1
|
Garcia DA, Rathi S, Connors MA, Grams M, Vaubel RA, Bakken KK, Ott LL, Carlson BL, Hu Z, Decker PA, Eckel-Passow JE, Burgenske DM, Zhong W, Trzasko JD, Herman MG, Elmquist WF, Remmes NB, Sarkaria JN. Modeling the Acute Mucosal Toxicity of Fractionated Radiotherapy Combined with the ATM Inhibitor WSD0628. Mol Cancer Ther 2025; 24:299-309. [PMID: 39559836 PMCID: PMC11791477 DOI: 10.1158/1535-7163.mct-24-0664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Ataxia Telangiectasia-mutated (ATM) inhibitors are being developed as radiosensitizers to improve the antitumor effects of radiotherapy, but ATM inhibition can also radiosensitize normal tissues. Therefore, understanding the elevated risk of normal tissue toxicities is critical for radiosensitizer development. This study focused on modeling the relationship between acute mucosal toxicity, radiation dose, fractionation schedule, and radiosensitizer exposure. The ATM inhibitor WSD0628 was combined with single or fractionated doses of radiation delivered to the oral cavity or esophagus of Friend Leukemia virus B (FVB) mice. The potentiation by WSD0628 was quantified by a sensitizer enhancement ratio (SER), which describes the changes in radiation tolerance for radiation combined with WSD0628 relative to radiation-only regimens. WSD0628 profoundly enhanced radiation-induced acute oral and esophageal toxicities. For oral mucosal toxicity, the enhancement by WSD0628 with 3 fractions of radiation resulted in an SER ranging from 1.3 (0.25 mg/kg) to 3.1 (7.5 mg/kg). For the 7.5 mg/kg combination, the SER increased with increasing number of fractions from 2.2 (1 fraction) to 4.3 (7 fractions) for oral toxicity and from 2.2 (1 fraction) to 3.6 (3 fractions) for esophageal toxicity, which reflects a loss of the normal tissue sparing benefit of fractionated radiation. These findings were used to develop a modified biologically effective dose model to determine alternative radiation schedules with or without WSD0628 that result in similar levels of toxicity. Successful radiosensitizer dose escalation to a maximally effective therapeutic dose will require careful deliberation of tumor site and reduction of radiation dose volume limits for organs at risk.
Collapse
Affiliation(s)
- Darwin A. Garcia
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Sneha Rathi
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota
| | | | - Michael Grams
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Rachael A. Vaubel
- Anatomic Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Lauren L. Ott
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Brett L. Carlson
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Zeng Hu
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Paul A. Decker
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | | | | | - Wei Zhong
- Wayshine Biopharm, Corona, California
| | | | | | - William F. Elmquist
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota
| | | | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
2
|
Wang Y, Fu Q, Park SY, Lee YS, Park SY, Lee DY, Yoon S. Decoding cellular mechanism of recombinant adeno-associated virus (rAAV) and engineering host-cell factories toward intensified viral vector manufacturing. Biotechnol Adv 2024; 71:108322. [PMID: 38336188 DOI: 10.1016/j.biotechadv.2024.108322] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Recombinant adeno-associated virus (rAAV) is one of the prominent gene delivery vehicles that has opened promising opportunities for novel gene therapeutic approaches. However, the current major viral vector production platform, triple transfection in mammalian cells, may not meet the increasing demand. Thus, it is highly required to understand production bottlenecks from the host cell perspective and engineer the cells to be more favorable and tolerant to viral vector production, thereby effectively enhancing rAAV manufacturing. In this review, we provided a comprehensive exploration of the intricate cellular process involved in rAAV production, encompassing various stages such as plasmid entry to the cytoplasm, plasmid trafficking and nuclear delivery, rAAV structural/non-structural protein expression, viral capsid assembly, genome replication, genome packaging, and rAAV release/secretion. The knowledge in the fundamental biology of host cells supporting viral replication as manufacturing factories or exhibiting defending behaviors against viral production is summarized for each stage. The control strategies from the perspectives of host cell and materials (e.g., AAV plasmids) are proposed as our insights based on the characterization of molecular features and our existing knowledge of the AAV viral life cycle, rAAV and other viral vector production in the Human embryonic kidney (HEK) cells.
Collapse
Affiliation(s)
- Yongdan Wang
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
| | - Qiang Fu
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
| | - So Young Park
- Department of Pharmaceutical Sciences, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
| | - Yong Suk Lee
- Department of Pharmaceutical Sciences, University of Massachusetts Lowell, Lowell, MA 01854, United States of America
| | - Seo-Young Park
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Dong-Yup Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Seongkyu Yoon
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, United States of America.
| |
Collapse
|
3
|
Yin H, Gao Y, Chen W, Tang C, Zhu Z, Li K, Xia S, Han C, Ding X, Ruan F, Tian H, Zhu C, Xie S, Zuo Z, Liao L, He C. Topically applied fullerenols protect against radiation dermatitis by scavenging reactive oxygen species. DISCOVER NANO 2023; 18:101. [PMID: 37581715 PMCID: PMC10427596 DOI: 10.1186/s11671-023-03869-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/04/2023] [Indexed: 08/16/2023]
Abstract
Adverse skin reactions caused by ionizing radiation are collectively called radiation dermatitis (RD), and the use of nanomedicine is an attractive approach to this condition. Therefore, we designed and large-scale synthesized fullerenols that showed free radical scavenging ability in vitro. Next, we pretreated X-ray-exposed cells with fullerenols. The results showed that pretreatment with fullerenols significantly scavenged intracellular reactive oxygen species (ROS) produced and enhanced the antioxidant capacity, protecting skin cells from X-ray-induced DNA damage and apoptosis. Moreover, we induced RD in mice by applying 30 Gy of X-ray irradiation, followed by treatment with fullerenols. We found that after treatment, the RD scores dropped, and the histological results systematically demonstrated that topically applied fullerenols could reduce radiation-induced skin epidermal thickening, collagen deposition and skin appendage damage and promote hair regeneration after 35 days. Compared with Trolamine cream, a typical RD drug, fullerenols showed superior radiation protection. Overall, the in vitro and in vivo experiments proved that fullerenols agents against RD.
Collapse
Grants
- Nos. XDHT2020407A and 20213160A0471 Xiamen Funano New Materials Technology Co., Ltd.
- Nos. XDHT2020407A and 20213160A0471 Xiamen Funano New Materials Technology Co., Ltd.
- Nos. XDHT2020407A and 20213160A0471 Xiamen Funano New Materials Technology Co., Ltd.
- Nos. XDHT2020407A and 20213160A0471 Xiamen Funano New Materials Technology Co., Ltd.
- Nos. XDHT2020407A and 20213160A0471 Xiamen Funano New Materials Technology Co., Ltd.
- Nos. XDHT2020407A and 20213160A0471 Xiamen Funano New Materials Technology Co., Ltd.
- Nos. XDHT2020407A and 20213160A0471 Xiamen Funano New Materials Technology Co., Ltd.
- Nos. XDHT2020407A and 20213160A0471 Xiamen Funano New Materials Technology Co., Ltd.
- Nos. XDHT2020407A and 20213160A0471 Xiamen Funano New Materials Technology Co., Ltd.
- Nos. XDHT2020407A and 20213160A0471 Xiamen Funano New Materials Technology Co., Ltd.
- Nos. XDHT2020407A and 20213160A0471 Xiamen Funano New Materials Technology Co., Ltd.
- Nos. XDHT2020407A and 20213160A0471 Xiamen Funano New Materials Technology Co., Ltd.
- Nos. XDHT2020407A and 20213160A0471 Xiamen Funano New Materials Technology Co., Ltd.
- Nos. XDHT2020407A and 20213160A0471 Xiamen Funano New Materials Technology Co., Ltd.
- Nos. XDHT2020407A and 20213160A0471 Xiamen Funano New Materials Technology Co., Ltd.
- Nos. XDHT2020407A and 20213160A0471 Xiamen Funano New Materials Technology Co., Ltd.
Collapse
Affiliation(s)
- Hanying Yin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, The Plastic and Aesthetic Burn Department, The First Affiliated Hospital, Xiamen University, Xiamen, People's Republic of China
| | - You Gao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, The Plastic and Aesthetic Burn Department, The First Affiliated Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Weiguang Chen
- School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Chen Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, The Plastic and Aesthetic Burn Department, The First Affiliated Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Zihan Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, The Plastic and Aesthetic Burn Department, The First Affiliated Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Kun Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, The Plastic and Aesthetic Burn Department, The First Affiliated Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Siyu Xia
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, The Plastic and Aesthetic Burn Department, The First Affiliated Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Changshun Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, The Plastic and Aesthetic Burn Department, The First Affiliated Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Xiaoyan Ding
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, The Plastic and Aesthetic Burn Department, The First Affiliated Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Fengkai Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, The Plastic and Aesthetic Burn Department, The First Affiliated Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Hanrui Tian
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Changfeng Zhu
- Xiamen Funano New Materials Technology Co., Ltd., Xiamen, China
| | - Suyuan Xie
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, The Plastic and Aesthetic Burn Department, The First Affiliated Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Lixin Liao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, The Plastic and Aesthetic Burn Department, The First Affiliated Hospital, Xiamen University, Xiamen, People's Republic of China.
