1
|
Alli N, Lou-Hing A, Bolt EL, He L. POLD3 as Controller of Replicative DNA Repair. Int J Mol Sci 2024; 25:12417. [PMID: 39596481 PMCID: PMC11595029 DOI: 10.3390/ijms252212417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/01/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Multiple modes of DNA repair need DNA synthesis by DNA polymerase enzymes. The eukaryotic B-family DNA polymerase complexes delta (Polδ) and zeta (Polζ) help to repair DNA strand breaks when primed by homologous recombination or single-strand DNA annealing. DNA synthesis by Polδ and Polζ is mutagenic, but is needed for the survival of cells in the presence of DNA strand breaks. The POLD3 subunit of Polδ and Polζ is at the heart of DNA repair by recombination, by modulating polymerase functions and interacting with other DNA repair proteins. We provide the background to POLD3 discovery, investigate its structure, as well as function in cells. We highlight unexplored structural aspects of POLD3 and new biochemical data that will help to understand the pivotal role of POLD3 in DNA repair and mutagenesis in eukaryotes, and its impact on human health.
Collapse
Affiliation(s)
- Nabilah Alli
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Anna Lou-Hing
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Edward L. Bolt
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Liu He
- Centre for Medicines Discovery, University of Oxford, Oxford OX3 7FZ, UK
| |
Collapse
|
2
|
LeDoux MS. Polymerase I as a Target for Treating Neurodegenerative Disorders. Biomedicines 2024; 12:1092. [PMID: 38791054 PMCID: PMC11118182 DOI: 10.3390/biomedicines12051092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Polymerase I (Pol I) is at the epicenter of ribosomal RNA (rRNA) synthesis. Pol I is a target for the treatment of cancer. Given the many cellular commonalities between cancer and neurodegeneration (i.e., different faces of the same coin), it seems rational to consider targeting Pol I or, more generally, rRNA synthesis for the treatment of disorders associated with the death of terminally differentiated neurons. Principally, ribosomes synthesize proteins, and, accordingly, Pol I can be considered the starting point for protein synthesis. Given that cellular accumulation of abnormal proteins such as α-synuclein and tau is an essential feature of neurodegenerative disorders such as Parkinson disease and fronto-temporal dementia, reduction of protein production is now considered a viable target for treatment of these and closely related neurodegenerative disorders. Abnormalities in polymerase I activity and rRNA production may also be associated with nuclear and nucleolar stress, DNA damage, and childhood-onset neuronal death, as is the case for the UBTF E210K neuroregression syndrome. Moreover, restraining the activity of Pol I may be a viable strategy to slow aging. Before starting down the road of Pol I inhibition for treating non-cancerous disorders of the nervous system, many questions must be answered. First, how much Pol I inhibition can neurons tolerate, and for how long? Should inhibition of Pol I be continuous or pulsed? Will cells compensate for Pol I inhibition by upregulating the number of active rDNAs? At present, we have no effective and safe disease modulatory treatments for Alzheimer disease, α-synucleinopathies, or tauopathies, and novel therapeutic targets and approaches must be explored.
Collapse
Affiliation(s)
- Mark S. LeDoux
- Department of Psychology and College of Health Sciences, University of Memphis, Memphis, TN 38152, USA; or
- Veracity Neuroscience LLC, Memphis, TN 38157, USA
| |
Collapse
|
3
|
Ito M, Fujita Y, Shinohara A. Positive and negative regulators of RAD51/DMC1 in homologous recombination and DNA replication. DNA Repair (Amst) 2024; 134:103613. [PMID: 38142595 DOI: 10.1016/j.dnarep.2023.103613] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023]
Abstract
RAD51 recombinase plays a central role in homologous recombination (HR) by forming a nucleoprotein filament on single-stranded DNA (ssDNA) to catalyze homology search and strand exchange between the ssDNA and a homologous double-stranded DNA (dsDNA). The catalytic activity of RAD51 assembled on ssDNA is critical for the DNA-homology-mediated repair of DNA double-strand breaks in somatic and meiotic cells and restarting stalled replication forks during DNA replication. The RAD51-ssDNA complex also plays a structural role in protecting the regressed/reversed replication fork. Two types of regulators control RAD51 filament formation, stability, and dynamics, namely positive regulators, including mediators, and negative regulators, so-called remodelers. The appropriate balance of action by the two regulators assures genome stability. This review describes the roles of positive and negative RAD51 regulators in HR and DNA replication and its meiosis-specific homolog DMC1 in meiotic recombination. We also provide future study directions for a comprehensive understanding of RAD51/DMC1-mediated regulation in maintaining and inheriting genome integrity.
Collapse
Affiliation(s)
- Masaru Ito
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Yurika Fujita
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
4
|
Alba-Pavón P, Astigarraga I, Alaña L, Llano-Rivas I, Gener B, Mosteiro L, López-Almaraz R, Echebarria-Barona A, Villate O. Analysis of germline variants in pediatric patients diagnosed with desmoid tumors and nuchal-type fibromas. Transl Pediatr 2023; 12:1715-1724. [PMID: 37814722 PMCID: PMC10560355 DOI: 10.21037/tp-23-60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/27/2023] [Indexed: 10/11/2023] Open
Abstract
Desmoid tumor (DT) is a fibroblastic proliferation arising in soft tissue characterized by localized infiltrative growth with an inability to metastasize but with a tendency to recurrence. Nuchal-type fibromas are benign soft tissue lesions that are usually developed in the posterior neck. The development of these neoplasms can be associated with a hereditary cancer predisposition syndrome, mainly familial adenomatous polyposis (FAP) syndrome caused by APC germline mutations. Gardner syndrome is a variant of FAP characterized by the presence of extracolonic manifestations including soft tissue tumors as DTs and nuchal-type fibromas. However, the development of these tumors could be associated with germline alterations in other genes related to colorectal cancer development. The objective of this study was to analyze germline variants in APC, MUTYH, POLD1 and POLE genes in five pediatric patients diagnosed with DTs or nuchal-type fibromas. We identified two pathogenic variants in the APC gene in two different patients diagnosed with nuchal-type fibroma and DTs and two variants of uncertain significance in POLD1 in two patients diagnosed with nuchal-type fibroma. Two patients had family history of colorectal cancer, however, only one of them showed an APC germline pathogenic variant. The analysis of germline variants and genetic counseling is essential for pediatric patients diagnosed with DTs or nuchal-type fibromas and their relatives.
Collapse
Affiliation(s)
- Piedad Alba-Pavón
- Pediatric Oncology Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Itziar Astigarraga
- Pediatric Oncology Group, Biobizkaia Health Research Institute, Barakaldo, Spain
- Pediatrics Department, Hospital Universitario Cruces, Osakidetza, Barakaldo, Spain
- Pediatric Department, Universidad del País Vasco UPV/EHU, Leioa, Spain
| | - Lide Alaña
- Pediatric Oncology Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Isabel Llano-Rivas
- Department of Genetics, Cruces University Hospital, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Blanca Gener
- Department of Genetics, Cruces University Hospital, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Lorena Mosteiro
- Department of Pathology, Hospital Universitario Cruces, Osakidetza, Barakaldo, Spain
| | - Ricardo López-Almaraz
- Pediatric Oncology Group, Biobizkaia Health Research Institute, Barakaldo, Spain
- Pediatrics Department, Hospital Universitario Cruces, Osakidetza, Barakaldo, Spain
| | - Aizpea Echebarria-Barona
- Pediatric Oncology Group, Biobizkaia Health Research Institute, Barakaldo, Spain
- Pediatrics Department, Hospital Universitario Cruces, Osakidetza, Barakaldo, Spain
| | - Olatz Villate
- Pediatric Oncology Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|
5
|
Chatain J, Blond A, Phan AT, Saintomé C, Alberti P. GGGCTA repeats can fold into hairpins poorly unfolded by replication protein A: a possible origin of the length-dependent instability of GGGCTA variant repeats in human telomeres. Nucleic Acids Res 2021; 49:7588-7601. [PMID: 34214172 PMCID: PMC8287962 DOI: 10.1093/nar/gkab518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/01/2021] [Accepted: 06/30/2021] [Indexed: 11/19/2022] Open
Abstract
Human telomeres are composed of GGGTTA repeats and interspersed with variant repeats. The GGGCTA variant motif was identified in the proximal regions of human telomeres about 10 years ago and was shown to display a length-dependent instability. In parallel, a structural study showed that four GGGCTA repeats folded into a non-canonical G-quadruplex (G4) comprising a Watson-Crick GCGC tetrad. It was proposed that this non-canonical G4 might be an additional obstacle for telomere replication. In the present study, we demonstrate that longer GGGCTA arrays fold into G4 and into hairpins. We also demonstrate that replication protein A (RPA) efficiently binds to GGGCTA repeats structured into G4 but poorly binds to GGGCTA repeats structured into hairpins. Our results (along with results obtained with a more stable variant motif) suggest that GGGCTA hairpins are at the origin of GGGCTA length-dependent instability. They also suggest, as working hypothesis, that failure of efficient binding of RPA to GGGCTA structured into hairpins might be involved in the mechanism of GGGCTA array instability. On the basis of our present and past studies about telomeric G4 and their interaction with RPA, we propose an original point of view about telomeric G4 and the evolution of telomeric motifs.
