1
|
Wei X, Li Y, Jiang T, Luo P, Dai Y, Wang Q, Xu M, Yan J, Li Y, Gao J, Liu L, Zhang C, Liu Y. Terazosin attenuates abdominal aortic aneurysm formation by downregulating Peg3 expression to inhibit vascular smooth muscle cell apoptosis and senescence. Eur J Pharmacol 2024; 968:176397. [PMID: 38331337 DOI: 10.1016/j.ejphar.2024.176397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Abdominal aortic aneurysm (AAA), a vascular degenerative disease, is a potentially life-threatening condition characterised by the loss of vascular smooth muscle cells (VSMCs), degradation of extracellular matrix (ECM), inflammation, and oxidative stress. Despite the severity of AAA, effective drugs for treatment are scarce. At low doses, terazosin (TZ) exerts antiapoptotic and anti-inflammatory effects in several diseases, but its potential to protect against AAA remains unexplored. Herein, we investigated the effects of TZ in two AAA animal models: Angiotensin II (Ang II) infusion in Apoe-/- mice and calcium chloride application in C57BL/6J mice. Mice were orally administered with TZ (100 or 1000 μg/kg/day). The in vivo results indicated that low-dose TZ alleviated AAA formation in both models. Low-dose TZ significantly reduced aortic pulse wave velocity without exerting an apparent antihypertensive effect in the Ang II-induced AAA model. Paternally expressed gene 3 (Peg3) was identified via RNA sequencing as a novel TZ target. PEG3 expression was significantly elevated in both mouse and human AAA tissues. TZ suppressed PEG3 expression and reduced the abundance of matrix metalloproteinases (MMP2/MMP9) in the tunica media. Functional experiments and molecular analyses revealed that TZ (10 nM) treatment and Peg3 knockdown effectively prevented Ang II-induced VSMC senescence and apoptosis in vitro. Thus, Peg3, a novel target of TZ, mediates inflammation-induced VSMC apoptosis and senescence. Low-dose TZ downregulates Peg3 expression to attenuate AAA formation and ECM degradation, suggesting a promising therapeutic strategy for AAA.
Collapse
Affiliation(s)
- Xiuxian Wei
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi Li
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tao Jiang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pengcheng Luo
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yue Dai
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Wang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mulin Xu
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of General Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinhua Yan
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yongjun Li
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No. 1 DaHua Road, Dong Dan, Beijing, 100730, China
| | - Jingwen Gao
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Lei Liu
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Capital Medical University, Youanmen, Beijing, 100069, China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Liu
- Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
2
|
Qiu T, Ding Y, Qin J, Ren D, Xie M, Qian Q, Wang Y, Ma L, Jing A, Yang J, Ma S, Wang X, Wang W, Ji J, Li G. Epigenetic reactivation of PEG3 by EZH2 inhibitors suppresses renal clear cell carcinoma progress. Cell Signal 2023; 107:110662. [PMID: 37001595 DOI: 10.1016/j.cellsig.2023.110662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/01/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023]
Abstract
PEG3 is a paternally imprinted gene located on chromosome 19q13.4 and one of the most common low-expression genes in human ovarian cancer. PEG3 plays an important role in p53-related cell death. However, whether PEG3 plays a role in renal clear cell carcinoma (ccRCC) remains unclear. Here, we found that PEG3 was epigenetic inactivated and played a tumor suppressor role in ccRCC. Overexpression of PEG3 inhibited ccRCC cell proliferation and colony formation, while removal of PEG3 significantly promoted cell proliferation in vitro and tumor formation in nude mice in vivo. EZH2-mediated H3K27me3 at the PEG3 promoter suppressed PEG3 expression. EZH2 specific inhibitors promote PEG3 transcriptional expression through the transition from H3K27me3 to H3K27ac at the PEG3 promoter region. Depletion of PEG3 inhibited the activation of the p53 signaling pathway, resulting in the resistance of ccRCC to EZH2 inhibitors treatment. Thus, our data show that EZH2-mediated epigenetic inactivation of PEG3 promotes the progress of ccRCC, and reactivation of PEG3 may be a promising strategy for ccRCC.
Collapse
Affiliation(s)
- Teng Qiu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yuanyuan Ding
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jingting Qin
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Dexu Ren
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mengru Xie
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qilan Qian
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yasong Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Ling Ma
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Aixin Jing
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiayan Yang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shaojie Ma
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiujun Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Weiling Wang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jing Ji
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Guanchu Li
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning Province, PR China
| |
Collapse
|
3
|
Lawless L, Xie L, Zhang K. The inter- and multi- generational epigenetic alterations induced by maternal cadmium exposure. Front Cell Dev Biol 2023; 11:1148906. [PMID: 37152287 PMCID: PMC10157395 DOI: 10.3389/fcell.2023.1148906] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
Exposure to cadmium during pregnancy, from environmental or lifestyle factors, has been shown to have detrimental fetal and placental developmental effects, along with negatively impacting maternal health during gestation. Additionally, prenatal cadmium exposure places the offspring at risk for developing diseases in infancy, adolescence, and adulthood. Although given much attention, the underlying mechanisms of cadmium-induced teratogenicity and disease development remain largely unknown. Epigenetic changes in DNA, RNA and protein modifications have been observed during cadmium exposure, which implies a scientific premise as a conceivable mode of cadmium toxicity for developmental origins of health and disease (DOHaD). This review aims to examine the literature and provide a comprehensive overview of epigenetic alterations induced by prenatal cadmium exposure, within the developing fetus and placenta, and the continued effects observed in childhood and across generations.
Collapse
Affiliation(s)
- Lauren Lawless
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX, United States
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Ke Zhang
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX, United States
- Department of Nutrition, Texas A&M University, College Station, TX, United States
- *Correspondence: Ke Zhang,
| |
Collapse
|
4
|
Fang W, Xia Y. LncRNA HLA-F-AS1 attenuates the ovarian cancer development by targeting miR-21-3p/PEG3 axis. Anticancer Drugs 2022; 33:671-681. [PMID: 35276697 DOI: 10.1097/cad.0000000000001288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dysregulated long noncoding RNA (lncRNA) HLA-F-AS1 is depicted in numerous cancers. However, its function in ovarian cancer has yet to be clarified. LncRNA HLA-F-AS1, miR-21-3p, and PEG3 expressions in ovarian cancer tissues and cells were measured via reverse transcription quantitative PCR. Scratch and CCK8 assays were performed to evaluate the cells' migratory and proliferative abilities, respectively. To assess the expressions of the apoptosis-related proteins Bax and Bcl-2, Western blotting was conducted. Anti-AGO2 RNA immunoprecipitation (RIP) and dual-luciferase reporter assays were executed to study lncRNA HLA-F-AS1's and PEG3 3'UTR's interactions to miR-21-3p. Finally, the tumor growth in vivo was inspected by performing a xenograft experiment. Among the ovarian cancer tissues and cells, the expressions of PEG3 and lncRNA HLA-F-AS1 were depleted while an elevated miR-21-3p expression was observed. HLA-F-AS1's overexpression attenuated ovarian cancer development in vivo and in vitro . MiR-21-3p targeted PEG3 3'UTR while HLA-F-AS1 targeted miR-21-3p. HLA-F-AS1 overexpression mitigated the enhancement brought about by miR-21-3p mimic on ovarian cancer cells' proliferation and migration. Meanwhile, PEG3 overexpression abrogated miR-21-3p mimic's function as an oncogene in the progression of ovarian cancer. Ovarian cancer development is suppressed when lncRNA HLA-F-AS1 targets the miR-21-3p/PEG3 axis. This may possibly be a novel therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Wenhong Fang
- Department of Gynecology and Obstetrics, Wuhan No.6 Hospital, Affiliated Hospital of Jianghan University, Wuhan, Hubei, China
| | | |
Collapse
|
5
|
Hypoxia promotes a perinatal-like progenitor state in the adult murine epicardium. Sci Rep 2022; 12:9250. [PMID: 35661120 PMCID: PMC9166725 DOI: 10.1038/s41598-022-13107-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 05/20/2022] [Indexed: 11/22/2022] Open
Abstract
The epicardium is a reservoir of progenitors that give rise to coronary vasculature and stroma during development and mediates cardiac vascular repair. However, its role as a source of progenitors in the adult mammalian heart remains unclear due to lack of clear lineage markers and single-cell culture systems to elucidate epicardial progeny cell fate. We found that in vivo exposure of mice to physiological hypoxia induced adult epicardial cells to re-enter the cell cycle and to express a subset of developmental genes. Multiplex single cell transcriptional profiling revealed a lineage relationship between epicardial cells and smooth muscle, stromal cells, as well as cells with an endothelial-like fate. We found that physiological hypoxia promoted a perinatal-like progenitor state in the adult murine epicardium. In vitro clonal analyses of purified epicardial cells showed that cell growth and subsequent differentiation is dependent upon hypoxia, and that resident epicardial cells retain progenitor identity in the adult mammalian heart with self-renewal and multilineage differentiation potential. These results point to a source of progenitor cells in the adult heart that can be stimulated in vivo and provide an in vitro model for further studies.
Collapse
|
6
|
Dai F, Guo M, Shao Y, Li C. Vibrio splendidus flagellin C binds tropomodulin to induce p38 MAPK-mediated p53-dependent coelomocyte apoptosis in Echinodermata. J Biol Chem 2022; 298:102091. [PMID: 35654141 PMCID: PMC9249833 DOI: 10.1016/j.jbc.2022.102091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 12/27/2022] Open
Abstract
As a typical pathogen-associated molecular pattern, bacterial flagellin can bind Toll-like receptor 5 and the intracellular NAIP5 receptor component of the NLRC4 inflammasome to induce immune responses in mammals. However, these flagellin receptors are generally poorly understood in lower animal species. In this study, we found that the isolated flagellum of Vibrio splendidus AJ01 destroyed the integrity of the tissue structure of coelomocytes and promoted apoptosis in the sea cucumber Apostichopus japonicus. To further investigate the molecular mechanism, the novel intracellular LRR domain-containing protein tropomodulin (AjTmod) was identified as a protein that interacts with flagellin C (FliC) with a dissociation constant (Kd) of 0.0086 ± 0.33 μM by microscale thermophoresis assay. We show that knockdown of AjTmod also depressed FliC-induced apoptosis of coelomocytes. Further functional analysis with different inhibitor treatments revealed that the interaction between AjTmod and FliC could specifically activate p38 MAPK, but not JNK or ERK MAP kinases. We demonstrate that the transcription factor p38 is then translocated into the nucleus, where it mediates the expression of p53 to induce coelomocyte apoptosis. Our findings provide the first evidence that intracellular AjTmod serves as a novel receptor of FliC and mediates p53-dependent coelomocyte apoptosis by activating the p38 MAPK signaling pathway in Echinodermata.
Collapse
Affiliation(s)
- Fa Dai
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, China
| | - Ming Guo
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, China
| | - Yina Shao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| |
Collapse
|
7
|
Wang J, Zhao H, Song W, Gu M, Liu Y, Liu B, Zhan H. Gold Nanoparticle-Decorated Drug Nanocrystals for Enhancing Anticancer Efficacy and Reversing Drug Resistance Through Chemo-/Photothermal Therapy. Mol Pharm 2022; 19:2518-2534. [PMID: 35549267 DOI: 10.1021/acs.molpharmaceut.2c00150] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Limited chemotherapeutic efficiency, drug resistance, and side effects are primary obstacles for cancer treatment. The development of co-delivery systems with synergistic treatment modes should be a promising strategy. Here, we fabricated a multifunctionalized nanocarrier with a combination of chemotherapeutic agents and gold nanoparticles (AuNPs), which could integrate chemo-photothermal therapy, thus enhancing overall anticancer efficacy, sensitizing drug-resistant cancer cells, and diminishing cancer stem cells (CSCs). To be specific, camptothecin nanocrystals (CPT NCs) were prepared as a platform, on the surface of which AuNPs were decorated and a hyaluronic acid layer acted as capping, stabilizing, targeting, and hydrophilic agents for CPT NCs, and reducing agents for AuNPs, providing a bridge connecting AuNPs to CPT. These AuNP-decorated CPT NCs exhibited good physico-chemical properties such as optimal sizes, payload, stability, and photothermal efficiency. Compared to other CPT formulations, they displayed considerably improved biocompatibility, selectivity, intracellular uptake, cytotoxicity, apoptosis induction activity, Pgp inhibitory capability, and anti-CSC activity, owing to a synergistic/cooperative effect from AuNPs, CPT, near-infrared treatment, pH/photothermal-triggered drug release, and nanoscaled structure. A mitochondrial-mediated signaling pathway is the underlying mechanism for cytotoxic and apoptotic effects from AuNP-decorated CPT NCs, in terms of mitochondrial dysfunction, intensified oxidative stress, DNA fragmentation, caspase 3 activation, upregulation of proapoptotic genes such as p53, Bax, and caspase 3, and lower levels of antiapoptotic Bcl-2.