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, The Plastic and Aesthetic Burn Department, The First Affiliated Hospital, Xiamen University, Xiamen, People's Republic of China.
| |
Collapse
|
4
|
Effect of Autophagy Inhibitors on Radiosensitivity in DNA Repair-Proficient and -Deficient Glioma Cells. Medicina (B Aires) 2022; 58:medicina58070889. [PMID: 35888608 PMCID: PMC9317283 DOI: 10.3390/medicina58070889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 01/18/2023] Open
Abstract
Background and Objectives: The development of radioresistance is a fundamental barrier to successful glioblastoma therapy. Autophagy is thought to play a role in facilitating the DNA repair of DNA damage foci in radiation-exposed tumor cells, thus, potentially contributing to their restoration of proliferative capacity and development of resistance in vitro. However, the effect of autophagy inhibitors on DNA damage repair is not fully clear and requires further investigation. Materials and Methods: In this work, we utilized M059K (DNA-PKcs proficient) and M059J (DNA-PKcs deficient) glioma cell lines to investigate the role of autophagy inhibitors in the DNA repair of radiation-induced DNA damage. Cell viability following radiation was determined by trypan blue exclusion in both cell lines. Cell death and autophagy assays were performed to evaluate radiation-induced cell stress responses. DNA damage was measured as based on the intensity of phosphorylated γ-H2AX, a DNA double-stranded breaks (DSBs) marker, in the presence or absence of autophagy inhibitors. Results: The cell viability assay showed that M059J cells were more sensitive to the same dose of radiation (4 Gy) than M059K cells. This observation was accompanied by an elevation in γ-H2AX formation in M059J but not in M059K cells. In addition, the DAPI/TUNEL and Senescence-associated β-galactosidase (SA-β-gal) staining assays did not reveal significant differences in apoptosis and/or senescence induction in response to radiation, respectively, in either cell line. However, acridine orange staining demonstrated clear promotion of acidic vesicular organelles (AVOs) in both cell lines in response to 4 Gy radiation. Moreover, DNA damage marker levels were found to be elevated 72 h post-radiation when autophagy was inhibited by the lysosomotropic agent bafilomycin A1 (BafA1) or the PI3K inhibitor 3-methyl adenine (3-MA) in M059K cells. Conclusions: The extent of the DNA damage response remained high in the DNA-PKcs deficient cells following exposure to radiation, indicating their inability to repair the newly formed DNA-DSBs. On the other hand, radioresistant M059K cells showed more DNA damage response only when autophagy inhibitors were used with radiation, suggesting that the combination of autophagy inhibitors with radiation may interfere with DNA repair efficiency.
Collapse
|
5
|
Djuzenova CS, Fischer T, Katzer A, Sisario D, Korsa T, Steussloff G, Sukhorukov VL, Flentje M. Opposite effects of the triple target (DNA-PK/PI3K/mTOR) inhibitor PI-103 on the radiation sensitivity of glioblastoma cell lines proficient and deficient in DNA-PKcs. BMC Cancer 2021; 21:1201. [PMID: 34763650 PMCID: PMC8582108 DOI: 10.1186/s12885-021-08930-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 10/28/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Radiotherapy is routinely used to combat glioblastoma (GBM). However, the treatment efficacy is often limited by the radioresistance of GBM cells. METHODS Two GBM lines MO59K and MO59J, differing in intrinsic radiosensitivity and mutational status of DNA-PK and ATM, were analyzed regarding their response to DNA-PK/PI3K/mTOR inhibition by PI-103 in combination with radiation. To this end we assessed colony-forming ability, induction and repair of DNA damage by γH2AX and 53BP1, expression of marker proteins, including those belonging to NHEJ and HR repair pathways, degree of apoptosis, autophagy, and cell cycle alterations. RESULTS We found that PI-103 radiosensitized MO59K cells but, surprisingly, it induced radiation resistance in MO59J cells. Treatment of MO59K cells with PI-103 lead to protraction of the DNA damage repair as compared to drug-free irradiated cells. In PI-103-treated and irradiated MO59J cells the foci numbers of both proteins was higher than in the drug-free samples, but a large portion of DNA damage was quickly repaired. Another cell line-specific difference includes diminished expression of p53 in MO59J cells, which was further reduced by PI-103. Additionally, PI-103-treated MO59K cells exhibited an increased expression of the apoptosis marker cleaved PARP and increased subG1 fraction. Moreover, irradiation induced a strong G2 arrest in MO59J cells (~ 80% vs. ~ 50% in MO59K), which was, however, partially reduced in the presence of PI-103. In contrast, treatment with PI-103 increased the G2 fraction in irradiated MO59K cells. CONCLUSIONS The triple-target inhibitor PI-103 exerted radiosensitization on MO59K cells, but, unexpectedly, caused radioresistance in the MO59J line, lacking DNA-PK. The difference is most likely due to low expression of the DNA-PK substrate p53 in MO59J cells, which was further reduced by PI-103. This led to less apoptosis as compared to drug-free MO59J cells and enhanced survival via partially abolished cell-cycle arrest. The findings suggest that the lack of DNA-PK-dependent NHEJ in MO59J line might be compensated by DNA-PK independent DSB repair via a yet unknown mechanism.
Collapse
Affiliation(s)
- Cholpon S Djuzenova
- Department of Radiation Oncology, University Hospital of Würzburg, Josef-Schneider-Strasse 11, 97080, Würzburg, Germany.
| | - Thomas Fischer
- Department of Radiation Oncology, University Hospital of Würzburg, Josef-Schneider-Strasse 11, 97080, Würzburg, Germany
| | - Astrid Katzer
- Department of Radiation Oncology, University Hospital of Würzburg, Josef-Schneider-Strasse 11, 97080, Würzburg, Germany
| | - Dmitri Sisario
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Tessa Korsa
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Gudrun Steussloff
- Department of Radiation Oncology, University Hospital of Würzburg, Josef-Schneider-Strasse 11, 97080, Würzburg, Germany
| | - Vladimir L Sukhorukov
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Michael Flentje
- Department of Radiation Oncology, University Hospital of Würzburg, Josef-Schneider-Strasse 11, 97080, Würzburg, Germany
| |
Collapse
|
6
|
Engin AB, Engin A. The Connection Between Cell Fate and Telomere. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:71-100. [PMID: 33539012 DOI: 10.1007/978-3-030-49844-3_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abolition of telomerase activity results in telomere shortening, a process that eventually destabilizes the ends of chromosomes, leading to genomic instability and cell growth arrest or death. Telomere shortening leads to the attainment of the "Hayflick limit", and the transition of cells to state of senescence. If senescence is bypassed, cells undergo crisis through loss of checkpoints. This process causes massive cell death concomitant with further telomere shortening and spontaneous telomere fusions. In functional telomere of mammalian cells, DNA contains double-stranded tandem repeats of TTAGGG. The Shelterin complex, which is composed of six different proteins, is required for the regulation of telomere length and stability in cells. Telomere protection by telomeric repeat binding protein 2 (TRF2) is dependent on DNA damage response (DDR) inhibition via formation of T-loop structures. Many protein kinases contribute to the DDR activated cell cycle checkpoint pathways, and prevent DNA replication until damaged DNA is repaired. Thereby, the connection between cell fate and telomere length-associated telomerase activity is regulated by multiple protein kinase activities. Contrarily, inactivation of DNA damage checkpoint protein kinases in senescent cells can restore cell-cycle progression into S phase. Therefore, telomere-initiated senescence is a DNA damage checkpoint response that is activated with a direct contribution from dysfunctional telomeres. In this review, in addition to the above mentioned, the choice of main repair pathways, which comprise non-homologous end joining and homologous recombination in telomere uncapping telomere dysfunctions, are discussed.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| | - Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
7
|
Yue X, Bai C, Xie D, Ma T, Zhou PK. DNA-PKcs: A Multi-Faceted Player in DNA Damage Response. Front Genet 2020; 11:607428. [PMID: 33424929 PMCID: PMC7786053 DOI: 10.3389/fgene.2020.607428] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022] Open
Abstract
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a member of the phosphatidylinositol 3-kinase related kinase family, which can phosphorylate more than 700 substrates. As the core enzyme, DNA-PKcs forms the active DNA-PK holoenzyme with the Ku80/Ku70 heterodimer to play crucial roles in cellular DNA damage response (DDR). Once DNA double strand breaks (DSBs) occur in the cells, DNA-PKcs is promptly recruited into damage sites and activated. DNA-PKcs is auto-phosphorylated and phosphorylated by Ataxia-Telangiectasia Mutated at multiple sites, and phosphorylates other targets, participating in a series of DDR and repair processes, which determine the cells' fates: DSBs NHEJ repair and pathway choice, replication stress response, cell cycle checkpoints, telomeres length maintenance, senescence, autophagy, etc. Due to the special and multi-faceted roles of DNA-PKcs in the cellular responses to DNA damage, it is important to precisely regulate the formation and dynamic of its functional complex and activities for guarding genomic stability. On the other hand, targeting DNA-PKcs has been considered as a promising strategy of exploring novel radiosensitizers and killing agents of cancer cells. Combining DNA-PKcs inhibitors with radiotherapy can effectively enhance the efficacy of radiotherapy, offering more possibilities for cancer therapy.
Collapse
Affiliation(s)
- Xiaoqiao Yue
- School of Public Health, University of South China, Hengyang, China.,Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Chenjun Bai
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Dafei Xie
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Teng Ma
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
8
|
Farhat T, Dudakovic A, Chung JH, van Wijnen AJ, St-Arnaud R. Inhibition of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) stimulates osteoblastogenesis by potentiating bone morphogenetic protein 2 (BMP2) responses. J Cell Physiol 2020; 236:1195-1213. [PMID: 32686190 DOI: 10.1002/jcp.29927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/03/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022]
Abstract
The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is a pleiotropic enzyme involved in DNA repair, cell cycle control, and transcription regulation. A potential role for DNA-PKcs in the regulation of osteoblastogenesis remains to be established. We show that pharmacological inhibition of DNA-PKcs kinase activity or gene silencing of Prkdc (encoding DNA-PKcs) in murine osteoblastic MC3T3-E1 cells and human adipose-derived mesenchymal stromal cells markedly enhanced osteogenesis and the expression of osteoblast differentiation marker genes. Inhibition of DNA-PKcs inhibited cell cycle progression and increased osteogenesis by significantly enhancing the bone morphogenetic protein 2 response in osteoblasts and other mesenchymal cell types. Importantly, in vivo pharmacological inhibition of the kinase enhanced bone biomechanical properties. Bones from osteoblast-specific conditional Prkdc-knockout mice exhibited a similar phenotype of increased stiffness. In conclusion, DNA-PKcs negatively regulates osteoblast differentiation, and therefore DNA-PKcs inhibitors may have therapeutic potential for bone regeneration and metabolic bone diseases.
