 DOI: 10.1091/mbc.e22-10-0486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The conserved catalysts of intracellular membrane fusion are Rab-family GTPases, effector complexes that bind Rabs for membrane tethering, SNARE proteins of the R, Qa, Qb, and Qc families, and SNARE chaperones of the SM, Sec17/SNAP, and Sec18/NSF families. Yeast vacuole fusion is regulated by phosphatidylinositol-3-phosphate (PI3P). PI3P binds directly to the vacuolar Qc-SNARE and to HOPS, the vacuolar tethering/SM complex. We now report several distinct functions of PI3P in fusion. PI3P binds the N-terminal PX domain of the Qc-SNARE to enhance its engagement for fusion. Even when Qc has been preassembled with the Qa- and Qb-SNAREs, PI3P still promotes trans-SNARE assembly and fusion between these 3Q proteoliposomes and those with R-SNARE, whether with the natural HOPS tether or with a synthetic tether. With HOPS, efficient trans-SNARE complex formation needs PI3P on the 3Q-SNARE proteoliposomes, in cis to the Qc. PI3P is also needed for HOPS to confer resistance to Sec17/Sec18. With a synthetic tether, fusion is supported by PI3P on either fusion partner membrane, but this fusion is blocked by Sec17/Sec18. PI3P thus supports multiple stages of fusion: the engagement of the Qc-SNARE, trans-SNARE complex formation with preassembled Q-SNAREs, HOPS protection of SNARE complexes from Sec17/Sec18, and fusion per se after tethering and Q-SNARE assembly.
Collapse
Affiliation(s)
- Amy Orr
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844
| | - William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844
| |
Collapse
|
20
|
Feng H, Liu X, Zhou C, Gu Q, Li Y, Chen J, Teng J, Zheng P. CCDC115 inhibits autophagy-mediated degradation of YAP to promote cell proliferation. FEBS Lett 2023; 597:618-630. [PMID: 36650560 DOI: 10.1002/1873-3468.14575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 01/19/2023]
Abstract
Autophagy and Hippo signalling pathways both play important roles in cell homeostasis and are often involved in tumourigenesis. However, the crosstalk between these two signal pathways in response to stress conditions, such as nutrient deficiency, is incompletely understood. Here, we show that vesicular localised coiled-coil domain containing 115 (CCDC115) inhibits autophagy as well as Hippo signalling pathway under starvation. Moreover, we show that CCDC115 interacts with the HOPS complex. This interaction competes with STX17, thus inhibiting the fusion of autophagosomes with lysosomes. Hence, CCDC115 inhibits the autophagic degradation of yes-associated protein (YAP), thereby promoting cell proliferation in nutrient-restricted situation.
Collapse
Affiliation(s)
- Hui Feng
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
- Department of Biotechnology, Beijing Polytechnic, China
| | - Xiao Liu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Chenqian Zhou
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Qiuchen Gu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
- School of Life Sciences, Beijing Normal University, China
| | - Ye Li
- Department of Biotechnology, Beijing Polytechnic, China
| | - Jianguo Chen
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Junlin Teng
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Pengli Zheng
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
21
|
Hoffman HK, Prekeris R. HOPS-dependent lysosomal fusion controls Rab19 availability for ciliogenesis in polarized epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527563. [PMID: 36798155 PMCID: PMC9934645 DOI: 10.1101/2023.02.07.527563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Primary cilia are sensory cellular organelles crucial for organ development and homeostasis. Ciliogenesis in polarized epithelial cells requires Rab19-mediated clearing of apical cortical actin to allow the cilium to grow from the apically-docked basal body into the extracellular space. Loss of the lysosomal membrane-tethering HOPS complex disrupts this actin-clearing and ciliogenesis, but it remains unclear how ciliary function of HOPS relates to its canonical function in regulating late endosome-lysosome fusion. Here, we show that disruption of HOPS-dependent lysosomal fusion indirectly impairs actin-clearing and ciliogenesis by disrupting the targeting of Rab19 to the basal body. We also find that Rab19 functions in endolysosomal cargo trafficking apart from its previously-identified role in ciliogenesis. In summary, we show that inhibition of lysosomal fusion abnormally accumulates Rab19 on late endosomes, thus depleting Rab19 from the basal body and thereby disrupting Rab19-mediated actin-clearing and ciliogenesis. Summary statement Loss of HOPS-mediated lysosomal fusion indirectly blocks apical actin clearing and ciliogenesis in polarized epithelia by trapping Rab19 on late endosomes and depleting Rab19 from the basal body.
Collapse
Affiliation(s)
- Huxley K. Hoffman
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
22
|
Pavlova EV, Lev D, Michelson M, Yosovich K, Michaeli HG, Bright NA, Manna PT, Dickson VK, Tylee KL, Church HJ, Luzio JP, Cox TM. Juvenile mucopolysaccharidosis plus disease caused by a missense mutation in VPS33A. Hum Mutat 2022; 43:2265-2278. [PMID: 36153662 PMCID: PMC10091966 DOI: 10.1002/humu.24479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 01/25/2023]
Abstract
A rare and fatal disease resembling mucopolysaccharidosis in infants, is caused by impaired intracellular endocytic trafficking due to deficiency of core components of the intracellular membrane-tethering protein complexes, HOPS, and CORVET. Whole exome sequencing identified a novel VPS33A mutation in a patient suffering from a variant form of mucopolysaccharidosis. Electron and confocal microscopy, immunoblotting, and glycosphingolipid trafficking experiments were undertaken to investigate the effects of the mutant VPS33A in patient-derived skin fibroblasts. We describe an attenuated juvenile form of VPS33A-related syndrome-mucopolysaccharidosis plus in a man who is homozygous for a hitherto unknown missense mutation (NM_022916.4: c.599 G>C; NP_075067.2:p. Arg200Pro) in a conserved region of the VPS33A gene. Urinary glycosaminoglycan (GAG) analysis revealed increased heparan, dermatan sulphates, and hyaluronic acid. We showed decreased abundance of VPS33A in patient derived fibroblasts and provided evidence that the p.Arg200Pro mutation leads to destablization of the protein and proteasomal degradation. As in the infantile form of mucopolysaccharidosis plus, the endocytic compartment in the fibroblasts also expanded-a phenomenon accompanied by increased endolysosomal acidification and impaired intracellular glycosphingolipid trafficking. Experimental treatment of the patient's cultured fibroblasts with the proteasome inhibitor, bortezomib, or exposure to an inhibitor of glucosylceramide synthesis, eliglustat, improved glycosphingolipid trafficking. To our knowledge this is the first report of an attenuated juvenile form of VPS33A insufficiency characterized by appreciable residual endosomal-lysosomal trafficking and a milder mucopolysaccharidosis plus than the disease in infants. Our findings expand the proof of concept of redeploying clinically approved drugs for therapeutic exploitation in patients with juvenile as well as infantile forms of mucopolysaccharidosis plus disease.