Collapse
Affiliation(s)
- Jihui Wang
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China.,School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, Guangzhou Province, P. R. China
| | - He Zhao
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China
| | - Wenjing Song
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China
| | - Mingyang Gu
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China
| | - Yujia Liu
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China
| | - Bingnan Liu
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China
| | - Honglei Zhan
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China
| |
Collapse
|
8
|
Prognostic value of Dickkopf-1 and ß-catenin expression according to the antitumor immunity of CD8-positive tumor-infiltrating lymphocytes in biliary tract cancer. Sci Rep 2022; 12:1931. [PMID: 35121803 PMCID: PMC8816896 DOI: 10.1038/s41598-022-05914-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 01/20/2022] [Indexed: 12/02/2022] Open
Abstract
The role of β-catenin and Dickkopf-1 (DKK1) is dependent on the specific immunobiology of T cell inflammation in biliary tract cancer (BTC). We aimed to analyze the role of DKK1 or β-catenin as a prognostic factor in BTC, and determine the clinical associations of ß-catenin and DKK1 with CD8+ tumor-infiltrating lymphocytes (TIL). We used data from The Cancer Genome Atlas Research Network and the clinicopathological data of 145 patients with BTC who had undergone primary radical resection between 2006 and 2016. CD8+ TIL expression was a significant predictor of favorable overall survival (OS) and relapse-free survival (RFS) (median OS, 34.9 months in high-TIL, 16.7 months in low-TIL, P < 0.0001 respectively; median RFS, 27.1 months in high-TIL, 10.0 months in low-TIL, P < 0.0001 respectively). In the high-CD8+ TIL BTC group, the tumor expression of β-catenin and DKK1 had a significant negative impact on either OS or RFS. In the low-TIL BTC group, there were no differences according to ß-catenin and DKK1 expression. Cox regression multivariate analysis demonstrated that CD8+ TIL and β-catenin retained significant association with OS. Among patients with resected BTC, the β-catenin and DKK1 protein and high CD8+ TIL levels were associated with poor and good clinical outcomes, respectively.
Collapse
|
9
|
Tanaka K, Besson V, Rivagorda M, Oury F, Marazzi G, Sassoon DA. Paternally expressed gene 3 (Pw1/Peg3) promotes sexual dimorphism in metabolism and behavior. PLoS Genet 2022; 18:e1010003. [PMID: 35025875 PMCID: PMC8791484 DOI: 10.1371/journal.pgen.1010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 01/26/2022] [Accepted: 12/20/2021] [Indexed: 01/06/2023] Open
Abstract
The paternally expressed gene 3 (Pw1/Peg3) is a mammalian-specific parentally imprinted gene expressed in stem/progenitor cells of the brain and endocrine tissues. Here, we compared phenotypic characteristics in Pw1/Peg3 deficient male and female mice. Our findings indicate that Pw1/Peg3 is a key player for the determination of sexual dimorphism in metabolism and behavior. Mice carrying a paternally inherited Pw1/Peg3 mutant allele manifested postnatal deficits in GH/IGF dependent growth before weaning, sex steroid dependent masculinization during puberty, and insulin dependent fat accumulation in adulthood. As a result, Pw1/Peg3 deficient mice develop a sex-dependent global shift of body metabolism towards accelerated adiposity, diabetic-like insulin resistance, and fatty liver. Furthermore, Pw1/Peg3 deficient males displayed reduced social dominance and competitiveness concomitant with alterations in the vasopressinergic architecture in the brain. This study demonstrates that Pw1/Peg3 provides an epigenetic context that promotes male-specific characteristics through sex steroid pathways during postnatal development. Pw1/Peg3 is under parental specific epigenetic regulation. We propose that Pw1/Peg3 confers a selective advantage in mammals by regulating sexual dimorphism. To address this question, we examined the consequences of Pw1/Peg3 loss of function in mice in an age- and sex-dependent context and found that Pw1/Peg3 mutants display reduced sexual dimorphism in growth, metabolism and behaviors. Our findings support the intralocus sexual conflict model of genomic imprinting where it contributes in sexual differentiation. Furthermore, our observations provide a unifying role of sex steroid signaling as a common property of Pw1/Peg3 expressing stem/progenitor cells and differentiated endocrine cells, both of which remain proliferative in response to gonadal hormones in adult life.
Collapse
Affiliation(s)
- Karo Tanaka
- Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition (ICAN), INSERM U1166, University of Pierre and Marie Curie Paris VI, Paris, France
| | - Vanessa Besson
- Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition (ICAN), INSERM U1166, University of Pierre and Marie Curie Paris VI, Paris, France
| | - Manon Rivagorda
- Hormonal Regulation of Brain Development and Functions, INSERM U1151, Institut Necker Enfants Malades, Paris, France
| | - Franck Oury
- Hormonal Regulation of Brain Development and Functions, INSERM U1151, Institut Necker Enfants Malades, Paris, France
| | - Giovanna Marazzi
- Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition (ICAN), INSERM U1166, University of Pierre and Marie Curie Paris VI, Paris, France
| | - David A. Sassoon
- Stem Cells and Regenerative Medicine, Institute of Cardiometabolism and Nutrition (ICAN), INSERM U1166, University of Pierre and Marie Curie Paris VI, Paris, France
- * E-mail:
| |
Collapse
|
10
|
Paterniti I, Scuderi SA, Casili G, Lanza M, Mare M, Giuffrida R, Colarossi C, Portelli M, Cuzzocrea S, Esposito E. Poly (ADP-Ribose) Polymerase Inhibitor, ABT888, Improved Cisplatin Effect in Human Oral Cell Carcinoma. Biomedicines 2021; 9:biomedicines9070771. [PMID: 34356835 PMCID: PMC8301366 DOI: 10.3390/biomedicines9070771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/16/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
Cisplatin is one of the chemotherapeutic drugs used for the management of oral carcinoma, in which combined therapies are estimated to exert superior therapeutic efficacy compared with monotherapy. It is known that poly(ADP-ribosyl)ation is implicated in a multiplicity of cellular activities, such as DNA repair and cell death. Based on these, PARP inhibitors are used for the treatment of cancers; however, the capacity of PARP inhibitors associated to anti-cancer drugs have not been completely assessed in oral carcinoma. Here, we evaluated the effects of PARPi veliparib (ABT888) in combination with cisplatin on the survival of three human oral cancer cell lines HSC-2, Ca9-22 and CAL27 and we observed the effects of ABT888 alone or in combination with cisplatin on apoptosis and DNA damage repair mechanism. The results obtained showed that ABT888 induces a cytotoxicity effect on cell viability increasing the apoptotic pathway as well as DNA strand break; moreover, our results displayed the effects with cisplatin in a dose-dependent manner. Therefore, our results indicate PARP inhibitors as adjuvants for therapeutic strategy of oral cancer.
Collapse
Affiliation(s)
- Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, ME, Italy; (I.P.); (S.A.S.); (G.C.); (M.L.); (S.C.)
| | - Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, ME, Italy; (I.P.); (S.A.S.); (G.C.); (M.L.); (S.C.)
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, ME, Italy; (I.P.); (S.A.S.); (G.C.); (M.L.); (S.C.)
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, ME, Italy; (I.P.); (S.A.S.); (G.C.); (M.L.); (S.C.)
| | - Marzia Mare
- Istituto Oncologico del Mediterraneo, via Penninazzo 7, 95029 Viagrande, CT, Italy; (M.M.); (C.C.)
- IOM Ricerca Srl, via Penninazzo 11, 95029 Viagrande, CT, Italy;
| | | | - Cristina Colarossi
- Istituto Oncologico del Mediterraneo, via Penninazzo 7, 95029 Viagrande, CT, Italy; (M.M.); (C.C.)
| | - Marco Portelli
- Department of Biomedical and Dental Science, Morphological and Functional Images, University of Messina, via Consolare Valeria, 98125 Messina, ME, Italy;
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, ME, Italy; (I.P.); (S.A.S.); (G.C.); (M.L.); (S.C.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, ME, Italy; (I.P.); (S.A.S.); (G.C.); (M.L.); (S.C.)
- Correspondence: ; Tel.: +39-090-676-5208
| |
Collapse
|
11
|
Bosire C, Vidal AC, Smith JS, Jima D, Huang Z, Skaar D, Valea F, Bentley R, Gradison M, Yarnall KSH, Ford A, Overcash F, Murphy SK, Hoyo C. Association between PEG3 DNA methylation and high-grade cervical intraepithelial neoplasia. Infect Agent Cancer 2021; 16:42. [PMID: 34120615 PMCID: PMC8201933 DOI: 10.1186/s13027-021-00382-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 06/02/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Epigenetic mechanisms are hypothesized to contribute substantially to the progression of cervical intraepithelial neoplasia (CIN) to cervical cancer, although empirical data are limited. METHODS Women (n = 419) were enrolled at colposcopic evaluation at Duke Medical Center in Durham, North Carolina. Human papillomavirus (HPV) was genotyped by HPV linear array and CIN grade was ascertained by biopsy pathologic review. DNA methylation was measured at differentially methylated regions (DMRs) regulating genomic imprinting of the IGF2/H19, IGF2AS, MESTIT1/MEST, MEG3, PLAGL1/HYMAI, KvDMR and PEG10, PEG3 imprinted domains, using Sequenom-EpiTYPER assays. Logistic regression models were used to evaluate the associations between HPV infection, DMR methylation and CIN risk overall and by race. RESULTS Of the 419 participants, 20 had CIN3+, 52 had CIN2, and 347 had ≤ CIN1 (CIN1 and negative histology). The median participant age was 28.6 (IQR:11.6) and 40% were African American. Overall, we found no statistically significant association between altered methylation in selected DMRs and CIN2+ compared to ≤CIN1. Similarly, there was no significant association between DMR methylation and CIN3+ compared to ≤CIN2. Restricting the outcome to CIN2+ cases that were HR-HPV positive and p16 staining positive, we found a significant association with PEG3 DMR methylation (OR: 1.56 95% CI: 1.03-2.36). CONCLUSIONS While the small number of high-grade CIN cases limit inferences, our findings suggest an association between altered DNA methylation at regulatory regions of PEG3 and high grade CIN in high-risk HPV positive cases.
Collapse
Affiliation(s)
- Claire Bosire
- Department of Health Behavior, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | - Adriana C Vidal
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jennifer S Smith
- Department of Epidemiology, Gillings School of Global Public Health and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Dereje Jima
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Zhiqing Huang
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Duke University School of Medicine, Durham, NC, USA
| | - David Skaar
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Fidel Valea
- Department of Obstetrics and Gynecology, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Rex Bentley
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Margaret Gradison
- Department of Family Medicine and Community Health, Duke University School of Medicine, Durham, NC, USA
| | - Kimberly S H Yarnall
- Department of Family Medicine and Community Health, Duke University School of Medicine, Durham, NC, USA
| | - Anne Ford
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Francine Overcash
- Department of Family Medicine and Community Health, Duke University School of Medicine, Durham, NC, USA
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Cathrine Hoyo
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
12
|
Neill T, Kapoor A, Xie C, Buraschi S, Iozzo RV. A functional outside-in signaling network of proteoglycans and matrix molecules regulating autophagy. Matrix Biol 2021; 100-101:118-149. [PMID: 33838253 PMCID: PMC8355044 DOI: 10.1016/j.matbio.2021.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
Proteoglycans and selected extracellular matrix constituents are emerging as intrinsic and critical regulators of evolutionarily conversed, intracellular catabolic pathways. Often, these secreted molecules evoke sustained autophagy in a variety of cell types, tissues, and model systems. The unique properties of proteoglycans have ushered in a paradigmatic shift to broaden our understanding of matrix-mediated signaling cascades. The dynamic cellular pathway controlling autophagy is now linked to an equally dynamic and fluid signaling network embedded in a complex meshwork of matrix molecules. A rapidly emerging field of research encompasses multiple matrix-derived candidates, representing a menagerie of soluble matrix constituents including decorin, biglycan, endorepellin, endostatin, collagen VI and plasminogen kringle 5. These matrix constituents are pro-autophagic and simultaneously anti-angiogenic. In contrast, perlecan, laminin α2 chain, and lumican have anti-autophagic functions. Mechanistically, each matrix constituent linked to intracellular catabolic events engages a specific cell surface receptor that often converges on a common core of the autophagic machinery including AMPK, Peg3 and Beclin 1. We consider this matrix-evoked autophagy as non-canonical given that it occurs in an allosteric manner and is independent of nutrient availability or prevailing bioenergetics control. We propose that matrix-regulated autophagy is an important outside-in signaling mechanism for proper tissue homeostasis that could be therapeutically leveraged to combat a variety of diseases.
