1
|
Manuel G, Twentyman J, Noble K, Eastman AJ, Aronoff DM, Seepersaud R, Rajagopal L, Adams Waldorf KM. Group B streptococcal infections in pregnancy and early life. Clin Microbiol Rev 2024:e0015422. [PMID: 39584819 DOI: 10.1128/cmr.00154-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
SUMMARYBacterial infections with Group B Streptococcus (GBS) are an important cause of adverse outcomes in pregnant individuals, neonates, and infants. GBS is a common commensal in the genitourinary and gastrointestinal tracts and can be detected in the vagina of approximately 20% of women globally. GBS can infect the fetus either during pregnancy or vaginal delivery resulting in preterm birth, stillbirth, or early-onset neonatal disease (EOD) in the first week of life. The mother can also become infected with GBS leading to postpartum endometritis, and rarely, maternal sepsis. An invasive GBS infection of the neonate may present after the first week of life (late-onset disease, LOD) through transmission from caregivers, breast milk, and other sources. Invasive GBS infections in neonates can result in sepsis, pneumonia, meningitis, neurodevelopmental impairment, death, and lifelong disability. A policy of routine screening for GBS rectovaginal colonization in well-resourced countries can trigger the administration of intrapartum antibiotic prophylaxis (IAP) when prenatal testing is positive, which drastically reduces rates of EOD. However, many countries do not routinely screen pregnant women for GBS colonization but may administer IAP in cases with a high risk of EOD. IAP does not reduce rates of LOD. A global vaccination campaign is needed to reduce the significant burden of invasive GBS disease that remains among infants and pregnant individuals. In this narrative review, we provide a comprehensive overview of the global impact of GBS colonization and infection, virulence factors and pathogenesis, and current and future prophylactics and therapeutics.
Collapse
Affiliation(s)
- Gygeria Manuel
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, USA
| | - Joy Twentyman
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Kristen Noble
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alison J Eastman
- Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - David M Aronoff
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ravin Seepersaud
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Lakshmi Rajagopal
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Global Health, University of Washington, Seattle, Washington, USA
| | - Kristina M Adams Waldorf
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, USA
- Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Gonzalez-Miro M, Pawlowski A, Lehtonen J, Cao D, Larsson S, Darsley M, Kitson G, Fischer PB, Johansson-Lindbom B. Safety and immunogenicity of the group B streptococcus vaccine AlpN in a placebo-controlled double-blind phase 1 trial. iScience 2023; 26:106261. [PMID: 36915681 PMCID: PMC10005905 DOI: 10.1016/j.isci.2023.106261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/28/2022] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Group B streptococcus (GBS) is a leading cause of life-threatening neonatal infections and subsets of adverse pregnancy outcomes. Essentially all GBS strains possess one allele of the alpha-like protein (Alp) family. A maternal GBS vaccine, consisting of the fused N-terminal domains of the Alps αC and Rib (GBS-NN), was recently demonstrated to be safe and immunogenic in healthy adult women. To enhance antibody responses to all clinically relevant Alps, a second-generation vaccine has been developed (AlpN), also containing the N-terminal domain of Alp1 and the one shared by Alp2 and Alp3. In this study, the safety and immunogenicity of AlpN is assessed in a randomized, double-blind, placebo-controlled, and parallel-group phase I study, involving 60 healthy non-pregnant women. AlpN is well tolerated and elicits similarly robust and persistent antibody responses against all four Alp-N-terminal domains, resulting in enhanced opsonophagocytic killing of all Alp serotypes covered by the vaccine.
Collapse
Affiliation(s)
| | | | - Janne Lehtonen
- Minervax A/S, Ole Maaløes Vej 3, 2200 Copenhagen N, Denmark
| | - Duojia Cao
- Immunology Section, Lund University, BMC D14, Lund, Sweden
| | - Sara Larsson
- Immunology Section, Lund University, BMC D14, Lund, Sweden
| | | | - Geoff Kitson
- Minervax A/S, Ole Maaløes Vej 3, 2200 Copenhagen N, Denmark
| | - Per B Fischer
- Minervax A/S, Ole Maaløes Vej 3, 2200 Copenhagen N, Denmark
| | - Bengt Johansson-Lindbom
- Immunology Section, Lund University, BMC D14, Lund, Sweden.,Minervax A/S, Ole Maaløes Vej 3, 2200 Copenhagen N, Denmark
| |
Collapse
|
3
|
Dangor Z, Kwatra G, Pawlowski A, Fisher PB, Izu A, Lala SG, Johansson-Lindbom B, Madhi SA. Association of infant Rib and Alp1 surface protein N-terminal domain immunoglobulin G and invasive Group B Streptococcal disease in young infants. Vaccine 2023; 41:1679-1683. [PMID: 36754766 PMCID: PMC9996286 DOI: 10.1016/j.vaccine.2023.01.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND Vaccine development for Group B Streptococcus (GBS), a common cause of invasive disease in early-infancy and adverse pregnancy outcomes, include exploring widely-expressed GBS surface proteins as vaccine epitopes. We investigated the association between natural infant serum IgG against the RibN and Alp1N domains and risk of invasive GBS disease caused by isolates expressing these proteins. METHODS We analyzed maternal and infant serum samples from GBS disease cases and infants born to GBS-colonized women controls. Bayesian modelling was used to calculate the GBS homotypic IgG concentration associated with risk reduction of invasive disease in the infant. RESULTS PCR-based typing of 85 GBS invasive isolates showed 46 and 24 possessing the gene for Rib and Alp1, respectively. These were matched to 46 and 36 infant controls whose mothers were colonized with GBS expressing Rib and Alp1, respectively. RibN IgG geometric mean concentrations (GMC) were lower in cases than controls among infants (0.01; 95 %CI: 0.01-0.02 vs 0.04; 95 %CI: 0.03-0.06; p < 0.001), no significant difference was found between maternal RibN IgG GMC in cases compared to controls. Alp1N IgG GMC was also lower in infant cases (0.02; 95 %CI: 0.01-0.03) than controls (0.05; 95 %CI: 0.04-0.07; p < 0.001); albeit not so in mothers. An infant IgG threshold ≥ 0.428 and ≥ 0.112 µg/mL was associated with 90 % risk reduction of invasive GBS disease due to Rib and Alp1 expressing strains, respectively. DISCUSSION Lower serum RibN and Alp1N IgG GMC were evident in infants with invasive GBS disease compared with controls born to women colonized with GBS expressing the homotypic protein. These data support the evaluation of Alp family proteins as potential vaccine candidates against invasive GBS disease.
Collapse
Affiliation(s)
- Ziyaad Dangor
- South African Medical Research Council: Vaccines and Infectious Diseases Analytics Unit, University of the Witwatersrand, South Africa; Department of Paediatrics & Child Health, Faculty of Health Sciences, University of the Witwatersrand, South Africa.
| | - Gaurav Kwatra
- South African Medical Research Council: Vaccines and Infectious Diseases Analytics Unit, University of the Witwatersrand, South Africa; Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | | | | | - Alane Izu
- South African Medical Research Council: Vaccines and Infectious Diseases Analytics Unit, University of the Witwatersrand, South Africa
| | - Sanjay G Lala
- Department of Paediatrics & Child Health, Faculty of Health Sciences, University of the Witwatersrand, South Africa
| | - Bengt Johansson-Lindbom
- Immunology Section, BMC D14, Lund University, Lund, Sweden; MinervaX ApS, DK-2200 Copenhagen N, Denmark
| | - Shabir A Madhi
- South African Medical Research Council: Vaccines and Infectious Diseases Analytics Unit, University of the Witwatersrand, South Africa; African Leadership in Vaccinology Expertise University of the Witwatersrand, South Africa.
| |
Collapse
|
4
|
The long and the short of Periscope Proteins. Biochem Soc Trans 2022; 50:1293-1302. [PMID: 36196877 DOI: 10.1042/bst20220194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022]
Abstract
Bacteria sense, interact with, and modify their environmental niche by deploying a molecular ensemble at the cell surface. The changeability of this exposed interface, combined with extreme changes in the functional repertoire associated with lifestyle switches from planktonic to adherent and biofilm states necessitate dynamic variability. Dynamic surface changes include chemical modifications to the cell wall; export of diverse extracellular biofilm components; and modulation of expression of cell surface proteins for adhesion, co-aggregation and virulence. Local enrichment for highly repetitive proteins with high tandem repeat identity has been an enigmatic phenomenon observed in diverse bacterial species. Preliminary observations over decades of research suggested these repeat regions were hypervariable, as highly related strains appeared to express homologues with diverse molecular mass. Long-read sequencing data have been interrogated to reveal variation in repeat number; in combination with structural, biophysical and molecular dynamics approaches, the Periscope Protein class has been defined for cell surface attached proteins that dynamically expand and contract tandem repeat tracts at the population level. Here, I review the diverse high-stability protein folds and coherent interdomain linkages culminating in the formation of highly anisotropic linear repeat arrays, so-called rod-like protein 'stalks', supporting roles in bacterial adhesion, biofilm formation, cell surface spatial competition, and immune system modulation. An understanding of the functional impacts of dynamic changes in repeat arrays and broader characterisation of the unusual protein folds underpinning this variability will help with the design of immunisation strategies, and contribute to synthetic biology approaches including protein engineering and microbial consortia construction.
Collapse
|
5
|
Basson A, Olaisen C, Selvik LK, Lyng RV, Lysvand H, Gidon A, Aas CG, Afset JE, Dragset MS. The Streptococcus agalactiae R3 surface protein is encoded by sar5. PLoS One 2022; 17:e0263199. [PMID: 35905090 PMCID: PMC9337641 DOI: 10.1371/journal.pone.0263199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022] Open
Abstract
Streptococcus agalactiae (group B streptococcus; GBS) is an important human pathogen causing pneumonia, sepsis and meningitis in neonates, as well as infections in pregnant women, immunocompromised individuals, and the elderly. For the future control of GBS-inflicted disease, GBS surface exposed proteins are particularly relevant as they may act as antigens for vaccine development and/or as serosubtype markers in epidemiological settings. Even so, the genes encoding some of the surface proteins established as serosubtype markers by antibody-based methods, like the R3 surface protein, are still unknown. Here, by examining a Norwegian GBS collection consisting of 140 strains, we find that R3 protein expression correlates with the presence of the gene sar5. By inducible expression of sar5 in an R3-negative bacterial strain we show that the sar5 gene product is specifically recognized by an R3 monoclonal antibody. With this we identify sar5 as the gene encoding the R3 surface protein, a serosubtype marker of hitherto unknown genetic origin.
Collapse
Affiliation(s)
- Adelle Basson
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Camilla Olaisen
- Department of Medical Microbiology, St. Olavs University Hospital, Trondheim, Norway
| | - Linn-Karina Selvik
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Centre for Molecular Inflammation Research (CEMIR), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Randi Valsø Lyng
- Department of Medical Microbiology, St. Olavs University Hospital, Trondheim, Norway
| | - Hilde Lysvand
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Alexandre Gidon
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Centre for Molecular Inflammation Research (CEMIR), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Christina Gabrielsen Aas
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Medical Microbiology, St. Olavs University Hospital, Trondheim, Norway
| | - Jan Egil Afset
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Medical Microbiology, St. Olavs University Hospital, Trondheim, Norway
| | - Marte Singsås Dragset
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Centre for Molecular Inflammation Research (CEMIR), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- * E-mail:
| |
Collapse
|
6
|
Dominguez K, Randis TM. Toward the development of a protein-based group B Streptococcus vaccine. Cell Rep Med 2022; 3:100536. [PMID: 35243427 PMCID: PMC8861943 DOI: 10.1016/j.xcrm.2022.100536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Clinical trials of protein-based vaccines to prevent Group B streptococcal infections are underway. In this issue of Cell Reports Medicine, Pawlowski et al.1 provide an extensive characterization of the immune response generated by the recently tested GBS-NN vaccine.