Collapse
Affiliation(s)
- Elena V Pavlova
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Dorit Lev
- Wolfson Medical Centre, Institute of Medical Genetics, Holon, Israel.,The Rina Mor Institute of Medical Genetics, Holon, Israel.,The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marina Michelson
- Wolfson Medical Centre, Institute of Medical Genetics, Holon, Israel
| | - Keren Yosovich
- Wolfson Medical Centre, Institute of Medical Genetics, Holon, Israel
| | - Hila Gur Michaeli
- Wolfson Medical Centre, Institute of Medical Genetics, Holon, Israel
| | - Nicholas A Bright
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Cambridge, UK
| | - Paul T Manna
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Cambridge, UK.,Department of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Veronica Kane Dickson
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Cambridge, UK
| | - Karen L Tylee
- Willink Biochemical Genetics Unit, Genomic Diagnostics Laboratory, Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust St Mary's Hospital, Manchester, UK
| | - Heather J Church
- Willink Biochemical Genetics Unit, Genomic Diagnostics Laboratory, Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust St Mary's Hospital, Manchester, UK
| | - J Paul Luzio
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Cambridge, UK
| | - Timothy M Cox
- Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
23
|
Vps21 Directs the PI3K-PI(3)P-Atg21-Atg16 Module to Phagophores via Vps8 for Autophagy. Int J Mol Sci 2022; 23:ijms23179550. [PMID: 36076954 PMCID: PMC9455592 DOI: 10.3390/ijms23179550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 11/28/2022] Open
Abstract
Phosphatidylinositol 3-phosphate (PI(3)P) serves important functions in endocytosis, phagocytosis, and autophagy. PI(3)P is generated by Vps34 of the class III phosphatidylinositol 3-kinase (PI3K) complex. The Vps34-PI3K complex can be divided into Vps34-PI3K class II (containing Vps38, endosomal) and Vps34-PI3K class I (containing Atg14, autophagosomal). Most PI(3)Ps are associated with endosomal membranes. In yeast, the endosomal localization of Vps34 and PI(3)P is tightly regulated by Vps21-module proteins. At yeast phagophore assembly site (PAS) or mammalian omegasomes, PI(3)P binds to WD-repeat protein interacting with phosphoinositide (WIPI) proteins to further recruit two conjugation systems, Atg5-Atg12·Atg16 and Atg8-PE (LC3-II), to initiate autophagy. However, the spatiotemporal regulation of PI(3)P during autophagy remains obscure. Therefore, in this study, we determined the effect of Vps21 on localization and interactions of Vps8, Vps34, Atg21, Atg8, and Atg16 upon autophagy induction. The results showed that Vps21 was required for successive colocalizations and interactions of Vps8-Vps34 and Vps34-Atg21 on endosomes, and Atg21-Atg8/Atg16 on the PAS. In addition to disrupted localization of the PI3K complex II subunits Vps34 and Vps38 on endosomes, the localization of the PI3K complex I subunits Vps34 and Atg14, as well as Atg21, was partly disrupted from the PAS in vps21∆ cells. The impaired PI3K-PI(3)P-Atg21-Atg16 axis in vps21∆ cells might delay autophagy, which is consistent with the delay of early autophagy when Atg21 was absent. This study provides the first insight into the upstream sequential regulation of the PI3K-PI(3)P-Atg21-Atg16 module by Vps21 in autophagy.
Collapse
|
24
|
Bennett M, Piya S, Baum TJ, Hewezi T. miR778 mediates gene expression, histone modification, and DNA methylation during cyst nematode parasitism. PLANT PHYSIOLOGY 2022; 189:2432-2453. [PMID: 35579365 PMCID: PMC9342967 DOI: 10.1093/plphys/kiac228] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/27/2022] [Indexed: 05/20/2023]
Abstract
Despite the known critical regulatory functions of microRNAs, histone modifications, and DNA methylation in reprograming plant epigenomes in response to pathogen infection, the molecular mechanisms underlying the tight coordination of these components remain poorly understood. Here, we show how Arabidopsis (Arabidopsis thaliana) miR778 coordinately modulates the root transcriptome, histone methylation, and DNA methylation via post-transcriptional regulation of the H3K9 methyltransferases SU(var)3-9 homolog 5 (SUVH5) and SUVH6 upon infection by the beet cyst nematode Heterodera schachtii. miR778 post-transcriptionally silences SUVH5 and SUVH6 upon nematode infection. Manipulation of the expression of miR778 and its two target genes significantly altered plant susceptibility to H. schachtii. RNA-seq analysis revealed a key role of SUVH5 and SUVH6 in reprograming the transcriptome of Arabidopsis roots upon H. schachtii infection. In addition, chromatin immunoprecipitation (ChIP)-seq analysis established SUVH5 and SUVH6 as the main enzymes mediating H3K9me2 deposition in Arabidopsis roots in response to nematode infection. ChIP-seq analysis also showed that these methyltransferases possess distinct DNA binding preferences in that they are targeting transposable elements under noninfected conditions and protein-coding genes in infected plants. Further analyses indicated that H3K9me2 deposition directed by SUVH5 and SUVH6 contributes to gene expression changes both in roots and in nematode feeding sites and preferentially associates with CG DNA methylation. Together, our results uncovered multi-layered epigenetic regulatory mechanisms coordinated by miR778 during Arabidopsis-H. schachtii interactions.
Collapse
Affiliation(s)
- Morgan Bennett
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
25
|
Anderson J, Walker G, Pu J. BORC-ARL8-HOPS ensemble is required for lysosomal cholesterol egress through NPC2. Mol Biol Cell 2022; 33:ar81. [PMID: 35653304 PMCID: PMC9582633 DOI: 10.1091/mbc.e21-11-0595-t] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 11/11/2022] Open
Abstract
Lysosomes receive extracellular and intracellular cholesterol and redistribute it throughout the cell. Cholesterol egress from lysosomes is critical for cholesterol homeostasis, and its failure underlies the pathogenesis of genetic disorders such as Niemann-Pick C (NPC) disease. Here we report that the BLOC one-related complex (BORC)-ARL8-homotypic fusion and protein sorting (HOPS) ensemble is required for egress of free cholesterol from lysosomes and for storage of esterified cholesterol in lipid droplets. Depletion of BORC, ARL8, or HOPS does not alter the localization of the lysosomal transmembrane cholesterol transporter NPC1 to degradative compartments but decreases the association of the luminal transporter NPC2 and increases NPC2 secretion. BORC-ARL8-HOPS depletion also increases lysosomal degradation of cation-independent (CI)-mannose 6-phosphate (M6P) receptor (MPR), which normally sorts NPC2 to the endosomal-lysosomal system and then is recycled to the trans-Golgi network. These defects likely result from impaired HOPS-dependent fusion of endosomal-lysosomal organelles and an uncharacterized function of HOPS in CI-MPR recycling. Our study demonstrates that the BORC-ARL8-HOPS ensemble is required for cholesterol egress from lysosomes by enabling CI-MPR-dependent trafficking of NPC2 to the endosomal-lysosomal system.
Collapse
Affiliation(s)
- Jacob Anderson
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131
- Autophagy, Inflammation, and Metabolism Center of Biomedical Research Excellence, University of New Mexico, Albuquerque, NM 87131
| | - Gerard Walker
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Jing Pu
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131
- Autophagy, Inflammation, and Metabolism Center of Biomedical Research Excellence, University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|
26
|
Majeed ST, Majeed R, Andrabi KI. Expanding the view of the molecular mechanisms of autophagy pathway. J Cell Physiol 2022; 237:3257-3277. [PMID: 35791448 DOI: 10.1002/jcp.30819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 01/18/2023]
Affiliation(s)
- Sheikh Tahir Majeed
- Department of Biotechnology Central University of Kashmir Ganderbal Jammu and Kashmir India
- Growth Factor Signaling Laboratory, Department of Biotechnology University of Kashmir Srinagar Jammu and Kashmir India
| | - Rabiya Majeed
- Growth Factor Signaling Laboratory, Department of Biotechnology University of Kashmir Srinagar Jammu and Kashmir India
- Department of Biochemistry University of Kashmir Srinagar Jammu and Kashmir India
| | - Khurshid I. Andrabi
- Growth Factor Signaling Laboratory, Department of Biotechnology University of Kashmir Srinagar Jammu and Kashmir India
| |
Collapse
|
27
|
Gao J, Nicastro R, Péli-Gulli MP, Grziwa S, Chen Z, Kurre R, Piehler J, De Virgilio C, Fröhlich F, Ungermann C. The HOPS tethering complex is required to maintain signaling endosome identity and TORC1 activity. J Biophys Biochem Cytol 2022; 221:213121. [PMID: 35404387 PMCID: PMC9011323 DOI: 10.1083/jcb.202109084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/27/2022] [Accepted: 02/28/2022] [Indexed: 12/04/2022] Open
Abstract
The endomembrane system of eukaryotic cells is essential for cellular homeostasis during growth and proliferation. Previous work showed that a central regulator of growth, namely the target of rapamycin complex 1 (TORC1), binds both membranes of vacuoles and signaling endosomes (SEs) that are distinct from multivesicular bodies (MVBs). Interestingly, the endosomal TORC1, which binds membranes in part via the EGO complex, critically defines vacuole integrity. Here, we demonstrate that SEs form at a branch point of the biosynthetic and endocytic pathways toward the vacuole and depend on MVB biogenesis. Importantly, function of the HOPS tethering complex is essential to maintain the identity of SEs and proper endosomal and vacuolar TORC1 activities. In HOPS mutants, the EGO complex redistributed to the Golgi, which resulted in a partial mislocalization of TORC1. Our study uncovers that SE function requires a functional HOPS complex and MVBs, suggesting a tight link between trafficking and signaling along the endolysosomal pathway.