Collapse
Affiliation(s)
- Thomas Neill
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | - Aastha Kapoor
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Christopher Xie
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Simone Buraschi
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
13
|
Abstract
Peg3 (Paternally expressed gene 3) is an imprinted gene encoding a DNA-binding protein that is a well-known transcriptional repressor. Previous studies have shown that the mutant phenotypes of Peg3 are associated with the over-expression of genes involved in lipid metabolism. In the current study, we investigated four potential downstream genes of Peg3, which were identified through ChIP-seq data: Acly, Fasn, Idh1, and Hmgcr. In vivo binding of PEG3 to the promoter region of these key genes involved in lipogenesis was subsequently confirmed through individual ChIP experiments. We observed the opposite response of Acly expression levels against the variable gene dosages of Peg3, involving 0x, 1x, and 2x Peg3. This suggests the transcriptional repressor role of Peg3 in the expression levels of Acly. Another set of analyses showed a sex-biased response in the expression levels of Acly, Fasn, and Idh1 against 0x Peg3 with higher levels in female and lower levels in male mammary glands. These results overall highlight that Peg3 may be involved in regulating the expression levels of several key genes in adipogenesis.
Collapse
Affiliation(s)
- Subash Ghimire
- Department of Biological Science, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Joomyeong Kim
- Department of Biological Science, Louisiana State University, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
14
|
Efficient manipulation of gene dosage in human iPSCs using CRISPR/Cas9 nickases. Commun Biol 2021; 4:195. [PMID: 33580208 PMCID: PMC7881037 DOI: 10.1038/s42003-021-01722-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 01/15/2021] [Indexed: 12/22/2022] Open
Abstract
The dysregulation of gene dosage due to duplication or haploinsufficiency is a major cause of autosomal dominant diseases such as Alzheimer’s disease. However, there is currently no rapid and efficient method for manipulating gene dosage in a human model system such as human induced pluripotent stem cells (iPSCs). Here, we demonstrate a simple and precise method to simultaneously generate iPSC lines with different gene dosages using paired Cas9 nickases. We first generate a Cas9 nickase variant with broader protospacer-adjacent motif specificity to expand the targetability of double-nicking–mediated genome editing. As a proof-of-concept study, we examine the gene dosage effects on an Alzheimer’s disease patient-derived iPSC line that carries three copies of APP (amyloid precursor protein). This method enables the rapid and simultaneous generation of iPSC lines with monoallelic, biallelic, or triallelic knockout of APP. The cortical neurons generated from isogenically corrected iPSCs exhibit gene dosage-dependent correction of disease-associated phenotypes of amyloid-beta secretion and Tau hyperphosphorylation. Thus, the rapid generation of iPSCs with different gene dosages using our method described herein can be a useful model system for investigating disease mechanisms and therapeutic development. Ye et al demonstrate a simple and precise method to simultaneously generate iPSC lines with different gene dosages using paired Cas9 nickases. As proof-of-concept they apply this method to examining amyloid precursor protein gene dosage effects in an Alzheimer’s disease patient-derived iPSC line. Their method could potentially advance what we know about disease mechanisms and assist with gene therapy development.
Collapse
|
15
|
Zhang Z, Wen H, Peng B, Weng J, Zeng F. Downregulated microRNA-129-5p by Long Non-coding RNA NEAT1 Upregulates PEG3 Expression to Aggravate Non-alcoholic Steatohepatitis. Front Genet 2021; 11:563265. [PMID: 33574830 PMCID: PMC7870803 DOI: 10.3389/fgene.2020.563265] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/19/2020] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have recently emerged as inflammation-associated biological molecules with a specific role in the progression of liver fibrosis conditions including non-alcoholic steatohepatitis (NASH). The aim of this study was to elucidate the effects of lncRNA nuclear enriched abundant transcript 1 (NEAT1), microRNA-129-5p (miR-129-5p), and paternally expressed gene 3 (PEG3) on the biological activities of hepatic stellate cells (HSCs) subjected to NASH. First, microarray-based analysis revealed upregulated PEG3 in NASH. Liver tissues from mice fed a methionine–choline-deficient (MCD) diet exhibited increased expression of NEAT1 and PEG3 along with lower miR-129-5p expression. A series of in vitro and in vivo assays were then performed on HSCs after transfection with shPEG3, miR-129-5p mimic, or treatment with pyrrolidine dithiocarbamate (PDTC), an inhibitor of the nuclear factor-kappa B (NF-κB) signaling pathway. Results confirmed the alleviated fibrosis by restoring miR-129-5p, while depleting PEG3 or NEAT1, as evidenced by the inactivation of HSCs. To sum up, NEAT1 can bind specifically to miR-129-5p and consequently regulate miR-129-5p and PEG3 expression in relation to the HSC activation occurring in NASH. Thus, NEAT1-targeted inhibition against miR-129-5p presents a promising therapeutic strategy for the treatment of NASH.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Huiqing Wen
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Bangjian Peng
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jun Weng
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fanhong Zeng
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Boskabadi M, Saeedi M, Akbari J, Morteza-Semnani K, Hashemi SMH, Babaei A. Topical Gel of Vitamin A Solid Lipid Nanoparticles: A Hopeful Promise as a Dermal Delivery System. Adv Pharm Bull 2020; 11:663-674. [PMID: 34888213 PMCID: PMC8642790 DOI: 10.34172/apb.2021.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/02/2020] [Accepted: 10/03/2020] [Indexed: 01/10/2023] Open
Abstract
Purpose: The Objective of the present investigation was to enhance the skin delivery of vitamin A (Vit A) via producing solid lipid nanoparticles (SLNs) through ultrasonication technique. Methods: For achieving optimal skin delivery, impacts of two surfactants ratio of Tween80:Span80 on nanoparticles (NPs) features and the respective functions were examined. Powder X-ray diffractometer (PXRD), photon correlation spectroscopy, attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC) were applied for characterizing the solid state of Vit A in the SLN. Results: Results showed that size of the NPs is usually enhanced by adding co-emulsifier (Span80). Notably, minimum NPs size (64.85±4.259 nm) was achieved while the hydrophilic-lipophilic balance (HLB) of the binary surfactants was 12.08, close to HLB of beeswax (HLB=12) as lipid matrix. Also, maximum entrapment efficiency (66.01±8.670%) was observed in the formulation. DSC thermogram indicated an amorphous form of Vit A in SLN. ATR-FTIR spectra of Vit A-SLN illustrated that prominent functional groups are found in the formulations that might be a sign of acceptable entrapment of Vit A in a lipid matrix. Moreover, ATR-FTIR studies showed no chemical interactions between Vit A and excipients. Skin irritation test proved the non-irritancy of Vit A-SLN2, when applied to the dorsal region of Wistar rats. Finally, any cellular toxicity was not seen for NPs. Conclusion: It was found that the procured Vit A-SLNs could be utilized as potent carriers for the dermal delivery of Vit A.
Collapse
Affiliation(s)
- Mahshid Boskabadi
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Majid Saeedi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Jafar Akbari
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Katayoun Morteza-Semnani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
17
|
Zheng Q, Sun J, Li W, Li S, Zhang K. Cordycepin induces apoptosis in human tongue cancer cells in vitro and has antitumor effects in vivo. Arch Oral Biol 2020; 118:104846. [PMID: 32730909 DOI: 10.1016/j.archoralbio.2020.104846] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 01/05/2023]
Abstract
OBJECTIVE This study was designed to explore the ability of cordycepin to disrupt human tongue cancer cell growth, and to assess the mechanistic basis for such anti-cancer activity. METHODS CAL-27 human tongue cancer cells were treated with cordycepin prior to analysis via CCK-8 assay in order to assess their proliferation. In addition, cell cycle progression and apoptotic death in these cells were measured via flow cytometry, while the expression of apoptosis-associated genes and proteins (caspase-3, caspase-9, caspase-12, Bcl-2, and Bax) were measured via real-time PCR and western blotting. We further measured the intracellular production of reactive oxygen species (ROS) and used a murine xenograft model system to explore the in vivo anti-tumor activity of cordycepin. RESULTS Cordycepin was able to significantly suppress the proliferation of CAL-27 cells in a dose-dependent fashion (IC50 = 40 μg/mL at 24 h). Cordycepin further induced Bax, caspase-3, caspase-9, and caspase-12 upregulation at the mRNA and protein levels while simultaneously downregulating anti-apoptotic Bcl-2 expression. CAL-27 cells treated using cordycepin also exhibited elevated levels of intracellular ROS. Importantly, cordycepin was able to effectively suppress tongue cancer tumor growth in a murine xenograft model system and similar mRNA and protein levels were observed in vivo. CONCLUSIONS Cordycepin can inhibit human tongue cancer cell growth and can drive their apoptotic death via the mitochondrial pathway. In addition, cordycepin can suppress tongue cancer growth in vivo in treated mice.
Collapse
Affiliation(s)
- Qingwei Zheng
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, 233030, China
| | - Jing Sun
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, 233030, China
| | - Wenli Li
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, 233030, China
| | - Shuangnan Li
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, 233030, China
| | - Kai Zhang
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China.
| |
Collapse
|
18
|
Zhou Q, Meng QR, Meng TG, He QL, Zhao ZH, Li QN, Lei WL, Liu SZ, Schatten H, Wang ZB, Sun QY. Deletion of BAF250a affects oocyte epigenetic modifications and embryonic development. Mol Reprod Dev 2020; 87:550-564. [PMID: 32215983 DOI: 10.1002/mrd.23339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/11/2020] [Indexed: 11/10/2022]
Abstract
BRG1-associated factor 250a (BAF250a) is a component of the SWI/SNF adenosine triphosphate-dependent chromatin remodeling complex, which has been shown to control chromatin structure and transcription. BAF250a was reported to be a key component of the gene regulatory machinery in embryonic stem cells controlling self-renewal, differentiation, and cell lineage decisions. Here we constructed Baf250aF/F ;Gdf9-cre (Baf250aCKO ) mice to specifically delete BAF250a in oocytes to investigate the role of maternal BAF250a in female germ cells and embryo development. Our results showed that BAF250a deletion did not affect folliculogenesis, ovulation, and fertilization, but it caused late embryonic death. RNA sequencing analysis showed that the expression of genes involved in cell proliferation and differentiation, tissue morphogenesis, histone modification, and nucleosome remodeling were perturbed in Baf250aCKO MII oocytes. We showed that covalent histone modifications such as H3K27me3 and H3K27ac were also significantly affected in oocytes, which may reduce oocyte quality and lead to birth defects. In addition, the DNA methylation level of Igf2r, Snrpn, and Peg3 differentially methylated regions was decreased in Baf250aCKO oocytes. Quantitative real-time polymerase chain reaction analysis showed that the relative messenger RNA (mRNA) expression levels of Igf2r and Snrpn were significantly increased. The mRNA expression level of Dnmt1, Dnmt3a, Dnmt3l, and Uhrf1 was decreased, and the protein expression in these genes was also reduced, which might be the cause for impaired imprinting establishment. In conclusion, our results demonstrate that BAF250a plays an important role in oocyte transcription regulation, epigenetic modifications, and embryo development.