Collapse
Affiliation(s)
- Kristen Dominguez
- Department of Molecular Medicine, University of South Florida; Morsani School of Medicine
| | - Tara M. Randis
- Department of Molecular Medicine, University of South Florida; Morsani School of Medicine
- Department of Pediatrics, University of South Florida; Morsani School of Medicine
| |
Collapse
|
7
|
Pawlowski A, Lannergård J, Gonzalez-Miro M, Cao D, Larsson S, Persson JJ, Kitson G, Darsley M, Rom AL, Hedegaard M, Fischer PB, Johansson-Lindbom B. A group B Streptococcus alpha-like protein subunit vaccine induces functionally active antibodies in humans targeting homotypic and heterotypic strains. Cell Rep Med 2022; 3:100511. [PMID: 35243418 PMCID: PMC8861819 DOI: 10.1016/j.xcrm.2022.100511] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/17/2021] [Accepted: 01/07/2022] [Indexed: 11/18/2022]
Abstract
Maternal vaccination is a promising strategy for preventing neonatal disease caused by group B Streptococcus. The safety and immunogenicity of the prototype vaccine GBS-NN, a fusion protein consisting of the N-terminal domains of the alpha-like proteins (Alp) αC and Rib, were recently evaluated favorably in healthy adult women in a phase 1 trial. Here we demonstrate robust immunoglobulin G (IgG) and immunoglobulin A (IgA) responses against αC and Rib, as well as against the heterotypic Alp family members Alp1–Alp3. IgA and heterotypic IgG responses are more variable between subjects and correlate with pre-existing immunity. Vaccine-induced IgG mediates opsonophagocytic killing and prevents bacterial invasion of epithelial cells. Like the vaccine-induced response, naturally acquired IgG against the vaccine domains is dominated by IgG1. Consistent with the high IgG1 cross-placental transfer rate, naturally acquired IgG against both domains reaches higher concentrations in neonatal than maternal blood, as assessed in a separate group of non-vaccinated pregnant women and their babies. GBS-NN subunit vaccine broadly elicits IgG1 to homotypic αC and Rib N-terminal domains IgA and heterotypic IgG responses occur in vaccinees with pre-existing immunity Abs mediate opsonophagocytic killing and prevent bacterial epithelial cell invasion IgG against αC-N and Rib-N is transferred efficiently across the placenta
Collapse
Affiliation(s)
| | - Jonas Lannergård
- Immunology Section, BMC D14, Lund University, 221 84 Lund, Sweden
| | | | - Duojia Cao
- Immunology Section, BMC D14, Lund University, 221 84 Lund, Sweden
| | - Sara Larsson
- Immunology Section, BMC D14, Lund University, 221 84 Lund, Sweden
| | - Jenny J Persson
- Immunology Section, BMC D14, Lund University, 221 84 Lund, Sweden
| | - Geoff Kitson
- Minervax A/S, Ole Maaløes Vej 3, 2200 Copenhagen N, Denmark
| | | | - Ane Lilleøre Rom
- Department of Obstetrics, the Juliane Marie Centre, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark.,The Research Unit for Women's and Children's Health, the Juliane Marie Centre, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Morten Hedegaard
- Department of Obstetrics, the Juliane Marie Centre, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Per B Fischer
- Minervax A/S, Ole Maaløes Vej 3, 2200 Copenhagen N, Denmark
| | - Bengt Johansson-Lindbom
- Immunology Section, BMC D14, Lund University, 221 84 Lund, Sweden.,Minervax A/S, Ole Maaløes Vej 3, 2200 Copenhagen N, Denmark
| |
Collapse
|
8
|
Dobrut A, Brzychczy-Włoch M. Immunogenic Proteins of Group B Streptococcus-Potential Antigens in Immunodiagnostic Assay for GBS Detection. Pathogens 2021; 11:43. [PMID: 35055991 PMCID: PMC8778278 DOI: 10.3390/pathogens11010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 12/21/2022] Open
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is an opportunistic pathogen, which asymptomatically colonizes the gastrointestinal and genitourinary tract of up to one third of healthy adults. Nevertheless, GBS carriage in pregnant women may lead to several health issues in newborns causing life threatening infection, such as sepsis, pneumonia or meningitis. Recommended GBS screening in pregnant women significantly reduced morbidity and mortality in infants. Nevertheless, intrapartum antibiotic prophylaxis, recommended following the detection of carriage or in case of lack of a carriage test result for pregnant women who demonstrate certain risk factors, led to the expansion of the adverse phenomenon of bacterial resistance to antibiotics. In our paper, we reviewed some immunogenic GBS proteins, i.e., Alp family proteins, β protein, Lmb, Sip, BibA, FsbA, ScpB, enolase, elongation factor Tu, IMPDH, and GroEL, which possess features characteristic of good candidates for immunodiagnostic assays for GBS carriage detection, such as immunoreactivity and specificity. We assume that they can be used as an alternative diagnostic method to the presently recommended bacteriological cultivation and MALDI.
Collapse
Affiliation(s)
| | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Faculty of Medicine, Medical College, Jagiellonian University, 31-121 Krakow, Poland;
| |
Collapse
|
9
|
Berardi A, Trevisani V, Di Caprio A, Bua J, China M, Perrone B, Pagano R, Lucaccioni L, Fanaro S, Iughetti L, Lugli L, Creti R. Understanding Factors in Group B Streptococcus Late-Onset Disease. Infect Drug Resist 2021; 14:3207-3218. [PMID: 34429620 PMCID: PMC8380284 DOI: 10.2147/idr.s291511] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/14/2021] [Indexed: 12/22/2022] Open
Abstract
Group B streptococcus (GBS) infection remains a leading cause of sepsis, pneumonia, and meningitis in infants. Rates of GBS early onset disease have declined following the widcespread use of intrapartum antibiotic prophylaxis; hence, late-onset infections (LOGBS) are currently a common presentation of neonatal GBS dicsease. The pathogenesis, mode of transmission, and risk factors associated with LOGBS are unclear, which interfere with effective prevention efforts. GBS may be transmitted from the mother to the infant at the time of delivery or during the postpartum period via contaminated breast milk, or as nosocomial or community-acquired infection. Maternal GBS colonization, prematurity, young maternal age, HIV exposure, and ethnicity (Black) are identified as risk factors for LOGBS disease; however, further studies are necessary to confirm additional risk factors, if any, for the implementation of effective prevention strategies. This narrative review discusses current and previous studies that have reported LOGBS. Few well-designed studies have described this condition; therefore, reliable assessment of maternal GBS colonization, breastfeeding, and twin delivery as risk factors for LOGBS remains limited.
Collapse
Affiliation(s)
- Alberto Berardi
- Terapia Intensiva Neonatale, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| | - Viola Trevisani
- Scuola di Specializzazione in Pediatria, Università di Modena & Reggio Emilia, Modena, Italy
| | - Antonella Di Caprio
- Scuola di Specializzazione in Pediatria, Università di Modena & Reggio Emilia, Modena, Italy
| | - Jenny Bua
- Terapia Intensiva Neonatale, IRCCS Azienda Ospedaliero Universitaria "Burlo Garofalo", Trieste, Italy
| | | | - Barbara Perrone
- Terapia Intensiva Neonatale, Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | - Rossella Pagano
- Unità Operativa di Pediatria, Civile Sassuolo, Sassuolo, Italy
| | - Laura Lucaccioni
- Unità Operativa di Pediatria, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| | - Silvia Fanaro
- Terapia Intensiva Neonatale, Azienda Ospedaliero-Universitaria S. Anna, Ferrara, Italy
| | - Lorenzo Iughetti
- Scuola di Specializzazione in Pediatria, Università di Modena & Reggio Emilia, Modena, Italy.,Unità Operativa di Pediatria, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| | - Licia Lugli
- Terapia Intensiva Neonatale, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| | - Roberta Creti
- Reparto di Antibiotico Resistenza e Patogeni Speciali (AR-PS), Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
10
|
Safety and immunogenicity of a prototype recombinant alpha-like protein subunit vaccine (GBS-NN) against Group B Streptococcus in a randomised placebo-controlled double-blind phase 1 trial in healthy adult women. Vaccine 2021; 39:4489-4499. [PMID: 34215454 DOI: 10.1016/j.vaccine.2021.06.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/24/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Group B Streptococcus (GBS) is the leading cause of life-threatening infections in new-borns and may cause invasive disease, stillbirth and preterm delivery during pregnancy. While no licensed vaccine exists, maternal immunization might protect against neonatal disease and adverse pregnancy outcomes. We assessed the safety and immunogenicity of a prototype vaccine consisting of the fused N-terminal domains of the AlphaC and Rib surface proteins of GBS (GBS-NN). METHODS GBS-NN was tested in a randomised, double-blind, placebo-controlled, parallel group, phase I study, in healthy non-pregnant women. A dose-escalation phase, with two doses, four weeks apart, of 10, 50 or 250 µg, administered with or without aluminium hydroxide, was initially assessed (n = 60). This was followed by a dose-confirmation study, where one dose of 100 µg adjuvanted GBS-NN was compared with two doses of either 50 or 100 µg adjuvanted GBS-NN, again administered with four weeks interval between the doses (n = 180). Safety and immunogenicity were monitored for one year. RESULTS GBS-NN was well tolerated with some, mostly mild, injection site reactions observed. Adjuvant significantly increased antibody concentrations and the response was boosted by a second dose. The IgG GMCs remained strongly elevated during the whole one-year duration of the study. Maximal responses occurred after two 50 µg doses, resulting in IgG GMC of 16.9 µg/ml at the primary immunological endpoint, twelve weeks after the first dose. For this regimen, 100% and 89% of the subjects achieved antibody levels above the arbitrary thresholds of 1 and 4 µg/ml, respectively. The added beneficial effect of a second dose was most pronounced for subjects with pre-existing IgG levels below the median of the entire cohort. CONCLUSION The prototype GBS-NN vaccine was found to be well tolerated and highly immunogenic with an optimal regimen of two doses of 50 µg in the presence of adjuvant. Further development of a maternal vaccine based on the N-terminal domains of the alpha-like protein family of GBS is warranted (NCT02459262).