Collapse
Affiliation(s)
- Jean Chatain
- Laboratoire Structure et Instabilité des Génomes (StrInG), Muséum national d’Histoire naturelle, CNRS, Inserm, Paris 75005, France
| | - Alain Blond
- Laboratoire Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum national d’Histoire naturelle, CNRS, Paris 75005, France
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| | - Carole Saintomé
- Laboratoire Structure et Instabilité des Génomes (StrInG), Muséum national d’Histoire naturelle, CNRS, Inserm, Paris 75005, France
- Sorbonne Université, UFR927, Paris 75005, France
| | - Patrizia Alberti
- Laboratoire Structure et Instabilité des Génomes (StrInG), Muséum national d’Histoire naturelle, CNRS, Inserm, Paris 75005, France
| |
Collapse
|
6
|
A Chinese girl with mandibular hypoplasia, deafness, progeroid features, and lipodystrophy (MDPL) diagnosed via POLD1 mutation detection. Chin Med J (Engl) 2021; 133:2009-2011. [PMID: 32826474 PMCID: PMC7462222 DOI: 10.1097/cm9.0000000000000986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
7
|
Zhu M, Wu W, Togashi Y, Liang W, Miyoshi Y, Ohta T. HERC2 inactivation abrogates nucleolar localization of RecQ helicases BLM and WRN. Sci Rep 2021; 11:360. [PMID: 33432007 PMCID: PMC7801386 DOI: 10.1038/s41598-020-79715-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
The nucleolus is a nuclear structure composed of ribosomal DNA (rDNA), and functions as a site for rRNA synthesis and processing. The rDNA is guanine-rich and prone to form G-quadruplex (G4), a secondary structure of DNA. We have recently found that HERC2, an HECT ubiquitin ligase, promotes BLM and WRN RecQ DNA helicases to resolve the G4 structure. Here, we report the role of HERC2 in the regulation of nucleolar localization of the helicases. Furthermore, HERC2 inactivation enhances the effects of CX-5461, an inhibitor of RNA polymerase I (Pol I)-mediated transcription of rRNA with an intrinsic G4-stabilizing activity. HERC2 depletion or homozygous deletion of the C-terminal HECT domain of HERC2 prevented the nucleolar localization of BLM and WRN, and inhibited relocalization of BLM to replication stress-induced nuclear RPA foci. HERC2 colocalized with fibrillarin and Pol I subunit RPA194, both of which are required for rRNA transcription. The HERC2 dysfunction enhanced the suppression of pre-rRNA transcription by CX-5461. These results suggest the effect of HERC2 status on the functions of BLM and WRN on rRNA transcription in the nucleolus. Since HERC2 is downregulated in numerous cancers, this effect may be clinically relevant considering the beneficial effects of CX-5461 in cancer treatments.
Collapse
Affiliation(s)
- Mingzhang Zhu
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, 216-8511, Japan.,Department of General Surgery, The People's Hospital of Gaoming District of Foshan City, Foshan, 528500, Guangdong, China
| | - Wenwen Wu
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, 216-8511, Japan
| | - Yukiko Togashi
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, 216-8511, Japan
| | - Weixin Liang
- Department of General Surgery, The People's Hospital of Gaoming District of Foshan City, Foshan, 528500, Guangdong, China
| | - Yasuo Miyoshi
- Division of Breast and Endocrine Surgery, Department of Surgery, Hyogo College of Medicine, Hyogo, 663-8501, Japan
| | - Tomohiko Ohta
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, 216-8511, Japan.
| |
Collapse
|
8
|
Zhang J, Hou D, Annis J, Sargolzaeiaval F, Appelbaum J, Takahashi E, Martin GM, Herr A, Oshima J. Inactivating Mutations in Exonuclease and Polymerase Domains in DNA Polymerase Delta Alter Sensitivities to Inhibitors of dNTP Synthesis. DNA Cell Biol 2019; 39:50-56. [PMID: 31750734 DOI: 10.1089/dna.2019.5125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
POLD1 encodes the catalytic subunit of DNA polymerase delta (Polδ), the major lagging strand polymerase, which also participates in DNA repair. Mutations affecting the exonuclease domain increase the risk of various cancers, while mutations that change the polymerase active site cause a progeroid syndrome called mandibular hypoplasia, deafness, progeroid features, and lipodystrophy (MDPL) syndrome. We generated a set of catalytic subunit of human telomerase (hTERT)-immortalized human fibroblasts expressing wild-type or mutant POLD1 using the retroviral LXSN vector system. In the resulting cell lines, expression of endogenous POLD1 was suppressed in favor of the recombinant POLD1. The siRNA screening of DNA damage-related genes revealed that fibroblasts expressing D316H and S605del POLD1 were more sensitive to knockdowns of ribonuclease reductase (RNR) components, RRM1 and RRM2 in the presence of hydroxyurea (HU), an RNR inhibitor. On the contrary, SAMHD1 siRNA, which increases the concentration of dNTPs, increased growth of wild type, D316H, and S605del POLD1 fibroblasts. Hypersensitivity to dNTP synthesis inhibition in POLD1 mutant lines was confirmed using gemcitabine. Our finding is consistent with the notion that reduced dNTP concentration negatively affects the cell growth of hTERT fibroblasts expressing exonuclease and polymerase mutant POLD1.
Collapse
Affiliation(s)
- Jiaming Zhang
- Department of Pathology, University of Washington, Seattle, Washington
| | - Deyin Hou
- Department of Pathology, University of Washington, Seattle, Washington
| | - James Annis
- Quellos High-Throughput Screening Core, Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington
| | | | - Julia Appelbaum
- Department of Pathology, University of Washington, Seattle, Washington
| | - Eishi Takahashi
- Department of Dermatology, National Hospital Organization Tochigi Medical Center, Tochigi, Japan
| | - George M Martin
- Department of Pathology, University of Washington, Seattle, Washington
| | - Alan Herr
- Department of Pathology, University of Washington, Seattle, Washington
| | - Junko Oshima
- Department of Pathology, University of Washington, Seattle, Washington
| |
Collapse
|
9
|
Weeks SE, Metge BJ, Samant RS. The nucleolus: a central response hub for the stressors that drive cancer progression. Cell Mol Life Sci 2019; 76:4511-4524. [PMID: 31338556 PMCID: PMC6841648 DOI: 10.1007/s00018-019-03231-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/25/2019] [Accepted: 07/15/2019] [Indexed: 01/17/2023]
Abstract
The nucleolus is a sub-nuclear body known primarily for its role in ribosome biogenesis. Increased number and/or size of nucleoli have historically been used by pathologists as a prognostic indicator of cancerous lesions. This increase in nucleolar number and/or size is classically attributed to the increased need for protein synthesis in cancer cells. However, evidences suggest that the nucleolus plays critical roles in many cellular functions in both normal cell biology and disease pathologies, including cancer. As new functions of the nucleolus are elucidated, there is mounting evidence to support the role of the nucleolus in regulating additional cellular functions, particularly response to cellular stressors, maintenance of genome stability, and DNA damage repair, as well as the regulation of gene expression and biogenesis of several ribonucleoproteins. This review highlights the central role of the nucleolus in carcinogenesis and cancer progression and discusses how cancer cells may become "addicted" to nucleolar functions.
Collapse
Affiliation(s)
- Shannon E Weeks
- Department of Pathology, University of Alabama at Birmingham, WTI 320E, 1824 6th Ave South, Birmingham, AL, 35233, USA
| | - Brandon J Metge
- Department of Pathology, University of Alabama at Birmingham, WTI 320E, 1824 6th Ave South, Birmingham, AL, 35233, USA
| | - Rajeev S Samant
- Department of Pathology, University of Alabama at Birmingham, WTI 320E, 1824 6th Ave South, Birmingham, AL, 35233, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
10
|
Acetylation of Werner protein at K1127 and K1117 is important for nuclear trafficking and DNA repair. DNA Repair (Amst) 2019; 79:22-31. [PMID: 31085421 DOI: 10.1016/j.dnarep.2019.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 03/28/2019] [Accepted: 04/24/2019] [Indexed: 11/20/2022]
Abstract
Werner syndrome is a rare autosomal recessive disorder where Werner (WRN) gene is mutated. Being a nucleolar protein, during DNA damage, WRN translocates at the damage site where its catalytic function is required in DNA repair. Several studies have indicated that WRN acetylation may modulate WRN trafficking and catalytic function (Blander et al., 2002; Lozada et al., 2014). Among the six acetylation sites in WRN protein identified by mass-spectrometry analysis (Li et al., 2010) we here explore the role of acetylation sites in C-terminal of WRN (K1127, K1117, K1389, K1413) because the C- terminal domain is the hub for protein- protein interaction and DNA binding activity (Brosh et al. [4]; Muftuoglu et al., 2008; Huang et al., 2006). To explore their functional activity, we created mutations in these sites by changing the acetylation residue lysine (K) to a non-acetylation residue arginine (R) and expressed them in WRN mutant cell lines. We observed that K1127R and K1117R mutants are sensitive to the DNA damaging agents etoposide and mitomycin C and display deficient DNA repair. Importantly, deacetylation of WRN by SIRT1 (Mammalian Sir2) is necessary for restoration of WRN localization at nucleoli after completion of DNA repair. Among all putative acetylation sites, K1127R, K1117R and the double mutant K1127R/K1117R showed significantly delayed re-entry to the nucleolus after damage recovery, even when SIRT1 is overexpressed. These mutants showed partial interaction with SIRT1 compared to WT WRN. Thus, our results suggest that K1127 and K1117 are the major sites of acetylation, necessary for DNA repair. These results elucidate the mechanism by which SIRT1 regulates WRN trafficking via these acetylation sites during DNA damage.