Collapse
Affiliation(s)
- Qian Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Ren Meng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qi-Long He
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Zheng-Hui Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qian-Nan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wen-Long Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shu-Zhen Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Anjitha R, Antony A, Shilpa O, Anupama KP, Mallikarjunaiah S, Gurushankara HP. Malathion induced cancer-linked gene expression in human lymphocytes. ENVIRONMENTAL RESEARCH 2020; 182:109131. [PMID: 32069766 DOI: 10.1016/j.envres.2020.109131] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Malathion is the most widely used organophosphate pesticide in agriculture. Increasing cancer incidence in agricultural workers and their children links to the exposure of malathion. Identification of genes involved in the process of carcinogenesis is essential for exploring the role of malathion. The alteration in gene expression by malathion in human lymphocytes has not been explored yet, although hematological malignancies are rampant in humans. OBJECTIVE This study investigates the malathion induced expression of cancer associated genes in human lymphocytes. METHODS Human lymphocyte viability and colony-forming ability were analyzed in malathion treated and control groups. Gene expression profile in control and malathion treated human lymphocytes were performed using a microarray platform. The genes which have significant functions and those involved in different pathways were analyzed using the DAVID database. Differential gene expression upon malathion exposure was validated by quantitative real-time (qRT)-PCR. RESULTS Malathion caused a concentration-dependent reduction in human lymphocyte viability. At low concentration (50 μg/mL) of malathion treatment, human lymphocytes were viable indicating that low concentration of malathion is not cytotoxic and induces the colony formation. Total of 659 genes (15%) were up regulated and 3729 genes (85%) were down regulated in malathion treated human lymphocytes. About 57 cancer associated genes related to the growth and differentiation of B and T cells, immunoglobulin production, haematopoiesis, tumor suppression, oncogenes and signal transduction pathways like MAPK and RAS were induced by malathion. CONCLUSION This study evidences the carcinogenic nature of malathion. Low concentration of this pesticide is not cytotoxic and induces differentially regulated genes in human lymphocytes, which are involved in the initiation, progression, and pathogenesis of cancer.
Collapse
Affiliation(s)
- Ramakrishnan Anjitha
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Periya, 671 320, Kasaragod, Kerala, India
| | - Anet Antony
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Periya, 671 320, Kasaragod, Kerala, India
| | - Olakkaran Shilpa
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Periya, 671 320, Kasaragod, Kerala, India
| | - Kizhakke P Anupama
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Periya, 671 320, Kasaragod, Kerala, India
| | - Shanthala Mallikarjunaiah
- Center for Applied Genetics, Department of Studies in Zoology, Bangalore University, Jnanabharathi, Bengaluru, 560 056, Karnataka, India
| | - Hunasanahally P Gurushankara
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Periya, 671 320, Kasaragod, Kerala, India.
| |
Collapse
|
20
|
Cui WQ, Wang ST, Pan D, Chang B, Sang LX. Caffeine and its main targets of colorectal cancer. World J Gastrointest Oncol 2020; 12:149-172. [PMID: 32104547 PMCID: PMC7031145 DOI: 10.4251/wjgo.v12.i2.149] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/25/2019] [Accepted: 11/13/2019] [Indexed: 02/05/2023] Open
Abstract
Caffeine is a purine alkaloid and is widely consumed in coffee, soda, tea, chocolate and energy drinks. To date, a growing number of studies have indicated that caffeine is associated with many diseases including colorectal cancer. Caffeine exerts its biological activity through binding to adenosine receptors, inhibiting phosphodiesterases, sensitizing calcium channels, antagonizing gamma-aminobutyric acid receptors and stimulating adrenal hormones. Some studies have indicated that caffeine can interact with signaling pathways such as transforming growth factor β, phosphoinositide-3-kinase/AKT/mammalian target of rapamycin and mitogen-activated protein kinase pathways through which caffeine can play an important role in colorectal cancer pathogenesis, metastasis and prognosis. Moreover, caffeine can act as a general antioxidant that protects cells from oxidative stress and also as a regulatory factor of the cell cycle that modulates the DNA repair system. Additionally, as for intestinal homeostasis, through the interaction with receptors and cytokines, caffeine can modulate the immune system mediating its effects on T lymphocytes, B lymphocytes, natural killer cells and macrophages. Furthermore, caffeine can not only directly inhibit species in the gut microbiome, such as Escherichia coli and Candida albicans but also can indirectly exert inhibition by increasing the effects of other antimicrobial drugs. This review summarizes the association between colorectal cancer and caffeine that is being currently studied.
Collapse
Affiliation(s)
- Wen-Qi Cui
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
- China Medical University 101K class 87, Shenyang 110001, Liaoning Province, China
| | - Shi-Tong Wang
- Department of Cardiovascular Ultrasound, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
- China Medical University 101K class 87, Shenyang 110001, Liaoning Province, China
| | - Dan Pan
- Department of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Bing Chang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Li-Xuan Sang
- Department of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
21
|
Li YX, Feng XP, Wang HL, Meng CH, Zhang J, Qian Y, Zhong JF, Cao SX. Transcriptome analysis reveals corresponding genes and key pathways involved in heat stress in Hu sheep. Cell Stress Chaperones 2019; 24:1045-1054. [PMID: 31428918 PMCID: PMC6882975 DOI: 10.1007/s12192-019-01019-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 12/20/2022] Open
Abstract
Heat stress (HS) seriously affects animal performance. In view of global warming, it is essential to understand the regulatory mechanisms by which animals adapt to heat stress. In this study, our aim was to explore the genes and pathways involved in heat stress in sheep. To this end, we used transcriptome analysis to understand the molecular responses to heat stress and thereby identify means to protect sheep from heat shock. To obtain an overview of the effects of heat stress on sheep, we used the hypothalamus for transcriptome sequencing and identified differentially expressed genes (DEGs; false discovery rate (FDR) < 0.01; fold change > 2) during heat stress. A total of 1423 DEGs (1122 upregulated and 301 downregulated) were identified and classified into Gene Ontology (GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Heat stress triggered dramatic and complex alterations in gene expression in the hypothalamus. We hypothesized that heat stress induced apoptosis and dysfunction in cells and vital organs and affected growth, development, reproduction, and circadian entrainment via the calcium signaling pathway, which influences ribosome assembly and function. Real-time PCR was used to evaluate the expression of the genes regulating important biological functions or whose expression profiles were significantly changed after acute heat stress (FDR < 0.01; fold change > 4), and the results showed that the expression patterns of these genes were consistent with the results of transcriptome sequencing, indicating that the credibility of the sequencing results. Our data indicated that heat stress induced calcium dyshomeostasis, blocked biogenesis, caused ROS accumulation, impaired the antioxidant system and innate defense, and induced apoptosis through the P53 signaling pathway activated by PEG3, decreased growth and development, and enhanced organ damage. These data is very important and helpful to elucidate the molecular mechanism of heat stress and finally to find ways to deal with heat stress damage in sheep.
Collapse
Affiliation(s)
- Y X Li
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, China
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing, 210014, China
| | - X P Feng
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, China
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing, 210014, China
| | - H L Wang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, China
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing, 210014, China
| | - C H Meng
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, China
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing, 210014, China
| | - J Zhang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, China
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing, 210014, China
| | - Y Qian
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, China
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing, 210014, China
| | - J F Zhong
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, China
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing, 210014, China
| | - S X Cao
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, China.
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Nanjing, 210014, China.
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
22
|
Hui KKW, Dojo Soeandy C, Chang S, Vizeacoumar FS, Sun T, Datti A, Henderson JT. Cell-based high-throughput screen for small molecule inhibitors of Bax translocation. J Cell Mol Med 2018; 23:1784-1797. [PMID: 30548903 PMCID: PMC6378228 DOI: 10.1111/jcmm.14076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 12/22/2022] Open
Abstract
Aberrant regulation of programmed cell death (PCD) has been tied to an array of human pathologies ranging from cancers to autoimmune disorders to diverse forms of neurodegeneration. Pharmacologic modulation of PCD signalling is therefore of central interest to a number of clinical and biomedical applications. A key component of PCD signalling involves the modulation of pro‐ and anti‐apoptotic Bcl‐2 family members. Among these, Bax translocation represents a critical regulatory phase in PCD. In the present study, we have employed a high‐content high‐throughput screen to identify small molecules which inhibit the cellular process of Bax re‐distribution to the mitochondria following commitment of the cell to die. Screening of 6246 Generally Recognized As Safe compounds from four chemical libraries post‐induction of cisplatin‐mediated PCD resulted in the identification of 18 compounds which significantly reduced levels of Bax translocation. Further examination revealed protective effects via reduction of executioner caspase activity and enhanced mitochondrial function. Consistent with their effects on Bax translocation, these compounds exhibited significant rescue against in vitro and in vivo cisplatin‐induced apoptosis. Altogether, our findings identify a new set of clinically useful small molecules PCD inhibitors and highlight the role which cAMP plays in regulating Bax‐mediated PCD.
Collapse
Affiliation(s)
- Kelvin Kai-Wan Hui
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.,RIKEN Center for Brain Science, Wako, Japan
| | - Chesarahmia Dojo Soeandy
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Stephano Chang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Frederick S Vizeacoumar
- Department of Pathology and Laboratory Medicine, Royal University Hospital, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Thomas Sun
- Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Alessandro Datti
- SMART Laboratory for High-Throughput Screening Programs, Mount Sinai Hospital, Network Biology Collaborative Centre, Toronto, ON, Canada.,Department of Agriculture, Food, and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Jeffrey T Henderson
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
Correra RM, Ollitrault D, Valente M, Mazzola A, Adalsteinsson BT, Ferguson-Smith AC, Marazzi G, Sassoon DA. The imprinted gene Pw1/Peg3 regulates skeletal muscle growth, satellite cell metabolic state, and self-renewal. Sci Rep 2018; 8:14649. [PMID: 30279563 PMCID: PMC6168517 DOI: 10.1038/s41598-018-32941-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/18/2018] [Indexed: 12/16/2022] Open
Abstract
Pw1/Peg3 is an imprinted gene expressed from the paternally inherited allele. Several imprinted genes, including Pw1/Peg3, have been shown to regulate overall body size and play a role in adult stem cells. Pw1/Peg3 is expressed in muscle stem cells (satellite cells) as well as a progenitor subset of muscle interstitial cells (PICs) in adult skeletal muscle. We therefore examined the impact of loss-of-function of Pw1/Peg3 during skeletal muscle growth and in muscle stem cell behavior. We found that constitutive loss of Pw1/Peg3 function leads to a reduced muscle mass and myofiber number. In newborn mice, the reduction in fiber number is increased in homozygous mutants as compared to the deletion of only the paternal Pw1/Peg3 allele, indicating that the maternal allele is developmentally functional. Constitutive and a satellite cell-specific deletion of Pw1/Peg3, revealed impaired muscle regeneration and a reduced capacity of satellite cells for self-renewal. RNA sequencing analyses revealed a deregulation of genes that control mitochondrial function. Consistent with these observations, Pw1/Peg3 mutant satellite cells displayed increased mitochondrial activity coupled with accelerated proliferation and differentiation. Our data show that Pw1/Peg3 regulates muscle fiber number determination during fetal development in a gene-dosage manner and regulates satellite cell metabolism in the adult.
Collapse
Affiliation(s)
- Rosa Maria Correra
- UMR S 1166 INSERM (Stem Cells and Regenerative Medicine Team), University of Pierre and Marie Curie Paris VI, Paris, 75634, France
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, 75013, France
| | - David Ollitrault
- UMR S 1166 INSERM (Stem Cells and Regenerative Medicine Team), University of Pierre and Marie Curie Paris VI, Paris, 75634, France
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, 75013, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unit 970, Paris Cardiovascular Research Center, Université René Descartes Paris, Paris, France
| | - Mariana Valente
- UMR S 1166 INSERM (Stem Cells and Regenerative Medicine Team), University of Pierre and Marie Curie Paris VI, Paris, 75634, France
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, 75013, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unit 970, Paris Cardiovascular Research Center, Université René Descartes Paris, Paris, France
| | - Alessia Mazzola
- UMR S 1166 INSERM (Stem Cells and Regenerative Medicine Team), University of Pierre and Marie Curie Paris VI, Paris, 75634, France
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, 75013, France
| | - Bjorn T Adalsteinsson
- Department of Physiology Development and Neuroscience, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Anne C Ferguson-Smith
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Giovanna Marazzi
- UMR S 1166 INSERM (Stem Cells and Regenerative Medicine Team), University of Pierre and Marie Curie Paris VI, Paris, 75634, France.
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, 75013, France.