Collapse
Affiliation(s)
- Theresa Farhat
- Research Centre, Shriners Hospital for Children - Canada, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Jay H Chung
- Laboratory of Obesity & Aging Research, Genetics and Developmental Biology Center, National Heart Lung and Blood Institute (NIH), Bethesda, Maryland
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - René St-Arnaud
- Research Centre, Shriners Hospital for Children - Canada, Montreal, Quebec, Canada.,Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Department of Surgery, McGill University, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Zhou H, Zhu P, Wang J, Toan S, Ren J. DNA-PKcs promotes alcohol-related liver disease by activating Drp1-related mitochondrial fission and repressing FUNDC1-required mitophagy. Signal Transduct Target Ther 2019; 4:56. [PMID: 31839999 PMCID: PMC6895206 DOI: 10.1038/s41392-019-0094-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/19/2019] [Accepted: 11/03/2019] [Indexed: 12/13/2022] Open
Abstract
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a novel housekeeper of hepatic mitochondrial homeostasis outside the DNA repair process. In this study, DNA-PKcs was upregulated in the livers of mice that were exposed to alcohol; the expression of DNA-PKcs positively correlated with hepatic steatosis, fibrosis, apoptosis, and mitochondrial damage. Functional studies revealed that liver-specific DNA-PKcs knockout (DNA-PKcs LKO ) mice were protected from chronic ethanol-induced liver injury and mitochondrial damage. Mechanistic investigations established that DNA-PKcs promoted p53 activation, which elevated dynamin-related protein 1 (Drp1)-related mitochondrial fission but repressed FUN14 domain containing 1 (FUNDC1)-required mitophagy. Excessive fission and defective mitophagy triggered mtDNA damage, mitochondrial respiratory inhibition, mROS overproduction, cardiolipin oxidation, redox imbalance, calcium overload, and hepatic mitochondrial apoptosis. In contrast, the deletion of DNA-PKcs rescued these phenotypic alterations, which alleviated the susceptibility of hepatocytes to alcohol-induced cytotoxicity. Additionally, we also showed that orphan nuclear receptor subfamily 4 group A member 1 (NR4A1) was the upstream signal for DNA-PKcs activation and that the genetic ablation of NR4A1 ameliorated the progression of alcohol-related liver disease (ARLD); these results were similar to those obtained in DNA-PKcs knockout mice. Collectively, our results identified the NR4A1/DNA-PKcs/p53 axis as a novel signaling pathway responsible for ARLD pathogenesis that acts by activating Drp1-related mitochondrial fission and restricting FUNDC1-required mitophagy. The findings have potential implications for new approaches for ARLD therapy.
Collapse
Affiliation(s)
- Hao Zhou
- Chinese PLA General Hospital, Medical School of Chinese PLA, 100853 Beijing, China
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071 USA
| | - Pingjun Zhu
- Chinese PLA General Hospital, Medical School of Chinese PLA, 100853 Beijing, China
| | - Jin Wang
- Chinese PLA General Hospital, Medical School of Chinese PLA, 100853 Beijing, China
| | - Sam Toan
- Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN 55812 USA
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071 USA
| |
Collapse
|
10
|
The Human T-Cell Leukemia Virus Type 1 Basic Leucine Zipper Factor Attenuates Repair of Double-Stranded DNA Breaks via Nonhomologous End Joining. J Virol 2018; 92:JVI.00672-18. [PMID: 29769340 DOI: 10.1128/jvi.00672-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/10/2018] [Indexed: 12/27/2022] Open
Abstract
Adult T-cell leukemia (ATL) is a fatal malignancy of CD4+ T cells infected with human T-cell leukemia virus type 1 (HTLV-1). ATL cells often exhibit random gross chromosomal rearrangements that are associated with the induction and improper repair of double-stranded DNA breaks (DSBs). The viral oncoprotein Tax has been reported to impair DSB repair but has not been shown to be consistently expressed throughout all phases of infection. The viral oncoprotein HTLV-1 basic leucine zipper (bZIP) factor (HBZ) is consistently expressed prior to and throughout disease progression, but it is unclear whether it also influences DSB repair. We report that HBZ attenuates DSB repair by nonhomologous end joining (NHEJ), in a manner dependent upon the bZIP domain. HBZ was found to interact with two vital members of the NHEJ core machinery, Ku70 and Ku80, and to be recruited to DSBs in a bZIP-dependent manner in vitro We observed that HBZ expression also resulted in a bZIP-dependent delay in DNA protein kinase (DNA-PK) activation following treatment with etoposide. Although Tax is reported to interact with Ku70, we did not find Tax expression to interfere with HBZ:Ku complex formation. However, as Tax was reported to saturate NHEJ, we found that this effect masked the attenuation of NHEJ by HBZ. Overall, these data suggest that DSB repair mechanisms are impaired not only by Tax but also by HBZ and show that HBZ expression may significantly contribute to the accumulation of chromosomal abnormalities during HTLV-1-mediated oncogenesis.IMPORTANCE Human T-cell leukemia virus type 1 (HTLV-1) infects 15 million to 20 million people worldwide. Approximately 90% of infected individuals are asymptomatic and may remain undiagnosed, increasing the risk that they will unknowingly transmit the virus. About 5% of the HTLV-1-positive population develop adult T-cell leukemia (ATL), a fatal disease that is not highly responsive to treatment. Although ATL development remains poorly understood, two viral proteins, Tax and HBZ, have been implicated in driving disease progression by manipulating host cell signaling and transcriptional pathways. Unlike Tax, HBZ expression is consistently observed in all infected individuals, making it important to elucidate the specific role of HBZ in disease progression. Here, we present evidence that HBZ could promote the accumulation of double-stranded DNA breaks (DSBs) through the attenuation of the nonhomologous end joining (NHEJ) repair pathway. This effect may lead to genome instability, ultimately contributing to the development of ATL.
Collapse
|
11
|
Dong J, Ren Y, Zhang T, Wang Z, Ling CC, Li GC, He F, Wang C, Wen B. Inactivation of DNA-PK by knockdown DNA-PKcs or NU7441 impairs non-homologous end-joining of radiation-induced double strand break repair. Oncol Rep 2018; 39:912-920. [PMID: 29344644 PMCID: PMC5802037 DOI: 10.3892/or.2018.6217] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022] Open
Abstract
The DNA-dependent protein kinase (DNA-PK) complex plays a pivotal role in non-homologous end-joining (NHEJ) repair. We investigated the mechanism of NU7441, a highly selective DNA-PK inhibitor, in NHEJ-competent mouse embryonic fibroblast (MEF) cells and NHEJ-deficient cells and explored the feasibility of its application in radiosensitizing nasopharyngeal carcinoma (NPC) cells. We generated wild-type and DNA-PKcs−/− MEF cells. Clonogenic survival assays, flow cytometry, and immunoblotting were performed to study the effect of NU7441 on survival, cell cycle, and DNA repair. NU7441 profoundly radiosensitized wild-type MEF cells and SUNE-1 cells, but not DNA-PKcs−/− MEF cells. NU7441 significantly suppressed radiation-induced DSB repair post-irradiation through unrepaired and lethal DNA damage, the cell cycle arrest. The effect was associated with the activation of cell cycle checkpoints. The present study revealed a mechanism by which inhibition of DNA-PK sensitizes cells to irradiation suggesting that radiotherapy in combination with DNA-PK inhibitor is a promising paradigm for the management of NPC which merits further investigation.
Collapse
Affiliation(s)
- Jun Dong
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yufeng Ren
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Tian Zhang
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhenyu Wang
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Clifton C Ling
- Department of Medical Physics and Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Gloria C Li
- Department of Medical Physics and Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Fuqiu He
- Department of Medical Physics and Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Chengtao Wang
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Bixiu Wen
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
12
|
Dong J, Zhang T, Ren Y, Wang Z, Ling CC, He F, Li GC, Wang C, Wen B. Inhibiting DNA-PKcs in a non-homologous end-joining pathway in response to DNA double-strand breaks. Oncotarget 2017; 8:22662-22673. [PMID: 28186989 PMCID: PMC5410253 DOI: 10.18632/oncotarget.15153] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/25/2017] [Indexed: 12/28/2022] Open
Abstract
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a distinct factor in the non-homologous end-joining (NHEJ) pathway involved in DNA double-strand break (DSB) repair. We examined the crosstalk between key proteins in the DSB NHEJ repair pathway and cell cycle regulation and found that mouse embryonic fibroblast (MEF) cells deficient in DNA-PKcs or Ku70 were more vulnerable to ionizing radiation (IR) compared with wild-type cells and that DSB repair was delayed. γH2AX was associated with phospho-Ataxia-telangiectasia mutated kinase (Ser1987) and phospho-checkpoint effector kinase 1 (Ser345) foci for the arrest of cell cycle through the G2/M phase. Inhibition of DNA-PKcs prolonged IR-induced G2/M phase arrest because of sequential activation of cell cycle checkpoints. DSBs were introduced, and cell cycle checkpoints were recruited after exposure to IR in nasopharyngeal carcinoma SUNE-1 cells. NU7441 radiosensitized MEF cells and SUNE-1 cells by interfering with DSB repair. Together, these results reveal a mechanism in which coupling of DSB repair with the cell cycle radiosensitizes NHEJ repair-deficient cells, justifying further development of DNA-PK inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Jun Dong
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Tian Zhang
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yufeng Ren
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhenyu Wang
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Clifton C Ling
- Department of Medical Physics and Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York 10021, USA
| | - Fuqiu He
- Department of Medical Physics and Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York 10021, USA
| | - Gloria C Li
- Department of Medical Physics and Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York 10021, USA
| | - Chengtao Wang
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Bixiu Wen
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.,Department of Medical Physics and Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York 10021, USA
| |
Collapse
|
13
|
Dashzeveg N, Yoshida K. Crosstalk between tumor suppressors p53 and PKCδ: Execution of the intrinsic apoptotic pathways. Cancer Lett 2016; 377:158-63. [PMID: 27130668 DOI: 10.1016/j.canlet.2016.04.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/21/2016] [Accepted: 04/21/2016] [Indexed: 01/23/2023]
Abstract
p53 and PKCδ are tumor suppressors that execute apoptotic mechanisms in response to various cellular stresses. p53 is a transcription factor that is frequently mutated in human cancers; it regulates apoptosis in transcription-dependent and -independent ways in response to genotoxic stresses. PKCδ is a serine/threonine protein kinase and mutated in human cancers. Available evidence shows that PKCδ activates p53 by direct and/or indirect mechanisms. Moreover, PKCδ is also implicated in the transcriptional regulation of p53 in response to DNA damage. Recent findings demonstrated that p53, in turn, binds onto the PKCδ promoter and induces its expression upon DNA damage to facilitate apoptosis. Both p53 and PKCδ are associated with the apoptotic mechanisms in the mitochondria by regulating Bcl-2 family proteins to provide mitochondrial outer membrane permeabilization. This review discusses the crosstalk between p53 and PKCδ in the context of apoptotic cell death and cancer therapy.