Collapse
|
11
|
The Werner Syndrome Helicase Coordinates Sequential Strand Displacement and FEN1-Mediated Flap Cleavage during Polymerase δ Elongation. Mol Cell Biol 2017; 37:MCB.00560-16. [PMID: 27849570 DOI: 10.1128/mcb.00560-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/08/2016] [Indexed: 02/01/2023] Open
Abstract
The Werner syndrome protein (WRN) suppresses the loss of telomeres replicated by lagging-strand synthesis by a yet to be defined mechanism. Here, we show that whereas either WRN or the Bloom syndrome helicase (BLM) stimulates DNA polymerase δ progression across telomeric G-rich repeats, only WRN promotes sequential strand displacement synthesis and FEN1 cleavage, a critical step in Okazaki fragment maturation, at these sequences. Helicase activity, as well as the conserved winged-helix (WH) motif and the helicase and RNase D C-terminal (HRDC) domain play important but distinct roles in this process. Remarkably, WRN also influences the formation of FEN1 cleavage products during strand displacement on a nontelomeric substrate, suggesting that WRN recruitment and cooperative interaction with FEN1 during lagging-strand synthesis may serve to regulate sequential strand displacement and flap cleavage at other genomic sites. These findings define a biochemical context for the physiological role of WRN in maintaining genetic stability.
Collapse
|
12
|
Oshima J, Sidorova JM, Monnat RJ. Werner syndrome: Clinical features, pathogenesis and potential therapeutic interventions. Ageing Res Rev 2017; 33:105-114. [PMID: 26993153 PMCID: PMC5025328 DOI: 10.1016/j.arr.2016.03.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/09/2016] [Accepted: 03/11/2016] [Indexed: 12/20/2022]
Abstract
Werner syndrome (WS) is a prototypical segmental progeroid syndrome characterized by multiple features consistent with accelerated aging. It is caused by null mutations of the WRN gene, which encodes a member of the RECQ family of DNA helicases. A unique feature of the WRN helicase is the presence of an exonuclease domain in its N-terminal region. Biochemical and cell biological studies during the past decade have demonstrated involvements of the WRN protein in multiple DNA transactions, including DNA repair, recombination, replication and transcription. A role of the WRN protein in telomere maintenance could explain many of the WS phenotypes. Recent discoveries of new progeroid loci found in atypical Werner cases continue to support the concept of genomic instability as a major mechanism of biological aging. Based on these biological insights, efforts are underway to develop therapeutic interventions for WS and related progeroid syndromes.
Collapse
Affiliation(s)
- Junko Oshima
- Department of Pathology, University of Washington, Seattle, WA 98195, USA; Department of Medicine, Chiba University, Chiba, Japan.
| | - Julia M Sidorova
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Raymond J Monnat
- Department of Pathology, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
13
|
Nicolas E, Golemis EA, Arora S. POLD1: Central mediator of DNA replication and repair, and implication in cancer and other pathologies. Gene 2016; 590:128-41. [PMID: 27320729 PMCID: PMC4969162 DOI: 10.1016/j.gene.2016.06.031] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/10/2016] [Accepted: 06/14/2016] [Indexed: 02/06/2023]
Abstract
The evolutionarily conserved human polymerase delta (POLD1) gene encodes the large p125 subunit which provides the essential catalytic activities of polymerase δ (Polδ), mediated by 5′–3′ DNA polymerase and 3′–5′ exonuclease moieties. POLD1 associates with three smaller subunits (POLD2, POLD3, POLD4), which together with Replication Factor C and Proliferating Nuclear Cell Antigen constitute the polymerase holoenzyme. Polδ function is essential for replication, with a primary role as the replicase for the lagging strand. Polδ also has an important proofreading ability conferred by the exonuclease activity, which is critical for ensuring replicative fidelity, but also serves to repair DNA lesions arising as a result of exposure to mutagens. Polδ has been shown to be important for multiple forms of DNA repair, including nucleotide excision repair, double strand break repair, base excision repair, and mismatch repair. A growing number of studies in the past decade have linked germline and sporadic mutations in POLD1 and the other subunits of Polδ with human pathologies. Mutations in Polδ in mice and humans lead to genomic instability, mutator phenotype and tumorigenesis. The advent of genome sequencing techniques has identified damaging mutations in the proofreading domain of POLD1 as the underlying cause of some inherited cancers, and suggested that mutations in POLD1 may influence therapeutic management. In addition, mutations in POLD1 have been identified in the developmental disorders of mandibular hypoplasia, deafness, progeroid features and lipodystrophy and atypical Werner syndrome, while changes in expression or activity of POLD1 have been linked to senescence and aging. Intriguingly, some recent evidence suggests that POLD1 function may also be altered in diabetes. We provide an overview of critical Polδ activities in the context of these pathologic conditions.
Collapse
Affiliation(s)
- Emmanuelle Nicolas
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Sanjeevani Arora
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
14
|
Leuzzi G, Marabitti V, Pichierri P, Franchitto A. WRNIP1 protects stalled forks from degradation and promotes fork restart after replication stress. EMBO J 2016; 35:1437-51. [PMID: 27242363 DOI: 10.15252/embj.201593265] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 04/29/2016] [Indexed: 11/09/2022] Open
Abstract
Accurate handling of stalled replication forks is crucial for the maintenance of genome stability. RAD51 defends stalled replication forks from nucleolytic attack, which otherwise can threaten genome stability. However, the identity of other factors that can collaborate with RAD51 in this task is poorly elucidated. Here, we establish that human Werner helicase interacting protein 1 (WRNIP1) is localized to stalled replication forks and cooperates with RAD51 to safeguard fork integrity. We show that WRNIP1 is directly involved in preventing uncontrolled MRE11-mediated degradation of stalled replication forks by promoting RAD51 stabilization on ssDNA We further demonstrate that replication fork protection does not require the ATPase activity of WRNIP1 that is however essential to achieve the recovery of perturbed replication forks. Loss of WRNIP1 or its catalytic activity causes extensive DNA damage and chromosomal aberrations. Intriguingly, downregulation of the anti-recombinase FBH1 can compensate for loss of WRNIP1 activity, since it attenuates replication fork degradation and chromosomal aberrations in WRNIP1-deficient cells. Therefore, these findings unveil a unique role for WRNIP1 as a replication fork-protective factor in maintaining genome stability.
Collapse
Affiliation(s)
- Giuseppe Leuzzi
- Section of Molecular Epidemiology, Istituto Superiore di Sanità, Rome, Italy
| | - Veronica Marabitti
- Section of Molecular Epidemiology, Istituto Superiore di Sanità, Rome, Italy
| | - Pietro Pichierri
- Section of Experimental and Computational Carcinogenesis, Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Rome, Italy
| | | |
Collapse
|
15
|
Lessel D, Hisama FM, Szakszon K, Saha B, Sanjuanelo AB, Salbert BA, Steele PD, Baldwin J, Brown WT, Piussan C, Plauchu H, Szilvássy J, Horkay E, Högel J, Martin GM, Herr AJ, Oshima J, Kubisch C. POLD1 Germline Mutations in Patients Initially Diagnosed with Werner Syndrome. Hum Mutat 2015; 36:1070-9. [PMID: 26172944 DOI: 10.1002/humu.22833] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/23/2015] [Indexed: 12/12/2022]
Abstract
Segmental progeroid syndromes are rare, heterogeneous disorders characterized by signs of premature aging affecting more than one tissue or organ. A prototypic example is the Werner syndrome (WS), caused by biallelic germline mutations in the Werner helicase gene (WRN). While heterozygous lamin A/C (LMNA) mutations are found in a few nonclassical cases of WS, another 10%-15% of patients initially diagnosed with WS do not have mutations in WRN or LMNA. Germline POLD1 mutations were recently reported in five patients with another segmental progeroid disorder: mandibular hypoplasia, deafness, progeroid features syndrome. Here, we describe eight additional patients with heterozygous POLD1 mutations, thereby substantially expanding the characterization of this new example of segmental progeroid disorders. First, we identified POLD1 mutations in patients initially diagnosed with WS. Second, we describe POLD1 mutation carriers without clinically relevant hearing impairment or mandibular underdevelopment, both previously thought to represent obligate diagnostic features. These patients also exhibit a lower incidence of metabolic abnormalities and joint contractures. Third, we document postnatal short stature and premature greying/loss of hair in POLD1 mutation carriers. We conclude that POLD1 germline mutations can result in a variably expressed and probably underdiagnosed segmental progeroid syndrome.
Collapse
Affiliation(s)
- Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fuki M Hisama
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington
| | - Katalin Szakszon
- Department of Pediatrics, University of Debrecen, Debrecen, Hungary
| | - Bidisha Saha
- Department of Pathology, University of Washington, Seattle, Washington
| | | | | | | | | | - W Ted Brown
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| | | | - Henri Plauchu
- Département de Génétique, Université Claude Bernard Lyon 1 et Hôpital Louis Pradel, Hospices Civils de Lyon, F-69977, Bron CEDEX, France
| | - Judit Szilvássy
- Department of Oto-Laryngology and Head and Neck Surgery, University of Debrecen, Debrecen, Hungary
| | | | - Josef Högel
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - George M Martin
- Department of Pathology, University of Washington, Seattle, Washington
| | - Alan J Herr
- Department of Pathology, University of Washington, Seattle, Washington
| | - Junko Oshima
- Department of Pathology, University of Washington, Seattle, Washington
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
16
|
Acetylation of Werner syndrome protein (WRN): relationships with DNA damage, DNA replication and DNA metabolic activities. Biogerontology 2014; 15:347-66. [PMID: 24965941 DOI: 10.1007/s10522-014-9506-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 05/26/2014] [Indexed: 10/25/2022]
Abstract
Loss of Werner syndrome protein function causes Werner syndrome, characterized by increased genomic instability, elevated cancer susceptibility and premature aging. Although WRN is subject to acetylation, phosphorylation and sumoylation, the impact of these modifications on WRN's DNA metabolic function remains unclear. Here, we examined in further depth the relationship between WRN acetylation and its role in DNA metabolism, particularly in response to induced DNA damage. Our results demonstrate that endogenous WRN is acetylated somewhat under unperturbed conditions. However, levels of acetylated WRN significantly increase after treatment with certain DNA damaging agents or the replication inhibitor HU. Use of DNA repair-deficient cells or repair pathway inhibitors further increase levels of acetylated WRN, indicating that induced DNA lesions and their persistence are at least partly responsible for increased acetylation. Notably, acetylation of WRN correlates with inhibition of DNA synthesis, suggesting that replication blockage might underlie this effect. Moreover, WRN acetylation modulates its affinity for and activity on certain DNA structures, in a manner that may enhance its relative specificity for physiological substrates. Our results also show that acetylation and deacetylation of endogenous WRN is a dynamic process, with sirtuins and other histone deacetylases contributing to WRN deacetylation. These findings advance our understanding of the dynamics of WRN acetylation under unperturbed conditions and following DNA damage induction, linking this modification not only to DNA damage persistence but also potentially to replication stalling caused by specific DNA lesions. Our results are consistent with proposed metabolic roles for WRN and genomic instability phenotypes associated with WRN deficiency.