Collapse
|
11
|
Periscope Proteins are variable-length regulators of bacterial cell surface interactions. Proc Natl Acad Sci U S A 2021; 118:2101349118. [PMID: 34074781 PMCID: PMC8201768 DOI: 10.1073/pnas.2101349118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The structure of single and tandem SHIRT domains from the streptococcal surface protein Sgo_0707 were determined. In conjunction with biophysics and molecular dynamics simulations, the results show that the observed gene length variation would result in differential projection of the host ligand binding domain on the bacterial cell surface. An analysis of long-read DNA sequence data reveals many other repetitive bacterial surface proteins that appear to undergo gene length variation. We propose that these variable-length “Periscope Proteins” represent an important mechanism of bacterial cell surface modification with potential roles in infection and immune evasion. Changes at the cell surface enable bacteria to survive in dynamic environments, such as diverse niches of the human host. Here, we reveal “Periscope Proteins” as a widespread mechanism of bacterial surface alteration mediated through protein length variation. Tandem arrays of highly similar folded domains can form an elongated rod-like structure; thus, variation in the number of domains determines how far an N-terminal host ligand binding domain projects from the cell surface. Supported by newly available long-read genome sequencing data, we propose that this class could contain over 50 distinct proteins, including those implicated in host colonization and biofilm formation by human pathogens. In large multidomain proteins, sequence divergence between adjacent domains appears to reduce interdomain misfolding. Periscope Proteins break this “rule,” suggesting that their length variability plays an important role in regulating bacterial interactions with host surfaces, other bacteria, and the immune system.
Collapse
|
12
|
Mudzana R, Mavenyengwa RT, Gudza-Mugabe M. Analysis of virulence factors and antibiotic resistance genes in group B streptococcus from clinical samples. BMC Infect Dis 2021; 21:125. [PMID: 33509097 PMCID: PMC7844887 DOI: 10.1186/s12879-021-05820-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 01/19/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Streptococcus agalacticae (Group B Streptococcus, GBS) is one of the most important causative agents of serious infections among neonates. This study was carried out to identify antibiotic resistance and virulence genes associated with GBS isolated from pregnant women. METHODS A total of 43 GBS isolates were obtained from 420 vaginal samples collected from HIV positive and negative women who were 13-35 weeks pregnant attending Antenatal Care at Chitungwiza and Harare Central Hospitals in Zimbabwe. Identification tests of GBS isolates was done using standard bacteriological methods and molecular identification testing. Antibiotic susceptibility testing was done using the modified Kirby-Bauer method and E-test strips. The boiling method was used to extract DNA and Polymerase Chain Reaction (PCR) was used to screen for 13 genes. Data was fed into SPSS 24.0. RESULTS Nine distinct virulence gene profiles were identified and hly-scpB-bca-rib 37.2% (16/43) was common. The virulence genes identified were namely hly 97.8% (42/43), scpB 90.1% (39/43), bca 86.0% (37/43), rib 69.8% (30/43) and bac 11.6% (5/43). High resistance to tetracycline 97.7% (42/43) was reported followed by 72.1% (31/43) cefazolin, 69.8% (30/43) penicillin G, 58.1% (25/43) ampicillin, 55.8% (24/43) clindamycin, 46.5% (20/43) ceftriaxone, 34.9% (15/43) chloramphenicol, and 30.2% (13/43) for both erythromycin and vancomycin using disk diffusion. Antibiotic resistance genes among the resistant and intermediate-resistant isolates showed high frequencies for tetM 97.6% (41/42) and low frequencies for ermB 34.5% (10/29), ermTR 10.3% (3/29), mefA 3.4% (1/29), tetO 2.4% (1/42) and linB 0% (0/35). The atr housekeeping gene yielded 100% (43/43) positive results, whilst the mobile genetic element IS1548 yielded 9.3% (4/43). CONCLUSION The study showed high prevalence of hly, scpB, bca and rib virulence genes in S. agalactiae strains isolated from pregnant women. Tetracycline resistance was predominantly caused by the tetM gene, whilst macrolide resistance was predominantly due to the presence of erm methylase, with the ermB gene being more prevalent. Multi-drug resistance coupled with the recovery of resistant isolates to antimicrobial agents such as penicillins indicates the importance of GBS surveillance and susceptibility tests. It was also observed that in vitro phenotypic resistance is not always accurately predicted by resistance genotypes.
Collapse
Affiliation(s)
- Raymond Mudzana
- Department of Medical Microbiology, National Polio Laboratory, University of Zimbabwe College of Health Sciences, P. O. Box A178, Avondale, Harare, Zimbabwe
| | - Rooyen T. Mavenyengwa
- Department of Medical Microbiology, National Polio Laboratory, University of Zimbabwe College of Health Sciences, P. O. Box A178, Avondale, Harare, Zimbabwe
| | - Muchaneta Gudza-Mugabe
- Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Room No. 3.22 Falmouth Building, Anzio Road, Observatory, Cape Town, 7925 South Africa
| |
Collapse
|
13
|
Eraso JM, Kachroo P, Olsen RJ, Beres SB, Zhu L, Badu T, Shannon S, Cantu CC, Saavedra MO, Kubiak SL, Porter AR, DeLeo FR, Musser JM. Genetic heterogeneity of the Spy1336/R28-Spy1337 virulence axis in Streptococcus pyogenes and effect on gene transcript levels and pathogenesis. PLoS One 2020; 15:e0229064. [PMID: 32214338 PMCID: PMC7098570 DOI: 10.1371/journal.pone.0229064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/28/2020] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pyogenes is a strict human pathogen responsible for more than 700 million infections annually worldwide. Strains of serotype M28 S. pyogenes are typically among the five more abundant types causing invasive infections and pharyngitis in adults and children. Type M28 strains also have an unusual propensity to cause puerperal sepsis and neonatal disease. We recently discovered that a one-nucleotide indel in an intergenic homopolymeric tract located between genes Spy1336/R28 and Spy1337 altered virulence in a mouse model of infection. In the present study, we analyzed size variation in this homopolymeric tract and determined the extent of heterogeneity in the number of tandemly-repeated 79-amino acid domains in the coding region of Spy1336/R28 in large samples of strains recovered from humans with invasive infections. Both repeat sequence elements are highly polymorphic in natural populations of M28 strains. Variation in the homopolymeric tract results in (i) changes in transcript levels of Spy1336/R28 and Spy1337 in vitro, (ii) differences in virulence in a mouse model of necrotizing myositis, and (iii) global transcriptome changes as shown by RNAseq analysis of isogenic mutant strains. Variation in the number of tandem repeats in the coding sequence of Spy1336/R28 is responsible for size variation of R28 protein in natural populations. Isogenic mutant strains in which genes encoding R28 or transcriptional regulator Spy1337 are inactivated are significantly less virulent in a nonhuman primate model of necrotizing myositis. Our findings provide impetus for additional studies addressing the role of R28 and Spy1337 variation in pathogen-host interactions.
Collapse
Affiliation(s)
- Jesus M. Eraso
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Priyanka Kachroo
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Randall J. Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
- Departments of Pathology and Laboratory Medicine and Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Stephen B. Beres
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Luchang Zhu
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Traci Badu
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Sydney Shannon
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Concepcion C. Cantu
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Matthew Ojeda Saavedra
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Samantha L. Kubiak
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
| | - Adeline R. Porter
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Frank R. DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - James M. Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute and Houston Methodist Hospital, Houston, Texas, United States of America
- Departments of Pathology and Laboratory Medicine and Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| |
Collapse
|
14
|
Whelan F, Lafita A, Griffiths SC, Cooper REM, Whittingham JL, Turkenburg JP, Manfield IW, St. John AN, Paci E, Bateman A, Potts JR. Defining the remarkable structural malleability of a bacterial surface protein Rib domain implicated in infection. Proc Natl Acad Sci U S A 2019; 116:26540-26548. [PMID: 31818940 PMCID: PMC6936399 DOI: 10.1073/pnas.1911776116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Streptococcus groups A and B cause serious infections, including early onset sepsis and meningitis in newborns. Rib domain-containing surface proteins are found associated with invasive strains and elicit protective immunity in animal models. Yet, despite their apparent importance in infection, the structure of the Rib domain was previously unknown. Structures of single Rib domains of differing length reveal a rare case of domain atrophy through deletion of 2 core antiparallel strands, resulting in the loss of an entire sheet of the β-sandwich from an immunoglobulin-like fold. Previously, observed variation in the number of Rib domains within these bacterial cell wall-attached proteins has been suggested as a mechanism of immune evasion. Here, the structure of tandem domains, combined with molecular dynamics simulations and small angle X-ray scattering, suggests that variability in Rib domain number would result in differential projection of an N-terminal host-colonization domain from the bacterial surface. The identification of 2 further structures where the typical B-D-E immunoglobulin β-sheet is replaced with an α-helix further confirms the extensive structural malleability of the Rib domain.
Collapse
Affiliation(s)
- Fiona Whelan
- Department of Biology, The University of York, YO10 5DD York, United Kingdom
| | - Aleix Lafita
- European Molecular Biology Laboratory, European Bioinformatics Institute, CB10 1SD Hinxton, United Kingdom
| | - Samuel C. Griffiths
- Department of Biology, The University of York, YO10 5DD York, United Kingdom
| | | | - Jean L. Whittingham
- York Structural Biology Laboratory, Department of Chemistry, The University of York, YO10 5DD York, United Kingdom
| | - Johan P. Turkenburg
- York Structural Biology Laboratory, Department of Chemistry, The University of York, YO10 5DD York, United Kingdom
| | - Iain W. Manfield
- Astbury Centre for Structural Molecular Biology, The University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Alexander N. St. John
- Astbury Centre for Structural Molecular Biology, The University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Emanuele Paci
- Astbury Centre for Structural Molecular Biology, The University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute, CB10 1SD Hinxton, United Kingdom
| | - Jennifer R. Potts
- Department of Biology, The University of York, YO10 5DD York, United Kingdom
| |
Collapse
|
15
|
Kardos S, Tóthpál A, Laub K, Kristóf K, Ostorházi E, Rozgonyi F, Dobay O. High prevalence of group B streptococcus ST17 hypervirulent clone among non-pregnant patients from a Hungarian venereology clinic. BMC Infect Dis 2019; 19:1009. [PMID: 31779587 PMCID: PMC6883650 DOI: 10.1186/s12879-019-4626-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 11/11/2019] [Indexed: 11/08/2022] Open
Abstract
Background Although Streptococcus agalactiae is the leading causative agent of neonatal sepsis and meningitis, recently it is increasingly isolated from non-pregnant adults. The relation between its presence in the genitourinary tract and manifested clinical symptoms of STD patients remains an open question. In this study, a complex epidemiological investigation of GBS isolates from a venerology clinic was performed. Methods Ninety-six GBS isolates were serotyped and their genetic relatedness determined by PFGE. MLST was also performed for a subset of 20 isolates. The antibiotic susceptibility was tested with agar dilution. Surface proteins and the ST-17 hypervirulent clone was detected by PCR. Results The serotype prevalence was the following: V (29.2%), III (27.1%), Ia (22.9%), IV (10.4%), II (5.2%) and Ib (4.2%). A strong association was demonstrated between surface protein genes and serotypes. All isolates were fully susceptible to penicillin, but erythromycin and clindamycin resistance was high (41.7 and 35.4%, respectively), and 8 phenotypically macrolide sensitive isolates carried the ermB gene. 21.9% of all strains belonged to the hypervirulent ST17 clone, most being of serotype III and all were rib +. We found a few serotype IV isolates belonging to several STs and one serotype V/ST110 strain, containing a 44-bp deletion in the atr allele. Conclusions The presence of silent ermB genes is of worry, as their expression upon macrolide exposure could lead to unforeseen therapeutic failure, while clindamycin is used for intrapartum antibiotic prophylaxis, in case of penicillin allergy. The other alarming result is the high prevalence of ST17 among these strains from STD patients, who could be sources of further infections. This is the first report from Hungary providing both serotyping and genotyping data of GBS isolates. These results could be helpful for vaccine production as the major vaccine candidates are capsular antigens or surface proteins.