Collapse
Affiliation(s)
- Nurmaa Dashzeveg
- Department of Biochemistry, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| |
Collapse
|
14
|
Induction and inhibition of the pan-nuclear gamma-H2AX response in resting human peripheral blood lymphocytes after X-ray irradiation. Cell Death Discov 2016; 2:16011. [PMID: 27551505 PMCID: PMC4979483 DOI: 10.1038/cddiscovery.2016.11] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 01/17/2016] [Indexed: 01/08/2023] Open
Abstract
Human peripheral blood lymphocytes (HPBLs) are one of the most sensitive cells to ionizing radiation (IR) in the human body, and IR-induced DNA damage and functional impairment of HPBLs are the adverse consequences of IR accidents and major side effects of radiotherapy. Phosphorylated H2AX (γH2AX) is a sensitive marker for DNA double-strand breaks, but the role and regulation of the pan-nuclear γH2AX response in HPBLs after IR remain unclear. We herein demonstrated that the pan-nuclear γH2AX signals were increased in a time- and dose-dependent manner, colocalized with >94% of TUNEL apoptotic staining, and displayed a typical apoptotic pattern in resting HPBLs after low LET X-ray IR. In addition, the X-irradiation-induced pan-nuclear p-ATM and p-DNA-PKcs responses also occurred in resting HPBLs, and were colocalized with 92–95% of TUNEL staining and 97–98% of the pan-nuclear γH2AX signals, respectively, with a maximum at 6 h post irradiation, but disappeared at 24 h post irradiation. Moreover, ATM/DNA-PKcs inhibitor KU55933, p53 inhibitor PFT-μ and pan-caspase inhibitor ZVAD-fmk significantly decreased X-irradiation-induced pan-nuclear γH2AX signals and TUNEL staining, protected HPBLs from apoptosis, but decreased the proliferative response to mitogen in X-irradiated HPBLs. Notably, whereas both KU55933 and PFT-μ increased the IR-induced chromosome breaks and mis-repair events through inhibiting the formation of p-ATM, p-DNA-PKcs and γH2AX foci in X-irradiated HPBLs, the ZVAD-fmk did not increase the IR-induced chromosomal instability. Taken together, our data indicate that pan-nuclear γH2AX response represents an apoptotic signal that is triggered by the transient pan-nuclear ATM and DNA-PKcs activation, and mediated by p53 and pan-caspases in X-irradiated HPBLs, and that caspase inhibitors are better than ATM/DNA-PKcs inhibitors and p53 inhibitors to block pan-nuclear γH2AX response/apoptosis and protect HPBLs from IR.
Collapse
|
15
|
Analysis of Residual DSBs in Ataxia-Telangiectasia Lymphoblast Cells Initiating Apoptosis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8279560. [PMID: 27057549 PMCID: PMC4736819 DOI: 10.1155/2016/8279560] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/01/2015] [Indexed: 11/17/2022]
Abstract
In order to examine the relationship between accumulation of residual DNA double-strand breaks (DSBs) and cell death, we have used a control and an ATM (Ataxia-Telangiectasia Mutated) defective cell line, as Ataxia-Telangiectasia (AT) cells tend to accumulate residual DSBs at long times after damage infliction. After irradiation, AT cells showed checkpoint impairment and a fraction of cells displayed an abnormal centrosome number and tetraploid DNA content, and this fraction increased along with apoptosis rates. At all times analyzed, AT cells displayed a significantly higher rate of radiation-induced apoptosis than normal cells. Besides apoptosis, 70-85% of the AT viable cells (TUNEL-negative) carried ≥ 10 γH2AX foci/cell, while only 12-27% of normal cells did. The fraction of AT and normal cells undergoing early and late apoptosis were isolated by flow cytometry and residual DSBs were concretely scored in these populations. Half of the γH2AX-positive AT cells undergoing early apoptosis carried ≥ 10 γH2AX foci/cell and this fraction increased to 75% in late apoptosis. The results suggest that retention of DNA damage-induced γH2AX foci is an indicative of lethal DNA damage, as cells undergoing apoptosis are those accumulating more DSBs. Scoring of residual γH2AX foci might function as a predictive tool to assess radiation-induced apoptosis.
Collapse
|
16
|
Li J, Kurokawa M. Regulation of MDM2 Stability After DNA Damage. J Cell Physiol 2015; 230:2318-27. [PMID: 25808808 DOI: 10.1002/jcp.24994] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 03/20/2015] [Indexed: 12/13/2022]
Abstract
Cells in our body are constantly exposed to various stresses and threats to their genomic integrity. The tumor suppressor protein p53 plays a critical role in successful defense against these threats by inducing apoptotic cell death or cell cycle arrest. In unstressed conditions, p53 levels and activity must be kept low to prevent lethal activation of apoptotic and senescence pathways. However, upon DNA damage or other stressors, p53 is released from its inhibitory state to induce an array of apoptosis and cell cycle genes. Conversely, inactivation of p53 could promote unrestrained tumor proliferation and failure to appropriately undergo apoptotic cell death, which could, in turn, lead to carcinogenesis. The ubiquitin E3 ligase MDM2 is the most critical inhibitor of p53 that determines the cellular response to various p53-activating agents, including DNA damage. MDM2 activity is controlled by post-translational modifications, especially phosphorylation. However, accumulating evidence suggests that MDM2 is also regulated at the level of protein stability, which is controlled by the ubiquitin-proteasome pathway. Here, we discuss how MDM2 can be regulated in response to DNA damage with particular focus on the regulation of MDM2 protein stability.
Collapse
Affiliation(s)
- Jiaqi Li
- Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Manabu Kurokawa
- Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.,Norris Cotton Cancer Center, Lebanon, New Hampshire
| |
Collapse
|
17
|
So J, Pasculescu A, Dai AY, Williton K, James A, Nguyen V, Creixell P, Schoof EM, Sinclair J, Barrios-Rodiles M, Gu J, Krizus A, Williams R, Olhovsky M, Dennis JW, Wrana JL, Linding R, Jorgensen C, Pawson T, Colwill K. Integrative analysis of kinase networks in TRAIL-induced apoptosis provides a source of potential targets for combination therapy. Sci Signal 2015; 8:rs3. [PMID: 25852190 DOI: 10.1126/scisignal.2005700] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2024]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an endogenous secreted peptide and, in preclinical studies, preferentially induces apoptosis in tumor cells rather than in normal cells. The acquisition of resistance in cells exposed to TRAIL or its mimics limits their clinical efficacy. Because kinases are intimately involved in the regulation of apoptosis, we systematically characterized kinases involved in TRAIL signaling. Using RNA interference (RNAi) loss-of-function and cDNA overexpression screens, we identified 169 protein kinases that influenced the dynamics of TRAIL-induced apoptosis in the colon adenocarcinoma cell line DLD-1. We classified the kinases as sensitizers or resistors or modulators, depending on the effect that knockdown and overexpression had on TRAIL-induced apoptosis. Two of these kinases that were classified as resistors were PX domain-containing serine/threonine kinase (PXK) and AP2-associated kinase 1 (AAK1), which promote receptor endocytosis and may enable cells to resist TRAIL-induced apoptosis by enhancing endocytosis of the TRAIL receptors. We assembled protein interaction maps using mass spectrometry-based protein interaction analysis and quantitative phosphoproteomics. With these protein interaction maps, we modeled information flow through the networks and identified apoptosis-modifying kinases that are highly connected to regulated substrates downstream of TRAIL. The results of this analysis provide a resource of potential targets for the development of TRAIL combination therapies to selectively kill cancer cells.