Collapse
|
17
|
Tadokoro T, Rybanska-Spaeder I, Kulikowicz T, Dawut L, Oshima J, Croteau DL, Bohr VA. Functional deficit associated with a missense Werner syndrome mutation. DNA Repair (Amst) 2013; 12:414-21. [PMID: 23583337 DOI: 10.1016/j.dnarep.2013.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 03/15/2013] [Accepted: 03/19/2013] [Indexed: 12/23/2022]
Abstract
Werner syndrome (WS) is a rare autosomal recessive disorder caused by mutations in the WRN gene. WRN helicase, a member of the RecQ helicase family, is involved in various DNA metabolic pathways including DNA replication, recombination, DNA repair and telomere maintenance. In this study, we have characterized the G574R missense mutation, which was recently identified in a WS patient. Our biochemical experiments with purified mutant recombinant WRN protein showed that the G574R mutation inhibits ATP binding, and thereby leads to significant decrease in helicase activity. Exonuclease activity of the mutant protein was not significantly affected, whereas its single strand DNA annealing activity was higher than that of wild type. Deficiency in the helicase activity of the mutant may cause defects in replication and other DNA metabolic processes, which in turn could be responsible for the Werner syndrome phenotype in the patient. In contrast to the usual appearance of WS, the G574R patient has normal stature. Thus the short stature normally associated with WS may not be due to helicase deficiency.
Collapse
Affiliation(s)
- Takashi Tadokoro
- Laboratory of Molecular Gerontology, National Institute on Aging, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Wang JL, Guo HL, Wang PC, Liu CG. Age-dependent down-regulation of DNA polymerase δ1 in human lymphocytes. Mol Cell Biochem 2012; 371:157-63. [PMID: 22915169 DOI: 10.1007/s11010-012-1432-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 08/03/2012] [Indexed: 01/19/2023]
Abstract
Aging progress and degeneracy of functional activity are mainly attributed to the decreased DNA repair potential. DNA polymerase (pol) δ activity plays an essential role in genome stability by virtue of its crucial DNA replication and repair capacity. To order to clarify the role of DNA pol δ in aging progression, we firstly examined the expressions of its catalytic subunit named DNA pol δ1 in human lymphocytes at different age stages, respectively, and then observed the effect of diseases on DNA pol δ1 in vivo and of nutriture on its expressions in 2BS cells in vitro. Blood samples from the healthy subjects and patients with diabetes mellitus and coronary heart disease were collected, respectively, for analysis of transcription and protein expressions of DNA pol δ1 by RT-PCR and western blot. 2BS cells of PD30 and PD47 were incubated in both normal medium and other mediums of different nutritures for verifying the differential expressions of DNA pol δ1. Results showed that the mRNA expression of DNA pol δ1 decreased substantially with age and the protein levels were well consistent with gene levels. Furthermore, there were no significant differences in DNA pol δ1 expressions between the groups of healthy individuals and the age matched patients. In addition, DNA pol δ1 gene expression levels were not affected by nutritional status in vitro. Our findings collectively confirmed that the down-regulations of DNA pol δ1 are age-related and have little bearing on diseases and nutritures. DNA pol δ1 has great potential for a new biomarker of aging.
Collapse
Affiliation(s)
- Jin-Ling Wang
- Department of Clinical Laboratory, Xuanwu Hospital, Capital Medical University, Beijing 100053, People's Republic of China
| | | | | | | |
Collapse
|
19
|
Zheng Y, Sheng S, Wang H, Jia X, Hu Y, Qian Y, Zhu Y, Wang J. Identification of Pold2 as a novel interaction partner of protein inhibitor of activated STAT2. Int J Mol Med 2012; 30:884-8. [PMID: 22824807 DOI: 10.3892/ijmm.2012.1065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 06/20/2012] [Indexed: 11/06/2022] Open
Abstract
Pold2 is a subunit of the DNA polymerase δ complex, encoding a protein involved in DNA replication and repair. In this study, using a yeast two-hybrid screening technique and the common cDNA fragment of the mouse PIAS2 as a bait, Pold2 was found to interact with PIAS2. A direct interaction between Pold2 and PIAS2 was confirmed by direct yeast two-hybrid. In vivo evidence of Pold2 association with PIAS2 was obtained by co-immunoprecipitation using HEK-293 cells. Subcellular localization studies demonstrated that Pold2 and PIAS2 were partially co-localized in mammalian cells. Collectively, our results suggest that Pold2 interacts under physiological conditions with PIAS2.
Collapse
Affiliation(s)
- Ying Zheng
- Department of Histology and Embryology, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Chan NLS, Hou C, Zhang T, Yuan F, Machwe A, Huang J, Orren DK, Gu L, Li GM. The Werner syndrome protein promotes CAG/CTG repeat stability by resolving large (CAG)(n)/(CTG)(n) hairpins. J Biol Chem 2012; 287:30151-6. [PMID: 22787159 DOI: 10.1074/jbc.m112.389791] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expansion of CAG/CTG repeats causes certain neurological and neurodegenerative disorders, and the formation and subsequent persistence of stable DNA hairpins within these repeats are believed to contribute to CAG/CTG repeat instability. Human cells possess a DNA hairpin repair (HPR) pathway, which removes various (CAG)(n) and (CTG)(n) hairpins in a nick-directed and strand-specific manner. Interestingly, this HPR system processes a (CTG)(n) hairpin on the template DNA strand much less efficiently than a (CAG)(n) hairpin on the same strand (Hou, C., Chan, N. L., Gu, L., and Li, G. M. (2009) Incision-dependent and error-free repair of (CAG)(n)/(CTG)(n) hairpins in human cell extracts. Nat. Struct. Mol. Biol. 16, 869-875), suggesting the involvement of an additional component for (CTG)(n) HPR. To identify this activity, a functional in vitro HPR assay was used to screen partially purified HeLa nuclear fractions for their ability to stimulate (CTG)(n) HPR. We demonstrate here that the stimulating activity is the Werner syndrome protein (WRN). Although WRN contains both a 3'→5' helicase activity and a 3'→5' exonuclease activity, the stimulating activity was found to be the helicase activity, as a WRN helicase mutant failed to enhance (CTG)(n) HPR. Consistently, WRN efficiently unwound large (CTG)(n) hairpins and promoted DNA polymerase δ-catalyzed DNA synthesis using a (CTG)(n) hairpin as a template. We, therefore, conclude that WRN stimulates (CTG)(n) HPR on the template DNA strand by resolving the hairpin so that it can be efficiently used as a template for repair or replicative synthesis.
Collapse
Affiliation(s)
- Nelson L S Chan
- Graduate Center for Toxicology and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kanamori M, Seki M, Yoshimura A, Tsurimoto T, Tada S, Enomoto T. Werner interacting protein 1 promotes binding of Werner protein to template-primer DNA. Biol Pharm Bull 2012; 34:1314-8. [PMID: 21804224 DOI: 10.1248/bpb.34.1314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Werner interacting protein 1 (WRNIP1) that is highly conserved from Escherichia coli to human was originally identified as a protein that interacts with the Werner syndrome responsible gene product (WRN). Here, human WRNIP1 and WRN are shown to bind to template-primer DNA, and WRNIP1, but not WRN, requires ATP for DNA binding. Under conditions of a limiting amount of WRN, WRNIP1 facilitated binding of WRN to DNA in a dose-dependent manner. However, WRNIP1 did not stimulate the DNA helicase activity of WRN, and WRN displaced pre-bound WRNIP1 from DNA. Functional relationships between WRNIP1 and WRN will be discussed.
Collapse
Affiliation(s)
- Makoto Kanamori
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980–8578, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Kamath-Loeb AS, Shen JC, Schmitt MW, Loeb LA. The Werner syndrome exonuclease facilitates DNA degradation and high fidelity DNA polymerization by human DNA polymerase δ. J Biol Chem 2012; 287:12480-90. [PMID: 22351772 DOI: 10.1074/jbc.m111.332577] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA Polymerase δ (Pol δ) and the Werner syndrome protein, WRN, are involved in maintaining cellular genomic stability. Pol δ synthesizes the lagging strand during replication of genomic DNA and also functions in the synthesis steps of DNA repair and recombination. WRN is a member of the RecQ helicase family, loss of which results in the premature aging and cancer-prone disorder, Werner syndrome. Both Pol δ and WRN encode 3' → 5' DNA exonuclease activities. Pol δ exonuclease removes 3'-terminal mismatched nucleotides incorporated during replication to ensure high fidelity DNA synthesis. WRN exonuclease degrades DNA containing alternate secondary structures to prevent formation and enable resolution of stalled replication forks. We now observe that similarly to WRN, Pol δ degrades alternate DNA structures including bubbles, four-way junctions, and D-loops. Moreover, WRN and Pol δ form a complex with enhanced ability to hydrolyze these structures. We also present evidence that WRN can proofread for Pol δ; WRN excises 3'-terminal mismatches to enable primer extension by Pol δ. Consistent with our in vitro observations, we show that WRN contributes to the maintenance of DNA synthesis fidelity in vivo. Cells expressing limiting amounts (∼10% of normal) of WRN have elevated mutation frequencies compared with wild-type cells. Together, our data highlight the importance of WRN exonuclease activity and its cooperativity with Pol δ in preserving genome stability, which is compromised by the loss of WRN in Werner syndrome.