Collapse
Affiliation(s)
- Szilvia Kardos
- Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Adrienn Tóthpál
- Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Krisztina Laub
- Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Katalin Kristóf
- Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Eszter Ostorházi
- Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary.,Department of Dermatology, Dermatooncology and Venerology, Semmelweis University, Budapest, Hungary
| | - Ferenc Rozgonyi
- Institute of Laboratory Medicine, Semmelweis University, Budapest, Hungary.,Department of Dermatology, Dermatooncology and Venerology, Semmelweis University, Budapest, Hungary
| | - Orsolya Dobay
- Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary.
| |
Collapse
|
16
|
Jalalifar S, Havaei SA, Motallebirad T, Moghim S, Fazeli H, Esfahani BN. Determination of surface proteins profile, capsular genotyping, and antibiotic susceptibility patterns of Group B Streptococcus isolated from urinary tract infection of Iranian patients. BMC Res Notes 2019; 12:437. [PMID: 31324269 PMCID: PMC6642507 DOI: 10.1186/s13104-019-4428-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/05/2019] [Indexed: 12/28/2022] Open
Abstract
Objectives Group B Streptococcus (GBS) is an important opportunistic bacteria that causes a wide range of infections including neonatal sepsis, meningitis, pneumonia, soft tissue and urinary tract infections (UTI). The aim of this study was to evaluate the antimicrobial susceptibility patterns, surface proteins and capsular types of GBS isolates. Results 100 of UTI isolates were confirmed as GBS. Antimicrobial susceptibility pattern showed that 95% of GBS isolates were resistant to tetracycline, followed by erythromycin (52%), clindamycin (47%), levofloxacin (9%) and penicillin, cefepime, cefotaxime, and ceftriaxone each with (8%), and vancomycin 1%. Common capsular types were III, Ib, V, II, Ia and IV respectively and the distribution of surface protein genes was as follows: rib (40%), alpha-c (22%), alp2/3 (18%) and epsilon (15%), and alp4 gene was not detected in the isolates. Our findings showed the relationship between capsular types with Alpha-like proteins, as well as reduced sensitivity to antibiotics, so the performance of antibiotic surveillance programs is recommended. Electronic supplementary material The online version of this article (10.1186/s13104-019-4428-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Saba Jalalifar
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Asghar Havaei
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tahereh Motallebirad
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sharareh Moghim
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Fazeli
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahram Nasr Esfahani
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
17
|
Paoletti LC, Kasper DL. Surface Structures of Group B Streptococcus Important in Human Immunity. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0001-2017. [PMID: 30873933 PMCID: PMC11590616 DOI: 10.1128/microbiolspec.gpp3-0001-2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Indexed: 11/20/2022] Open
Abstract
The surface of the Gram-positive opportunistic pathogen Streptococcus agalactiae, or group B Streptococcus (GBS), harbors several carbohydrate and protein antigens with the potential to be effective vaccines. Capsular polysaccharides of all clinically-relevant GBS serotypes coupled to immunogenic proteins of both GBS and non-GBS origin have undergone extensive testing in animals that led to advanced clinical trials in healthy adult women. In addition, GBS proteins either alone or in combination have been tested in animals; a fusion protein construct has recently advanced to human clinical studies. Given our current understanding of the antigenicity and immunogenicity of the wide array of GBS surface antigens, formulations now exist for the generation of viable vaccines against diseases caused by GBS.
Collapse
Affiliation(s)
- Lawrence C Paoletti
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Dennis L Kasper
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
18
|
Weckel A, Ahamada D, Bellais S, Méhats C, Plainvert C, Longo M, Poyart C, Fouet A. The N-terminal domain of the R28 protein promotes emm28 group A Streptococcus adhesion to host cells via direct binding to three integrins. J Biol Chem 2018; 293:16006-16018. [PMID: 30150299 DOI: 10.1074/jbc.ra118.004134] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/20/2018] [Indexed: 01/07/2023] Open
Abstract
Group A Streptococcus (GAS) is a human-specific pathogen responsible for a wide range of diseases, ranging from superficial to life-threatening invasive infections, including endometritis, and autoimmune sequelae. GAS strains express a vast repertoire of virulence factors that varies depending on the strain genotype, and many adhesin proteins that enable GAS to adhere to host cells are restricted to some genotypes. GAS emm28 is the third most prevalent genotype in invasive infections in France and is associated with gyneco-obstetrical infections. emm28 strains harbor R28, a cell wall-anchored surface protein that has previously been reported to promote adhesion to cervical epithelial cells. Here, using cellular and biochemical approaches, we sought to determine whether R28 supports adhesion also to other cells and to characterize its cognate receptor. We show that through its N-terminal domain, R28Nt, R28 promotes bacterial adhesion to both endometrial-epithelial and endometrial-stromal cells. R28Nt was further subdivided into two domains, and we found that both are involved in cell binding. R28Nt and both subdomains interacted directly with the laminin-binding α3β1, α6β1, and α6β4 integrins; interestingly, these bindings events did not require divalent cations. R28 is the first GAS adhesin reported to bind directly to integrins that are expressed in most epithelial cells. Finally, R28Nt also promoted binding to keratinocytes and pulmonary epithelial cells, suggesting that it may be involved in supporting the prevalence in invasive infections of the emm28 genotype.
Collapse
Affiliation(s)
- Antonin Weckel
- From the INSERM U1016, Institut Cochin.,CNRS UMR 8104, and.,Université Paris Descartes, UMR-S1016 Paris, France and
| | - Dorian Ahamada
- From the INSERM U1016, Institut Cochin.,CNRS UMR 8104, and.,Université Paris Descartes, UMR-S1016 Paris, France and
| | - Samuel Bellais
- From the INSERM U1016, Institut Cochin.,CNRS UMR 8104, and.,Université Paris Descartes, UMR-S1016 Paris, France and
| | - Céline Méhats
- From the INSERM U1016, Institut Cochin.,CNRS UMR 8104, and.,Université Paris Descartes, UMR-S1016 Paris, France and
| | - Céline Plainvert
- From the INSERM U1016, Institut Cochin.,CNRS UMR 8104, and.,Université Paris Descartes, UMR-S1016 Paris, France and.,the Centre National de Référence des Streptocoques and.,the Hôpitaux Universitaires Paris Centre, Institut Cochin, Assistance Publique Hôpitaux de Paris, 75014 Paris, France
| | - Magalie Longo
- From the INSERM U1016, Institut Cochin.,CNRS UMR 8104, and.,Université Paris Descartes, UMR-S1016 Paris, France and
| | - Claire Poyart
- From the INSERM U1016, Institut Cochin.,CNRS UMR 8104, and.,Université Paris Descartes, UMR-S1016 Paris, France and.,the Centre National de Référence des Streptocoques and.,the Hôpitaux Universitaires Paris Centre, Institut Cochin, Assistance Publique Hôpitaux de Paris, 75014 Paris, France
| | - Agnès Fouet
- From the INSERM U1016, Institut Cochin, .,CNRS UMR 8104, and.,Université Paris Descartes, UMR-S1016 Paris, France and.,the Centre National de Référence des Streptocoques and
| |
Collapse
|
19
|
Lin SM, Zhi Y, Ahn KB, Lim S, Seo HS. Status of group B streptococcal vaccine development. Clin Exp Vaccine Res 2018; 7:76-81. [PMID: 29399583 PMCID: PMC5795048 DOI: 10.7774/cevr.2018.7.1.76] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/08/2018] [Accepted: 01/14/2018] [Indexed: 12/22/2022] Open
Abstract
Streptococcus agalactiae (group B streptococcus, GBS) is a leading causal organism of neonatal invasive diseases and severe infections in the elderly. Despite significant advances in the diagnosis and treatment of GBS infections and improvement in personal hygiene standards, this pathogen is still a global health concern. Thus, an effective vaccine against GBS would augment existing strategies to substantially decrease GBS infection. In 2014, World Health Organization convened the first meeting for consultation on GBS vaccine development, focusing on the GBS maternal immunization program, which was aimed at reducing infections in neonates and young infants worldwide. Here, we review the history of GBS infections, the current vaccine candidates, and the current status of immunogenicity assays used to evaluate the clinical efficacy of GBS vaccines.
Collapse
Affiliation(s)
- Shun Mei Lin
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Korea.,Department of Molecular Medicine (BrainKorea21 Plus), Chonnam National University Graduate School, Gwangju, Korea
| | - Yong Zhi
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Korea.,Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Daejeon, Korea
| | - Ki Bum Ahn
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Sangyong Lim
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Korea.,Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Daejeon, Korea
| | - Ho Seong Seo
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Korea.,Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Daejeon, Korea
| |
Collapse
|
20
|
Creti R, Baldassarri L, Montanaro L, Arciola C. The Alpha-Like Surface Proteins: An Example of an Expanding Family of Adhesins. Int J Artif Organs 2018; 31:834-40. [DOI: 10.1177/039139880803100912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Alpha-like protein (Alp) family, repeat-containing surface proteins once thought to be important adhesion factors confined to pathogenic streptococci and enterococci, is broader than previously known. Analysis of the annotated microbial genomes has identified new potential members of the Alp family not only in other Gram- positive opportunistic pathogens but also in commensal microflora of the human gut and the skin. This finding has highlighted the importance of genome sequencing projects for unraveling in greater detail lateral gene transfer events involving virulence factors between pathogens and commensals. These should receive constant attention not only as part of infectious disease prevention programs, but also in the food and biotechnology industries. (Int J Artif Organs 2008; 31: 834–40)
Collapse
Affiliation(s)
- R. Creti
- Department of Infectious, Parasitic and Immunomediated Diseases, National Health Institute, Rome - Italy
| | - L. Baldassarri
- Department of Infectious, Parasitic and Immunomediated Diseases, National Health Institute, Rome - Italy
| | - L. Montanaro
- Research Unit on Implant Infections, Rizzoli Orthopedic Institute, Bologna - Italy
- Department of Experimental Pathology of the University of Bologna, Bologna - Italy
| | - C.R. Arciola
- Research Unit on Implant Infections, Rizzoli Orthopedic Institute, Bologna - Italy
- Department of Experimental Pathology of the University of Bologna, Bologna - Italy
| |
Collapse
|
21
|
Gabrielsen C, Mæland JA, Lyng RV, Radtke A, Afset JE. Molecular characteristics of Streptococcus agalactiae strains deficient in alpha-like protein encoding genes. J Med Microbiol 2017; 66:26-33. [PMID: 28032541 DOI: 10.1099/jmm.0.000412] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Streptococcus agalactiae (group B streptococci, GBS) are important human and animal pathogens, which can be subdivided based on different capsular polysaccharides and surface-anchored alpha-like proteins (Alps), as well as other proteins. Nearly all GBS strains possess an Alp (Alp GBS), although Alp-negative GBS (non-Alp GBS) do occur. In this study, 10 (1.1 %) of 932 clinical human GBS tested lacked an Alp encoding gene. All 10 strains were from patients with bloodstream infection, confirming that non-Alp GBS can be highly virulent. All non-Alp GBS expressed one or more of the surface-anchored proteins R3, Z1 and Z2, while less than 10 % of unselected clinical strains express any of these proteins. In contrast to Alp GBS, all non-Alp strains tested were PCR negative for the upstream sequence of the insertion site of the Alp encoding gene of Alp GBS. Genome sequencing showed that all but one of the 10 clinical non-Alp strains and the non-Alp reference strain CNCTC 10/84 lacked a region surrounding the Alp gene commonly present in Alp GBS strains. These strains instead harboured an 849 bp region not present in the Cα prototype strain A909. We have shown that non-Alp GBS differ from Alp GBS in the region surrounding the insertion site of Alp genes of Alp GBS as well as in their content of other surface proteins and that PCR for the upstream flanking region of the Alp gene may be useful for differentiation between Alp and non-Alp GBS.