Collapse
Affiliation(s)
- Jonathan So
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada. Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Adrian Pasculescu
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Anna Y Dai
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Kelly Williton
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Andrew James
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Vivian Nguyen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Pau Creixell
- Cellular Signal Integration Group (C-SIG), Technical University of Denmark (DTU), DK-2800 Lyngby, Denmark
| | - Erwin M Schoof
- Cellular Signal Integration Group (C-SIG), Technical University of Denmark (DTU), DK-2800 Lyngby, Denmark
| | - John Sinclair
- Cell Communication Team, The Institute of Cancer Research, London SW3 6JB, UK
| | - Miriam Barrios-Rodiles
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Jun Gu
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Aldis Krizus
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Ryan Williams
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Marina Olhovsky
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - James W Dennis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada. Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jeffrey L Wrana
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada. Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Rune Linding
- Cellular Signal Integration Group (C-SIG), Technical University of Denmark (DTU), DK-2800 Lyngby, Denmark. Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), DK-2200 Copenhagen, Denmark.
| | - Claus Jorgensen
- Cell Communication Team, The Institute of Cancer Research, London SW3 6JB, UK.
| | - Tony Pawson
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada. Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A8, Canada. Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.
| |
Collapse
|
18
|
Inositol pyrophosphates mediate the DNA-PK/ATM-p53 cell death pathway by regulating CK2 phosphorylation of Tti1/Tel2. Mol Cell 2014; 54:119-132. [PMID: 24657168 DOI: 10.1016/j.molcel.2014.02.020] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 12/16/2013] [Accepted: 02/13/2014] [Indexed: 11/20/2022]
Abstract
The apoptotic actions of p53 require its phosphorylation by a family of phosphoinositide-3-kinase-related-kinases (PIKKs), which include DNA-PKcs and ATM. These kinases are stabilized by the TTT (Tel2, Tti1, Tti2) cochaperone family, whose actions are mediated by CK2 phosphorylation. The inositol pyrophosphates, such as 5-diphosphoinositol pentakisphosphate (IP7), are generated by a family of inositol hexakisphosphate kinases (IP6Ks), of which IP6K2 has been implicated in p53-associated cell death. In the present study we report an apoptotic signaling cascade linking CK2, TTT, the PIKKs, and p53. We demonstrate that IP7, formed by IP6K2, binds CK2 to enhance its phosphorylation of the TTT complex, thereby stabilizing DNA-PKcs and ATM. This process stimulates p53 phosphorylation at serine 15 to activate the cell death program in human cancer cells and in murine B cells.
Collapse
|
19
|
Stewart HJS, Horne GA, Bastow S, Chevassut TJT. BRD4 associates with p53 in DNMT3A-mutated leukemia cells and is implicated in apoptosis by the bromodomain inhibitor JQ1. Cancer Med 2013; 2:826-35. [PMID: 24403256 PMCID: PMC3892387 DOI: 10.1002/cam4.146] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 08/17/2013] [Accepted: 09/11/2013] [Indexed: 12/30/2022] Open
Abstract
The bromodomain and extra terminal (BET) family protein bromodomain containing protein 4 (BRD4) is an epigenetic regulator recently identified as a therapeutic target for several hematological cancers, notably mixed lineage leukemia-fusion acute myeloid leukemia (MLL-AML). Here, we show that the BRD4 bromodomain inhibitor JQ1 is highly active against the p53-wild-type Ontario Cancer Institute (OCI)-AML3 cell line which carries mutations in nucleophosmin (NPM1) and DNA methyltransferase 3 (DNMT3A) genes commonly associated with poor prognostic disease. We find that JQ1 causes caspase 3/7-mediated apoptosis and DNA damage response in these cells. In combination studies, we show that histone deacetylase (HDAC) inhibitors, the HDM2 inhibitor Nutlin-3, and the anthracycline daunorubicin all enhance the apoptotic response of JQ1. These compounds all induce activation of p53 suggesting that JQ1 might sensitize AML cells to p53-mediated cell death. In further experiments, we show that BRD4 associates with acetylated p53 but that this association is not inhibited by JQ1 indicating that the protein-protein interaction does not involve bromodomain binding of acetylated lysines. Instead, we propose that JQ1 acts to prevent BRD4-mediated recruitment of p53 to chromatin targets following its activation in OCI-AML3 cells resulting in cell cycle arrest and apoptosis in a c-MYC-independent manner. Our data suggest that BET bromodomain inhibition might enhance current chemotherapy strategies in AML, notably in poor-risk DNMT3A/NPM1-mutated disease.
Collapse
Affiliation(s)
- Helen Jayne Susan Stewart
- Brighton and Sussex Medical School, University of Sussex, Brighton, East Sussex, BN1 9PS, U.K; Department of Haematology, Royal Sussex County Hospital, Brighton, East Sussex, BN2 5BE, U.K
| | | | | | | |
Collapse
|
20
|
Kang GY, Pyun BJ, Seo HR, Jin YB, Lee HJ, Lee YJ, Lee YS. Inhibition of Snail1-DNA-PKcs protein-protein interface sensitizes cancer cells and inhibits tumor metastasis. J Biol Chem 2013; 288:32506-32516. [PMID: 24085291 DOI: 10.1074/jbc.m113.479840] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Our previous study suggested that the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) interacts with Snail1, which affects genomic instability, sensitivity to DNA-damaging agents, and migration of tumor cells by reciprocal regulation between DNA-PKcs and Snail1. Here, we further investigate that a peptide containing 7-amino acid sequences (amino acids 15-21) of Snail1 (KPNYSEL, SP) inhibits the endogenous interaction between DNA-PKcs and Snail1 through primary interaction with DNA-PKcs. SP restored the inhibited DNA-PKcs repair activity and downstream pathways. On the other hand, DNA-PKcs-mediated phosphorylation of Snail1 was inhibited by SP, which resulted in decreased Snail1 stability and Snail1 functions. However, these phenomena were only shown in p53 wild-type cells, not in p53-defective cells. From these results, it is suggested that interfering with the protein interaction between DNA-PKcs and Snail1 might be an effective strategy for sensitizing cancer cells and inhibiting tumor migration, especially in both Snail1-overexpressing and DNA-PKcs-overexpressing cancer cells with functional p53.
Collapse
Affiliation(s)
- Ga-Young Kang
- From the College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750
| | - Bo-Jeong Pyun
- From the College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750
| | - Haeng Ran Seo
- the Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706
| | - Yeung Bae Jin
- the Korea Atomic Energy Research Institute, Advanced Radiation Technology Institute, Jeongeup-si, Jeollabuk-do 580-185, Korea
| | - Hae-June Lee
- the Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706
| | - Yoon-Jin Lee
- the Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706
| | - Yun-Sil Lee
- From the College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750,.
| |
Collapse
|
21
|
Pharmacogenomics of insulin-like growth factor-I generation during GH treatment in children with GH deficiency or Turner syndrome. THE PHARMACOGENOMICS JOURNAL 2013; 14:54-62. [PMID: 23567489 PMCID: PMC3959225 DOI: 10.1038/tpj.2013.14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 01/22/2013] [Accepted: 02/04/2013] [Indexed: 02/08/2023]
Abstract
Individual responses to growth hormone (GH) treatment are variable. Short-term generation of insulin-like growth factor-I (IGF-I) is recognized as a potential marker of sensitivity to GH treatment. This prospective, phase IV study used an integrated genomic analysis to identify markers associated with 1-month change in IGF-I (ΔIGF-I) following initiation of recombinant human (r-h)GH therapy in treatment-naïve children with GH deficiency (GHD) (n=166) or Turner syndrome (TS) (n=147). In both GHD and TS, polymorphisms in the cell-cycle regulator CDK4 were associated with 1-month ΔIGF-I (P<0.05). Baseline gene expression was also correlated with 1-month ΔIGF-I in both GHD and TS (r=0.3; P<0.01). In patients with low IGF-I responses, carriage of specific CDK4 alleles was associated with MAPK and glucocorticoid receptor signaling in GHD, and with p53 and Wnt signaling pathways in TS. Understanding the relationship between genomic markers and early changes in IGF-I may allow development of strategies to rapidly individualize r-hGH dose.
Collapse
|
22
|
Budworth H, Snijders AM, Marchetti F, Mannion B, Bhatnagar S, Kwoh E, Tan Y, Wang SX, Blakely WF, Coleman M, Peterson L, Wyrobek AJ. DNA repair and cell cycle biomarkers of radiation exposure and inflammation stress in human blood. PLoS One 2012; 7:e48619. [PMID: 23144912 PMCID: PMC3492462 DOI: 10.1371/journal.pone.0048619] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 09/26/2012] [Indexed: 01/28/2023] Open
Abstract
DNA damage and repair are hallmarks of cellular responses to ionizing radiation. We hypothesized that monitoring the expression of DNA repair-associated genes would enhance the detection of individuals exposed to radiation versus other forms of physiological stress. We employed the human blood ex vivo radiation model to investigate the expression responses of DNA repair genes in repeated blood samples from healthy, non-smoking men and women exposed to 2 Gy of X-rays in the context of inflammation stress mimicked by the bacterial endotoxin lipopolysaccharide (LPS). Radiation exposure significantly modulated the transcript expression of 12 genes of 40 tested (2.2E-06<p<0.03), of which 8 showed no overlap between unirradiated and irradiated samples (CDKN1A, FDXR, BBC3, PCNA, GADD45a, XPC, POLH and DDB2). This panel demonstrated excellent dose response discrimination (0.5 to 8 Gy) in an independent human blood ex vivo dataset, and 100% accuracy for discriminating patients who received total body radiation. Three genes of this panel (CDKN1A, FDXR and BBC3) were also highly sensitive to LPS treatment in the absence of radiation exposure, and LPS co-treatment significantly affected their radiation responses. At the protein level, BAX and pCHK2-thr68 were elevated after radiation exposure, but the pCHK2-thr68 response was significantly decreased in the presence of LPS. Our combined panel yields an estimated 4-group accuracy of ∼90% to discriminate between radiation alone, inflammation alone, or combined exposures. Our findings suggest that DNA repair gene expression may be helpful to identify biodosimeters of exposure to radiation, especially within high-complexity exposure scenarios.
Collapse
Affiliation(s)
- Helen Budworth
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Antoine M. Snijders
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Francesco Marchetti
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Brandon Mannion
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Sandhya Bhatnagar
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Ely Kwoh
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Yuande Tan
- Center for Biostatistics, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Shan X. Wang
- Department of Materials Science and Engineering, Department of Electrical Engineering, Stanford University, Stanford, California, United States of America
| | - William F. Blakely
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Matthew Coleman
- Radiation Oncology, UC Davis School of Medicine, University of California Davis, Davis, California, United States of America
| | - Leif Peterson
- Center for Biostatistics, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Andrew J. Wyrobek
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Fan YJ, Zong WX. The cellular decision between apoptosis and autophagy. CHINESE JOURNAL OF CANCER 2012; 32:121-9. [PMID: 23114086 PMCID: PMC3845594 DOI: 10.5732/cjc.012.10106] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Apoptosis and autophagy are important molecular processes that maintain organismal and cellular homeostasis, respectively. While apoptosis fulfills its role through dismantling damaged or unwanted cells, autophagy maintains cellular homeostasis through recycling selective intracellular organelles and molecules. Yet in some conditions, autophagy can lead to cell death. Apoptosis and autophagy can be stimulated by the same stresses. Emerging evidence indicates an interplay between the core proteins in both pathways, which underlies the molecular mechanism of the crosstalk between apoptosis and autophagy. This review summarizes recent literature on molecules that regulate both the apoptotic and autophagic processes.