Collapse
|
23
|
Kar B, Liu B, Zhou Z, Lam YW. Quantitative nucleolar proteomics reveals nuclear re-organization during stress- induced senescence in mouse fibroblast. BMC Cell Biol 2011; 12:33. [PMID: 21835027 PMCID: PMC3163619 DOI: 10.1186/1471-2121-12-33] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 08/11/2011] [Indexed: 12/21/2022] Open
Abstract
Background Nucleolus is the most prominent mammalian organelle within the nucleus which is also the site for ribosomal biogenesis. There have been many reports indicating the involvement of nucleolus in the process of aging. Several proteins related to aging have been shown to localize in the nucleolus, which suggests the role of this organelle in senescence. Results In this study, we used quantitative mass spectrometry to map the flux of proteins into and out of the nucleolus during the induction of senescence in cultured mammalian cells. Changes in the abundance of 344 nucleolar proteins in sodium butyrate-induced senescence in NIH3T3 cells were studied by SILAC (stable isotope labeling by amino acids in cell culture)-based mass spectrometry. Biochemically, we have validated the proteomic results and confirmed that B23 (nucleophosmin) protein was down-regulated, while poly (ADP-ribose) polymerase (PARP) and nuclear DNA helicase II (NDH II/DHX9/RHA) were up-regulated in the nucleolus upon treatment with sodium butyrate. Accumulation of chromatin in the nucleolus was also observed, by both proteomics and microscopy, in sodium butyrate-treated cells. Similar observations were found in other models of senescence, namely, in mitoxantrone- (MTX) treated cells and primary fibroblasts from the Lamin A knockout mice. Conclusion Our data indicate an extensive nuclear organization during senescence and suggest that the redistribution of B23 protein and chromatin can be used as an important marker for senescence.
Collapse
Affiliation(s)
- Bishnupriya Kar
- Department of Biology and Chemistry, City University of Hong Kong, 88 Tat Chee Avenue, Hong Kong.
| | | | | | | |
Collapse
|
24
|
Machwe A, Karale R, Xu X, Liu Y, Orren DK. The Werner and Bloom syndrome proteins help resolve replication blockage by converting (regressed) holliday junctions to functional replication forks. Biochemistry 2011; 50:6774-88. [PMID: 21736299 DOI: 10.1021/bi2001054] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cells cope with blockage of replication fork progression in a manner that allows DNA synthesis to be completed and genomic instability minimized. Models for resolution of blocked replication involve fork regression to form Holliday junction structures. The human RecQ helicases WRN and BLM (deficient in Werner and Bloom syndromes, respectively) are critical for maintaining genomic stability and thought to function in accurate resolution of replication blockage. Consistent with this notion, WRN and BLM localize to sites of blocked replication after certain DNA-damaging treatments and exhibit enhanced activity on replication and recombination intermediates. Here we examine the actions of WRN and BLM on a special Holliday junction substrate reflective of a regressed replication fork. Our results demonstrate that, in reactions requiring ATP hydrolysis, both WRN and BLM convert this Holliday junction substrate primarily to a four-stranded replication fork structure, suggesting they target the Holliday junction to initiate branch migration. In agreement, the Holliday junction binding protein RuvA inhibits the WRN- and BLM-mediated conversion reactions. Importantly, this conversion product is suitable for replication with its leading daughter strand readily extended by DNA polymerases. Furthermore, binding to and conversion of this Holliday junction are optimal at low MgCl(2) concentrations, suggesting that WRN and BLM preferentially act on the square planar (open) conformation of Holliday junctions. Our findings suggest that, subsequent to fork regression events, WRN and/or BLM could re-establish functional replication forks to help overcome fork blockage. Such a function is highly consistent with phenotypes associated with WRN- and BLM-deficient cells.
Collapse
Affiliation(s)
- Amrita Machwe
- Graduate Center for Toxicology and Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky 40536, United States
| | | | | | | | | |
Collapse
|
25
|
Abstract
When cells are observed by phase contrast microscopy, nucleoli are among the most conspicuous structures. The nucleolus was formally described between 1835 and 1839, but it was another century before it was discovered to be associated with a specific chromosomal locus, thus defining it as a cytogenetic entity. Nucleoli were first isolated in the 1950s, from starfish oocytes. Then, in the early 1960s, a boomlet of studies led to one of the epochal discoveries in the modern era of genetics and cell biology: that the nucleolus is the site of ribosomal RNA synthesis and nascent ribosome assembly. This epistemologically repositioned the nucleolus as not merely an aspect of nuclear anatomy but rather as a cytological manifestation of gene action-a major heuristic advance. Indeed, the finding that the nucleolus is the seat of ribosome production constitutes one of the most vivid confluences of form and function in the history of cell biology. This account presents the nucleolus in both historical and contemporary perspectives. The modern era has brought the unanticipated discovery that the nucleolus is plurifunctional, constituting a paradigm shift.
Collapse
Affiliation(s)
- Thoru Pederson
- Program in Cell and Developmental Dynamics, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, 01605, USA.
| |
Collapse
|
26
|
Rossi ML, Ghosh AK, Bohr VA. Roles of Werner syndrome protein in protection of genome integrity. DNA Repair (Amst) 2010; 9:331-44. [PMID: 20075015 DOI: 10.1016/j.dnarep.2009.12.011] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Werner syndrome protein (WRN) is one of a family of five human RecQ helicases implicated in the maintenance of genome stability. The conserved RecQ family also includes RecQ1, Bloom syndrome protein (BLM), RecQ4, and RecQ5 in humans, as well as Sgs1 in Saccharomyces cerevisiae, Rqh1 in Schizosaccharomyces pombe, and homologs in Caenorhabditis elegans, Xenopus laevis, and Drosophila melanogaster. Defects in three of the RecQ helicases, RecQ4, BLM, and WRN, cause human pathologies linked with cancer predisposition and premature aging. Mutations in the WRN gene are the causative factor of Werner syndrome (WS). WRN is one of the best characterized of the RecQ helicases and is known to have roles in DNA replication and repair, transcription, and telomere maintenance. Studies both in vitro and in vivo indicate that the roles of WRN in a variety of DNA processes are mediated by post-translational modifications, as well as several important protein-protein interactions. In this work, we will summarize some of the early studies on the cellular roles of WRN and highlight the recent findings that shed some light on the link between the protein with its cellular functions and the disease pathology.
Collapse
Affiliation(s)
- Marie L Rossi
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
27
|
Abstract
Werner syndrome is an autosomal recessive disorder associated with premature aging and cancer predisposition. Cells from Werner syndrome patients show increased genomic instability and are hypersensitive to DNA damage agents. Werner syndrome is caused by mutations of the WRN gene. WRN protein is a member of RecQ DNA helicase family. It not only contains a conserved 3'-5' helicase domain as other members of the RecQ family but also contains a unique 3'-5' exonuclease domain. WRN recognizes specific DNA structures as substrates which are intermediates of DNA metabolism. WRN interacts with many other proteins, which function in telomere maintenance, DNA replication, and DNA repair through different pathways.
Collapse
Affiliation(s)
- Jianyuan Luo
- Department of Medical & Research Technology, Department of Pathology, School of Medicine, University of Maryland, AHB 405A, 100 Penn Street, Baltimore, MD 21201
| |
Collapse
|
28
|
Shah SN, Opresko PL, Meng X, Lee MYWT, Eckert KA. DNA structure and the Werner protein modulate human DNA polymerase delta-dependent replication dynamics within the common fragile site FRA16D. Nucleic Acids Res 2009; 38:1149-62. [PMID: 19969545 PMCID: PMC2831333 DOI: 10.1093/nar/gkp1131] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Common fragile sites (CFS) are chromosomal regions that exhibit instability during DNA replication stress. Although the mechanism of CFS expression has not been fully elucidated, one known feature is a severely delayed S-phase. We used an in vitro primer extension assay to examine the progression of DNA synthesis through various sequences within FRA16D by the replicative human DNA polymerases δ and α, and with human cell-free extracts. We found that specific cis-acting sequence elements perturb DNA elongation, causing inconsistent DNA synthesis rates between regions on the same strand and complementary strands. Pol δ was significantly inhibited in regions containing hairpins and microsatellites, [AT/TA]24 and [A/T]19–28, compared with a control region with minimal secondary structure. Pol δ processivity was enhanced by full length Werner Syndrome protein (WRN) and by WRN fragments containing either the helicase domain or DNA-binding C-terminal domain. In cell-free extracts, stalling was eliminated at smaller hairpins, but persisted in larger hairpins and microsatellites. Our data support a model whereby CFS expression during cellular stress is due to a combination of factors—density of specific DNA secondary-structures within a genomic region and asymmetric rates of strand synthesis.