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unit 970, Paris Cardiovascular Research Center, Université René Descartes Paris, Paris, France.
| | - David A Sassoon
- UMR S 1166 INSERM (Stem Cells and Regenerative Medicine Team), University of Pierre and Marie Curie Paris VI, Paris, 75634, France.
- Institute of Cardiometabolism and Nutrition (ICAN), Paris, 75013, France.
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unit 970, Paris Cardiovascular Research Center, Université René Descartes Paris, Paris, France.
| |
Collapse
|
24
|
Karamanos NK, Piperigkou Z, Theocharis AD, Watanabe H, Franchi M, Baud S, Brézillon S, Götte M, Passi A, Vigetti D, Ricard-Blum S, Sanderson RD, Neill T, Iozzo RV. Proteoglycan Chemical Diversity Drives Multifunctional Cell Regulation and Therapeutics. Chem Rev 2018; 118:9152-9232. [DOI: 10.1021/acs.chemrev.8b00354] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Aichi 480-1195, Japan
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Rimini 47100, Italy
| | - Stéphanie Baud
- Université de Reims Champagne-Ardenne, Laboratoire SiRMa, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster 48149, Germany
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Sylvie Ricard-Blum
- University Claude Bernard Lyon 1, CNRS, UMR 5246, Institute of Molecular and Supramolecular Chemistry and Biochemistry, Villeurbanne 69622, France
| | - Ralph D. Sanderson
- Department of Pathology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| |
Collapse
|
25
|
Abstract
SIGNIFICANCE The p53 family of transcription factors, including p53, p63, and p73, plays key roles in both biological and pathological processes, including cancer and neural development. Recent Advances: In recent years, a growing body of evidence has indicated that the entire p53 family is involved in the regulation of the central nervous system (CNS) functions as well as in the pathogenesis of several neurological disorders. Mechanistically, the p53 proteins control neuronal cell fate, terminal differentiation, and survival, via a complex interplay among the family members. CRITICAL ISSUES In this article, we discuss the involvement of the p53 family in neurobiology and in pathological conditions affecting the CNS, including neuroinflammation. FUTURE DIRECTIONS Understanding the molecular mechanism(s) underlying the function of the p53 family could improve our general knowledge of the pathogenesis of brain disorders and potentially pave the road for new therapeutic intervention. Antioxid. Redox Signal. 29, 1-14.
Collapse
Affiliation(s)
- Massimiliano Agostini
- 1 Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata," Rome, Italy .,2 Medical Research Council, Toxicology Unit, Leicester University , Leicester, United Kingdom
| | - Gerry Melino
- 1 Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata," Rome, Italy .,2 Medical Research Council, Toxicology Unit, Leicester University , Leicester, United Kingdom
| | - Francesca Bernassola
- 1 Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata," Rome, Italy
| |
Collapse
|
26
|
Munro D, Ghersi D, Singh M. Two critical positions in zinc finger domains are heavily mutated in three human cancer types. PLoS Comput Biol 2018; 14:e1006290. [PMID: 29953437 PMCID: PMC6040777 DOI: 10.1371/journal.pcbi.1006290] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 07/11/2018] [Accepted: 06/08/2018] [Indexed: 12/29/2022] Open
Abstract
A major goal of cancer genomics is to identify somatic mutations that play a role in tumor initiation or progression. Somatic mutations within transcription factors are of particular interest, as gene expression dysregulation is widespread in cancers. The substantial gene expression variation evident across tumors suggests that numerous regulatory factors are likely to be involved and that somatic mutations within them may not occur at high frequencies across patient cohorts, thereby complicating efforts to uncover which ones are cancer-relevant. Here we analyze somatic mutations within the largest family of human transcription factors, namely those that bind DNA via Cys2His2 zinc finger domains. Specifically, to hone in on important mutations within these genes, we aggregated somatic mutations across all of them by their positions within Cys2His2 zinc finger domains. Remarkably, we found that for three classes of cancers profiled by The Cancer Genome Atlas (TCGA)-Uterine Corpus Endometrial Carcinoma, Colon and Rectal Adenocarcinomas, and Skin Cutaneous Melanoma-two specific, functionally important positions within zinc finger domains are mutated significantly more often than expected by chance, with alterations in 18%, 10% and 43% of tumors, respectively. Numerous zinc finger genes are affected, with those containing Krüppel-associated box (KRAB) repressor domains preferentially targeted by these mutations. Further, the genes with these mutations also have high overall missense mutation rates, are expressed at levels comparable to those of known cancer genes, and together have biological process annotations that are consistent with roles in cancers. Altogether, we introduce evidence broadly implicating mutations within a diverse set of zinc finger proteins as relevant for cancer, and propose that they contribute to the widespread transcriptional dysregulation observed in cancer cells.
Collapse
Affiliation(s)
- Daniel Munro
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Dario Ghersi
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- School of Interdisciplinary Informatics, University of Nebraska at Omaha, Omaha, NE, USA
| | - Mona Singh
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Computer Science, Princeton University, Princeton, NJ, USA
- * E-mail:
| |
Collapse
|
27
|
Reduced expression of Paternally Expressed Gene-3 enhances somatic cell reprogramming through mitochondrial activity perturbation. Sci Rep 2017; 7:9705. [PMID: 28852087 PMCID: PMC5575273 DOI: 10.1038/s41598-017-10016-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/02/2017] [Indexed: 01/06/2023] Open
Abstract
Imprinted genes control several cellular and metabolic processes in embryonic and adult tissues. In particular, paternally expressed gene-3 (Peg3) is active in the adult stem cell population and during muscle and neuronal lineage development. Here we have investigated the role of Peg3 in mouse embryonic stem cells (ESCs) and during the process of somatic cell reprogramming towards pluripotency. Our data show that Peg3 knockdown increases expression of pluripotency genes in ESCs and enhances reprogramming efficiency of both mouse embryonic fibroblasts and neural stem cells. Interestingly, we observed that altered activity of Peg3 correlates with major perturbations of mitochondrial gene expression and mitochondrial function, which drive metabolic changes during somatic cell reprogramming. Overall, our study shows that Peg3 is a regulator of pluripotent stem cells and somatic cell reprogramming.
Collapse
|
28
|
Valle JW, Lamarca A, Goyal L, Barriuso J, Zhu AX, Knittel G, Leeser U, van Oers J, Edelmann W, Heukamp LC, Reinhardt HC. New Horizons for Precision Medicine in Biliary Tract Cancers. Cancer Discov 2017. [PMID: 28818953 DOI: 10.1158/2159-8290] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biliary tract cancers (BTC), including cholangiocarcinoma and gallbladder cancer, are poor-prognosis and low-incidence cancers, although the incidence of intrahepatic cholangiocarcinoma is rising. A minority of patients present with resectable disease but relapse rates are high; benefit from adjuvant capecitabine chemotherapy has been demonstrated. Cisplatin/gemcitabine combination chemotherapy has emerged as the reference first-line treatment regimen; there is no standard second-line therapy. Selected patients may be suitable for liver-directed therapy (e.g., radioembolization or external beam radiation), pending confirmation of benefit in randomized studies. Initial trials targeting the epithelial growth factor receptor and angiogenesis pathways have failed to deliver new treatments. Emerging data from next-generation sequencing analyses have identified actionable mutations (e.g., FGFR fusion rearrangements and IDH1 and IDH2 mutations), with several targeted drugs entering clinical development with encouraging results. The role of systemic therapies, including targeted therapies and immunotherapy for BTC, is rapidly evolving and is the subject of this review.Significance: The authors address genetic drivers and molecular biology from a translational perspective, in an intent to offer a clear view of the recent past, present, and future of BTC. The review describes a state-of-the-art update of the current status and future directions of research and therapy in advanced BTC. Cancer Discov; 7(9); 943-62. ©2017 AACR.
Collapse
Affiliation(s)
- Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, UK. .,Institute of Cancer Sciences, University of Manchester, Wilmslow Road, Manchester, UK
| | - Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, UK
| | - Lipika Goyal
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Jorge Barriuso
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, UK.,Faculty of Medical, Biological and Human Sciences, University of Manchester, Rumford Street, Manchester, UK
| | - Andrew X Zhu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts.
| | | | | | | | | | | | | |
Collapse
|
29
|
Valle JW, Lamarca A, Goyal L, Barriuso J, Zhu AX. New Horizons for Precision Medicine in Biliary Tract Cancers. Cancer Discov 2017; 7:943-962. [PMID: 28818953 DOI: 10.1158/2159-8290.cd-17-0245] [Citation(s) in RCA: 418] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/24/2017] [Accepted: 07/10/2017] [Indexed: 02/06/2023]
Abstract
Biliary tract cancers (BTC), including cholangiocarcinoma and gallbladder cancer, are poor-prognosis and low-incidence cancers, although the incidence of intrahepatic cholangiocarcinoma is rising. A minority of patients present with resectable disease but relapse rates are high; benefit from adjuvant capecitabine chemotherapy has been demonstrated. Cisplatin/gemcitabine combination chemotherapy has emerged as the reference first-line treatment regimen; there is no standard second-line therapy. Selected patients may be suitable for liver-directed therapy (e.g., radioembolization or external beam radiation), pending confirmation of benefit in randomized studies. Initial trials targeting the epithelial growth factor receptor and angiogenesis pathways have failed to deliver new treatments. Emerging data from next-generation sequencing analyses have identified actionable mutations (e.g., FGFR fusion rearrangements and IDH1 and IDH2 mutations), with several targeted drugs entering clinical development with encouraging results. The role of systemic therapies, including targeted therapies and immunotherapy for BTC, is rapidly evolving and is the subject of this review.Significance: The authors address genetic drivers and molecular biology from a translational perspective, in an intent to offer a clear view of the recent past, present, and future of BTC. The review describes a state-of-the-art update of the current status and future directions of research and therapy in advanced BTC. Cancer Discov; 7(9); 943-62. ©2017 AACR.
Collapse
Affiliation(s)
- Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, UK. .,Institute of Cancer Sciences, University of Manchester, Wilmslow Road, Manchester, UK
| | - Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, UK
| | - Lipika Goyal
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Jorge Barriuso
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, UK.,Faculty of Medical, Biological and Human Sciences, University of Manchester, Rumford Street, Manchester, UK
| | - Andrew X Zhu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
30
|
Loss of miR-514a-3p regulation of PEG3 activates the NF-kappa B pathway in human testicular germ cell tumors. Cell Death Dis 2017; 8:e2759. [PMID: 28471449 PMCID: PMC5520681 DOI: 10.1038/cddis.2016.464] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/14/2016] [Accepted: 11/10/2016] [Indexed: 12/21/2022]
Abstract
Deregulation of microRNAs (miRNAs) contributes to the development and progression of many cancer types; however, their functions in the pathogenesis of testicular germ cell tumor (TGCT) remain unclear. Here, we determined miRNA expression profiles of TGCTs and normal testes using small RNA sequencing, and identified several deregulated miRNAs in TGCTs, including the miR-506~514 cluster. In functional studies in vitro we demonstrated that miR-514a-3p induced apoptosis through direct regulation of the paternally expressed gene 3 (PEG3), and ectopically expressed PEG3 could rescue the apoptotic effect of miR-514a-3p overexpression. Silencing of PEG3 or miR-514a-3p overexpression reduced nuclear accumulation of p50 and NF-κB reporter activity. Furthermore, PEG3 was co-immunoprecipitated with tumor necrosis factor receptor-associated factor 2 (TRAF2) in TGCT cell lysates. We propose a model of PEG3-mediated activation of NF-κB in TGCT. Loss of miR-514a-3p expression in TGCT increases PEG3 expression that recruits TRAF2 and activates the NF-kappa B pathway, which protects germ cells from apoptosis. Importantly, we observed strong expression of PEG3 and nuclear p50 in the majority of TGCTs (83% and 78%, respectively). In conclusion, our study describes a novel function for miR-514a-3p in TGCT and highlights an unrecognized mechanism of PEG3 regulation and NF-κB activation in TGCT.