Collapse
Affiliation(s)
- Yong-Jun Fan
- Department of Molecular Genetics & Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | | |
Collapse
|
24
|
Dix MM, Simon GM, Wang C, Okerberg E, Patricelli MP, Cravatt BF. Functional interplay between caspase cleavage and phosphorylation sculpts the apoptotic proteome. Cell 2012; 150:426-40. [PMID: 22817901 DOI: 10.1016/j.cell.2012.05.040] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 03/26/2012] [Accepted: 05/16/2012] [Indexed: 12/14/2022]
Abstract
Caspase proteases are principal mediators of apoptosis, where they cleave hundreds of proteins. Phosphorylation also plays an important role in apoptosis, although the extent to which proteolytic and phosphorylation pathways crosstalk during programmed cell death remains poorly understood. Using a quantitative proteomic platform that integrates phosphorylation sites into the topographical maps of proteins, we identify a cohort of over 500 apoptosis-specific phosphorylation events and show that they are enriched on cleaved proteins and clustered around sites of caspase proteolysis. We find that caspase cleavage can expose new sites for phosphorylation, and, conversely, that phosphorylation at the +3 position of cleavage sites can directly promote substrate proteolysis by caspase-8. This study provides a global portrait of the apoptotic phosphoproteome, revealing heretofore unrecognized forms of functional crosstalk between phosphorylation and caspase proteolytic pathways that lead to enhanced rates of protein cleavage and the unveiling of new sites for phosphorylation.
Collapse
Affiliation(s)
- Melissa M Dix
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
25
|
Hill R, Madureira PA, Waisman DM, Lee PWK. DNA-PKCS binding to p53 on the p21WAF1/CIP1 promoter blocks transcription resulting in cell death. Oncotarget 2012; 2:1094-108. [PMID: 22190353 PMCID: PMC3282069 DOI: 10.18632/oncotarget.378] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A key determinant of p53-mediated cell fate following various DNA damage modalities is p21WAF1/CIP1 expression, with elevated p21 expression triggering cell cycle arrest and repressed p21 expression promoting apoptosis. We show that under pro-death DNA damage conditions, the DNA-dependent protein kinase (DNA-PKCS) is recruited to the p21 promoter where it forms a protein complex with p53. The DNA-PKCS-associated p53 displays post-translational modifications that are distinct from those under pro-arrest conditions, ablating p21 transcription and inducing cell death. Inhibition of DNA-PK activity prevents DNA-PKCS binding to p53 on the p21 promoter, restores p21 transcription and significantly reduces cell death. These data demonstrate that DNA-PKCS negatively regulates p21 expression by directly interacting with the p21 transcription machinery via p53, driving the cell towards apoptosis.
Collapse
Affiliation(s)
- Richard Hill
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
26
|
Adeno-associated virus type 2 modulates the host DNA damage response induced by herpes simplex virus 1 during coinfection. J Virol 2011; 86:143-55. [PMID: 22013059 DOI: 10.1128/jvi.05694-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Adeno-associated virus type 2 (AAV2) is a human parvovirus that relies on a helper virus for efficient replication. Herpes simplex virus 1 (HSV-1) supplies helper functions and changes the environment of the cell to promote AAV2 replication. In this study, we examined the accumulation of cellular replication and repair proteins at viral replication compartments (RCs) and the influence of replicating AAV2 on HSV-1-induced DNA damage responses (DDR). We observed that the ATM kinase was activated in cells coinfected with AAV2 and HSV-1. We also found that phosphorylated ATR kinase and its cofactor ATR-interacting protein were recruited into AAV2 RCs, but ATR signaling was not activated. DNA-PKcs, another main kinase in the DDR, was degraded during HSV-1 infection in an ICP0-dependent manner, and this degradation was markedly delayed during AAV2 coinfection. Furthermore, we detected phosphorylation of DNA-PKcs during AAV2 but not HSV-1 replication. The AAV2-mediated delay in DNA-PKcs degradation affected signaling through downstream substrates. Overall, our results demonstrate that coinfection with HSV-1 and AAV2 provokes a cellular DDR which is distinct from that induced by HSV-1 alone.
Collapse
|
27
|
Sand-Dejmek J, Adelmant G, Sobhian B, Calkins AS, Marto J, Iglehart DJ, Lazaro JB. Concordant and opposite roles of DNA-PK and the "facilitator of chromatin transcription" (FACT) in DNA repair, apoptosis and necrosis after cisplatin. Mol Cancer 2011; 10:74. [PMID: 21679440 PMCID: PMC3135565 DOI: 10.1186/1476-4598-10-74] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Accepted: 06/16/2011] [Indexed: 12/18/2022] Open
Abstract
Background Platinum-containing chemotherapy produces specific DNA damage and is used to treat several human solid tumors. Tumors initially sensitive to platinum-based drugs frequently become resistant. Inhibition of DNA repair is a potential strategy to enhance cisplatin effectiveness. After cisplatin treatment, a balance between repair and apoptosis determines whether cancer cells proliferate or die. DNA-dependent protein kinase (DNA-PK) binds to DNA double strand breaks (DSBs) through its Ku subunits and initiates non-homologous end joining. Inhibition of DNA-PK sensitizes cancer cells to cisplatin killing. The goal of this study is to elucidate the mechanism underlying the effects of DNA-PK on cisplatin sensitivity. Results Silencing the expression of the catalytic subunit of DNA-PK (DNA-PKcs) increased sensitivity to cisplatin and decreased the appearance of γH2AX after cisplatin treatment. We purified DNA-PK by its Ku86 subunit and identified interactors by tandem mass spectrometry before and after cisplatin treatment. The structure specific recognition protein 1 (SSRP1), Spt16 and γH2AX appeared in the Ku86 complex 5 hours after cisplatin treatment. SSRP1 and Spt16 form the facilitator of chromatin transcription (FACT). The cisplatin-induced association of FACT with Ku86 and γH2AX was abrogated by DNase treatment. In living cells, SSRP1 and Ku86 were recruited at sites of DSBs induced by laser beams. Silencing SSRP1 expression increased sensitivity to cisplatin and decreased γH2AX appearance. However, while silencing SSRP1 in cisplatin-treated cells increased both apoptosis and necrosis, DNA-PKcs silencing, in contrast, favored necrosis over apoptosis. Conclusions DNA-PK and FACT both play roles in DNA repair. Therefore both are putative targets for therapeutic inhibition. Since DNA-PK regulates apoptosis, silencing DNA-PKcs redirects cells treated with cisplatin toward necrosis. Silencing FACT however, allows both apoptosis and necrosis. Targeting DNA repair in cancer patients may have different therapeutic effects depending upon the roles played by factors targeted.
Collapse
Affiliation(s)
- Janna Sand-Dejmek
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Zhao BX, Chen HZ, Du XD, Luo J, He JP, Wang RH, Wang Y, Wu R, Hou RR, Hong M, Wu Q. Orphan receptor TR3 enhances p53 transactivation and represses DNA double-strand break repair in hepatoma cells under ionizing radiation. Mol Endocrinol 2011; 25:1337-50. [PMID: 21659476 DOI: 10.1210/me.2011-0081] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In response to ionizing radiation (IR)-induced DNA double-strand breaks (DSB), cells elicit an evolutionarily conserved checkpoint response that induces cell cycle arrest and either DNA repair or apoptosis, thereby maintaining genomic stability. DNA-dependent protein kinase (DNA-PK) is a central enzyme involved in DSB repair for mammalian cells that comprises a DNA-PK catalytic subunit and the Ku protein, which act as regulatory elements. DNA-PK also functions as a signaling molecule to selectively regulate p53-dependent apoptosis in response to IR. Herein, we demonstrate that the orphan nuclear receptor TR3 suppresses DSB repair by blocking Ku80 DNA-end binding activity and promoting DNA-PK-induced p53 activity in hepatoma cells. We find that TR3 interacts with Ku80 and inhibits its binding to DNA ends, which then suppresses DSB repair. Furthermore, TR3 is a phosphorylation substrate for DNA-PK and interacts with DNA-PK catalytic subunit in a Ku80-independent manner. Phosphorylated TR3, in turn, enhances DNA-PK-induced phosphorylation and p53 transcription activity, thereby enhancing IR-induced apoptosis in hepatoma cells. Together, our findings reveal novel functions for TR3, not only in DSB repair regulation but also in IR-induced hepatoma cell apoptosis, and they suggest that TR3 is a potential target for cancer radiotherapy.