Collapse
Affiliation(s)
- Christina Gabrielsen
- Department of Medical Microbiology, St Olavs University Hospital, Trondheim, Norway
| | - Johan A Mæland
- Department of Laboratory Medicine, Children's and Women's Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Randi Valsø Lyng
- Department of Medical Microbiology, St Olavs University Hospital, Trondheim, Norway
| | - Andreas Radtke
- Department of Laboratory Medicine, Children's and Women's Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Medical Microbiology, St Olavs University Hospital, Trondheim, Norway
| | - Jan Egil Afset
- Department of Medical Microbiology, St Olavs University Hospital, Trondheim, Norway.,Department of Laboratory Medicine, Children's and Women's Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
22
|
Two repetitive, biofilm-forming proteins from Staphylococci: from disorder to extension. Biochem Soc Trans 2016; 43:861-6. [PMID: 26517895 DOI: 10.1042/bst20150088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Staphylococcus aureus and Staphylococcus epidermidis are an important cause of medical device-related infections that are difficult to treat with antibiotics. Biofilms, in which bacteria are embedded in a bacterially-produced exopolymeric matrix, form on the surface of the implanted medical device. Our understanding of the molecular mechanisms underlying the initial surface attachment and subsequent intercellular interactions as the biofilm matures is improving. Biofilm accumulation can be mediated by a partially deacetylated form of poly-N-acetylglucosamine (PNAG) but, more recently, the role of bacterial surface proteins is being recognized. Here we describe the structure and function of two S. aureus cell surface proteins, FnBPA and SasG, implicated in host interactions and biofilm accumulation. These multifunctional proteins employ intrinsic disorder for distinct molecular outcomes. In the case of FnBPA, disorder generates adhesive arrays that bind fibronectin (Fn); in the case of SasG, disorder is, counterintuitively, used to maintain a strong extended fold.
Collapse
|
23
|
Emaneini M, Jabalameli F, Mirsalehian A, Ghasemi A, Beigverdi R. Characterization of virulence factors, antimicrobial resistance pattern and clonal complexes of group B streptococci isolated from neonates. Microb Pathog 2016; 99:119-122. [PMID: 27554272 DOI: 10.1016/j.micpath.2016.08.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/16/2016] [Accepted: 08/18/2016] [Indexed: 11/27/2022]
Abstract
Between January and December 2013, swab samples were taken for the throat and external ear canals of 1037 newborns for screening of Group B Streptococcus (GBS or S. agalactiae). Isolates were analyzed form Multilocus sequence typing (MLST), capsular type, virulence genes and antibiotic susceptibility. The MLST analysis of 19 GBS isolates showed 8 sequence types (STs). Overall the most common STs were ST19 and ST28. Other STs were ST1, ST4, ST8, ST12, ST335 and ST734 (a new ST). The most common clonal complexes (CCs) were CC19 (68.4%) and CC10 (21%). The scpB, hlyB and bca virulence genes were detected in all STS, while the bac gene was predominant in ST12 with capsular type (CT) Ib. The IS1548 and the rib genes were particularly prevalent in CTIII and were detected in isolates belong to ST19, ST335 and ST734 and were grouped in CC19. All isolates were susceptible to penicillin, vancomycin, linezolid and quinupristin-dalfopristin. Resistance to tetracycline was observed in all 19 (100%) strains and was correlated with presence of the tetM gene except for one isolate with ST12. All the ST8 and ST12 isolates were resistant to macrolide carrying two resistance genes; the ermTR and the ermB, respectively. The results of this study showed that the CC19 was a major clone in the neonatal intensive care unit (NICU) of Imam Khomeini hospital which can cause severe infections in susceptible neonates (particularly in premature infants). As a result, an intensive infection control policy is needed to prevent the spread of this clone.
Collapse
Affiliation(s)
- Mohammad Emaneini
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Jabalameli
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Akbar Mirsalehian
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ghasemi
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Reza Beigverdi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Characterization and antibiotic susceptibility of Streptococcus agalactiae isolates causing urinary tract infections. INFECTION GENETICS AND EVOLUTION 2015; 34:1-6. [DOI: 10.1016/j.meegid.2015.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/24/2015] [Accepted: 07/01/2015] [Indexed: 11/22/2022]
|
25
|
Sequence type 1 group B Streptococcus, an emerging cause of invasive disease in adults, evolves by small genetic changes. Proc Natl Acad Sci U S A 2015; 112:6431-6. [PMID: 25941374 DOI: 10.1073/pnas.1504725112] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The molecular mechanisms underlying pathogen emergence in humans is a critical but poorly understood area of microbiologic investigation. Serotype V group B Streptococcus (GBS) was first isolated from humans in 1975, and rates of invasive serotype V GBS disease significantly increased starting in the early 1990s. We found that 210 of 229 serotype V GBS strains (92%) isolated from the bloodstream of nonpregnant adults in the United States and Canada between 1992 and 2013 were multilocus sequence type (ST) 1. Elucidation of the complete genome of a 1992 ST-1 strain revealed that this strain had the highest homology with a GBS strain causing cow mastitis and that the 1992 ST-1 strain differed from serotype V strains isolated in the late 1970s by acquisition of cell surface proteins and antimicrobial resistance determinants. Whole-genome comparison of 202 invasive ST-1 strains detected significant recombination in only eight strains. The remaining 194 strains differed by an average of 97 SNPs. Phylogenetic analysis revealed a temporally dependent mode of genetic diversification consistent with the emergence in the 1990s of ST-1 GBS as major agents of human disease. Thirty-one loci were identified as being under positive selective pressure, and mutations at loci encoding polysaccharide capsule production proteins, regulators of pilus expression, and two-component gene regulatory systems were shown to affect the bacterial phenotype. These data reveal that phenotypic diversity among ST-1 GBS is mainly driven by small genetic changes rather than extensive recombination, thereby extending knowledge into how pathogens adapt to humans.
Collapse
|
26
|
Lu B, Wang D, Zhou H, Zhu F, Li D, Zhang S, Shi Y, Cui Y, Huang L, Wu H. Distribution of pilus islands and alpha-like protein genes of group B Streptococcus colonized in pregnant women in Beijing, China. Eur J Clin Microbiol Infect Dis 2015; 34:1173-9. [PMID: 25669160 DOI: 10.1007/s10096-015-2342-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/27/2015] [Indexed: 11/30/2022]
Abstract
Group B Streptococcus (GBS) is one of the major pathogens of severe newborn sepsis and meningitis. Understanding its regional molecular epidemiology is helpful for regulating efficient prevention practice. A total of 160 GBS strains were collected from colonized pregnant women in six hospital settings in Beijing, China. Polymerase chain reaction (PCR) assays were used to identify the pilus island (PI), alp genes profiling of the alpha-like protein family, and capsular polysaccharide (cps) serotyping. The clonal relationships between strains were investigated using multilocus sequence typing (MLST). All isolates carried at least one pilus island. The most frequently detected pilus island was PI-2a alone (70 isolates, 43.8 %). The most prevalent alp gene was rib (60 isolates, 37.5 %). Moreover, a strong association was noted between alp genes, serotyping, and pilus island profiles. The GBS isolates under study hinted similar molecular epidemical characteristics in Beijing to those reported worldwide, but having their regional distributional features.
Collapse
Affiliation(s)
- B Lu
- Department of Laboratory Medicine, Civil Aviation General Hospital, No. 1 Gaojing Street, Chaoyang District, Beijing, 100123, People's Republic of China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Survey of immunological features of the alpha-like proteins of Streptococcus agalactiae. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 22:153-9. [PMID: 25540270 DOI: 10.1128/cvi.00643-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Nearly all Streptococcus agalactiae (group B streptococcus [GBS]) strains express a protein which belongs to the so-called alpha-like proteins (Alps), of which Cα, Alp1, Alp2, Alp3, Rib, and Alp4 are known to occur in GBS. The Alps are chimeras which form mosaic structures on the GBS surface. Both N- and C-terminal stretches of the Alps possess immunogenic sites of dissimilar immunological specificity. In this review, we have compiled data dealing with the specificity of the N- and C-terminal immunogenic sites of the Alps. The majority of N-terminal sites show protein specificity while the C-terminal sites show broader cross-reactivity. Molecular serotyping has revealed that antibody-based serotyping has often resulted in erroneous Alp identification, due to persistence of cross-reacting antibodies in antisera for serotyping. Retrospectively, this could be expected on the basis of sequence analysis results. Some of the historical R proteins are in fact Alps. The data included in the review may provide a basis for decisions regarding techniques for the preparation of specific antisera for serotyping of GBS, for use in other approaches in GBS research, and for decision making in the context of GBS vaccine developments.
Collapse
|
28
|
Comparison of Z and R3 antigen expression and of genes encoding other antigenic markers in invasive human and bovine Streptococcus agalactiae strains from Norway. Vet Microbiol 2013; 167:729-33. [PMID: 24120184 DOI: 10.1016/j.vetmic.2013.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 11/20/2022]
Abstract
Streptococcus agalactiae (GBS) may cause a variety of infectious diseases in humans caused by human GBS and mastitis in cattle caused by bovine GBS. Over the last few years molecular testing has provided evidence that human and bovine GBS have evolved along diverse phylogenetic lines. In the present study 173 invasive human GBS strains and 52 invasive bovine strains were tested for altogether 18 strain-variable and surface-localized antigenic markers including all 10 capsular polysaccharides (CPS) and proteins including Cβ, the alpha-like proteins, R3 and the recently described Z1 and Z2 antigens. PCR was used to detect encoding genes and antibody-based methods to detect expression of antigens. Thirteen of the 18 markers were detected in isolates of both strain categories. Seven of the ten CPS antigens were detected in both groups with types III and V predominating in the human GBS strains, types IV and V in the bovine isolates. Z1, Z2 and/or R3 expression and the genes encoding Cβ, Cα, Alp1, Alp2/3 or R4 (Rib) were detected in both groups. Protein antigen-CPS associations well known for human strains were essentially the same in the bovine isolates. The results show that in spite of evolution along different lines, human and bovine GBS share a variety of surface-exposed antigenic markers, substantiating close relationship between the two GBS subpopulations.