Collapse
Affiliation(s)
- Jieqiong Gao
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
| | - Raffaele Nicastro
- Department of Biology, University of Fribourg, Chemin du Musée, Fribourg, Switzerland
| | | | - Sophie Grziwa
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
| | - Zilei Chen
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
| | - Rainer Kurre
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Jacob Piehler
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
- Department of Biology/Chemistry, Biophysics Section, Osnabrück University, Osnabrück, Germany
| | - Claudio De Virgilio
- Department of Biology, University of Fribourg, Chemin du Musée, Fribourg, Switzerland
| | - Florian Fröhlich
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
- Department of Biology/Chemistry, Molecular Membrane Biology Section, Osnabrück University, Osnabrück, Germany
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| |
Collapse
|
28
|
Orr A, Song H, Wickner W. Fusion with wild-type SNARE domains is controlled by juxtamembrane domains, transmembrane anchors, and Sec17. Mol Biol Cell 2022; 33:ar38. [PMID: 35171720 PMCID: PMC9282010 DOI: 10.1091/mbc.e21-11-0583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Membrane fusion requires tethers, SNAREs of R, Qa, Qb, and Qc families, and chaperones of the SM, Sec17/SNAP, and Sec18/NSF families. SNAREs have N-domains, SNARE domains that zipper into 4-helical RQaQbQc coiled coils, a short juxtamembrane (Jx) domain, and (often) a C-terminal transmembrane anchor. We reconstitute fusion with purified components from yeast vacuoles, where the HOPS protein combines tethering and SM functions. The vacuolar Rab, lipids, and R-SNARE activate HOPS to bind Q-SNAREs and catalyze trans-SNARE associations. With SNAREs initially disassembled, as they are on the organelle, we now report that R- and Qa-SNAREs require their physiological juxtamembrane (Jx) regions for fusion. Swap of the Jx domain between the R- and Qa-SNAREs blocks fusion after SNARE association in trans. This block is bypassed by either Sec17, which drives fusion without requiring complete SNARE zippering, or transmembrane-anchored Qb-SNARE in complex with Qa. The abundance of the trans-SNARE complex is not the sole fusion determinant, as it is unaltered by Sec17, Jx swap, or the Qb-transmembrane anchor. The sensitivity of fusion to Jx swap in the absence of a Qb transmembrane anchor is inherent to the SNAREs, because it remains when a synthetic tether replaces HOPS.
Collapse
Affiliation(s)
- Amy Orr
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, 7200 Vail Building, Hanover, NH 03755
| | - Hongki Song
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, 7200 Vail Building, Hanover, NH 03755
| | - William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, 7200 Vail Building, Hanover, NH 03755
| |
Collapse
|
29
|
Torng T, Wickner W. Phosphatidylinositol and phosphatidylinositol-3-phosphate activate HOPS to catalyze SNARE assembly, allowing small headgroup lipids to support the terminal steps of membrane fusion. Mol Biol Cell 2021; 32:ar19. [PMID: 34495682 PMCID: PMC8693972 DOI: 10.1091/mbc.e21-07-0373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intracellular membrane fusion requires Rab GTPases, tethers, SNAREs of the R, Qa, Qb, and Qc families, and SNARE chaperones of the Sec17 (SNAP), Sec18 (NSF), and SM (Sec1/Munc18) families. The vacuolar HOPS complex combines the functions of membrane tethering and SM catalysis of SNARE assembly. HOPS is activated for this catalysis by binding to the vacuolar lipids and Rab. Of the eight major vacuolar lipids, we now report that phosphatidylinositol and phosphatidylinositol-3-phosphate are required to activate HOPS for SNARE complex assembly. These lipids plus ergosterol also allow full trans-SNARE complex assembly, yet do not support fusion, which is reliant on either phosphatidylethanolamine (PE) or on phosphatidic acid (PA), phosphatidylserine (PS), and diacylglycerol (DAG). Fusion with a synthetic tether and without HOPS, or even without SNAREs, still relies on either PE or on PS, PA, and DAG. These lipids are thus required for the terminal bilayer rearrangement step of fusion, distinct from the lipid requirements for the earlier step of activating HOPS for trans-SNARE assembly.
Collapse
Affiliation(s)
- Thomas Torng
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844
| | - William Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755-3844
| |
Collapse
|
30
|
Song H, Wickner WT. Fusion of tethered membranes can be driven by Sec18/NSF and Sec17/αSNAP without HOPS. eLife 2021; 10:73240. [PMID: 34698639 PMCID: PMC8560088 DOI: 10.7554/elife.73240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/25/2021] [Indexed: 11/24/2022] Open
Abstract
Yeast vacuolar membrane fusion has been reconstituted with R, Qa, Qb, and Qc-family SNAREs, Sec17/αSNAP, Sec18/NSF, and the hexameric HOPS complex. HOPS tethers membranes and catalyzes SNARE assembly into RQaQbQc trans-complexes which zipper through their SNARE domains to promote fusion. Previously, we demonstrated that Sec17 and Sec18 can bypass the requirement of complete zippering for fusion (Song et al., 2021), but it has been unclear whether this activity of Sec17 and Sec18 is directly coupled to HOPS. HOPS can be replaced for fusion by a synthetic tether when the three Q-SNAREs are pre-assembled. We now report that fusion intermediates with arrested SNARE zippering, formed with a synthetic tether but without HOPS, support Sec17/Sec18-triggered fusion. This zippering-bypass fusion is thus a direct result of Sec17 and Sec18 interactions: with each other, with the platform of partially zippered SNAREs, and with the apposed tethered membranes. As these fusion elements are shared among all exocytic and endocytic traffic, Sec17 and Sec18 may have a general role in directly promoting fusion.
Collapse
Affiliation(s)
- Hongki Song
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| | - William T Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, United States
| |
Collapse
|
31
|
Nofal M, Wang T, Yang L, Jankowski CSR, Hsin-Jung Li S, Han S, Parsons L, Frese AN, Gitai Z, Anthony TG, Wühr M, Sabatini DM, Rabinowitz JD. GCN2 adapts protein synthesis to scavenging-dependent growth. Cell Syst 2021; 13:158-172.e9. [PMID: 34706266 DOI: 10.1016/j.cels.2021.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/22/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer cells with limited access to free amino acids can grow by scavenging extracellular protein. In a murine model of pancreatic cancer, we performed a genome-wide CRISPR screen for genes required for scavenging-dependent growth. The screen identified key mediators of macropinocytosis, peripheral lysosome positioning, endosome-lysosome fusion, lysosomal protein catabolism, and translational control. The top hit was GCN2, a kinase that suppresses translation initiation upon amino acid depletion. Using isotope tracers, we show that GCN2 is not required for protein scavenging. Instead, GCN2 prevents ribosome stalling but without slowing protein synthesis; cells still use all of the limiting amino acids as they emerge from lysosomes. GCN2 also adapts gene expression to the nutrient-poor environment, reorienting protein synthesis away from ribosomes and toward lysosomal hydrolases, such as cathepsin L. GCN2, cathepsin L, and the other genes identified in the screen are potential therapeutic targets in pancreatic cancer.
Collapse
Affiliation(s)
- Michel Nofal
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Tim Wang
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Lifeng Yang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Connor S R Jankowski
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sophia Hsin-Jung Li
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Seunghun Han
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Lance Parsons
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Alexander N Frese
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Tracy G Anthony
- Department of Nutritional Sciences and the New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ 08901, USA
| | - Martin Wühr
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA; Ludwig Institute for Cancer Research, Princeton Branch, Princeton University, Princeton, NJ 08540, USA.