Collapse
|
31
|
Torres A, Gubbiotti MA, Iozzo RV. Decorin-inducible Peg3 Evokes Beclin 1-mediated Autophagy and Thrombospondin 1-mediated Angiostasis. J Biol Chem 2017; 292:5055-5069. [PMID: 28174297 PMCID: PMC5377817 DOI: 10.1074/jbc.m116.753632] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 02/06/2017] [Indexed: 01/31/2023] Open
Abstract
We previously discovered that systemic delivery of decorin for treatment of breast carcinoma xenografts induces paternally expressed gene 3 (Peg3), an imprinted gene encoding a zinc finger transcription factor postulated to function as a tumor suppressor. Here we found that de novo expression of Peg3 increased Beclin 1 promoter activity and protein expression. This process required the full-length Peg3 as truncated mutants lacking either the N-terminal SCAN domain or the zinc fingers failed to translocate to the nucleus and promote Beclin 1 transcription. Importantly, overexpression of Peg3 in endothelial cells stimulated autophagy and concurrently inhibited endothelial cell migration and evasion from a 3D matrix. Mechanistically, we found that Peg3 induced the secretion of the powerful angiostatic glycoprotein Thrombospondin 1 independently of Beclin 1 transcriptional induction. Thus, we provide a new mechanism whereby Peg3 can simultaneously evoke autophagy in endothelial cells and attenuate angiogenesis.
Collapse
Affiliation(s)
- Annabel Torres
- From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Maria A Gubbiotti
- From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Renato V Iozzo
- From the Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
32
|
NDN is an imprinted tumor suppressor gene that is downregulated in ovarian cancers through genetic and epigenetic mechanisms. Oncotarget 2016; 7:3018-32. [PMID: 26689988 PMCID: PMC4823087 DOI: 10.18632/oncotarget.6576] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/21/2015] [Indexed: 12/18/2022] Open
Abstract
NDN is a maternally imprinted gene consistently expressed in normal ovarian epithelium, is dramatically downregulated in the majority of ovarian cancers. Little or no NDN expression could be detected in 73% of 351 epithelial ovarian cancers. NDN was also downregulated in 10 ovarian cancer cell lines with total loss in 6 of 10. Re-expression of NDN decreased Bcl-2 levels and induced apoptosis, which significantly inhibited ovarian cancer cell growth in cell culture and in xenografts. In addition, re-expression of NDN inhibited cell migration by decreasing actin stress fiber and focal adhesion complex formation through deactivation of Src, FAK and RhoA. Loss of NDN expression in ovarian cancers could be attributed to LOH in 28% of 18 informative cases and to hypermethylation of CpG sites 1 and 2 of NDN promoter in 23% and 30% of 43 ovarian cancers, respectively. Promoter hypermethylation was also found in 5 of 10 ovarian cancer cell lines. Treatment with the demethylating agent 5-aza-2′-deoxycytidine restored NDN expression in 4 of 7 cell lines with enhanced promoter methylation levels. These observations support the conclusion that NDN is an imprinted tumor suppressor gene which affects cancer cell motility, invasion and growth and that its loss of function in ovarian cancer can be caused by both genetic and epigenetic mechanisms.
Collapse
|
33
|
Abstract
Peg3 (Paternally Expressed Gene 3) is an imprinted gene that encodes a zinc finger DNA-binding protein. Peg3 itself is localized in the middle of a KRAB-A (Kruppel-Associated Box) zinc finger gene cluster. The amino acid sequence encoded by its exon 7 also shows sequence similarity to that of KRAB-A, suggesting Peg3 as a KRAB-containing zinc finger gene. As predicted, the PEG3 protein was co-immunoprecipitated with KAP1, a co-repressor that interacts with KRAB-A. A series of follow-up experiments further demonstrated that the exon 7 of PEG3 is indeed responsible for its physical interaction with KAP1. ChIP and promoter assays also indicated that PEG3 likely controls its downstream genes through the KAP1-mediated repression mechanism. Overall, the current study identifies PEG3 as a KRAB-containing zinc finger protein that interacts with the co-repressor protein KAP1.
Collapse
|
34
|
Van den Veyver IB, Norman B, Tran CQ, Bourjac J, Slim R. The Human Homologue (PEG3) of the Mouse Paternally Expressed Gene 3 (Peg3) Is Maternally Imprinted But Not Mutated in Women With Familial Recurrent Hydatidiform Molar Pregnancies. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155760100800509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ignatia B. Van den Veyver
- Departments of Obstetrics and Gynecology, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas; and Department of Biochemistry, American University of Beirut, Beirut, Lebanon; Department of Obstetrics and Gynecology, Baylor College of Medicine, Room SM901, 6550 Fannin, Houston, TX 77030
| | | | | | | | - Rima Slim
- Departments of Obstetrics and Gynecology, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas; and Department of Biochemistry, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
35
|
Abstract
Elucidating the mechanisms that regulate the life versus death of mammalian neurons is important not only for our understanding of the normal biology of the nervous system but also for our efforts to devise approaches to maintain neuronal survival in the face of traumatic injury or neurodegenerative disorders. Here, we review the emerging evidence that a key survival/death checkpoint in both peripheral and central neurons involves the p53 tumor suppressor and its newly discovered family members, p73 and p63. The full-length isoforms of these proteins function as proapoptotic proteins, whereas naturally occurring N-terminal truncated variants of p73 and p63 act as prosurvival proteins, at least partially by antagonizing the full-length family members. The authors propose that together, these isoforms comprise an upstream rheostat that sums different environmental cues to ultimately determine neuronal survival during development, during neuronal maintenance in adult animals, and even following traumatic injury.
Collapse
Affiliation(s)
- W Bradley Jacobs
- Developmental Biology and Cancer Research, Hospital for Sick Children, Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
36
|
Qin W, Xie W, Yang X, Xia N, Yang K. Inhibiting microRNA-449 Attenuates Cisplatin-Induced Injury in NRK-52E Cells Possibly via Regulating the SIRT1/P53/BAX Pathway. Med Sci Monit 2016; 22:818-23. [PMID: 26968221 PMCID: PMC4792225 DOI: 10.12659/msm.897187] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Acute kidney injury (AKI) is quite common in the patients who frequently use the anticancer drug cisplatin. microRNAs (miRNAs) are powerful tools in modulating the expression of key factors in disease progression, but little is known about roles of miRNAs in AKI. This study explored the expression and function of miR-449 in cisplatin-induced AKI. Material/Methods Rat renal proximal tubular cell line NRK-52E was used for cisplatin treatment and miR-449 sponge transfection. MTT assay and flow cytometry were performed to detect cell viability and apoptosis in different cell groups. Protein expression of sirtuin 1 (SIRT1), acetylated p53, and BCL-associated X protein (BAX) was detected to deduce the possible regulatory mechanism of miR-449. Results Results showed that cisplatin treatment in NRK-52E cells significantly up-regulated miR-449 levels (P<0.05), inhibited cell viability (P<0.05), accelerated cell apoptosis (P<0.05), and changed SIRT1, acetylated p53, and BAX protein levels (P<0.01). However, inhibiting miR-449 by its sponge transfection in cisplatin-treated cells significantly promoted cell viability (P<0.05), suppressed cell apoptosis (P<0.05), elevated SIRT1 expression (P<0.01), and inhibited acetylated p53 and BAX protein levels (P<0.001). Conclusions These results indicate that inhibiting miR-449 allows the attenuation of cisplatin-induced injury in NRK-52E cells, suggesting that miR-449 is a potential target for treating AKI. miR-449 regulates the SIRT1/p53/BAX pathway, which may be its possible mechanism in modulating cell apoptosis of cisplatin-induced AKI. Further verification and a thorough understanding are necessary for targeting miR-449 in AKI treatment.
Collapse
Affiliation(s)
- Wen Qin
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Wei Xie
- Department of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Xi Yang
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Ning Xia
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Kunling Yang
- , Guangxi Medical University, Nanning, Guangxi, China (mainland)
| |
Collapse
|
37
|
Neill T, Schaefer L, Iozzo RV. Decorin as a multivalent therapeutic agent against cancer. Adv Drug Deliv Rev 2016; 97:174-85. [PMID: 26522384 DOI: 10.1016/j.addr.2015.10.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/20/2015] [Accepted: 10/23/2015] [Indexed: 12/22/2022]
Abstract
Decorin is a prototypical small leucine-rich proteoglycan that epitomizes the multifunctional nature of this critical gene family. Soluble decorin engages multiple receptor tyrosine kinases within the target-rich environment of the tumor stroma and tumor parenchyma. Upon receptor binding, decorin initiates signaling pathways within endothelial cells downstream of VEGFR2 that ultimately culminate in a Peg3/Beclin 1/LC3-dependent autophagic program. Concomitant with autophagic induction, decorin blunts capillary morphogenesis and endothelial cell migration, thereby significantly compromising tumor angiogenesis. In parallel within the tumor proper, decorin binds multiple RTKs with high affinity, including Met, for a multitude of oncosuppressive functions including growth inhibition, tumor cell mitophagy, and angiostasis. Decorin is also pro-inflammatory by modulating macrophage function and cytokine secretion. Decorin suppresses tumorigenic growth, angiogenesis, and prevents metastatic lesions in a variety of in vitro and in vivo tumor models. Therefore, decorin would be an ideal therapeutic candidate for combating solid malignancies.
Collapse
|
38
|
Abstract
p73 is a structural and functional homologue of the p53 tumor suppressor protein. Like p53, p73 induces apoptosis and cell cycle arrest and transactivates p53-responsive genes, conferring its tumor suppressive activity. In addition, p73 has unique roles in neuronal development and differentiation. The importance of p73-induced apoptosis lies in its capability to substitute the pro-apoptotic activity of p53 in various human cancer cells in which p53 is mutated or inactive. Despite the great importance of p73-induced apoptosis in cancer therapy, little is known about the molecular basis of p73-induced apoptosis. In this review, we discuss the p73 structures reported to date, detailed structural comparisons between p73 and p53, and current understanding of the transcription-dependent and -independent mechanisms of p73-induced apoptosis. [BMB Reports 2015; 48(2): 81-90]
Collapse
Affiliation(s)
- Mi-Kyung Yoon
- Structural Biology & Nanopore Research Laboratory, Functional Genomics Research Center, KRIBB, Daejeon 305-806, Korea
| | - Ji-Hyang Ha
- Structural Biology & Nanopore Research Laboratory, Functional Genomics Research Center, KRIBB, Daejeon 305-806, Korea
| | - Min-Sung Lee
- Structural Biology & Nanopore Research Laboratory, Functional Genomics Research Center, KRIBB, Daejeon 305-806; Department of Bio-Analytical Science, University of Science and Technology, Daejeon 305-350, Korea
| | - Seung-Wook Chi
- Structural Biology & Nanopore Research Laboratory, Functional Genomics Research Center, KRIBB, Daejeon 305-806; Department of Bio-Analytical Science, University of Science and Technology, Daejeon 305-350, Korea
| |
Collapse
|
39
|
Kumar A, Ghosh S, Chandna S. Evidence for microRNA-31 dependent Bim-Bax interaction preceding mitochondrial Bax translocation during radiation-induced apoptosis. Sci Rep 2015; 5:15923. [PMID: 26514984 PMCID: PMC4626866 DOI: 10.1038/srep15923] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/01/2015] [Indexed: 01/28/2023] Open
Abstract
Downregulation of microRNA-31 has been linked with enhanced stress resistance, while its overexpression leads to cell death. In this study, we found mediatory role of microRNA-31 in γ-radiation-induced apoptosis in a model insect cell line Sf9 carrying well-conserved apoptotic machinery. Mature microRNA-31 is perfectly conserved amongst insects; hence we used biotinylated probes designed from Bombyx mori sequence for its successful detection in Sf9 cells. Target identification using Bombyx mori 3′UTRs predicted miR-31′s potential role in Lepidopteran apoptosis, which prompted us to investigate alterations in its expression during radiation-induced cell death. We found significant overexpression of Sf-miR-31 following lethal dose (1,000Gy–3,000Gy) irradiation. Its mediatory role was finally confirmed as antisense-microRNA-31 could successfully inhibit radiation-induced cytochrome-c release, caspase-3 activation and apoptosis. While Bax/Bcl-2 expression remained unchanged, lethal radiation doses induced Bim overexpression and direct Bim-Bax interaction (co-immunoprecipitation) which is not yet unequivocally demonstrated during apoptosis. Quite important, these events were found to be dependent on radiation-induced miR-31 overexpression, as antisense-miR-31 inhibited both the responses and resulted in significant inhibition of cell death. Pro-apoptotic role of miR-31 was further confirmed when miR-31 mimic induced apoptosis involving similar Bim/Bax alterations. Therefore, our study reveals an important mediatory role of miR-31 in radiation-induced cell death.