Collapse
|
29
|
Rosinski-Chupin I, Sauvage E, Mairey B, Mangenot S, Ma L, Da Cunha V, Rusniok C, Bouchier C, Barbe V, Glaser P. Reductive evolution in Streptococcus agalactiae and the emergence of a host adapted lineage. BMC Genomics 2013; 14:252. [PMID: 23586779 PMCID: PMC3637634 DOI: 10.1186/1471-2164-14-252] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 04/01/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND During host specialization, inactivation of genes whose function is no more required is favored by changes in selective constraints and evolutionary bottlenecks. The Gram positive bacteria Streptococcus agalactiae (also called GBS), responsible for septicemia and meningitis in neonates also emerged during the seventies as a cause of severe epidemics in fish farms. To decipher the genetic basis for the emergence of these highly virulent GBS strains and of their adaptation to fish, we have analyzed the genomic sequence of seven strains isolated from fish and other poikilotherms. RESULTS Comparative analysis shows that the two groups of GBS strains responsible for fish epidemic diseases are only distantly related. While strains belonging to the clonal complex 7 cannot be distinguished from their human CC7 counterparts according to their gene content, strains belonging to the ST260-261 types probably diverged a long time ago. In this lineage, specialization to the fish host was correlated with a massive gene inactivation and broad changes in gene expression. We took advantage of the low level of sequence divergence between GBS strains and of the emergence of sublineages to reconstruct the different steps involved in this process. Non-homologous recombination was found to have played a major role in the genome erosion. CONCLUSIONS Our results show that the early phase of genome reduction during host specialization mostly involves accumulation of small and likely reversible indels, followed by a second evolutionary step marked by a higher frequency of large deletions.
Collapse
Affiliation(s)
- Isabelle Rosinski-Chupin
- Unité de Biologie des Bactéries Pathogènes à Gram Positif, 28 rue du Docteur Roux, Paris Cedex 15, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Protein domain repetition is enriched in Streptococcal cell-surface proteins. Genomics 2012; 100:370-9. [PMID: 22921469 DOI: 10.1016/j.ygeno.2012.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 08/02/2012] [Accepted: 08/07/2012] [Indexed: 11/20/2022]
Abstract
Tandem repetition of domain in protein sequence occurs in all three domains of life. It creates protein diversity and adds functional complexity in organisms. In this work, we analyzed 52 streptococcal genomes and found 3748 proteins contained domain repeats. Proteins not harboring domain repeats are significantly enriched in cytoplasm, whereas proteins with domain repeats are significantly enriched in cytoplasmic membrane, cell wall and extracellular locations. Domain repetition occurs most frequently in S. pneumoniae and least in S. thermophilus and S. pyogenes. DUF1542 is the highest repeated domain in a single protein, followed by Rib, CW_binding_1, G5 and HemolysinCabind. 3D structures of 24 repeat-containing proteins were predicted to investigate the structural and functional effect of domain repetition. Several repeat-containing streptococcal cell surface proteins are known to be virulence-associated. Surface-associated tandem domain-containing proteins without experimental functional characterization may be potentially involved in the pathogenesis of streptococci and deserve further investigation.
Collapse
|
31
|
Gruszka DT, Wojdyla JA, Bingham RJ, Turkenburg JP, Manfield IW, Steward A, Leech AP, Geoghegan JA, Foster TJ, Clarke J, Potts JR. Staphylococcal biofilm-forming protein has a contiguous rod-like structure. Proc Natl Acad Sci U S A 2012; 109:E1011-8. [PMID: 22493247 PMCID: PMC3340054 DOI: 10.1073/pnas.1119456109] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Staphylococcus aureus and Staphylococcus epidermidis form communities (called biofilms) on inserted medical devices, leading to infections that affect many millions of patients worldwide and cause substantial morbidity and mortality. As biofilms are resistant to antibiotics, device removal is often required to resolve the infection. Thus, there is a need for new therapeutic strategies and molecular data that might assist their development. Surface proteins S. aureus surface protein G (SasG) and accumulation-associated protein (S. epidermidis) promote biofilm formation through their "B" regions. B regions contain tandemly arrayed G5 domains interspersed with approximately 50 residue sequences (herein called E) and have been proposed to mediate intercellular accumulation through Zn(2+)-mediated homodimerization. Although E regions are predicted to be unstructured, SasG and accumulation-associated protein form extended fibrils on the bacterial surface. Here we report structures of E-G5 and G5-E-G5 from SasG and biophysical characteristics of single and multidomain fragments. E sequences fold cooperatively and form interlocking interfaces with G5 domains in a head-to-tail fashion, resulting in a contiguous, elongated, monomeric structure. E and G5 domains lack a compact hydrophobic core, and yet G5 domain and multidomain constructs have thermodynamic stabilities only slightly lower than globular proteins of similar size. Zn(2+) does not cause SasG domains to form dimers. The work reveals a paradigm for formation of fibrils on the 100-nm scale and suggests that biofilm accumulation occurs through a mechanism distinct from the "zinc zipper." Finally, formation of two domains by each repeat (as in SasG) might reduce misfolding in proteins when the tandem arrangement of highly similar sequences is advantageous.
Collapse
Affiliation(s)
| | - Justyna A. Wojdyla
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Richard J. Bingham
- Department of Chemical and Biological Sciences, University of Huddersfield, Huddersfield HD1 3DH, United Kingdom
| | | | - Iain W. Manfield
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Annette Steward
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom; and
| | - Andrew P. Leech
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Joan A. Geoghegan
- Microbiology Department, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland
| | - Timothy J. Foster
- Microbiology Department, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland
| | - Jane Clarke
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom; and
| | - Jennifer R. Potts
- Department of Biology, University of York, York YO10 5DD, United Kingdom
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
32
|
Abstract
BACKGROUND Streptococcus agalactiae, also known as group B streptococcus (GBS), is the most common cause of neonatal sepsis and meningitis. To improve our understanding of the pathogenesis of neonatal GBS sepsis, better knowledge of clonal relatedness and diversity among invasive and noninvasive GBS isolates is critical. METHODS In a Germany-based study, invasive neonatal GBS isolates were compared with noninvasive isolates from neonates in whom sepsis was suspected, but whose blood cultures were sterile. The comparison was conducted by means of pulsed-field gel electrophoresis and surface protein gene profiling. In addition, multilocus sequence typing was performed on invasive and noninvasive isolates of the most frequent invasive serotype III. RESULTS Pulsed-field gel electrophoresis analysis of noninvasive GBS showed a remarkably more diverse fingerprinting pattern than that of invasive isolates. In contrast to invasive strains, noninvasive isolates did not show any clustering. Surface protein gene profiling also showed significantly different distribution patterns between the 2 panels of isolates. Multilocus sequence typing of invasive and noninvasive serotype III isolates revealed the same clonal complexes, but displayed different sequence types (ST); ST-17 was most common (68.6%) among invasive strains, whereas ST-389 (clonal complex-19) was predominant among noninvasive strains (47.8%). CONCLUSIONS Our results illustrate a large molecular diversity among neonatal noninvasive GBS strains. Invasive strains, however, represent only a small proportion of the noninvasive GBS population. These findings suggest a selection process that prefers more virulent strains during invasion.
Collapse
|
33
|
Do T, Gilbert S, Klein J, Warren S, Wade W, Beighton D. Clonal structure of Streptococcus sanguinis strains isolated from endocarditis cases and the oral cavity. Mol Oral Microbiol 2011; 26:291-302. [DOI: 10.1111/j.2041-1014.2011.00618.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Streptococcus agalactiae alpha-like protein 1 possesses both cross-reacting and Alp1-specific epitopes. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1365-70. [PMID: 21653744 DOI: 10.1128/cvi.05005-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Most isolates of group B streptococci (GBS) express an alpha-like protein (Alp), Cα (encoded by bca), Alp1 (also called epsilon; alp1), Alp2 (alp2), Alp3 (alp3), Alp4 (alp4), or R4/Rib (rib). These proteins are chimeras with a mosaic structure and with antigenic determinants with variable immunological cross-reactivities between the Alps, including Alp1 and Cα cross-reactivity. This study focused on antigenic domains of Alp1, studied by using rabbit antisera in immunofluorescence, Western blotting, and enzyme-linked immunosorbent assay (ELISA)-based tests and whole cells of GBS or trypsin-extracted and partially purified antigens from the strains A909 (serotype Ia/Cα, Cβ) and 335 (Ia/Alp1). Alp1 and Cα shared an antigenic determinant, Alp1/Cα common, not harbored by other Alps, probably located in the Alp1 and Cα repeat units, as these units are nearly identical in genomic sequence. An antigenic Alp1 determinant was Alp1 specific and was most likely located in the N-terminal unit of Alp1 in which an Alp1-specific primer site for PCR is also located. In addition, Alp1 possessed a domain with low immunogenicity which cross-reacted immunologically with Alp2 and Alp3, with unknown location in Alp1. Alp1 was partially degraded by trypsin during antigen extraction but with the antigenic domains preserved. The results indicate that Cα and Alp1 are immunologically related in the same manner that R4 (Rib) and Alp3 are related. The domain called Alp1 specific should be important in GBS serotyping as a surface-anchored serosubtype marker. The Alp1/Cα common determinant may be of prime interest as an immunogenic domain in a GBS vaccine.
Collapse
|
35
|
Molecular characterization of capsular polysaccharides and surface protein genes in relation to genetic similarity of group B streptococci isolated from Polish pregnant women. Epidemiol Infect 2011; 140:329-36. [PMID: 21489340 DOI: 10.1017/s0950268811000616] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Serotyping, subtyping and genotyping are important tools for epidemiological studies of group B streptococci (GBS). We investigated the genotype distribution of 353 GBS isolates originating from vaginal or rectal carriage to identify capsular serotypes and subtypes based on the surface protein genes of the alpha-like protein (Alp) family. GBS were recovered from 30% of 1176 pregnant women during the period 2007-2009, with a predominance of capsular genotypes III (35%), Ia (20%), V (17%), II (15%), Ib (8%) and IV (5%). The most common Alp gene was epsilon (26%), followed by rib (22%), alp2 (21%), bca (17%) and alp3 (14%). Several protein genes were significantly associated (G(2)=249·635, P<0·0001) with particular serotypes: epsilon with Ia, Ib, IV; bca with Ib, II; rib with II, III; alp3 with V; alp2 with III. High genetic diversity within GBS strains was observed using DNA macrorestriction. Serotypes Ib, II and III demonstrated the greatest genetic heterogeneity and serotype V the lowest heterogeneity (relative frequency coefficient ≥0·03 vs. -0·46, respectively). Macrolide-resistant strains with serotype V and alp3 gene, showed higher uniformity in genetic profile. The distribution of serotypes and surface proteins of GBS strains are necessary data to inform the design and formulation of new GBS vaccines for use in Poland and other countries.