| |
Collapse
|
32
|
Wilson ZN, Buysse D, West M, Ahrens D, Odorizzi G. Vacuolar H+-ATPase dysfunction rescues intralumenal vesicle cargo sorting in yeast lacking PI(3,5)P2 or Doa4. J Cell Sci 2021; 134:jcs258459. [PMID: 34342352 PMCID: PMC8353521 DOI: 10.1242/jcs.258459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022] Open
Abstract
Endosomes undergo a maturation process highlighted by a reduction in lumenal pH, a conversion of surface markers that prime endosome-lysosome fusion and the sequestration of ubiquitylated transmembrane protein cargos within intralumenal vesicles (ILVs). We investigated ILV cargo sorting in mutant strains of the budding yeast Saccharomyces cerevisiae that are deficient for either the lysosomal/vacuolar signaling lipid PI(3,5)P2 or the Doa4 ubiquitin hydrolase that deubiquitylates ILV cargos. Disruption of PI(3,5)P2 synthesis or Doa4 function causes a defect in sorting of a subset of ILV cargos. We show that these cargo-sorting defects are suppressed by mutations that disrupt Vph1, a subunit of vacuolar H+-ATPase (V-ATPase) complexes that acidify late endosomes and vacuoles. We further show that Vph1 dysfunction increases endosome abundance, and disrupts vacuolar localization of Ypt7 and Vps41, two crucial mediators of endosome-vacuole fusion. Because V-ATPase inhibition attenuates this fusion and rescues the ILV cargo-sorting defects in yeast that lack PI(3,5)P2 or Doa4 activity, our results suggest that the V-ATPase has a role in coordinating ILV cargo sorting with the membrane fusion machinery. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | | | | | | | - Greg Odorizzi
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
33
|
Glueck NK, O'Brien KM, Seguin DC, Starai VJ. Legionella pneumophila LegC7 effector protein drives aberrant endoplasmic reticulum:endosome contacts in yeast. Traffic 2021; 22:284-302. [PMID: 34184807 DOI: 10.1111/tra.12807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/28/2022]
Abstract
Legionella pneumophila is a facultative intracellular bacterial pathogen, causing the severe form of pneumonia known as Legionnaires' disease. Legionella actively alters host organelle trafficking through the activities of "effector" proteins secreted via a type-IVB secretion system, in order to construct the bacteria-laden Legionella-containing vacuole (LCV) and prevent lysosomal degradation. The LCV is created with membrane derived from host endoplasmic reticulum (ER), secretory vesicles and phagosomes, although the precise molecular mechanisms that drive its synthesis remain poorly understood. In an effort to characterize the in vivo activity of the LegC7/YlfA SNARE-like effector protein from Legionella in the context of eukaryotic membrane trafficking in yeast, we find that LegC7 interacts with the Emp46p/Emp47p ER-to-Golgi glycoprotein cargo adapter complex, alters ER morphology and induces aberrant ER:endosome interactions, as measured by visualization of ER cargo degradation, reconstitution of split-GFP proteins and enhanced oxidation of the ER lumen. LegC7-dependent toxicity, disruption of ER morphology and ER:endosome fusion events were dependent upon endosomal VPS class C tethering complexes and the endosomal t-SNARE, Pep12p. This work establishes a model in which LegC7 functions to recruit host ER material to the bacterial phagosome during infection by driving ER:endosome contacts, potentially through interaction with host membrane tethering complexes and/or cargo adapters.
Collapse
Affiliation(s)
- Nathan K Glueck
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Kevin M O'Brien
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Danielle C Seguin
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Vincent J Starai
- Department of Microbiology, University of Georgia, Athens, Georgia, USA.,Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
34
|
van der Welle REN, Jobling R, Burns C, Sanza P, van der Beek JA, Fasano A, Chen L, Zwartkruis FJ, Zwakenberg S, Griffin EF, ten Brink C, Veenendaal T, Liv N, van Ravenswaaij‐Arts CMA, Lemmink HH, Pfundt R, Blaser S, Sepulveda C, Lozano AM, Yoon G, Santiago‐Sim T, Asensio CS, Caldwell GA, Caldwell KA, Chitayat D, Klumperman J. Neurodegenerative VPS41 variants inhibit HOPS function and mTORC1-dependent TFEB/TFE3 regulation. EMBO Mol Med 2021; 13:e13258. [PMID: 33851776 PMCID: PMC8103106 DOI: 10.15252/emmm.202013258] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/09/2022] Open
Abstract
Vacuolar protein sorting 41 (VPS41) is as part of the Homotypic fusion and Protein Sorting (HOPS) complex required for lysosomal fusion events and, independent of HOPS, for regulated secretion. Here, we report three patients with compound heterozygous mutations in VPS41 (VPS41S285P and VPS41R662* ; VPS41c.1423-2A>G and VPS41R662* ) displaying neurodegeneration with ataxia and dystonia. Cellular consequences were investigated in patient fibroblasts and VPS41-depleted HeLa cells. All mutants prevented formation of a functional HOPS complex, causing delayed lysosomal delivery of endocytic and autophagic cargo. By contrast, VPS41S285P enabled regulated secretion. Strikingly, loss of VPS41 function caused a cytosolic redistribution of mTORC1, continuous nuclear localization of Transcription Factor E3 (TFE3), enhanced levels of LC3II, and a reduced autophagic response to nutrient starvation. Phosphorylation of mTORC1 substrates S6K1 and 4EBP1 was not affected. In a C. elegans model of Parkinson's disease, co-expression of VPS41S285P /VPS41R662* abolished the neuroprotective function of VPS41 against α-synuclein aggregates. We conclude that the VPS41 variants specifically abrogate HOPS function, which interferes with the TFEB/TFE3 axis of mTORC1 signaling, and cause a neurodegenerative disease.
Collapse
Affiliation(s)
- Reini E N van der Welle
- Section Cell BiologyCenter for Molecular MedicineInstitute of BiomembranesUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Rebekah Jobling
- Department of PediatricsDivision of Clinical and Metabolic GeneticsThe Hospital for Sick ChildrenUniversity of TorontoTorontoONCanada
| | - Christian Burns
- Department of Biological SciencesDivision of Natural Sciences and MathematicsUniversity of DenverDenverCOUSA
| | - Paolo Sanza
- Section Cell BiologyCenter for Molecular MedicineInstitute of BiomembranesUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Jan A van der Beek
- Section Cell BiologyCenter for Molecular MedicineInstitute of BiomembranesUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson’s DiseaseMorton and Gloria Shulman Movement Disorders ClinicToronto Western Hospital, UHNTorontoONCanada
- Division of NeurologyUniversity of TorontoTorontoONCanada
- Krembil Brain InstituteTorontoONCanada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA)TorontoONCanada
| | - Lan Chen
- Department of Biological SciencesDivision of Natural Sciences and MathematicsUniversity of DenverDenverCOUSA
| | - Fried J Zwartkruis
- Section Molecular Cancer ResearchCenter for Molecular MedicineUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Susan Zwakenberg
- Section Molecular Cancer ResearchCenter for Molecular MedicineUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Edward F Griffin
- Department of Biological SciencesThe University of AlabamaTuscaloosaALUSA
- Department of NeurologyCenter for Neurodegeneration and Experimental TherapeuticsNathan Shock Center for Basic Research in the Biology of AgingUniversity of Alabama at Birmingham School of MedicineBirminghamALUSA
| | - Corlinda ten Brink
- Section Cell BiologyCenter for Molecular MedicineInstitute of BiomembranesUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Tineke Veenendaal
- Section Cell BiologyCenter for Molecular MedicineInstitute of BiomembranesUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Nalan Liv
- Section Cell BiologyCenter for Molecular MedicineInstitute of BiomembranesUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | | | - Henny H Lemmink
- Department of GeneticsUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Rolph Pfundt
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
| | - Susan Blaser
- Department of Diagnostic ImagingHospital for Sick ChildrenTorontoONCanada
| | - Carolina Sepulveda
- Edmond J. Safra Program in Parkinson’s DiseaseMorton and Gloria Shulman Movement Disorders ClinicToronto Western Hospital, UHNTorontoONCanada
- Division of NeurologyUniversity of TorontoTorontoONCanada
| | - Andres M Lozano
- Krembil Brain InstituteTorontoONCanada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA)TorontoONCanada
- Department of NeurosurgeryToronto Western Hospital, UHNTorontoONCanada
- University of TorontoTorontoONCanada
| | - Grace Yoon
- Department of PediatricsDivision of Clinical and Metabolic GeneticsThe Hospital for Sick ChildrenUniversity of TorontoTorontoONCanada
| | | | - Cedric S Asensio
- Department of Biological SciencesDivision of Natural Sciences and MathematicsUniversity of DenverDenverCOUSA
| | - Guy A Caldwell
- Department of Biological SciencesThe University of AlabamaTuscaloosaALUSA
- Department of NeurologyCenter for Neurodegeneration and Experimental TherapeuticsNathan Shock Center for Basic Research in the Biology of AgingUniversity of Alabama at Birmingham School of MedicineBirminghamALUSA
| | - Kim A Caldwell
- Department of Biological SciencesThe University of AlabamaTuscaloosaALUSA
- Department of NeurologyCenter for Neurodegeneration and Experimental TherapeuticsNathan Shock Center for Basic Research in the Biology of AgingUniversity of Alabama at Birmingham School of MedicineBirminghamALUSA
| | - David Chitayat
- Department of PediatricsDivision of Clinical and Metabolic GeneticsThe Hospital for Sick ChildrenUniversity of TorontoTorontoONCanada
- The Prenatal Diagnosis and Medical Genetics ProgramDepartment of Obstetrics and GynecologyUniversity of TorontoTorontoONCanada
| | - Judith Klumperman
- Section Cell BiologyCenter for Molecular MedicineInstitute of BiomembranesUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
35
|
Sofou K, Meier K, Sanderson LE, Kaminski D, Montoliu‐Gaya L, Samuelsson E, Blomqvist M, Agholme L, Gärtner J, Mühlhausen C, Darin N, Barakat TS, Schlotawa L, van Ham T, Asin Cayuela J, Sterky FH. Bi-allelic VPS16 variants limit HOPS/CORVET levels and cause a mucopolysaccharidosis-like disease. EMBO Mol Med 2021; 13:e13376. [PMID: 33938619 PMCID: PMC8103096 DOI: 10.15252/emmm.202013376] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Lysosomal storage diseases, including mucopolysaccharidoses, result from genetic defects that impair lysosomal catabolism. Here, we describe two patients from two independent families presenting with progressive psychomotor regression, delayed myelination, brain atrophy, neutropenia, skeletal abnormalities, and mucopolysaccharidosis-like dysmorphic features. Both patients were homozygous for the same intronic variant in VPS16, a gene encoding a subunit of the HOPS and CORVET complexes. The variant impaired normal mRNA splicing and led to an ~85% reduction in VPS16 protein levels in patient-derived fibroblasts. Levels of other HOPS/CORVET subunits, including VPS33A, were similarly reduced, but restored upon re-expression of VPS16. Patient-derived fibroblasts showed defects in the uptake and endosomal trafficking of transferrin as well as accumulation of autophagosomes and lysosomal compartments. Re-expression of VPS16 rescued the cellular phenotypes. Zebrafish with disrupted vps16 expression showed impaired development, reduced myelination, and a similar accumulation of lysosomes and autophagosomes in the brain, particularly in glia cells. This disorder resembles previously reported patients with mutations in VPS33A, thus expanding the family of mucopolysaccharidosis-like diseases that result from mutations in HOPS/CORVET subunits.