Collapse
Affiliation(s)
- Ashish Kumar
- Natural Radiation Response Mechanisms Group, Division of Radiation Biosciences, Institute of Nuclear Medicine &Allied Sciences, Brig. S.K. Mazumdar Road, Timarpur, Delhi-110054, India
| | - Soma Ghosh
- Natural Radiation Response Mechanisms Group, Division of Radiation Biosciences, Institute of Nuclear Medicine &Allied Sciences, Brig. S.K. Mazumdar Road, Timarpur, Delhi-110054, India
| | - Sudhir Chandna
- Natural Radiation Response Mechanisms Group, Division of Radiation Biosciences, Institute of Nuclear Medicine &Allied Sciences, Brig. S.K. Mazumdar Road, Timarpur, Delhi-110054, India
| |
Collapse
|
40
|
Vidal AC, Semenova V, Darrah T, Vengosh A, Huang Z, King K, Nye MD, Fry R, Skaar D, Maguire R, Murtha A, Schildkraut J, Murphy S, Hoyo C. Maternal cadmium, iron and zinc levels, DNA methylation and birth weight. BMC Pharmacol Toxicol 2015; 16:20. [PMID: 26173596 PMCID: PMC4502530 DOI: 10.1186/s40360-015-0020-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 07/07/2015] [Indexed: 12/27/2022] Open
Abstract
Background Cadmium (Cd) is a ubiquitous and environmentally persistent toxic metal that has been implicated in neurotoxicity, carcinogenesis and obesity and essential metals including zinc (Zn) and iron (Fe) may alter these outcomes. However mechanisms underlying these relationships remain limited. Methods We examined whether maternal Cd levels during early pregnancy were associated with offspring DNA methylation at regulatory sequences of genomically imprinted genes and weight at birth, and whether Fe and Zn altered these associations. Cd, Fe and Zn were measured in maternal blood of 319 women ≤12 weeks gestation. Offspring umbilical cord blood leukocyte DNA methylation at regulatory differentially methylated regions (DMRs) of 8 imprinted genes was measured using bisulfite pyrosequencing. Regression models were used to examine the relationships among Cd, Fe, Zn, and DMR methylation and birth weight. Results Elevated maternal blood Cd levels were associated with lower birth weight (p = 0.03). Higher maternal blood Cd levels were also associated with lower offspring methylation at the PEG3 DMR in females (β = 0.55, se = 0.17, p = 0.05), and at the MEG3 DMR in males (β = 0.72, se = 0.3, p = 0.08), however the latter association was not statistically significant. Associations between Cd and PEG3 and PLAGL1 DNA methylation were stronger in infants born to women with low concentrations of Fe (p < 0.05). Conclusions Our data suggest the association between pre-natal Cd and offspring DNA methylation at regulatory sequences of imprinted genes may be sex- and gene-specific. Essential metals such as Zn may mitigate DNA methylation response to Cd exposure. Larger studies are required.
Collapse
Affiliation(s)
- Adriana C Vidal
- Department of Surgery, Division of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| | - Viktoriya Semenova
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA. .,Department of Public Health, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.
| | - Thomas Darrah
- Division of Water, Climate, and the Environment, School of Earth Sciences, The Ohio State University, Columbus, OH, 43210, USA.
| | - Avner Vengosh
- Nicholas School of the Environment, Duke University, Research Drive, Durham, NC, 27710, USA.
| | - Zhiqing Huang
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University School of Medicine, Research Drive, Durham, NC, 27710, USA.
| | - Katherine King
- Environmental Public Health Division, U.S. Environmental Protection Agency, Chapel Hill, NC, 27599, USA. .,Department of Community and Family Medicine and Duke Cancer Institute, Duke University School of Medicine, Erwin Drive, Durham, NC, 27710, USA.
| | - Monica D Nye
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University School of Medicine, Research Drive, Durham, NC, 27710, USA. .,University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, 450 West Drive, Chapel Hill, NC, 27599, USA.
| | - Rebecca Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, UNC-Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - David Skaar
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Rachel Maguire
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Amy Murtha
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Duke University School of Medicine, Erwin Drive, Durham, NC, 27710, USA.
| | - Joellen Schildkraut
- Department of Community and Family Medicine and Duke Cancer Institute, Duke University School of Medicine, Erwin Drive, Durham, NC, 27710, USA.
| | - Susan Murphy
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University School of Medicine, Research Drive, Durham, NC, 27710, USA.
| | - Cathrine Hoyo
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW We review the genetic, epigenetic and transcriptional landscape of liver fluke (Opisthorchis viverrini, Ov)-related cholangiocarcinoma (CCA). Its distinct alterations, as compared with non-Ov-related CCA may help shed light on its underlying molecular mechanisms. RECENT FINDINGS Recent whole-exome and targeted sequencing not only confirmed frequent mutations in known CCA-related genes including TP53 (44%), KRAS (16.7%) and SMAD4 (16.7%), but also revealed mutations in novel CCA-related genes associated with chromatin remodeling [BAP1 (2.8%), ARID1A (17.6%), MLL3 (13%) and IDH1/2 (2.8%)], WNT signaling [RNF43 (9.3%) and PEG3 (5.6%)] and KRAS/G protein signaling [GNAS (9.3%) and ROBO2 (9.3%)]. Interestingly, there is a significant difference in the frequency of mutated genes between Ov-related CCA and non-Ov-related CCA, such as p53 and IDH1/2, reflecting the impact of cause on pathogenesis. Altered DNA methylation and transcriptional profiles associated with xenobiotic metabolism and pro-inflammatory responses were also found in Ov-related CCA. SUMMARY Liver fluke-induced chronic inflammation plays a crucial role in cholangiocarcinogenesis, resulting in distinct signatures of genetic, epigenetic and transcriptional alterations. These alterations, when contrasted with non-Ov-related CCA, indicate a unique pathogenic process in Ov-related CCA and may have potential clinical implications on diagnostics, therapeutics and prevention.
Collapse
|
42
|
Kongpetch S, Jusakul A, Ong CK, Lim WK, Rozen SG, Tan P, Teh BT. Pathogenesis of cholangiocarcinoma: From genetics to signalling pathways. Best Pract Res Clin Gastroenterol 2015; 29:233-44. [PMID: 25966424 DOI: 10.1016/j.bpg.2015.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/07/2015] [Indexed: 01/31/2023]
Abstract
Cholangiocarcinoma (CCA) is a malignant tumour of bile duct epithelial cells with dismal prognosis and rising incidence. Chronic inflammation resulting from liver fluke infection, hepatitis and other inflammatory bowel diseases is a major contributing factor to cholangiocarcinogenesis, likely through accumulation of serial genetic and epigenetic alterations resulting in aberration of oncogenes and tumour suppressors. Recent studies making use of advances in high-throughput genomics have revealed the genetic landscape of CCA, greatly increasing our understanding of its underlying biology. A series of highly recurrent mutations in genes such as TP53, KRAS, SMAD4, BRAF, MLL3, ARID1A, PBRM1 and BAP1, which are known to be involved in cell cycle control, cell signalling pathways and chromatin dynamics, have led to investigations of their roles, through molecular to mouse modelling studies, in cholangiocarcinogenesis. This review focuses on the landscape genetic alterations in CCA and its functional relevance to the formation and progression of CCA.
Collapse
Affiliation(s)
- Sarinya Kongpetch
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore; Department of Pharmacology, Faculty of Medicine and Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen, Thailand; Division of Cancer and Stem Cell Biology, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore.
| | - Apinya Jusakul
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore; Division of Cancer and Stem Cell Biology, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore.
| | - Choon Kiat Ong
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore; Division of Cancer and Stem Cell Biology, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore.
| | - Weng Khong Lim
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore; Division of Cancer and Stem Cell Biology, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore.
| | - Steven G Rozen
- Division of Cancer and Stem Cell Biology, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore; Centre for Computational Biology, Duke-NUS Graduate Medical School, Singapore.
| | - Patrick Tan
- Division of Cancer and Stem Cell Biology, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore; Genome Institute of Singapore, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore.
| | - Bin Tean Teh
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore; Division of Cancer and Stem Cell Biology, Duke-National University of Singapore (NUS) Graduate Medical School, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore.
| |
Collapse
|
43
|
Wu C, Huang W, Guo Y, Xia P, Sun X, Pan X, Hu W. Oxymatrine inhibits the proliferation of prostate cancer cells in vitro and in vivo. Mol Med Rep 2015; 11:4129-34. [PMID: 25672672 PMCID: PMC4394963 DOI: 10.3892/mmr.2015.3338] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 01/27/2015] [Indexed: 12/20/2022] Open
Abstract
Oxymatrine is an alkaloid, which is derived from the traditional Chinese herb, Sophora flavescens Aiton. Oxymatrine has been shown to exhibit anti-inflammatory, antiviral, and anticancer properties. The present study aimed to investigate the anticancer effects of oxymatrine in human prostate cancer cells, and the underlying molecular mechanisms of these effects. An MTT assay demonstrated that oxymatrine significantly inhibited the proliferation of prostate cancer cells in a time- and dose-dependent manner. In addition, flow cytometry and a terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling assay suggested that oxymatrine treatment may induce prostate cancer cell apoptosis in a dose-dependent manner. Furthermore, western blot analysis demonstrated a significant increase in the expression of p53 and bax, and a significant decrease in that of Bcl-2, in prostrate cancer cells in a dose-dependent manner. In vivo analysis demonstrated that oxymatrine inhibited tumor growth following subcutaneous inoculation of prostate cancer cells into nude mice. The results of the present study suggested that the antitumor properties of oxymatrine, may be associated with the inhibition of cell proliferation, and induction of apoptosis, via the regulation of apoptosis-associated gene expression. Therefore, the results may provide a novel approach for the development of prostate cancer therapy using oxymatrine, which is derived from the traditional Chinese herb, Sophora flavescens.
Collapse
Affiliation(s)
- Cunzao Wu
- Graduate School, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Weiping Huang
- Graduate School, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yong Guo
- Transplantation Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325013, P.R. China
| | - Peng Xia
- Transplantation Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325013, P.R. China
| | - Xianbin Sun
- Transplantation Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325013, P.R. China
| | - Xiaodong Pan
- Transplantation Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325013, P.R. China
| | - Weilie Hu
- Graduate School, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
44
|
Sikdar Y, Modak R, Bose D, Banerjee S, Bieńko D, Zierkiewicz W, Bieńko A, Das Saha K, Goswami S. Doubly chloro bridged dimeric copper(ii) complex: magneto-structural correlation and anticancer activity. Dalton Trans 2015; 44:8876-88. [DOI: 10.1039/c5dt00752f] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A doubly chloro bridged dinuclear copper(ii) complex was synthesized and magneto-structural correlation was drawn.The complex exhibits promising anticancer activity in HepG2 cells.
Collapse
Affiliation(s)
- Yeasin Sikdar
- Department of Chemistry
- University of Calcutta
- Kolkata
- India
| | - Ritwik Modak
- Department of Chemistry
- University of Calcutta
- Kolkata
- India
| | - Dipayan Bose
- Cancer and Inflammatory Disorder Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700032
- India
| | - Saswati Banerjee
- Cancer and Inflammatory Disorder Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700032
- India
| | - Dariusz Bieńko
- Faculty of Chemistry
- Wroclaw University of Technology
- 50-370 Wroclaw
- Poland
| | - Wiktor Zierkiewicz
- Faculty of Chemistry
- Wroclaw University of Technology
- 50-370 Wroclaw
- Poland
| | - Alina Bieńko
- Faculty of Chemistry
- University of Wroclaw
- 50-383 Wroclaw
- Poland
| | - Krishna Das Saha
- Cancer and Inflammatory Disorder Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700032
- India
| | | |
Collapse
|
45
|
Tiwari P, Sahay S, Pandey M, Qadri SSYH, Gupta KP. Combinatorial chemopreventive effect of butyric acid, nicotinamide and calcium glucarate against the 7,12-dimethylbenz(a)anthracene induced mouse skin tumorigenesis attained by enhancing the induction of intrinsic apoptotic events. Chem Biol Interact 2014; 226:1-11. [PMID: 25478867 DOI: 10.1016/j.cbi.2014.11.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 11/11/2014] [Accepted: 11/25/2014] [Indexed: 12/30/2022]
Abstract
We explored the basis of the combinatorial chemopreventive effect of butyric acid (BA), nicotinamide (NA) and calcium glucarate (CAG) on mouse skin exposed to 7,12-dimethylbenz(a)anthracene (DMBA). We studied the effects of topical application of DMBA in the presence or absence of BA, NA and CAG on the regulators of apoptosis. DMBA treatment suppressed Bax, Bax/Bcl-2 ratio, release of cyt c, Apaf1, caspase-9, -3 mediated apoptosis. Downregulation of p21 and upregulation of Bcl-2, mut p53 were also observed in only DMBA treated mice. Simultaneous application of BA, NA and CAG induced a mitochondria-mediated apoptosis, characterized by a rise in the Bax, Bax/Bcl-2 ratio, release of cyt c, upregulation of Apaf1 with down-stream activation of caspase-9, -3. Furthermore treatment with BA, NA and CAG demonstrated an upregulation of p21 and downregulation of Bcl-2, mut p53. But this effect was enhanced in the presence of all the three compounds together in combination. Chemoprevention by a combination of BA, NA and CAG by inducing the apoptosis, the natural cell death, suggest the importance of the potential combinational strategies capable of preventing skin tumor development.