Collapse
Affiliation(s)
- Sandeep N Shah
- Department of Pathology, Gittlen Cancer Research Foundation and the Intercollege Graduate Degree Program in Genetics, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
29
|
Chavez A, Tsou AM, Johnson FB. Telomeres do the (un)twist: helicase actions at chromosome termini. Biochim Biophys Acta Mol Basis Dis 2009; 1792:329-40. [PMID: 19245831 DOI: 10.1016/j.bbadis.2009.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 02/12/2009] [Accepted: 02/12/2009] [Indexed: 12/17/2022]
Abstract
Telomeres play critical roles in protecting genome stability, and their dysfunction contributes to cancer and age-related degenerative diseases. The precise architecture of telomeres, including their single-stranded 3' overhangs, bound proteins, and ability to form unusual secondary structures such as t-loops, is central to their function and thus requires careful processing by diverse factors. Furthermore, telomeres provide unique challenges to the DNA replication and recombination machinery, and are particularly suited for extension by the telomerase reverse transcriptase. Helicases use the energy from NTP hydrolysis to track along DNA and disrupt base pairing. Here we review current findings concerning how helicases modulate several aspects of telomere form and function.
Collapse
Affiliation(s)
- Alejandro Chavez
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
30
|
Ding SL, Shen CY. Model of human aging: recent findings on Werner's and Hutchinson-Gilford progeria syndromes. Clin Interv Aging 2008; 3:431-44. [PMID: 18982914 PMCID: PMC2682376 DOI: 10.2147/cia.s1957] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The molecular mechanisms involved in human aging are complicated. Two progeria syndromes, Werner's syndrome (WS) and Hutchinson-Gilford progeria syndrome (HGPS), characterized by clinical features mimicking physiological aging at an early age, provide insights into the mechanisms of natural aging. Based on recent findings on WS and HGPS, we suggest a model of human aging. Human aging can be triggered by two main mechanisms, telomere shortening and DNA damage. In telomere-dependent aging, telomere shortening and dysfunction may lead to DNA damage responses which induce cellular senescence. In DNA damage-initiated aging, DNA damage accumulates, along with DNA repair deficiencies, resulting in genomic instability and accelerated cellular senescence. In addition, aging due to both mechanisms (DNA damage and telomere shortening) is strongly dependent on p53 status. These two mechanisms can also act cooperatively to increase the overall level ofgenomic instability, triggering the onset of human aging phenotypes.
Collapse
Affiliation(s)
- Shian-Ling Ding
- Department of Nursing, Kang-Ning Junior College of Medical Care and Management,Taipei,Taiwan.
| | | |
Collapse
|
31
|
Baranovskiy AG, Babayeva ND, Pavlov YI, Tahirov TH. Crystallization and preliminary crystallographic analysis of the complex of the second and third regulatory subunits of human Pol delta. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:822-4. [PMID: 18765914 DOI: 10.1107/s1744309108025086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 08/04/2008] [Indexed: 11/10/2022]
Abstract
Human DNA polymerase delta (Pol delta) consists of four subunits: p125, p50, p66 and p12. A heterodimer containing a His-tagged p50 subunit (p50) and a p50-interacting domain of the p66 subunit (p66(N)) was crystallized. The crystal was in the form of a prism with a rhombic cross-section and belonged to space group P2(1). The crystal had unit-cell parameters a = 95.13, b = 248.54, c = 103.46 A, beta = 106.94 degrees and diffracted to a resolution of 3 A. Four molecules of p50-p66(N) in an asymmetric unit corresponded to a crystal solvent content of 72.2%.
Collapse
Affiliation(s)
- Andrey G Baranovskiy
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-7696, USA
| | | | | | | |
Collapse
|
32
|
Selak N, Bachrati CZ, Shevelev I, Dietschy T, van Loon B, Jacob A, Hübscher U, Hoheisel JD, Hickson ID, Stagljar I. The Bloom's syndrome helicase (BLM) interacts physically and functionally with p12, the smallest subunit of human DNA polymerase delta. Nucleic Acids Res 2008; 36:5166-79. [PMID: 18682526 PMCID: PMC2532730 DOI: 10.1093/nar/gkn498] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Bloom's syndrome (BS) is a cancer predisposition disorder caused by mutation of the BLM gene, encoding a member of the RecQ helicase family. Although the phenotype of BS cells is suggestive of a role for BLM in repair of stalled or damaged replication forks, thus far there has been no direct evidence that BLM associates with any of the three human replicative DNA polymerases. Here, we show that BLM interacts specifically in vitro and in vivo with p12, the smallest subunit of human POL δ (hPOL δ). The hPOL δ enzyme, as well as the isolated p12 subunit, stimulates the DNA helicase activity of BLM. Conversely, BLM stimulates hPOL δ strand displacement activity. Our results provide the first functional link between BLM and the replicative machinery in human cells, and suggest that BLM might be recruited to sites of disrupted replication through an interaction with hPOL δ. Finally, our data also define a novel role for the poorly characterized p12 subunit of hPOL δ.
Collapse
Affiliation(s)
- Nives Selak
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Homologous recombination and maintenance of genome integrity: Cancer and aging through the prism of human RecQ helicases. Mech Ageing Dev 2008; 129:425-40. [DOI: 10.1016/j.mad.2008.03.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 03/07/2008] [Accepted: 03/07/2008] [Indexed: 01/05/2023]
|
34
|
RecQ helicases: guardian angels of the DNA replication fork. Chromosoma 2008; 117:219-33. [DOI: 10.1007/s00412-007-0142-4] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 12/08/2007] [Accepted: 12/10/2007] [Indexed: 10/22/2022]
|
35
|
Abstract
Genomic instability leads to mutations, cellular dysfunction and aberrant phenotypes at the tissue and organism levels. A number of mechanisms have evolved to cope with endogenous or exogenous stress to prevent chromosomal instability and maintain cellular homeostasis. DNA helicases play important roles in the DNA damage response. The RecQ family of DNA helicases is of particular interest since several human RecQ helicases are defective in diseases associated with premature aging and cancer. In this review, we will provide an update on our understanding of the specific roles of human RecQ helicases in the maintenance of genomic stability through their catalytic activities and protein interactions in various pathways of cellular nucleic acid metabolism with an emphasis on DNA replication and repair. We will also discuss the clinical features of the premature aging disorders associated with RecQ helicase deficiencies and how they relate to the molecular defects.
Collapse
Affiliation(s)
- Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | |
Collapse
|
36
|
Zhang S, Zhou Y, Trusa S, Meng X, Lee EYC, Lee MYWT. A novel DNA damage response: rapid degradation of the p12 subunit of dna polymerase delta. J Biol Chem 2007; 282:15330-40. [PMID: 17317665 DOI: 10.1074/jbc.m610356200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mammalian DNA polymerase (Pol) delta is essential for DNA replication. It consists of four subunits, p125, p50, p68, and p12. We report the discovery that the p12 subunit is rapidly degraded in cultured human cells by DNA damage or replication stress brought about by treatments with UV, methyl methanesulfonate, hydroxyurea, and aphidicolin. The degradation of p12 is due to an accelerated rate of proteolysis that is inhibited by the proteasome inhibitors, MG132 and lactacystin. UV treatment converts Pol delta in vivo to the three-subunit form lacking p12. This was demonstrated by its isolation using immunoaffinity chromatography. The three-subunit enzyme retains activity on poly(dA)/oligo(dT) templates but is impaired in its ability to extend singly primed M13 templates, clearly indicating that its in vivo functions are likely to be compromised. This transformation of Pol delta by modification of its quaternary structure is reversible in vitro by the addition of the p12 subunit and could represent a novel in vivo mechanism for the modulation of Pol delta function. UV and hydroxyurea-triggered p12 degradation is blocked in ATR(-/-) cells but not in ATM(-/-) cells, thereby demonstrating that p12 degradation is regulated by ATR, the apical kinase that regulates the damage response in S-phase. These findings reveal a novel addition to the cellular repertoire of DNA damage responses that also impacts our understanding of the role of Pol delta in both DNA replication and DNA repair.
Collapse
Affiliation(s)
- Sufang Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | |
Collapse
|
37
|
Kusumoto R, Muftuoglu M, Bohr VA. The role of WRN in DNA repair is affected by post-translational modifications. Mech Ageing Dev 2007; 128:50-7. [PMID: 17116323 DOI: 10.1016/j.mad.2006.11.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Werner syndrome (WS) is an autosomal recessive progeroid disease characterized by genomic instability. WRN gene encodes one of the RecQ helicase family proteins, WRN, which has ATPase, helicase, exonuclease and single stranded DNA annealing activities. There is accumulating evidence suggesting that WRN contributes to the maintenance of genomic integrity through its involvement in DNA repair, replication and recombination. The role of WRN in these pathways can be modulated by its post-translational modifications in response to DNA damage. Here, we review the functional consequences of post-translational modifications on WRN as well as specific DNA repair pathways where WRN is involved and discuss how these modifications affect DNA repair pathways.
Collapse
Affiliation(s)
- Rika Kusumoto
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
38
|
Sweasy JB, Lauper JM, Eckert KA. DNA polymerases and human diseases. Radiat Res 2006; 166:693-714. [PMID: 17067213 DOI: 10.1667/rr0706.1] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 07/12/2006] [Indexed: 11/03/2022]
Abstract
DNA polymerases function in DNA replication, repair, recombination and translesion synthesis. Currently, 15 DNA polymerase genes have been identified in human cells, belonging to four distinct families. In this review, we briefly describe the biochemical activities and known cellular roles of each DNA polymerase. Our major focus is on the phenotypic consequences of mutation or ablation of individual DNA polymerase genes. We discuss phenotypes of current mouse models and altered polymerase functions and the relationship of DNA polymerase gene mutations to human cell phenotypes. Interestingly, over 120 single nucleotide polymorphisms (SNPs) have been identified in human populations that are predicted to result in nonsynonymous amino acid substitutions of DNA polymerases. We discuss the putative functional consequences of these SNPs in relation to human disease.