Collapse
Affiliation(s)
- Kalliopi Sofou
- Department of PaediatricsInstitute of Clinical SciencesUniversity of GothenburgGothenburgSweden
| | - Kolja Meier
- Department of Pediatrics and Adolescent MedicineUniversity Medical Center GoettingenGoettingenGermany
| | - Leslie E Sanderson
- Department of Clinical GeneticsErasmus University Medical Center RotterdamRotterdamThe Netherlands
| | - Debora Kaminski
- Department of Laboratory MedicineInstitute of BiomedicineUniversity of GothenburgGothenburgSweden
- Department of Clinical ChemistrySahlgrenska University HospitalGothenburgSweden
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
| | - Laia Montoliu‐Gaya
- Department of Laboratory MedicineInstitute of BiomedicineUniversity of GothenburgGothenburgSweden
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
| | - Emma Samuelsson
- Department of Clinical ChemistrySahlgrenska University HospitalGothenburgSweden
| | - Maria Blomqvist
- Department of Laboratory MedicineInstitute of BiomedicineUniversity of GothenburgGothenburgSweden
- Department of Clinical ChemistrySahlgrenska University HospitalGothenburgSweden
| | - Lotta Agholme
- Department of Clinical ChemistrySahlgrenska University HospitalGothenburgSweden
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience and PhysiologyUniversity of GothenburgGothenburgSweden
| | - Jutta Gärtner
- Department of Pediatrics and Adolescent MedicineUniversity Medical Center GoettingenGoettingenGermany
| | - Chris Mühlhausen
- Department of Pediatrics and Adolescent MedicineUniversity Medical Center GoettingenGoettingenGermany
| | - Niklas Darin
- Department of PaediatricsInstitute of Clinical SciencesUniversity of GothenburgGothenburgSweden
| | - Tahsin Stefan Barakat
- Department of Clinical GeneticsErasmus University Medical Center RotterdamRotterdamThe Netherlands
| | - Lars Schlotawa
- Department of Pediatrics and Adolescent MedicineUniversity Medical Center GoettingenGoettingenGermany
| | - Tjakko van Ham
- Department of Clinical GeneticsErasmus University Medical Center RotterdamRotterdamThe Netherlands
| | - Jorge Asin Cayuela
- Department of Laboratory MedicineInstitute of BiomedicineUniversity of GothenburgGothenburgSweden
- Department of Clinical ChemistrySahlgrenska University HospitalGothenburgSweden
| | - Fredrik H Sterky
- Department of Laboratory MedicineInstitute of BiomedicineUniversity of GothenburgGothenburgSweden
- Department of Clinical ChemistrySahlgrenska University HospitalGothenburgSweden
- Wallenberg Centre for Molecular and Translational MedicineUniversity of GothenburgGothenburgSweden
| |
Collapse
|
36
|
Song H, Torng TL, Orr AS, Brunger AT, Wickner WT. Sec17/Sec18 can support membrane fusion without help from completion of SNARE zippering. eLife 2021; 10:67578. [PMID: 33944780 PMCID: PMC8143792 DOI: 10.7554/elife.67578] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/30/2021] [Indexed: 11/20/2022] Open
Abstract
Membrane fusion requires R-, Qa-, Qb-, and Qc-family SNAREs that zipper into RQaQbQc coiled coils, driven by the sequestration of apolar amino acids. Zippering has been thought to provide all the force driving fusion. Sec17/αSNAP can form an oligomeric assembly with SNAREs with the Sec17 C-terminus bound to Sec18/NSF, the central region bound to SNAREs, and a crucial apolar loop near the N-terminus poised to insert into membranes. We now report that Sec17 and Sec18 can drive robust fusion without requiring zippering completion. Zippering-driven fusion is blocked by deleting the C-terminal quarter of any Q-SNARE domain or by replacing the apolar amino acids of the Qa-SNARE that face the center of the 4-SNARE coiled coils with polar residues. These blocks, singly or combined, are bypassed by Sec17 and Sec18, and SNARE-dependent fusion is restored without help from completing zippering.
Collapse
Affiliation(s)
- Hongki Song
- Department of Biochemistry and Cell Biology Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Thomas L Torng
- Department of Biochemistry and Cell Biology Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Amy S Orr
- Department of Biochemistry and Cell Biology Geisel School of Medicine at Dartmouth, Hanover, United States
| | - Axel T Brunger
- Howard Hughes Medical Institute and Department of Molecular and Cellular Physiology Stanford University, Stanford, United States
| | - William T Wickner
- Department of Biochemistry and Cell Biology Geisel School of Medicine at Dartmouth, Hanover, United States
| |
Collapse
|
37
|
Pinar M, Peñalva MA. The fungal RABOME: RAB GTPases acting in the endocytic and exocytic pathways of Aspergillus nidulans (with excursions to other filamentous fungi). Mol Microbiol 2021; 116:53-70. [PMID: 33724562 DOI: 10.1111/mmi.14716] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/04/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
RAB GTPases are major determinants of membrane identity that have been exploited as highly specific reporters to study intracellular traffic in vivo. A score of fungal papers have considered individual RABs, but systematic, integrated studies on the localization and physiological role of these regulators and their effectors have been performed only with Aspergillus nidulans. These studies have influenced the intracellular trafficking field beyond fungal specialists, leading to findings such as the maturation of trans-Golgi (TGN) cisternae into post-Golgi RAB11 secretory vesicles, the concept that these RAB11 secretory carriers are loaded with three molecular nanomotors, the understanding of the role of endocytic recycling mediated by RAB6 and RAB11 in determining the hyphal mode of life, the discovery that early endosome maturation and the ESCRT pathway are essential, the identification of specific adaptors of dynein-dynactin to RAB5 endosomes, the exquisite dependence that autophagy displays on RAB1 activity, the role of TRAPPII as a GEF for RAB11, or the conclusion that the RAB1-to-RAB11 transition is not mediated by TRAPP maturation. A remarkable finding was that the A. nidulans Spitzenkörper contains four RABs: RAB11, Sec4, RAB6, and RAB1. How these RABs cooperate during exocytosis represents an as yet outstanding question.
Collapse
Affiliation(s)
- Mario Pinar
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Miguel A Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| |
Collapse
|
38
|
Nguyen JA, Yates RM. Better Together: Current Insights Into Phagosome-Lysosome Fusion. Front Immunol 2021; 12:636078. [PMID: 33717183 PMCID: PMC7946854 DOI: 10.3389/fimmu.2021.636078] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Following phagocytosis, the nascent phagosome undergoes maturation to become a phagolysosome with an acidic, hydrolytic, and often oxidative lumen that can efficiently kill and digest engulfed microbes, cells, and debris. The fusion of phagosomes with lysosomes is a principal driver of phagosomal maturation and is targeted by several adapted intracellular pathogens. Impairment of this process has significant consequences for microbial infection, tissue inflammation, the onset of adaptive immunity, and disease. Given the importance of phagosome-lysosome fusion to phagocyte function and the many virulence factors that target it, it is unsurprising that multiple molecular pathways have evolved to mediate this essential process. While the full range of these pathways has yet to be fully characterized, several pathways involving proteins such as members of the Rab GTPases, tethering factors and SNAREs have been identified. Here, we summarize the current state of knowledge to clarify the ambiguities in the field and construct a more comprehensive phagolysosome formation model. Lastly, we discuss how other cellular pathways help support phagolysosome biogenesis and, consequently, phagocyte function.