Collapse
|
36
|
Do T, Gilbert SC, Clark D, Ali F, Fatturi Parolo CC, Maltz M, Russell RR, Holbrook P, Wade WG, Beighton D. Generation of diversity in Streptococcus mutans genes demonstrated by MLST. PLoS One 2010; 5:e9073. [PMID: 20140210 PMCID: PMC2816709 DOI: 10.1371/journal.pone.0009073] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 12/17/2009] [Indexed: 11/19/2022] Open
Abstract
Streptococcus mutans, consisting of serotypes c, e, f and k, is an oral aciduric organism associated with the initiation and progression of dental caries. A total of 135 independent Streptococcus mutans strains from caries-free and caries-active subjects isolated from various geographical locations were examined in two versions of an MLST scheme consisting of either 6 housekeeping genes [accC (acetyl-CoA carboxylase biotin carboxylase subunit), gki (glucokinase), lepA (GTP-binding protein), recP (transketolase), sodA (superoxide dismutase), and tyrS (tyrosyl-tRNA synthetase)] or the housekeeping genes supplemented with 2 extracellular putative virulence genes [gtfB (glucosyltransferase B) and spaP (surface protein antigen I/II)] to increase sequence type diversity. The number of alleles found varied between 20 (lepA) and 37 (spaP). Overall, 121 sequence types (STs) were defined using the housekeeping genes alone and 122 with all genes. However pi, nucleotide diversity per site, was low for all loci being in the range 0.019-0.007. The virulence genes exhibited the greatest nucleotide diversity and the recombination/mutation ratio was 0.67 [95% confidence interval 0.3-1.15] compared to 8.3 [95% confidence interval 5.0-14.5] for the 6 concatenated housekeeping genes alone. The ML trees generated for individual MLST loci were significantly incongruent and not significantly different from random trees. Analysis using ClonalFrame indicated that the majority of isolates were singletons and no evidence for a clonal structure or evidence to support serotype c strains as the ancestral S. mutans strain was apparent. There was also no evidence of a geographical distribution of individual isolates or that particular isolate clusters were associated with caries. The overall low sequence diversity suggests that S. mutans is a newly emerged species which has not accumulated large numbers of mutations but those that have occurred have been shuffled as a consequence of intra-species recombination generating genotypes which can be readily distinguished by sequence analysis.
Collapse
Affiliation(s)
- Thuy Do
- Infection Research Group, Dental Institute, King's College London, London, United Kingdom
| | - Steven C. Gilbert
- Infection Research Group, Dental Institute, King's College London, London, United Kingdom
| | - Douglas Clark
- Infection Research Group, Dental Institute, King's College London, London, United Kingdom
| | - Farida Ali
- Infection Research Group, Dental Institute, King's College London, London, United Kingdom
| | - Clarissa C. Fatturi Parolo
- Faculty of Dentistry, Department of Social and Preventive Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marisa Maltz
- Faculty of Dentistry, Department of Social and Preventive Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Roy R. Russell
- School of Dental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Peter Holbrook
- Faculty of Odontology, University of Iceland, Reykjavik, Iceland
| | - William G. Wade
- Infection Research Group, Dental Institute, King's College London, London, United Kingdom
| | - David Beighton
- Infection Research Group, Dental Institute, King's College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
Correlation between Group B Streptococcal Genotypes, Their Antimicrobial Resistance Profiles, and Virulence Genes among Pregnant Women in Lebanon. Int J Microbiol 2010; 2009:796512. [PMID: 20148175 PMCID: PMC2817894 DOI: 10.1155/2009/796512] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 11/30/2009] [Indexed: 11/17/2022] Open
Abstract
The antimicrobial susceptibility profiles of 76 Streptococcus agalactiae (Group B Streptococci [GBS]) isolates from vaginal specimens of pregnant women near term were correlated to their genotypes generated by Random Amplified Polymorphic DNA analysis and their virulence factors encoding genes cylE, lmb, scpB, rib, and bca by PCR. Based on the distribution of the susceptibility patterns, six profiles were generated. RAPD analysis detected 7 clusters of genotypes. The cylE gene was present in 99% of the isolates, the lmb in 96%, scpB in 94.7%, rib in 33%, and bca in 56.5% of isolates. The isolates demonstrated a significant correlation between antimicrobial resistance and genotype clusters denoting the distribution of particular clones with different antimicrobial resistance profiles, entailing the practice of caution in therapeutic options. All virulence factors encoding genes were detected in all seven genotypic clusters with rib and bca not coexisting in the same genome.
Collapse
|
38
|
Creti R, Fabretti F, Koch S, Huebner J, Garsin DA, Baldassarri L, Montanaro L, Arciola CR. Surface protein EF3314 contributes to virulence properties of Enterococcus faecalis. Int J Artif Organs 2010; 32:611-20. [PMID: 19856273 DOI: 10.1177/039139880903200910] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE Identification of putative new virulence factors as additional targets for therapeutic approaches alternative to antibiotic treatment of multi-resistant enterococcal infections. METHODS The EF3314 gene, coding for a putative surface-exposed antigen, was identified by the analysis of the Enterococcus faecalis V583 genome for LPXTG-motif cell wall anchor surface protein genes. A non-polar EF3314 gene deletion mutant in the E. faecalis 12030 human clinical isolate was obtained. The wild type and the isogenic mutant strain were investigated for biofilm formation, adherence to Hela cells, survival in human macrophages and a Caenorhabditis elegans infection model. The aminoterminal portion of the EF3314 protein was overexpressed in E. coli to obtain mouse polyclonal antibodies for use in Western blotting and immunolocalization experiments. RESULTS The EF3314 gene has an unusually high GC content (46.88% vs. an average of 37.5% in the E. faecalis chromosome) and encodes a protein of 1744 amino acids that presents a series of 14 imperfect repeats of 90 amino acids covering almost the entire length of the protein. Its global organization is similar to the alpha-like protein family of group B streptococci, enterococcal surface protein Esp and biofilm associated protein Bap from S. aureus. The EF3314 gene was always present and specific for E. faecalis strains of human, food and animal origin. Differences in size depended on variable numbers of repeats in the repetitive region. CONCLUSIONS EF3314 is a newly described, surface exposed protein that contributes to the virulence properties of E. faecalis.
Collapse
Affiliation(s)
- Roberta Creti
- Respiratory and Systemic Disease Unit, Department of Infectious, Parasitic, and Immune-mediated Diseases, National Health Institute (ISS), Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Imperi M, Pataracchia M, Alfarone G, Baldassarri L, Orefici G, Creti R. A multiplex PCR assay for the direct identification of the capsular type (Ia to IX) of Streptococcus agalactiae. J Microbiol Methods 2009; 80:212-4. [PMID: 19958797 DOI: 10.1016/j.mimet.2009.11.010] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 11/25/2009] [Accepted: 11/26/2009] [Indexed: 11/18/2022]
Abstract
A multiplex PCR assay for the identification of serotypes Ia to IX of Streptococcus agalactiae was developed. By using a single PCR reaction containing a mix of 19 primers the assay identified each serotype by the analysis of the unique two or three bands pattern on agarose gel.
Collapse
Affiliation(s)
- Monica Imperi
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | | | | | | | | | |
Collapse
|
40
|
Putative novel surface-exposed Streptococcus agalactiae protein frequently expressed by the group B streptococcus from Zimbabwe. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1302-8. [PMID: 19587152 DOI: 10.1128/cvi.00133-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Group B streptococci (GBS) express a variety of surface-exposed and strain-variable proteins which function as phenotypic markers and as antigens which are able to induce protective immunity in experimental settings. Among these proteins, the chimeric and immunologically cross-reacting alpha-like proteins are particularly important. Another protein, R3, which has been less well studied, occurred at a frequency of 21.5% in GBS from Zimbabwe and, notably, occurred in serotype V strains at a frequency of 75.9%. Working with rabbit antiserum raised against the R3 reference strain ATCC 49447 (strain 10/84; serotype V/R3) to detect the expression of the R3 protein, we recorded findings which suggested that strain 10/84 expressed a strain-variable protein antigen, in addition to R3. The antigen was detected by various enzyme-linked immunosorbent assay-based tests by using acid extract antigens or GBS whole-cell coats and by whole-cell-based Western blotting. We named the putative novel antigen the Z antigen. The Z antigen was a high-molecular-mass antigen that was susceptible to degradation by pepsin and trypsin but that was resistant to m-periodate oxidation and failed to show immunological cross-reactivity with any of a variety of other GBS protein antigens. The Z antigen was expressed by 33/121 (27.2%) of strains of a Zimbabwean GBS strain collection and by 64.2% and 72.4% of the type Ib and type V strains, respectively, and was occasionally expressed by GBS of other capsular serotypes. Thus, the putative novel GBS protein named Z showed distinct capsular antigen associations and presented as an important phenotypic marker in GBS from Zimbabwe. It may be an important antigen in GBS from larger areas of southern Africa. Its prevalence in GBS from Western countries is not known.
Collapse
|
41
|
Selection, recombination, and virulence gene diversity among group B streptococcal genotypes. J Bacteriol 2009; 191:5419-27. [PMID: 19581371 DOI: 10.1128/jb.00369-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transmission of group B Streptococcus (GBS) from mothers to neonates during childbirth is a leading cause of neonatal sepsis and meningitis. Although subtyping tools have identified specific GBS phylogenetic lineages that are important in neonatal disease, little is known about the genetic diversity of these lineages or the roles that recombination and selection play in the generation of emergent genotypes. Here, we examined genetic variation, selection, and recombination in seven multilocus sequence typing (MLST) loci from 94 invasive, colonizing, and bovine strains representing 38 GBS sequence types and performed DNA sequencing and PCR-based restriction fragment length polymorphism analysis of several putative virulence genes to identify gene content differences between genotypes. Despite the low level of diversity in the MLST loci, a neighbor net analysis revealed a variable range of genetic exchange among the seven clonal complexes (CCs) identified, suggesting that recombination is partly responsible for the diversity observed between genotypes. Recombination is also important for several virulence genes, as some gene alleles had evidence for lateral gene exchange across divergent genotypes. The CC-17 lineage, which is associated with neonatal disease, is relatively homogeneous and therefore appears to have diverged independently with an exclusive set of virulence characteristics. These data suggest that different GBS genetic backgrounds have distinct virulence gene profiles that may be important for disease pathogenesis. Such profiles could be used as markers for the rapid detection of strains with an increased propensity to cause neonatal disease and may be considered useful vaccine targets.
Collapse
|
42
|
Radtke A, Kong F, Bergh K, Lyng RV, Ko D, Gilbert GL. Identification of surface proteins of group B streptococci: serotyping versus genotyping. J Microbiol Methods 2009; 78:363-5. [PMID: 19573567 DOI: 10.1016/j.mimet.2009.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 06/22/2009] [Accepted: 06/23/2009] [Indexed: 11/30/2022]
Abstract
We compared serotyping to genotyping of group B streptococcal (GBS) surface proteins in 147 Australasian isolates. Results were concordant for the two methods in 73.8% of 122 isolates, discordant for three and partially discordant for 29 isolates. For the purpose of epidemiological typing of GBS, genotyping is superior to serotyping.
Collapse
Affiliation(s)
- Andreas Radtke
- Norwegian University of Science and Technology, Department of Laboratory Medicine, Children's and Women's Health, Trondheim, Norway.
| | | | | | | | | | | |
Collapse
|
43
|
Genomic analysis identifies a transcription-factor binding motif regulating expression of the alpha C protein in Group B Streptococcus. Microb Pathog 2009; 46:315-20. [PMID: 19328843 DOI: 10.1016/j.micpath.2009.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 03/17/2009] [Accepted: 03/18/2009] [Indexed: 11/21/2022]
Abstract
The virulence-associated alpha C protein (ACP) of Group B Streptococcus (GBS) facilitates the bacterial interaction with host epithelial cells. We previously demonstrated that phase-variable expression of ACP is controlled by variation in short-sequence repeat sequences present upstream of the promoter of bca, the gene encoding ACP. To determine if trans-acting transcriptional control also influences ACP expression, we developed an in silico prediction algorithm that identified a potential transcription-factor binding motif (TTT-N(6)-ATAT) in the bca upstream region. In vitro reporter gene expression studies confirmed that this motif is required for full ACP expression, and DNA-binding assays with a GBS protein extract demonstrated that the predicted site is bound by a protein. This approach demonstrates the utility of in silico genomic predictive methods in the study of GBS regulatory mechanisms.