Collapse
Affiliation(s)
- Joann B Sweasy
- Department of Therapeutic Radiology, Yale University School of Medicine, 15 York Street, HRT 313D, P.O. Box 208040, New Haven, CT 06520-8040, USA.
| | | | | |
Collapse
|
39
|
Jiao R, Harrigan JA, Shevelev I, Dietschy T, Selak N, Indig FE, Piotrowski J, Janscak P, Bohr VA, Stagljar I. The Werner syndrome protein is required for recruitment of chromatin assembly factor 1 following DNA damage. Oncogene 2006; 26:3811-22. [PMID: 17173071 DOI: 10.1038/sj.onc.1210150] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Werner syndrome protein (WRN) and chromatin assembly factor 1 (CAF-1) are both involved in the maintenance of genome stability. In response to DNA-damaging signals, both of these proteins relocate to sites where DNA synthesis occurs. However, the interaction between WRN and CAF-1 has not yet been investigated. In this report, we show that WRN interacts physically with the largest subunit of CAF-1, hp150, in vitro and in vivo. Although hp150 does not alter WRN catalytic activities in vitro, and the chromatin assembly activity of CAF-1 is not affected in the absence of WRN in vivo, this interaction may have an important role during the cellular response to DNA replication fork blockage and/or DNA damage signals. In hp150 RNA-mediated interference (RNAi) knockdown cells, WRN partially formed foci following hydroxyurea (HU) treatment. However, in the absence of WRN, hp150 did not relocate to form foci following exposure to HU and ultraviolet light. Thus, our results demonstrate that WRN responds to DNA damage before CAF-1 and suggest that WRN may recruit CAF-1, via interaction with hp150, to DNA damage sites during DNA synthesis.
Collapse
Affiliation(s)
- R Jiao
- National Laboratory of Biomacromolecules and State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, The Chinese Academy of Sciences, Beijing, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Perry JJP, Fan L, Tainer JA. Developing master keys to brain pathology, cancer and aging from the structural biology of proteins controlling reactive oxygen species and DNA repair. Neuroscience 2006; 145:1280-99. [PMID: 17174478 PMCID: PMC1904427 DOI: 10.1016/j.neuroscience.2006.10.045] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 10/15/2006] [Accepted: 10/17/2006] [Indexed: 12/11/2022]
Abstract
This review is focused on proteins with key roles in pathways controlling either reactive oxygen species or DNA damage responses, both of which are essential for preserving the nervous system. An imbalance of reactive oxygen species or inappropriate DNA damage response likely causes mutational or cytotoxic outcomes, which may lead to cancer and/or aging phenotypes. Moreover, individuals with hereditary disorders in proteins of these cellular pathways have significant neurological abnormalities. Mutations in a superoxide dismutase, which removes oxygen free radicals, may cause the neurodegenerative disease amyotrophic lateral sclerosis. Additionally, DNA repair disorders that affect the brain to various extents include ataxia-telangiectasia-like disorder, Cockayne syndrome or Werner syndrome. Here, we highlight recent advances gained through structural biochemistry studies on enzymes linked to these disorders and other related enzymes acting within the same cellular pathways. We describe the current understanding of how these vital proteins coordinate chemical steps and integrate cellular signaling and response events. Significantly, these structural studies may provide a set of master keys to developing a unified understanding of the survival mechanisms utilized after insults by reactive oxygen species and genotoxic agents, and also provide a basis for developing an informed intervention in brain tumor and neurodegenerative disease progression.
Collapse
Affiliation(s)
- J J P Perry
- Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
41
|
Kitano K, Yoshihara N, Hakoshima T. Crystal structure of the HRDC domain of human Werner syndrome protein, WRN. J Biol Chem 2006; 282:2717-28. [PMID: 17148451 DOI: 10.1074/jbc.m610142200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Werner syndrome is a human premature aging disorder characterized by chromosomal instability. The disease is caused by the functional loss of WRN, a member of the RecQ-helicase family that plays an important role in DNA metabolic pathways. WRN contains four structurally folded domains comprising an exonuclease, a helicase, a winged-helix, and a helicase-and-ribonuclease D/C-terminal (HRDC) domain. In contrast to the accumulated knowledge pertaining to the biochemical functions of the three N-terminal domains, the function of C-terminal HRDC remains unknown. In this study, the crystal structure of the human WRN HRDC domain has been determined. The domain forms a bundle of alpha-helices similar to those of Saccharomyces cerevisiae Sgs1 and Escherichia coli RecQ. Surprisingly, the extra ten residues at each of the N and C termini of the domain were found to participate in the domain architecture by forming an extended portion of the first helix alpha1, and a novel looping motif that traverses straight along the domain surface, respectively. The motifs combine to increase the domain surface of WRN HRDC, which is larger than that of Sgs1 and E. coli. In WRN HRDC, neither of the proposed DNA-binding surfaces in Sgs1 or E. coli is conserved, and the domain was shown to lack DNA-binding ability in vitro. Moreover, the domain was shown to be thermostable and resistant to protease digestion, implying independent domain evolution in WRN. Coupled with the unique long linker region in WRN, the WRN HRDC may be adapted to play a distinct function in WRN that involves protein-protein interactions.
Collapse
Affiliation(s)
- Ken Kitano
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | | | | |
Collapse
|
42
|
Sharma S, Doherty K, Brosh R. Mechanisms of RecQ helicases in pathways of DNA metabolism and maintenance of genomic stability. Biochem J 2006; 398:319-37. [PMID: 16925525 PMCID: PMC1559444 DOI: 10.1042/bj20060450] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Helicases are molecular motor proteins that couple the hydrolysis of NTP to nucleic acid unwinding. The growing number of DNA helicases implicated in human disease suggests that their vital specialized roles in cellular pathways are important for the maintenance of genome stability. In particular, mutations in genes of the RecQ family of DNA helicases result in chromosomal instability diseases of premature aging and/or cancer predisposition. We will discuss the mechanisms of RecQ helicases in pathways of DNA metabolism. A review of RecQ helicases from bacteria to human reveals their importance in genomic stability by their participation with other proteins to resolve DNA replication and recombination intermediates. In the light of their known catalytic activities and protein interactions, proposed models for RecQ function will be summarized with an emphasis on how this distinct class of enzymes functions in chromosomal stability maintenance and prevention of human disease and cancer.
Collapse
Affiliation(s)
- Sudha Sharma
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, U.S.A
| | - Kevin M. Doherty
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, U.S.A
| | - Robert M. Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
43
|
Hazane F, Valenti K, Sauvaigo S, Peinnequin A, Mouret C, Favier A, Beani JC. Ageing effects on the expression of cell defence genes after UVA irradiation in human male cutaneous fibroblasts using cDNA arrays. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2006; 79:171-90. [PMID: 15896644 DOI: 10.1016/j.jphotobiol.2005.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Revised: 02/03/2005] [Accepted: 02/03/2005] [Indexed: 11/23/2022]
Abstract
Ageing is a multifactorial process in which reactive oxygen species (ROS) are thought to be implicated. ROS cause oxidative alterations on cell constituents, and damage accumulation can lead to mutations in DNA. Modulation of gene expression during ageing is now quite documented but results are often controversial and/or incomplete. As ultraviolet A is one of the exogenous factors involved in skin ageing, by the production of ROS, we further document the modifications in gene expression during ageing process and response to an oxidative stress. For this purpose, we used a cDNA macroarray containing 82 genes related to cell defence, essentially represented by antioxidant and DNA repair proteins. Ageing-associated gene expression was assessed in normal skin human fibroblasts from three age groups: children (n=4), adults (n=4) and olders (n=3), at the basal state and after a 5J/cm2 UVA irradiation. Analysis revealed that 22 genes were never detected, whereas certain were always expressed such as those related to antioxidant defence, extracellular matrix (ECM) regulator and XPC. Transcripts related to ECM, MMP1 and MMP3 were increased with age and after UVA irradiation, independently of age. It appeared that transcripts involved in the redox status control (TXN and APEX) decreased as a function of age, at the basal state and after irradiation, respectively. Most of transcripts involved in DNA repair were not detected but repression of POLD1 in the adult group and induction of XRCC5 and LIG4 were observed after UVA irradiation, as a function of age. In the basal state, the transcript of GAS1, regulator of cell cycle arrest in G1 phase was found to be decreased with age. HMOX1 increased after UVA irradiation. In conclusion, the decrease in expression of some antioxidant system, cell cycle control gene and extracellular matrix enzymes, particularly after UV exposure can explain the occurrence of photoaging.
Collapse
Affiliation(s)
- Florence Hazane
- Laboratoire Oligoéléments et Résistance au Stress Oxydant induit par les Xénobiotiques, Université Joseph Fourier, UFR de Médecine et Pharmacie, Domaine de la Merci, 38700 La Tronche, France.
| | | | | | | | | | | | | |
Collapse
|
44
|
Kawabe YI, Seki M, Yoshimura A, Nishino K, Hayashi T, Takeuchi T, Iguchi S, Kusa Y, Ohtsuki M, Tsuyama T, Imamura O, Matsumoto T, Furuichi Y, Tada S, Enomoto T. Analyses of the interaction of WRNIP1 with Werner syndrome protein (WRN) in vitro and in the cell. DNA Repair (Amst) 2006; 5:816-28. [PMID: 16769258 DOI: 10.1016/j.dnarep.2006.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 04/11/2006] [Accepted: 04/11/2006] [Indexed: 11/19/2022]
Abstract
Werner was originally identified as a protein that interacts with the product of the Werner syndrome (WS) gene, WRN. To examine the function of the WRNIP1/WRN complex in cells, we generated knock-out cell lines that were deficient in either WRN (WRN(-/-)), WRNIP1 (WRNIP10(-/-/-)), or both (WRNIP1(-/-/-)/WRN(-/-)), using a chicken B lymphocyte cell line, DT40. WRNIP1(-/-/-)/WRN(-/-) DT40 cells grew at a similar rate as wild-type cells, but the rate of spontaneous sister-chromatid exchange was augmented compared to that of either of the single mutant cell lines. Moreover, while WRNIP1(-/-/-) and WRN(-/-) cells were moderately sensitive to camptothecin (CPT), double mutant cells showed a synergistic increase in CPT sensitivity. This suggested that WRNIP1 and WRN do not always function cooperatively to repair DNA lesions. The lack of a discernable functional interaction between WRNIP1 and WRN prompted us to reevaluate the nature of the physical interaction between these proteins. We found that MBP-tagged WRNIP1 interacted directly with WRN, and that the interaction was enhanced by the addition of ATP. Mutations in the Walker A motifs of the two proteins revealed that WRNIP1, but not WRN, must bind ATP before an efficient interaction can occur.