Collapse
Affiliation(s)
- Jenny A Nguyen
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Robin M Yates
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,Cumming School of Medicine, Snyder Institute of Chronic Disease, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
39
|
Burns CH, Yau B, Rodriguez A, Triplett J, Maslar D, An YS, van der Welle REN, Kossina RG, Fisher MR, Strout GW, Bayguinov PO, Veenendaal T, Chitayat D, Fitzpatrick JAJ, Klumperman J, Kebede MA, Asensio CS. Pancreatic β-Cell-Specific Deletion of VPS41 Causes Diabetes Due to Defects in Insulin Secretion. Diabetes 2021; 70:436-448. [PMID: 33168621 PMCID: PMC7881869 DOI: 10.2337/db20-0454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
Insulin secretory granules (SGs) mediate the regulated secretion of insulin, which is essential for glucose homeostasis. The basic machinery responsible for this regulated exocytosis consists of specific proteins present both at the plasma membrane and on insulin SGs. The protein composition of insulin SGs thus dictates their release properties, yet the mechanisms controlling insulin SG formation, which determine this molecular composition, remain poorly understood. VPS41, a component of the endolysosomal tethering homotypic fusion and vacuole protein sorting (HOPS) complex, was recently identified as a cytosolic factor involved in the formation of neuroendocrine and neuronal granules. We now find that VPS41 is required for insulin SG biogenesis and regulated insulin secretion. Loss of VPS41 in pancreatic β-cells leads to a reduction in insulin SG number, changes in their transmembrane protein composition, and defects in granule-regulated exocytosis. Exploring a human point mutation, identified in patients with neurological but no endocrine defects, we show that the effect on SG formation is independent of HOPS complex formation. Finally, we report that mice with a deletion of VPS41 specifically in β-cells develop diabetes due to severe depletion of insulin SG content and a defect in insulin secretion. In sum, our data demonstrate that VPS41 contributes to glucose homeostasis and metabolism.
Collapse
Affiliation(s)
| | - Belinda Yau
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | | | - Jenna Triplett
- Department of Biological Sciences, University of Denver, Denver, CO
| | - Drew Maslar
- Department of Biological Sciences, University of Denver, Denver, CO
| | - You Sun An
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Reini E N van der Welle
- Section of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ross G Kossina
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO
| | - Max R Fisher
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO
| | - Gregory W Strout
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO
| | - Peter O Bayguinov
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO
| | - Tineke Veenendaal
- Section of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - David Chitayat
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO
- Departments of Neuroscience and Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO
| | - Judith Klumperman
- Section of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Melkam A Kebede
- Discipline of Physiology, School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
| | - Cedric S Asensio
- Department of Biological Sciences, University of Denver, Denver, CO
| |
Collapse
|
40
|
Heo MY, Choi W, Kim Y, Shin WR, Park RM, Kim YH, Min J. YPT7's deletion regulates yeast vacuoles' activity. Enzyme Microb Technol 2020; 143:109699. [PMID: 33375967 DOI: 10.1016/j.enzmictec.2020.109699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 11/25/2022]
Abstract
The yeast vacuole is functionally corresponding to vacuoles in eukaryote cells, it consists of a fusion protein that assists in the fusion of vacuoles and plays an important role in many processes. In addition, chemicals such as NH4Cl can reduce the size of vacuoles but as a side effect that also inhibits vacuoles making them inactive. In this study, to develop pre-treatments for extending the life of cut flowers, we constructed recombinant yeast using the fusion protein YPT7 and confirmed the activity of down-sized vacuoles. All the vacuoles of the recombinant yeast except vacuoles from recombinant yeast (MBTL-MYH-3) were found to be small vacuoles than mock (MBTL-MYH-0) and YPT7 overexpression model (MBTL-MYH-1). To confirm their activity, we conducted a test for antimicrobial activity. The results showed the other vacuoles of recombinant yeast had lower antimicrobial activity than the mock control, most of them showed about 60 % to 80 % of the antimicrobial activity. However, MBTL-MYH-3, whose vacuole did not change its size, showed antimicrobial activity lower than 40 %. Therefore, the cut flowers are better able to absorb smaller vacuoles after using the fusion protein YPT7. We expect that absorbing vacuoles more effective to senescence of cut flower than vacuolar enzymes.
Collapse
Affiliation(s)
- Mi Young Heo
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Wooil Choi
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Younga Kim
- Department of Bioprocess Engineering, Jeonbuk National University, 567 Baekje-daero, deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Woo-Ri Shin
- Graduate School of Life Science, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Ra-Mi Park
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Yang-Hoon Kim
- Graduate School of Life Science, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk, 28644, Republic of Korea.
| | - Jiho Min
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea; Department of Bioprocess Engineering, Jeonbuk National University, 567 Baekje-daero, deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
| |
Collapse
|
41
|
Salassa BN, Cueto JA, Gambarte Tudela J, Romano PS. Endocytic Rabs Are Recruited to the Trypanosoma cruzi Parasitophorous Vacuole and Contribute to the Process of Infection in Non-professional Phagocytic Cells. Front Cell Infect Microbiol 2020; 10:536985. [PMID: 33194787 PMCID: PMC7658340 DOI: 10.3389/fcimb.2020.536985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022] Open
Abstract
Trypanosoma cruzi is the parasite causative of Chagas disease, a highly disseminated illness endemic in Latin-American countries. T. cruzi has a complex life cycle that involves mammalian hosts and insect vectors both of which exhibits different parasitic forms. Trypomastigotes are the infective forms capable to invade several types of host cells from mammals. T. cruzi infection process comprises two sequential steps, the formation and the maturation of the Trypanosoma cruzi parasitophorous vacuole. Host Rab GTPases are proteins that control the intracellular vesicular traffic by regulating budding, transport, docking, and tethering of vesicles. From over 70 Rab GTPases identified in mammalian cells only two, Rab5 and Rab7 have been found in the T. cruzi vacuole to date. In this work, we have characterized the role of the endocytic, recycling, and secretory routes in the T. cruzi infection process in CHO cells, by studying the most representative Rabs of these pathways. We found that endocytic Rabs are selectively recruited to the vacuole of T. cruzi, among them Rab22a, Rab5, and Rab21 right away after the infection followed by Rab7 and Rab39a at later times. However, neither recycling nor secretory Rabs were present in the vacuole membrane at the times studied. Interestingly loss of function of endocytic Rabs by the use of their dominant-negative mutant forms significantly decreases T. cruzi infection. These data highlight the contribution of these proteins and the endosomal route in the process of T. cruzi infection.