Collapse
Affiliation(s)
- Prakash Tiwari
- Environmental Carcinogenesis Division, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001, India
| | - Satya Sahay
- Environmental Carcinogenesis Division, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001, India
| | - Manuraj Pandey
- Environmental Carcinogenesis Division, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001, India
| | - Syed S Y H Qadri
- Environmental Carcinogenesis Division, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001, India; Pathology Division, National Institute of Nutrition, Hyderabad, India
| | - Krishna P Gupta
- Environmental Carcinogenesis Division, CSIR-Indian Institute of Toxicology Research, Mahatma Gandhi Marg, Lucknow 226001, India.
| |
Collapse
|
46
|
Xie XH, Zhao H, Hu YY, Gu XD. Germacrone reverses Adriamycin resistance through cell apoptosis in multidrug-resistant breast cancer cells. Exp Ther Med 2014; 8:1611-1615. [PMID: 25289068 PMCID: PMC4186325 DOI: 10.3892/etm.2014.1932] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 06/06/2014] [Indexed: 12/29/2022] Open
Abstract
Multidrug resistance (MDR) is a major obstacle to the chemotherapeutic treatment of breast cancer. Germacrone, the main component of Rhizoma Curcuma, has been shown to possess antitumor, anti-inflammatory and immunomodulatory properties. The aim of the present study was to investigate the effect of germacrone on MCF-7/Adriamycin (ADR) multidrug-resistant human breast cancer cells. The treatment of MCF-7/ADR cells with a combination of germacrone and ADR resulted in an increase in cytotoxicity compared with that of ADR alone, as determined using an MTT assay. Flow cytometric analysis revealed that germacrone promoted cell apoptosis in a dose-dependent manner, whilst treatment with germacrone plus ADR enhanced the apoptotic effect synergistically. Furthermore, the results from the western blot analysis demonstrated that augmenting ADR treatment with germacrone resulted in a reduction of anti-apoptotic protein expression levels (bcl-2) and enhancement of pro-apoptotic protein expression levels (p53 and bax) in MCF-7/ADR cells compared with the levels achieved by treatment with ADR alone. In addition, germacrone significantly reduced the expression of P-glycoprotein via the inhibition of the multidrug resistance 1 (MDR1) gene promoter. These findings demonstrate that germacrone has a critical role against MDR and may be a novel MDR reversal agent for breast cancer chemotherapy.
Collapse
Affiliation(s)
- Xiao-Hong Xie
- Department of Breast Surgery, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310014, P.R. China
| | - Hong Zhao
- Department of Breast Surgery, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310014, P.R. China
| | - Yuan-Yuan Hu
- Department of Breast Surgery, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310014, P.R. China
| | - Xi-Dong Gu
- Department of Breast Surgery, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
47
|
Lieberwirth C, Wang Z. Social bonding: regulation by neuropeptides. Front Neurosci 2014; 8:171. [PMID: 25009457 PMCID: PMC4067905 DOI: 10.3389/fnins.2014.00171] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/05/2014] [Indexed: 11/13/2022] Open
Abstract
Affiliative social relationships (e.g., among spouses, family members, and friends) play an essential role in human society. These relationships affect psychological, physiological, and behavioral functions. As positive and enduring bonds are critical for the overall well-being of humans, it is not surprising that considerable effort has been made to study the neurobiological mechanisms that underlie social bonding behaviors. The present review details the involvement of the nonapeptides, oxytocin (OT), and arginine vasopressin (AVP), in the regulation of social bonding in mammals including humans. In particular, we will discuss the role of OT and AVP in the formation of social bonds between partners of a mating pair as well as between parents and their offspring. Furthermore, the role of OT and AVP in the formation of interpersonal bonding involving trust is also discussed.
Collapse
Affiliation(s)
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State UniversityTallahassee, FL, USA
| |
Collapse
|
48
|
Apoptosis and molecular targeting therapy in cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:150845. [PMID: 25013758 PMCID: PMC4075070 DOI: 10.1155/2014/150845] [Citation(s) in RCA: 737] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/11/2014] [Indexed: 12/22/2022]
Abstract
Apoptosis is the programmed cell death which maintains the healthy survival/death balance in metazoan cells. Defect in apoptosis can cause cancer or autoimmunity, while enhanced apoptosis may cause degenerative diseases. The apoptotic signals contribute into safeguarding the genomic integrity while defective apoptosis may promote carcinogenesis. The apoptotic signals are complicated and they are regulated at several levels. The signals of carcinogenesis modulate the central control points of the apoptotic pathways, including inhibitor of apoptosis (IAP) proteins and FLICE-inhibitory protein (c-FLIP). The tumor cells may use some of several molecular mechanisms to suppress apoptosis and acquire resistance to apoptotic agents, for example, by the expression of antiapoptotic proteins such as Bcl-2 or by the downregulation or mutation of proapoptotic proteins such as BAX. In this review, we provide the main regulatory molecules that govern the main basic mechanisms, extrinsic and intrinsic, of apoptosis in normal cells. We discuss how carcinogenesis could be developed via defective apoptotic pathways or their convergence. We listed some molecules which could be targeted to stimulate apoptosis in different cancers. Together, we briefly discuss the development of some promising cancer treatment strategies which target apoptotic inhibitors including Bcl-2 family proteins, IAPs, and c-FLIP for apoptosis induction.
Collapse
|
49
|
Liu B, Gao YQ, Wang XM, Wang YC, Fu LQ. Germacrone inhibits the proliferation of glioma cells by promoting apoptosis and inducing cell cycle arrest. Mol Med Rep 2014; 10:1046-50. [PMID: 24889088 DOI: 10.3892/mmr.2014.2290] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 03/06/2014] [Indexed: 11/06/2022] Open
Abstract
Germacrone is one of the major bioactive components of the traditional Chinese Medicinal plant Curcuma aromatica Salisb. and has been shown to possess anti‑tumor properties. In the present study, the anti‑proliferative effect of germacrone on human glioma cells and the molecular mechanism underlying its cytotoxicity were investigated. Treatment of the U87 and U251 human glioma cell lines with germacrone inhibited the cell proliferation in a dose‑ and time‑dependent manner as assessed by MTT assay, while significantly lower effects were observed on normal human astrocytes. Flow cytometric analysis and DNA fragmentation revealed that germacrone promoted apoptosis of glioma cells, associated with an increased expression of p53 and bax and decreased expression of bcl‑2. Furthermore, flow cytometric cell cycle analysis revealed that germacrone induced G1 phase arrest, associated with an obvious decrease in the expression of cyclin D1 and CDK2 and an increased expression of p21. In conclusion, the present study suggested that germacrone may be a novel potent chemopreventive drug candidate for gliomas via regulating the expression of proteins associated with apoptosis and G1 cell cycle arrest.
Collapse
Affiliation(s)
- Bo Liu
- Department of Neurosurgery, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163411, Daqing, Heilongjiang 163316, P.R. China
| | - Yue-Qiu Gao
- Department of Gastroenterology and Hepatology, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Xiao-Min Wang
- Department of Neurosurgery, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163411, Daqing, Heilongjiang 163316, P.R. China
| | - Yu-Chun Wang
- Department of Neurosurgery, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163411, Daqing, Heilongjiang 163316, P.R. China
| | - Li-Qi Fu
- Department of Neurosurgery, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163411, Daqing, Heilongjiang 163316, P.R. China
| |
Collapse
|
50
|
Wu X, Wang Y, Wang H, Wang Q, Wang L, Miao J, Cui F, Wang J. Quinacrine Inhibits Cell Growth and Induces Apoptosis in Human Gastric Cancer Cell Line SGC-7901. Curr Ther Res Clin Exp 2014; 73:52-64. [PMID: 24653512 DOI: 10.1016/j.curtheres.2012.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2012] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Quinacrine (QC), an antimalarial drug, has been shown to possess anticancer effect both in vitro (cancer cell lines) and in vivo (mouse models). In the cancer cells, QC can simultaneously suppress nuclear factor-κB and activate p53 signaling, which results in the induction of the apoptosis in these cells. However, the experimental results come from a few limited cancer cell lines, and the detailed mechanisms remain unknown. OBJECTIVE This study investigated the tumor-killing effects of QC on gastric cancer cells as well as underlying molecular pathways. METHODS SGC-7901 cells were treated with or without QC at different concentrations for 24 hours. The effect of QC on the inhibition of SGC-7901 cell proliferation was assessed by Cell Counting Kit-8 assay. Apoptosis was detected by examining nuclear morphology and quantifying phosphatidylserine externalization. Alterations in cellular morphology were analyzed by laser scanning confocal microscopy for fluorescent analysis. Cell cycle analysis was performed by propidium iodide (PI) staining and flow cytometry. The enzyme activity changes of caspase-3 were detected by colorimetry expression method. Western blot analysis was used to detect the changes in the protein level of Bax, Bc1-2, p53, and cytochrome c in cytosol of SGC-7901 cells. RESULTS Our results showed that QC could significantly inhibit the growth of SGC-7901 cells in a dose-dependent manner, with the IC50 mean (SD) value of 16.18 (0.64) μM, compared with nontreated controls. QC treatment (15 μM) could also induce apoptosis in SGC-7901 cells (26.30% [5.31%], compared with control group of 3.37% [0.81%]; P < 0.01), and the increasing phosphatidylserine level and the accumulation of chromatin nucleation in QC-treated cells provided further evidence. In addition, cell cycle analysis with PI staining showed that a significant S enriches, increasing from 12.00% (1.24%) (control) to 20.94% (2.40%) (QC treatment) (P < 0.01). Furthermore, increased activities of caspase-3 (increasing from 0.108 [0.019] to 0.628 [0.068]; P < 0.01) were observed in SGC-7901 cells treated with 15 μM QC. Western blot analysis showed that QC treatment significantly increased the levels of proapoptotic proteins, including cytochrome c, Bax, and p53, and decreased the levels of antiapoptotic protein Bcl-2, thus shifting the ratio of Bax/Bcl-2 in favor of apoptosis. CONCLUSIONS Our findings suggest that QC can significantly inhibit cell growth and induce apoptosis in SGC-7901 cells, which involves p53 upregulation and caspase-3 activation pathway.
Collapse
Affiliation(s)
- Xiaoyang Wu
- The First Affiliated Hospital of Soochow University, Suzhou, China ; Department of Surgery, the First People's Hospital of Kunshan City, Kunshan, China
| | - Yunliang Wang
- Department of Neurology, the 148 Hospital of PLA, Zibo, Shandong, China
| | - Hongwei Wang
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Qiang Wang
- Department of Neurobiology, Pharmacology and Physiology, University of Chicago, Chicago, Illinois
| | - Lin Wang
- Department of Medicine, Shangqiu Medical College, Shangqiu, China
| | - Jingcheng Miao
- Department of Cell Biology, School of Medicine, Soochow University, Suzhou, China
| | - Fengmei Cui
- Department of Cell Biology, School of Medicine, Soochow University, Suzhou, China
| | - Jinzhi Wang
- Department of Cell Biology, School of Medicine, Soochow University, Suzhou, China
| |
Collapse
|