Collapse
Affiliation(s)
- Yoh-ichi Kawabe
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba 6-3, Aramaki, Sendai 980-8578, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Werner syndrome (WS) is a segmental progeroid syndrome in which patients display pleiotropic features of aging seen in the normal population. The advent of positional cloning in the 1990s markedly accelerated the identification of human disease-causing genes. In 1996, mutations in WRN, which was shown to encode a new, putative member of the family of RecQ DNA helicases, were identified in four patients as the cause of WS. Ten years after the identification of WRN, what have we learned about its role in WS, and its contribution to normal aging?
Collapse
Affiliation(s)
- Fuki M Hisama
- Department of Neurology, Yale University, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
46
|
Sasakawa N, Fukui T, Waga S. Accumulation of FFA-1, the Xenopus homolog of Werner helicase, and DNA polymerase delta on chromatin in response to replication fork arrest. J Biochem 2006; 140:95-103. [PMID: 16798775 DOI: 10.1093/jb/mvj130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Werner syndrome is a genetic disorder characterized by premature aging and cancer-prone symptoms, and is caused by mutation of the WRN gene. WRN is a member of the RecQ helicase family and is thought to function in processes implicated in DNA replication and repair to maintain genome stability; however, its precise function is still unclear. We found that replication fork arrest markedly enhances chromatin binding of focus-forming activity 1 (FFA-1), a Xenopus WRN homolog, in Xenopus egg extracts. In addition to FFA-1, DNA polymerase delta (Poldelta) and replication protein A, but not DNA polymerase epsilon and proliferating cell nuclear antigen, accumulated increasingly on replication-arrested chromatin. Elevated accumulation of these proteins was dependent on formation of pre-replicative complexes (pre-RCs). Double-strand break (DSB) formation also enhanced chromatin binding of FFA-1, but not Poldelta, independently of pre-RC formation. In contrast to FFA-1, chromatin binding of Xenopus Bloom syndrome helicase (xBLM) only slightly increased after replication arrest or DSB formation. Thus, WRN-specific, distinct processes can be reproduced in the in vitro system in egg extracts, and this system is useful for biochemical analysis of WRN functions during DNA metabolism.
Collapse
Affiliation(s)
- Noriko Sasakawa
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043
| | | | | |
Collapse
|
47
|
Rytkönen AK, Vaara M, Nethanel T, Kaufmann G, Sormunen R, Läärä E, Nasheuer HP, Rahmeh A, Lee MYWT, Syväoja JE, Pospiech H. Distinctive activities of DNA polymerases during human DNA replication. FEBS J 2006; 273:2984-3001. [PMID: 16762037 DOI: 10.1111/j.1742-4658.2006.05310.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The contributions of human DNA polymerases (pols) alpha, delta and epsilon during S-phase progression were studied in order to elaborate how these enzymes co-ordinate their functions during nuclear DNA replication. Pol delta was three to four times more intensely UV cross-linked to nascent DNA in late compared with early S phase, whereas the cross-linking of pols alpha and epsilon remained nearly constant throughout the S phase. Consistently, the chromatin-bound fraction of pol delta, unlike pols alpha and epsilon, increased in the late S phase. Moreover, pol delta neutralizing antibodies inhibited replicative DNA synthesis most efficiently in late S-phase nuclei, whereas antibodies against pol epsilon were most potent in early S phase. Ultrastructural localization of the pols by immuno-electron microscopy revealed pol epsilon to localize predominantly to ring-shaped clusters at electron-dense regions of the nucleus, whereas pol delta was mainly dispersed on fibrous structures. Pol alpha and proliferating cell nuclear antigen displayed partial colocalization with pol delta and epsilon, despite the very limited colocalization of the latter two pols. These data are consistent with models where pols delta and epsilon pursue their functions at least partly independently during DNA replication.
Collapse
Affiliation(s)
- Anna K Rytkönen
- Biocenter Oulu and Department of Biochemistry, University of Oulu, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Huang S, Lee L, Hanson NB, Lenaerts C, Hoehn H, Poot M, Rubin CD, Chen DF, Yang CC, Juch H, Dorn T, Spiegel R, Oral EA, Abid M, Battisti C, Lucci-Cordisco E, Neri G, Steed EH, Kidd A, Isley W, Showalter D, Vittone JL, Konstantinow A, Ring J, Meyer P, Wenger SL, von Herbay A, Wollina U, Schuelke M, Huizenga CR, Leistritz DF, Martin GM, Mian IS, Oshima J. The spectrum of WRN mutations in Werner syndrome patients. Hum Mutat 2006; 27:558-67. [PMID: 16673358 PMCID: PMC1868417 DOI: 10.1002/humu.20337] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The International Registry of Werner syndrome (www.wernersyndrome.org) has been providing molecular diagnosis of the Werner syndrome (WS) for the past decade. The present communication summarizes, from among 99 WS subjects, the spectrum of 50 distinct mutations discovered by our group and by others since the WRN gene (also called RECQL2 or REQ3) was first cloned in 1996; 25 of these have not previously been published. All WRN mutations reported thus far have resulted in the elimination of the nuclear localization signal at the C-terminus of the protein, precluding functional interactions in the nucleus; thus, all could be classified as null mutations. We now report two new mutations in the N-terminus that result in instability of the WRN protein. Clinical data confirm that the most penetrant phenotype is bilateral ocular cataracts. Other cardinal signs were seen in more than 95% of the cases. The median age of death, previously reported to be in the range of 46-48 years, is 54 years. Lymphoblastoid cell lines (LCLs) have been cryopreserved from the majority of our index cases, including material from nuclear pedigrees. These, as well as inducible and complemented hTERT (catalytic subunit of human telomerase) immortalized skin fibroblast cell lines are available to qualified investigators.
Collapse
Affiliation(s)
- Shurong Huang
- Department of Pathology, University of Washington, Seattle, Washington 98195-7470, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Telomeres are composed of repetitive G-rich sequence and an abundance of associated proteins that together form a dynamic cap that protects chromosome ends and allows them to be distinguished from deleterious DSBs. Telomere-associated proteins also function to regulate telomerase, the ribonucleoprtotein responsible for addition of the species-specific terminal repeat sequence. Loss of telomere function is an important mechanism for the chromosome instability commonly found in cancer. Dysfunctional telomeres can result either from alterations in the telomere-associated proteins required for end-capping function, or from alterations that promote the gradual or sudden loss of sufficient repeat sequence necessary to maintain proper telomere structure. Regardless of the mechanism, loss of telomere function can result in sister chromatid fusion and prolonged breakage/fusion/bridge (B/F/B) cycles, leading to extensive DNA amplification and large terminal deletions. B/F/B cycles terminate primarily when the unstable chromosome acquires a new telomere, most often by translocation of the ends of other chromosomes, thereby providing a mechanism for transfer of instability from one chromosome to another. Thus, the loss of a single telomere can result in on-going instability, affect multiple chromosomes, and generate many of the types of rearrangements commonly associated with human cancer.
Collapse
Affiliation(s)
- Susan M Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
50
|
Yu B, Mitchell GA, Richter A. Nucleolar localization of cirhin, the protein mutated in North American Indian childhood cirrhosis. Exp Cell Res 2005; 311:218-28. [PMID: 16225863 DOI: 10.1016/j.yexcr.2005.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 08/22/2005] [Accepted: 08/23/2005] [Indexed: 10/25/2022]
Abstract
Cirhin (NP_116219), the product of the CIRH1A gene is mutated in North American Indian childhood cirrhosis (NAIC/CIRH1A, OMIM 604901), a severe autosomal recessive intrahepatic cholestasis. It is a 686-amino-acid WD40-repeat containing protein of unknown function that is predicted to contain multiple targeting signals, including an N-terminal mitochondrial targeting signal, a C-terminal monopartite nuclear localization signal (NLS) and a bipartite nuclear localization signal (BNLS). We performed the direct determination of subcellular localization of cirhin as a crucial first step in unraveling its biological function. Using EGFP and His-tagged cirhin fusion proteins expressed in HeLa and HepG2, cells we show that cirhin is a nucleolar protein and that the R565W mutation, for which all NAIC patients are homozygous, has no effect on subcellular localization. Cirhin has an active C-terminal monopartite nuclear localization signal (NLS) and a unique nucleolar localization signal (NrLS) between residues 315 and 432. The nucleolus is not known to be important specifically for intrahepatic cholestasis. These observations provide a new dimension in the study of hereditary cholestasis.
Collapse
Affiliation(s)
- Bin Yu
- Service de Génétique médicale, Centre de recherche, Hôpital Sainte-Justine, Université de Montréal, 3175 Côte Sainte-Catherine, Québec, Canada H3T1C5
| | | | | |
Collapse
|