Collapse
Affiliation(s)
- Betiana Nebaí Salassa
- Laboratorio de Biología de Trypanosoma cruzi la célula hospedadora, Instituto de Histología y Embriologìa, Consejo Nacional de Investigaciones Científicas y Técnicas (IHEM-CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina.,Facultad de Odontología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Juan Agustín Cueto
- Laboratorio de Biología de Trypanosoma cruzi la célula hospedadora, Instituto de Histología y Embriologìa, Consejo Nacional de Investigaciones Científicas y Técnicas (IHEM-CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina.,Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Julián Gambarte Tudela
- Instituto de Bioquímica y Biotecnología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Patricia Silvia Romano
- Laboratorio de Biología de Trypanosoma cruzi la célula hospedadora, Instituto de Histología y Embriologìa, Consejo Nacional de Investigaciones Científicas y Técnicas (IHEM-CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina.,Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
42
|
Garcia EJ, Liao PC, Tan G, Vevea JD, Sing CN, Tsang CA, McCaffery JM, Boldogh IR, Pon LA. Membrane dynamics and protein targets of lipid droplet microautophagy during ER stress-induced proteostasis in the budding yeast, Saccharomyces cerevisiae. Autophagy 2020. [PMID: 33021864 DOI: 10.1080/15548627.2020.1826691.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022] Open
Abstract
Our previous studies reveal a mechanism for lipid droplet (LD)-mediated proteostasis in the endoplasmic reticulum (ER) whereby unfolded proteins that accumulate in the ER in response to lipid imbalance-induced ER stress are removed by LDs and degraded by microlipophagy (µLP), autophagosome-independent LD uptake into the vacuole (the yeast lysosome). Here, we show that dithiothreitol- or tunicamycin-induced ER stress also induces µLP and identify an unexpected role for vacuolar membrane dynamics in this process. All stressors studied induce vacuolar fragmentation prior to µLP. Moreover, during µLP, fragmented vacuoles fuse to form cup-shaped structures that encapsulate and ultimately take up LDs. Our studies also indicate that proteins of the endosome sorting complexes required for transport (ESCRT) are upregulated, required for µLP, and recruited to LDs, vacuolar membranes, and sites of vacuolar membrane scission during µLP. We identify possible target proteins for LD-mediated ER proteostasis. Our live-cell imaging studies reveal that one potential target (Nup159) localizes to punctate structures that colocalizes with LDs 1) during movement from ER membranes to the cytosol, 2) during microautophagic uptake into vacuoles, and 3) within the vacuolar lumen. Finally, we find that mutations that inhibit LD biogenesis, homotypic vacuolar membrane fusion or ESCRT function inhibit stress-induced autophagy of Nup159 and other ER proteins. Thus, we have obtained the first direct evidence that LDs and µLP can mediate ER stress-induced ER proteostasis, and identified direct roles for ESCRT and vacuolar membrane fusion in that process.
Collapse
Affiliation(s)
- Enrique J Garcia
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Pin-Chao Liao
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Gary Tan
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Jason D Vevea
- HHMI and Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, USA
| | - Cierra N Sing
- Institute of Human Nutrition, Columbia University, New York, NY, USA
| | - Catherine A Tsang
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - J Michael McCaffery
- Integrated Imaging Center, Department of Biology, The Johns Hopkins University, Baltimore, MD, USA
| | - Istvan R Boldogh
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Liza A Pon
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
43
|
Garcia EJ, Liao PC, Tan G, Vevea JD, Sing CN, Tsang CA, McCaffery JM, Boldogh IR, Pon LA. Membrane dynamics and protein targets of lipid droplet microautophagy during ER stress-induced proteostasis in the budding yeast, Saccharomyces cerevisiae. Autophagy 2020; 17:2363-2383. [PMID: 33021864 PMCID: PMC8496710 DOI: 10.1080/15548627.2020.1826691] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Our previous studies reveal a mechanism for lipid droplet (LD)-mediated proteostasis in the endoplasmic reticulum (ER) whereby unfolded proteins that accumulate in the ER in response to lipid imbalance-induced ER stress are removed by LDs and degraded by microlipophagy (µLP), autophagosome-independent LD uptake into the vacuole (the yeast lysosome). Here, we show that dithiothreitol- or tunicamycin-induced ER stress also induces µLP and identify an unexpected role for vacuolar membrane dynamics in this process. All stressors studied induce vacuolar fragmentation prior to µLP. Moreover, during µLP, fragmented vacuoles fuse to form cup-shaped structures that encapsulate and ultimately take up LDs. Our studies also indicate that proteins of the endosome sorting complexes required for transport (ESCRT) are upregulated, required for µLP, and recruited to LDs, vacuolar membranes, and sites of vacuolar membrane scission during µLP. We identify possible target proteins for LD-mediated ER proteostasis. Our live-cell imaging studies reveal that one potential target (Nup159) localizes to punctate structures that colocalizes with LDs 1) during movement from ER membranes to the cytosol, 2) during microautophagic uptake into vacuoles, and 3) within the vacuolar lumen. Finally, we find that mutations that inhibit LD biogenesis, homotypic vacuolar membrane fusion or ESCRT function inhibit stress-induced autophagy of Nup159 and other ER proteins. Thus, we have obtained the first direct evidence that LDs and µLP can mediate ER stress-induced ER proteostasis, and identified direct roles for ESCRT and vacuolar membrane fusion in that process.
Collapse
Affiliation(s)
- Enrique J Garcia
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Pin-Chao Liao
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Gary Tan
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Jason D Vevea
- HHMI and Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, USA
| | - Cierra N Sing
- Institute of Human Nutrition, Columbia University, New York, NY, USA
| | - Catherine A Tsang
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - J Michael McCaffery
- Integrated Imaging Center, Department of Biology, The Johns Hopkins University, Baltimore, MD, USA
| | - Istvan R Boldogh
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Liza A Pon
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
44
|
De Zan E, van Stiphout R, Gapp BV, Blomen VA, Brummelkamp TR, Nijman SMB. Quantitative genetic screening reveals a Ragulator-FLCN feedback loop that regulates the mTORC1 pathway. Sci Signal 2020; 13:13/649/eaba5665. [PMID: 32934076 DOI: 10.1126/scisignal.aba5665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Forward genetic screens in mammalian cell lines, such as RNAi and CRISPR-Cas9 screens, have made major contributions to the elucidation of diverse signaling pathways. Here, we exploited human haploid cells as a robust comparative screening platform and report a set of quantitative forward genetic screens for identifying regulatory mechanisms of mTORC1 signaling, a key growth control pathway that senses diverse metabolic states. Selected chemical and genetic perturbations in this screening platform, including rapamycin treatment and genetic ablation of the Ragulator subunit LAMTOR4, revealed the known core mTORC1 regulatory signaling complexes and the intimate interplay of the mTORC1 pathway with lysosomal function, validating the approach. In addition, we identified a differential requirement for LAMTOR4 and LAMTOR5 in regulating the mTORC1 pathway under fed and starved conditions. Furthermore, we uncovered a previously unknown "synthetic-sick" interaction between the tumor suppressor folliculin and LAMTOR4, which may have therapeutic implications in cancer treatment. Together, our study demonstrates the use of iterative "perturb and observe" genetic screens to uncover regulatory mechanisms driving complex mammalian signaling networks.
Collapse
Affiliation(s)
- Erica De Zan
- Ludwig Institute for Cancer Research, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, UK
| | - Ruud van Stiphout
- Ludwig Institute for Cancer Research, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, UK
| | - Bianca V Gapp
- Ludwig Institute for Cancer Research, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, UK
| | | | | | - Sebastian M B Nijman
- Ludwig Institute for Cancer Research, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7FZ, UK.
| |
Collapse
|
45
|
Cargo Release from Myosin V Requires the Convergence of Parallel Pathways that Phosphorylate and Ubiquitylate the Cargo Adaptor. Curr Biol 2020; 30:4399-4412.e7. [PMID: 32916113 DOI: 10.1016/j.cub.2020.08.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/23/2020] [Accepted: 08/17/2020] [Indexed: 11/22/2022]
Abstract
Cellular function requires molecular motors to transport cargoes to their correct intracellular locations. The regulated assembly and disassembly of motor-adaptor complexes ensures that cargoes are loaded at their origin and unloaded at their destination. In Saccharomyces cerevisiae, early in the cell cycle, a portion of the vacuole is transported into the emerging bud. This transport requires a myosin V motor, Myo2, which attaches to the vacuole via Vac17, the vacuole-specific adaptor protein. Vac17 also binds to Vac8, a vacuolar membrane protein. Once the vacuole is brought to the bud cortex via the Myo2-Vac17-Vac8 complex, Vac17 is degraded and the vacuole is released from Myo2. However, mechanisms governing dissociation of the Myo2-Vac17-Vac8 complex are not well understood. Ubiquitylation of the Vac17 adaptor at the bud cortex provides spatial regulation of vacuole release. Here, we report that ubiquitylation alone is not sufficient for cargo release. We find that a parallel pathway, which initiates on the vacuole, converges with ubiquitylation to release the vacuole from Myo2. Specifically, we show that Yck3 and Vps41, independent of their known roles in homotypic fusion and protein sorting (HOPS)-mediated vesicle tethering, are required for the phosphorylation of Vac17 in its Myo2 binding domain. These phosphorylation events allow ubiquitylated Vac17 to be released from Myo2 and Vac8. Our data suggest that Vps41 is regulating the phosphorylation of Vac17 via Yck3, a casein kinase I, and likely another unknown kinase. That parallel pathways are required to release the vacuole from Myo2 suggests that multiple signals are integrated to terminate organelle inheritance.