Collapse
Affiliation(s)
- Bi-xing Zhao
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Joyce NC, Harris DL, Zhu CC. Age-related gene response of human corneal endothelium to oxidative stress and DNA damage. Invest Ophthalmol Vis Sci 2011; 52:1641-9. [PMID: 21087955 DOI: 10.1167/iovs.10-6492] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Nuclear oxidative DNA damage increases with age in human corneal endothelial cells (HCECs) and contributes to their decreased proliferative capacity. These studies investigated whether HCECs respond to this damage by upregulating their expression of oxidative stress and DNA damage-signaling genes in an age-dependent manner. METHODS HCECs were dissected from the corneas of young (30 years and younger) and older (50 years and older) donors. Total RNA was isolated and reverse-transcribed. Oxidative stress and DNA damage-signaling gene expression were analyzed using commercial PCR-based microarrays. Western blot analyses were conducted on selected proteins to verify the microarray results. Nuclear DNA damage foci were detected in the endothelium of ex vivo corneas by immunostaining for H2AX-Ser139. RESULTS Four of 84 genes showed a statistically significant age-related difference in the expression of oxidative stress-related genes; however, Western blot analysis demonstrated an age-related increase in only 2 (cytoglobin and GPX-1) of 11 proteins tested. No age-related differences were detected in the expression of DNA damage-signaling genes. Western blot analysis of seven DNA damage-related proteins verified this finding. Intense nuclear staining of DNA damage foci was observed in nuclei within the central endothelium of older donors. Central endothelium from young donors consistently showed a low level of positive staining. CONCLUSIONS HCECs respond to age-related increases in oxidative nuclear DNA damage by forming DNA damage repair foci; however, they do not vigorously defend against or repair this damage by upregulating the expression of multiple oxidative stress or DNA damage-signaling genes.
Collapse
Affiliation(s)
- Nancy C Joyce
- Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | |
Collapse
|
30
|
Zhuang W, Li B, Long L, Chen L, Huang Q, Liang ZQ. Knockdown of the DNA-dependent protein kinase catalytic subunit radiosensitizes glioma-initiating cells by inducing autophagy. Brain Res 2010; 1371:7-15. [PMID: 21108935 DOI: 10.1016/j.brainres.2010.11.044] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 11/06/2010] [Accepted: 11/09/2010] [Indexed: 11/19/2022]
Abstract
Glioblastoma (GBM) is a highly aggressive brain tumor characterized by increased proliferation and resistance to chemotherapy and radiotherapy. A growing body of evidence suggests that only a small subpopulation of malignant glioma cells, called glioma stem cells or glioma-initiating cells (GICs), have true tumorigenic potential and confer glioma radioresistance. DNA-dependent protein kinase catalytic subunit (DNA-PKcs) plays a major role in the repair of DNA double-strand breaks induced by ionizing radiation (IR). Suppression of one of these components of the DNA-PK complex can inhibit the DNA double-strand break repair and radiosensitize the cells. In general, the cell death induced by IR is considered to be apoptotic. Recently, autophagy, an alternative form of programmed cell death, has been shown to contribute significantly to anti-neoplastic effects of radiation therapy. Autophagy is independent of phagocytes and differs from apoptosis by the presence of autophagosomes, autolysosomes, and an intact nucleus in the cell. Little is known, however, regarding the relationship between DNA-PKcs and IR-induced autophagy in GICs. In the present study, we constructed plasmids encoding short hairpin RNA (shRNA) targeting DNA-PKcs, which were then transfected into GICs. Then, we used GICs and DNA-PKcs-RNAi transfected cells to investigate the role of DNA-PKcs in IR-induced apoptotic and autophagic cell death. IR induced massive autophagic cell death in DNA-PKcs-RNAi transfected cells, but only occasional apoptotic cells were detected among GICs. Specific inhibition of DNA-PKcs in GICs induced autophagy and radiosensitized the cells. Our results suggest that such radiation-induced autophagy may enhance the effect of glioma therapies.
Collapse
Affiliation(s)
- Wenzhuo Zhuang
- Department of Pharmacology, Soochow University School of Medicine, Suzhou 215123, China
| | | | | | | | | | | |
Collapse
|
31
|
Tomita M. Involvement of DNA-PK and ATM in radiation- and heat-induced DNA damage recognition and apoptotic cell death. JOURNAL OF RADIATION RESEARCH 2010; 51:493-501. [PMID: 20814172 DOI: 10.1269/jrr.10039] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Exposure to ionizing radiation and hyperthermia results in important biological consequences, e.g. cell death, chromosomal aberrations, mutations, and DNA strand breaks. There is good evidence that the nucleus, specifically cellular DNA, is the principal target for radiation-induced cell lethality. DNA double-strand breaks (DSBs) are considered to be the most serious type of DNA damage induced by ionizing radiation. On the other hand, verifiable mechanisms which can lead to heat-induced cell death are damage to the plasma membrane and/or inactivation of heat-labile proteins caused by protein denaturation and subsequent aggregation. Recently, several reports have suggested that DSBs can be induced after hyperthermia because heat-induced phosphorylated histone H2AX (γ-H2AX) foci formation can be observed in several mammalian cell lines. In mammalian cells, DSBs are repaired primarily through two distinct and complementary mechanisms: non-homologous end joining (NHEJ), and homologous recombination (HR) or homology-directed repair (HDR). DNA-dependent protein kinase (DNA-PK) and ataxia-telangiectasia mutated (ATM) are key players in the initiation of DSB repair and phosphorylate and/or activate many substrates, including themselves. These phosphorylated substrates have important roles in the functioning of cell cycle checkpoints and in cell death, as well as in DSB repair. Apoptotic cell death is a crucial cell suicide mechanism during development and in the defense of homeostasis. If DSBs are unrepaired or misrepaired, apoptosis is a very important system which can protect an organism against carcinogenesis. This paper reviews recently obtained results and current topics concerning the role of DNA-PK and ATM in heat- or radiation-induced apoptotic cell death.
Collapse
Affiliation(s)
- Masanori Tomita
- Department of Radiation Oncology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
32
|
Olsen BB, Issinger OG, Guerra B. Regulation of DNA-dependent protein kinase by protein kinase CK2 in human glioblastoma cells. Oncogene 2010; 29:6016-26. [PMID: 20711232 DOI: 10.1038/onc.2010.337] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The DNA-dependent protein kinase (DNA-PK) is a nuclear serine/threonine protein kinase composed of a large catalytic subunit (DNA-PKcs) and a heterodimeric DNA-targeting subunit Ku. DNA-PK is a major component of the nonhomologous end-joining pathway of DNA double-strand breaks repair. Although DNA-PK has been biochemically characterized in vitro, relatively little is known about its functions in the context of DNA repair and how its kinase activity is precisely regulated in vivo. Here, we report that cellular depletion of the individual catalytic subunits of protein kinase CK2 by RNA interference leads to significant cell death in M059K human glioblastoma cells expressing DNA-PKcs, but not in their isogenic counterpart, that is M059J cells, devoid of DNA-PKcs. The lack of CK2 results in enhanced DNA-PKcs activity and strongly inhibits DNA damage-induced autophosphorylation of DNA-PKcs at S2056 as well as repair of DNA double-strand breaks. By the application of the in situ proximity ligation assay, we show that CK2 interacts with DNA-PKcs in normal growing cells and that the association increases upon DNA damage. These results indicate that CK2 has an important role in the modulation of DNA-PKcs activity and its phosphorylation status providing important insights into the mechanisms by which DNA-PKcs is regulated in vivo.
Collapse
Affiliation(s)
- B B Olsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | | |
Collapse
|
33
|
Alaoui-El-Azher M, Mans JJ, Baker HV, Chen C, Progulske-Fox A, Lamont RJ, Handfield M. Role of the ATM-checkpoint kinase 2 pathway in CDT-mediated apoptosis of gingival epithelial cells. PLoS One 2010; 5:e11714. [PMID: 20668524 PMCID: PMC2909199 DOI: 10.1371/journal.pone.0011714] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 06/15/2010] [Indexed: 02/06/2023] Open
Abstract
The cytolethal distending toxin (CDT) of the oral pathogen Aggregatibacter actinomycetemcomitans induces cell cycle arrest and apoptosis in various cell types. Western analysis, pharmacological inhibition and siRNA silencing were performed in human immortalized gingival keratinocytes (HIGK) to dissect the functional role of the ataxia telangiectasia mutated (ATM) pathway in the signal transduction steps triggered by the CDT. Infection of HIGK was associated with a time-dependent induction of cytoplasmic histone-associated DNA fragmentation. However, in the absence of CDT, infected HIGK underwent reversible DNA strand breaks but not apoptosis, while caspase 3 activity, p21 levels, and HIGK viability were unaffected. Caspase 9 activity was attenuated in the CDT mutant-infected HIGK compared to wild-type infected cells. Pharmacological inhibition and siRNA-silencing of the ATM downstream effector, the protein kinase checkpoint kinase 2 (Chk2), significantly impacted CDT-mediated apoptosis. Together, these findings provide insight on the specificity of the ATM-Chk2 pathway in response to the CDT of A. actinomycetemcomitans in oral epithelial cells, which ultimately leads to apoptosis. We further propose the existence of an unidentified factor that is distinct from the CDT, and involved with a reversible DNA fragmentation that does not trigger terminal apoptosis in oral epithelial cells. This model potentially explains conflicting reports on the biological activity of the A. actinomycetemcomitans CDT.