Collapse
|
44
|
Lactic acid is a potential virulence factor for group B Streptococcus. Microb Pathog 2009; 46:43-52. [DOI: 10.1016/j.micpath.2008.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 10/07/2008] [Accepted: 10/17/2008] [Indexed: 11/22/2022]
|
45
|
Tsuru T, Kobayashi I. Multiple genome comparison within a bacterial species reveals a unit of evolution spanning two adjacent genes in a tandem paralog cluster. Mol Biol Evol 2008; 25:2457-73. [PMID: 18765438 PMCID: PMC2568036 DOI: 10.1093/molbev/msn192] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It has been assumed that an open reading frame (ORF) represents a unit of gene evolution as well as a unit of gene expression and function. In the present work, we report a case in which a unit comprising the 3' region of an ORF linked to a downstream intergenic region that is in turn linked to the 5' region of a downstream ORF has been conserved, and has served as the unit of gene evolution. The genes are tandem paralogous genes from the bacterium Staphylococcus aureus, for which more than ten entire genomes have been sequenced. We compared these multiple genome sequences at a locus for the lpl (lipoprotein-like) cluster (encoding lipoprotein homologs presumably related to their host interaction) in the genomic island termed nuSaalpha. A highly conserved nucleotide sequence found within every lpl ORF is likely to provide a site for homologous recombination. Comparison of phylogenies of the 5'-variable region and the 3'-variable region within the same ORF revealed significant incongruence. In contrast, pairs of the 3'-variable region of an ORF and the 5'-variable region of the next downstream ORF gave more congruent phylogenies, with distinct groups of conserved pairs. The intergenic region seemed to have coevolved with the flanking variable regions. Multiple recombination events at the central conserved region appear to have caused various types of rearrangements among strains, shuffling the two variable regions in one ORF, but maintaining a conserved unit comprising the 3'-variable region, the intergenic region, and the 5'-variable region spanning adjacent ORFs. This result has strong impact on our understanding of gene evolution because most gene lineages underwent tandem duplication and then diversified. This work also illustrates the use of multiple genome sequences for high-resolution evolutionary analysis within the same species.
Collapse
Affiliation(s)
- Takeshi Tsuru
- Laboratory of Social Genome Sciences, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
46
|
Distinctive features of surface-anchored proteins of Streptococcus agalactiae strains from Zimbabwe revealed by PCR and dot blotting. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1420-4. [PMID: 18667639 DOI: 10.1128/cvi.00112-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The distribution of capsular polysaccharide (CPS) types and subtypes (serovariants) among 121 group B streptococcus (GBS) strains from Zimbabwe was examined. PCR was used for the detection of both CPS types and the surface-anchored and strain-variable proteins Calpha, Cbeta, Alp1, Alp2, Alp3, R4/Rib, and Alp4. The R3 protein was detected by an antibody-based method using monoclonal anti-R3 antibody in dot blotting. The CPS types detected, Ia (15.7% of strains), Ib (11.6%), II (8.3%), III (38.8%), V (24.0%), and nontypeable (1.7%), were essentially as expected on the basis of data from Western countries. The type V strains showed distinctive features with respect to protein markers in that Alp3 was detected in only 6.9% of the isolates while R3 occurred in 75.9% and R4/Rib occurred in 37.9% of the isolates. R3 occurred nearly always in combination with one of the alpha-like (Alp) proteins, and it was the third most common of the proteins studied. These results show that type V GBS strains from Zimbabwe differed from type V strains from other geographical areas and also emphasize the importance of the R3 protein in GBS serotyping and its potential importance in the immunobiology of GBS, including a potential role in a future GBS vaccine.
Collapse
|
47
|
Recombinant group B Streptococcus alpha-like protein 3 is an effective immunogen and carrier protein. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1035-41. [PMID: 18463225 DOI: 10.1128/cvi.00030-08] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Conjugate vaccines against pathogens of multiple serotypes are optimized when all components induce functional antibody, resulting in broadened coverage. While most clinical studies of vaccines against group B Streptococcus (GBS) have evaluated conjugates composed of capsular polysaccharide (CPS) coupled to tetanus toxoid, conjugates prepared with GBS proteins as carriers have also been efficacious in animals. Here, we report that recombinant GBS alpha-like protein 3 (rAlp3) is both a strong immunogen and a viable carrier protein for type III CPS. The type III CPS-specific immunoglobulin G (IgG) titer rose from <100 to 64,000 among mice that received type III CPS coupled to rAlp3 (III-rAlp3) compared with an absence of a specific response among mice that received an uncoupled mixture. Most (94%) newborn pups born to III-rAlp-vaccinated dams survived challenge with viable type III GBS, compared with 43% survival among those born to dams that received the uncoupled mixture (P < 0.0001). A tricomponent conjugate of type III CPS, rAlp3, and a GBS recombinant beta C protein lacking its IgA binding site (III-rAlp3-rBCP(DeltaIgA)) provided protection against a serotype III strain and a serotype Ia strain bearing beta C protein. High-titered anti-rAlp3 rabbit serum opsonized Alp3-containing strains of two GBS serotypes (types V and VIII) and invasive type III strains bearing the cross-reactive Rib protein for in vitro killing by human peripheral blood leukocytes. Thus, the potential exists for the inclusion of rAlp3 in a GBS vaccine formulated to provide multiserotype coverage.
Collapse
|
48
|
Bolduc GR, Madoff LC. The group B streptococcal alpha C protein binds alpha1beta1-integrin through a novel KTD motif that promotes internalization of GBS within human epithelial cells. MICROBIOLOGY-SGM 2008; 153:4039-4049. [PMID: 18048918 DOI: 10.1099/mic.0.2007/009134-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Group B Streptococcus (GBS) is the leading cause of bacterial pneumonia, sepsis and meningitis among neonates and a cause of morbidity among pregnant women and immunocompromised adults. GBS epithelial cell invasion is associated with expression of alpha C protein (ACP). Loss of ACP expression results in a decrease in GBS internalization and translocation across human cervical epithelial cells (ME180). Soluble ACP and its 170 amino acid N-terminal region (NtACP), but not the repeat protein RR', bind to ME180 cells and reduce internalization of wild-type GBS to levels obtained with an ACP-deficient isogenic mutant. In the current study, ACP colocalized with alpha(1)beta(1)-integrin, resulting in integrin clustering as determined by laser scanning confocal microscopy. NtACP contains two structural domains, D1 and D2. D1 is structurally similar to fibronectin's integrin-binding region (FnIII10). D1's (KT)D146 motif is structurally similar to the FnIII10 (RG)D1495 integrin-binding motif, suggesting that ACP binds alpha(1)beta(1)-integrin via the D1 domain. The (KT)D146A mutation within soluble NtACP reduced its ability to bind alpha(1)beta(1)-integrin and inhibit GBS internalization within ME180 cells. Thus ACP binding to human epithelial cell integrins appears to contribute to GBS internalization within epithelial cells.
Collapse
Affiliation(s)
- Gilles R Bolduc
- Department of Medicine, Brigham and Women's Hospital, 75 Fransis Street, Boston, MA 02115, USA.,Channing Laboratory, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Lawrence C Madoff
- Department of Medicine, Brigham and Women's Hospital, 75 Fransis Street, Boston, MA 02115, USA.,Channing Laboratory, 181 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
49
|
Persson E, Berg S, Bevanger L, Bergh K, Valsö-Lyng R, Trollfors B. Characterisation of invasive group B streptococci based on investigation of surface proteins and genes encoding surface proteins. Clin Microbiol Infect 2007; 14:66-73. [PMID: 18034863 DOI: 10.1111/j.1469-0691.2007.01877.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The joint distributions of the six genes bca, bac, epsilon/alp1, alp2, alp3 and rib (encoding alpha-C-protein, beta-C-protein, epsilon/Alp1, Alp2, Alp3, and Rib, respectively) and the proteins alpha-C-protein, beta-C-protein and Rib were investigated in invasive isolates of group B streptococcus (GBS). In total, 297 invasive isolates (123 from neonates, 174 from adults) from south-west Sweden were collected during a 13-year period. Genes were detected using multiplex and specific PCRs, and expression of the surface proteins was demonstrated using monoclonal antibodies. The genes studied were found alone or in combinations in 294 (99%) of the invasive isolates. The most common genes were rib (n = 127 isolates, 43%), alp3 (n = 78, 26%) and epsilon/alp1 (n = 42, 14%). The bac gene was never found alone, but was found in combination with one other gene in 36 isolates. The surface proteins studied were detected alone or in combinations in 152 (51%) isolates, with the most common being Rib (n = 80, 27%), alpha-C-protein (n = 68, 23%) and beta-C-protein (n = 24, 8%). Several genes were associated significantly with particular serotypes (e.g., epsilon/alp1 with serotype Ia; bca and bac with serotypes Ib and II; rib with serotype III; alp3 with serotype V). Overall, it was concluded that demonstration of different genes and surface proteins of GBS strains can be useful in epidemiological studies and in formulation of vaccines, but disappointingly, no single gene or surface protein included in the study was sufficiently common for it to be considered as the basis for a successful GBS vaccine.
Collapse
Affiliation(s)
- E Persson
- Department of Paediatrics, The Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
50
|
Hansmeier N, Chao TC, Daschkey S, Müsken M, Kalinowski J, Pühler A, Tauch A. A comprehensive proteome map of the lipid-requiring nosocomial pathogen Corynebacterium jeikeium K411. Proteomics 2007; 7:1076-96. [PMID: 17352426 DOI: 10.1002/pmic.200600833] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Corynebacterium jeikeium is a lipid-requiring pathogen that is considered as part of the normal microflora of the human skin and associated with severe nosocomial infections. Systematic reference maps of the cytoplasmic, cell surface-associated, and extracellular proteome fractions of the clinical isolate C. jeikeium K411 were examined by 2-DE coupled with MALDI-TOF MS. A sum total of 555 protein spots were identified by PMF, corresponding to 358 different proteins that were classified into functional categories and integrated into metabolic pathways. The majority of the proteins were linked to housekeeping functions in energy production and translation and to physiological processes in amino acid, carbohydrate, nucleotide, and lipid metabolism. A complete enzymatic machinery necessary to utilize exogenous fatty acids by beta-oxidation was detected in the cytoplasmic proteome fraction. In addition, several predicted virulence factors of C. jeikeium K411 were identified in the cell surface-associated and extracellular subproteome, including the cell surface proteins SurA and SurB, the surface-anchored pilus subunits SapA and SapB, the surface-anchored collagen adhesin CbpA, the cholesterol esterase Che, and the acid phosphatase AcpA.
Collapse
Affiliation(s)
- Nicole Hansmeier
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Bielefeld, Germany
| | | | | | | | | | | | | |
Collapse
|