Collapse
|
46
|
Babazadeh R, Ahmadpour D, Jia S, Hao X, Widlund P, Schneider K, Eisele F, Edo LD, Smits GJ, Liu B, Nystrom T. Syntaxin 5 Is Required for the Formation and Clearance of Protein Inclusions during Proteostatic Stress. Cell Rep 2020; 28:2096-2110.e8. [PMID: 31433985 DOI: 10.1016/j.celrep.2019.07.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 06/14/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
Spatial sorting to discrete quality control sites in the cell is a process harnessing the toxicity of aberrant proteins. We show that the yeast t-snare phosphoprotein syntaxin5 (Sed5) acts as a key factor in mitigating proteotoxicity and the spatial deposition and clearance of IPOD (insoluble protein deposit) inclusions associates with the disaggregase Hsp104. Sed5 phosphorylation promotes dynamic movement of COPII-associated Hsp104 and boosts disaggregation by favoring anterograde ER-to-Golgi trafficking. Hsp104-associated aggregates co-localize with Sed5 as well as components of the ER, trans Golgi network, and endocytic vesicles, transiently during proteostatic stress, explaining mechanistically how misfolded and aggregated proteins formed at the vicinity of the ER can hitchhike toward vacuolar IPOD sites. Many inclusions become associated with mitochondria in a HOPS/vCLAMP-dependent manner and co-localize with Vps39 (HOPS/vCLAMP) and Vps13, which are proteins providing contacts between vacuole and mitochondria. Both Vps39 and Vps13 are required also for efficient Sed5-dependent clearance of aggregates.
Collapse
Affiliation(s)
- Roja Babazadeh
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Doryaneh Ahmadpour
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Song Jia
- School of Life Science, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang District, Harbin 150030, China
| | - Xinxin Hao
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Per Widlund
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Kara Schneider
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Frederik Eisele
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Laura Dolz Edo
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1090, the Netherlands
| | - Gertien J Smits
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1090, the Netherlands
| | - Beidong Liu
- Department of Chemistry & Molecular Biology, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Thomas Nystrom
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg 405 30, Sweden.
| |
Collapse
|
47
|
Zhang J, Tracy C, Pasare C, Zeng J, Krämer H. Hypersensitivity of Vps33B mutant flies to non-pathogenic infections is dictated by aberrant activation of p38b MAP kinase. Traffic 2020; 21:578-589. [PMID: 32677257 DOI: 10.1111/tra.12756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 11/29/2022]
Abstract
Loss of the arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome-linked Vps33B protein results in exaggerated inflammatory responses upon activation of receptors of the innate immune system in both vertebrates and flies. However, little is known about the signaling elements downstream of these receptors that are critical for the hypersensitivity of Vps33B mutants. Here, we show that p38b MAP kinase contributes to the enhanced inflammatory responses in flies lacking Vps33B. Loss of p38b mitogen-activated protein kinase (MAPK) reduces enhanced inflammatory responses and prolongs the survival of infected Vps33B deficient flies. The function of p38 MAPK is not limited to its proinflammatory effects downstream of the PGRP-LC receptor as p38 also modulates endosomal trafficking of PGRP-LC and phagocytosis of bacteria. Expression of constitutively active p38b MAPK, but not dominant negative p38b MAPK enhances accumulation of endocytosed PGRP-LC receptors or phagocytosed bacteria within cells. Moreover, p38 MAPK is required for induction of macropinocytosis, an alternate pathway for the downregulation of immune receptors. Together, our data indicate that p38 MAPK activates multiple pathways that can contribute to the dysregulation of innate immune signaling in ARC syndrome.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, USA.,Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Charles Tracy
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Chandrashekhar Pasare
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Jinsheng Zeng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Helmut Krämer
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, USA.,Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
48
|
Bowman SL, Bi-Karchin J, Le L, Marks MS. The road to lysosome-related organelles: Insights from Hermansky-Pudlak syndrome and other rare diseases. Traffic 2020; 20:404-435. [PMID: 30945407 DOI: 10.1111/tra.12646] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022]
Abstract
Lysosome-related organelles (LROs) comprise a diverse group of cell type-specific, membrane-bound subcellular organelles that derive at least in part from the endolysosomal system but that have unique contents, morphologies and functions to support specific physiological roles. They include: melanosomes that provide pigment to our eyes and skin; alpha and dense granules in platelets, and lytic granules in cytotoxic T cells and natural killer cells, which release effectors to regulate hemostasis and immunity; and distinct classes of lamellar bodies in lung epithelial cells and keratinocytes that support lung plasticity and skin lubrication. The formation, maturation and/or secretion of subsets of LROs are dysfunctional or entirely absent in a number of hereditary syndromic disorders, including in particular the Hermansky-Pudlak syndromes. This review provides a comprehensive overview of LROs in humans and model organisms and presents our current understanding of how the products of genes that are defective in heritable diseases impact their formation, motility and ultimate secretion.
Collapse
Affiliation(s)
- Shanna L Bowman
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jing Bi-Karchin
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Linh Le
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
49
|
Hoban K, Lux SY, Poprawski J, Zhang Y, Shepherdson J, Castiñeira PG, Pesari S, Yao T, Prosser DC, Norris C, Wendland B. ESCRT-dependent protein sorting is required for the viability of yeast clathrin-mediated endocytosis mutants. Traffic 2020; 21:430-450. [PMID: 32255230 PMCID: PMC11376963 DOI: 10.1111/tra.12731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022]
Abstract
Endocytosis regulates many processes, including signaling pathways, nutrient uptake, and protein turnover. During clathrin-mediated endocytosis (CME), adaptors bind to cytoplasmic regions of transmembrane cargo proteins, and many endocytic adaptors are also directly involved in the recruitment of clathrin. This clathrin-associated sorting protein family includes the yeast epsins, Ent1/2, and AP180/PICALM homologs, Yap1801/2. Mutant strains lacking these four adaptors, but expressing an epsin N-terminal homology (ENTH) domain necessary for viability (4Δ+ENTH), exhibit endocytic defects, such as cargo accumulation at the plasma membrane (PM). This CME-deficient strain provides a sensitized background ideal for revealing cellular components that interact with clathrin adaptors. We performed a mutagenic screen to identify alleles that are lethal in 4Δ+ENTH cells using a colony-sectoring reporter assay. After isolating candidate synthetic lethal genes by complementation, we confirmed that mutations in VPS4 led to inviability of a 4Δ+ENTH strain. Vps4 mediates the final step of endosomal sorting complex required for transport (ESCRT)-dependent trafficking, and we found that multiple ESCRTs are also essential in 4Δ+ENTH cells, including Snf7, Snf8 and Vps36. Deletion of VPS4 from an end3Δ strain, another CME mutant, similarly resulted in inviability, and upregulation of a clathrin-independent endocytosis pathway rescued 4Δ+ENTH vps4Δ cells. Loss of Vps4 from an otherwise wild-type background caused multiple cargoes to accumulate at the PM because of an increase in Rcy1-dependent recycling of internalized protein to the cell surface. Additionally, vps4Δ rcy1Δ mutants exhibited deleterious growth phenotypes. Together, our findings reveal previously unappreciated effects of disrupted ESCRT-dependent trafficking on endocytic recycling and the PM.
Collapse
Affiliation(s)
- Kyle Hoban
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Samantha Y Lux
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Joanna Poprawski
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yorke Zhang
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - James Shepherdson
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Pedro G Castiñeira
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sanjana Pesari
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Tony Yao
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Derek C Prosser
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Carolyn Norris
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Beverly Wendland
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
50
|
Ahmadpour D, Babazadeh R, Nystrom T. Hitchhiking on vesicles: a way to harness age-related proteopathies? FEBS J 2020; 287:5068-5079. [PMID: 32336030 DOI: 10.1111/febs.15345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/06/2020] [Accepted: 04/23/2020] [Indexed: 12/27/2022]
Abstract
Central to proteopathies and leading to most age-related neurodegenerative disorders is a failure in protein quality control (PQC). To harness the toxicity of misfolded and damaged disease proteins, such proteins are either refolded, degraded by temporal PQC, or sequestered by spatial PQC into specific, organelle-associated, compartments within the cell. Here, we discuss the impact of vesicle trafficking pathways in general, and syntaxin 5 in particular, as key players in spatial PQC directing misfolded proteins to the surface of vacuole and mitochondria, which facilitates their clearance and detoxification. Since boosting vesicle trafficking genetically can positively impact on spatial PQC and make cells less sensitive to misfolded disease proteins, we speculate that regulators of such trafficking might serve as therapeutic targets for age-related neurological disorders.
Collapse
Affiliation(s)
- Doryaneh Ahmadpour
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Sweden.,Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Roja Babazadeh
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Sweden.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Thomas Nystrom
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Sweden
| |
Collapse
|