Collapse
Affiliation(s)
- Mounia Alaoui-El-Azher
- Department of Oral Biology and Center for Molecular Microbiology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Jeffrey J. Mans
- Department of Oral Biology and Center for Molecular Microbiology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Henry V. Baker
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Casey Chen
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Ann Progulske-Fox
- Department of Oral Biology and Center for Molecular Microbiology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Richard J. Lamont
- Department of Oral Biology and Center for Molecular Microbiology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Martin Handfield
- Department of Oral Biology and Center for Molecular Microbiology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
34
|
Fan JR, Huang TH, Wen CY, Shen TL, Li TK. Sodium salicylate acts through direct inhibition of phosphoinositide 3-kinase-like kinases to modulate topoisomerase-mediated DNA damage responses. Eur J Pharmacol 2010; 638:13-20. [DOI: 10.1016/j.ejphar.2010.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 04/04/2010] [Accepted: 04/12/2010] [Indexed: 12/31/2022]
|
35
|
Ghosh S, Bhat NN, Santra S, Thomas RG, Gupta S, Choudhury R, Krishna M. Low Energy Proton Beam Induces Efficient Cell Killing in A549 Lung Adenocarcinoma Cells. Cancer Invest 2010; 28:615-22. [DOI: 10.3109/07357901003630991] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
36
|
Liu J, Naegele JR, Lin SL. The DNA-PK catalytic subunit regulates Bax-mediated excitotoxic cell death by Ku70 phosphorylation. Brain Res 2009; 1296:164-75. [PMID: 19664609 PMCID: PMC2753734 DOI: 10.1016/j.brainres.2009.07.101] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 07/27/2009] [Accepted: 07/30/2009] [Indexed: 10/20/2022]
Abstract
DNA repair deficiency results in neurodegenerative disease and increased susceptibility to excitotoxic cell death, suggesting a critical but undefined role for DNA damage in neurodegeneration. We compared DNA damage, Ku70-Bax interaction, and Bax-dependent excitotoxic cell death in kainic acid-treated primary cortical neurons derived from both wild-type mice and mice deficient in the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) encoded by the Prkdc gene. In both wild-type and Prkdc(-/-) neurons, kainic acid treatment resulted in rapid induction of DNA damage (53BP1 foci formation) followed by nuclear pyknosis. Bax deficiency, by either Bax shRNA-mediated knockdown or gene deletion, protected wild-type and heterozygous but not Prkdc(-/-) neurons from kainate-induced excitotoxicity. Cotransfection of DNA-PKcs with Bax shRNA restored Bax shRNA-mediated neuroprotection in Prkdc(-/-) neurons, suggesting that DNA-PKcs is required for kainate-induced activation of the pro-apoptotic Bax pathway. Immunoprecipitation studies revealed that the DNA-PKcs-nonphosphorylatable Ku70 (S6A/S51A) bound 3- to 4-fold greater Bax than wild-type Ku70, suggesting that DNA-PKcs-mediated Ku70 phosphorylation causes release of Bax from Ku70. In support of this, kainic acid induced translocation of a Bax-EGFP fusion protein to the mitochondria in the presence of a cotransfected wild-type, but not mutant Ku70 (S6A/S51A) gene when examined at 4 and 8 h following kainate addition. We conclude that DNA-PKcs links DNA damage to Bax-dependent excitotoxic cell death, by phosphorylating Ku70 on serines 6 and/or 51, to initiate Bax translocation to the mitochondria and directly activate a pro-apoptotic Bax-dependent death cascade.
Collapse
Affiliation(s)
- Jia Liu
- Program in Neuroscience and Behavior, Department of Biology, Wesleyan University, Middletown CT 06459-0170
| | - Janice R. Naegele
- Program in Neuroscience and Behavior, Department of Biology, Wesleyan University, Middletown CT 06459-0170
| | - Stanley L. Lin
- Program in Neuroscience and Behavior, Department of Biology, Wesleyan University, Middletown CT 06459-0170
| |
Collapse
|
37
|
Quanz M, Chassoux D, Berthault N, Agrario C, Sun JS, Dutreix M. Hyperactivation of DNA-PK by double-strand break mimicking molecules disorganizes DNA damage response. PLoS One 2009; 4:e6298. [PMID: 19621083 PMCID: PMC2709433 DOI: 10.1371/journal.pone.0006298] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 06/10/2009] [Indexed: 11/23/2022] Open
Abstract
Cellular response to DNA damage involves the coordinated activation of cell cycle checkpoints and DNA repair. The early steps of DNA damage recognition and signaling in mammalian cells are not yet fully understood. To investigate the regulation of the DNA damage response (DDR), we designed short and stabilized double stranded DNA molecules (Dbait) mimicking double-strand breaks. We compared the response induced by these molecules to the response induced by ionizing radiation. We show that stable 32-bp long Dbait, induce pan-nuclear phosphorylation of DDR components such as H2AX, Rpa32, Chk1, Chk2, Nbs1 and p53 in various cell lines. However, individual cell analyses reveal that differences exist in the cellular responses to Dbait compared to irradiation. Responses to Dbait: (i) are dependent only on DNA-PK kinase activity and not on ATM, (ii) result in a phosphorylation signal lasting several days and (iii) are distributed in the treated population in an “all-or-none” pattern, in a Dbait-concentration threshold dependant manner. Moreover, despite extensive phosphorylation of the DNA-PK downstream targets, Dbait treated cells continue to proliferate without showing cell cycle delay or apoptosis. Dbait treatment prior to irradiation impaired foci formation of Nbs1, 53BP1 and Rad51 at DNA damage sites and inhibited non-homologous end joining as well as homologous recombination. Together, our results suggest that the hyperactivation of DNA-PK is insufficient for complete execution of the DDR but induces a “false” DNA damage signaling that disorganizes the DNA repair system.
Collapse
Affiliation(s)
- Maria Quanz
- Institut Curie, Hôpital, Département de transfert, Orsay, France
- DNA Therapeutics, Evry, France
| | - Danielle Chassoux
- Muséum National d'Histoire Naturelle, USM503, Paris, France
- INSERM, U565, Paris, France
- CNRS, UMR 5153, Paris, France
| | - Nathalie Berthault
- Institut Curie, Hôpital, Département de transfert, Orsay, France
- CNRS, UMR2027, Orsay, France
| | - Céline Agrario
- Institut Curie, Hôpital, Département de transfert, Orsay, France
- DNA Therapeutics, Evry, France
| | | | - Marie Dutreix
- Institut Curie, Hôpital, Département de transfert, Orsay, France
- * E-mail:
| |
Collapse
|
38
|
Cheng H, Liu P, Wang ZC, Zou L, Santiago S, Garbitt V, Gjoerup OV, Iglehart JD, Miron A, Richardson AL, Hahn WC, Zhao JJ. SIK1 couples LKB1 to p53-dependent anoikis and suppresses metastasis. Sci Signal 2009; 2:ra35. [PMID: 19622832 PMCID: PMC2752275 DOI: 10.1126/scisignal.2000369] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Resistance to anoikis, the subtype of apoptosis triggered by lack of adhesion, contributes to malignant transformation and the development of metastasis. Although several lines of evidence suggest that p53 plays a critical role in anoikis, the pathway(s) that connect cell detachment to p53 remain undefined. Here, through the use of a kinome-wide loss-of-function screen, we identify the serine-threonine kinase SIK1 (salt-inducible kinase 1) as a regulator of p53-dependent anoikis. Inactivation of SIK1 compromised p53 function in anoikis and allowed cells to grow in an anchorage-independent manner. In vivo, SIK1 loss facilitated metastatic spread and survival of disseminated cells as micrometastases in lungs. The presence of functional SIK1 was required for the activity of the kinase LKB1 in promoting p53-dependent anoikis and suppressing anchorage-independent growth, Matrigel invasion, and metastatic potential. In human cancers, decreased expression of the gene encoding SIK1 closely correlated with development of distal metastases in breast cancers from three independent cohorts. Together, these findings indicate that SIK1 links LKB1 to p53-dependent anoikis and suppresses metastasis.
Collapse
Affiliation(s)
- Hailing Cheng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Tsai CY, Ray AS, Tumas DB, Keating MJ, Reiser H, Plunkett W. Targeting DNA Repair in Chronic Lymphocytic Leukemia Cells with a Novel Acyclic Nucleotide Analogue, GS-9219. Clin Cancer Res 2009; 15:3760-9. [DOI: 10.1158/1078-0432.ccr-08-2848] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Zhuang W, Qin Z, Liang Z. The role of autophagy in sensitizing malignant glioma cells to radiation therapy. Acta Biochim Biophys Sin (Shanghai) 2009; 41:341-51. [PMID: 19430698 DOI: 10.1093/abbs/gmp028] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Malignant gliomas represent the majority of primary brain tumors. The current standard treatments for malignant gliomas include surgical resection, radiation therapy, and chemotherapy. Radiotherapy, a standard adjuvant therapy, confers some survival advantages, but resistance of the glioma cells to the efficacy of radiation limits the success of the treatment. The mechanisms underlying glioma cell radioresistance have remained elusive. Autophagy is a protein degradation system characterized by a prominent formation of double-membrane vesicles in the cytoplasm. Recent studies suggest that autophagy may be important in the regulation of cancer development and progression and in determining the response of tumor cells to anticancer therapy. Also, autophagy is a novel response of glioma cells to ionizing radiation. Autophagic cell death is considered programmed cell death type II, whereas apoptosis is programmed cell death type I. These two types of cell death are predominantly distinctive, but many studies demonstrate a cross-talk between them. Whether autophagy in cancer cells causes death or protects cells is controversial. The regulatory pathways of autophagy share several molecules. PI3K/Akt/mTOR, DNA-PK, tumor suppressor genes, mitochondrial damage, and lysosome may play important roles in radiation-induced autophagy in glioma cells. Recently, a highly tumorigenic glioma tumor subpopulation, termed cancer stem cell or tumor-initiating cell, has been shown to promote therapeutic resistance. This review summarizes the main mediators associated with radiation-induced autophagy in malignant glioma cells and discusses the implications of the cancer stem cell hypothesis for the development of future therapies for brain tumors.
Collapse
Affiliation(s)
- Wenzhuo Zhuang
- Department of Pharmacology, Soochow University School of Medicine, Suzhou, China
| | | | | |
Collapse
|
41
|
Ortiz T, Burguillos MA, López-Lluch G, Navas P, Herrador M, González I, Piñero J. Enhanced induction of apoptosis in a radio-resistant bladder tumor cell line by combined treatments with X-rays and wortmannin. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2008; 47:445-452. [PMID: 18787832 DOI: 10.1007/s00411-008-0188-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 07/24/2008] [Indexed: 05/26/2023]
Abstract
The radiosensitizing effect of wortmannin (WM) treatment during and after irradiation was studied in radioresistant bladder tumor cell lines with normal (MGH-U1 cells) or defective p53 activity (RT112 cells). WM modulated G(2)/M cell cycle arrest induced by higher X-ray doses (10 Gy) in both cell lines, although the alteration was significant only in RT112 cells. The observation suggests that WM activity is independent of p53. Constitutive expression of DNA-PKcs was found to be higher in RT112 cells than in MGH-U1. Treatment with WM enhanced radiation-induced apoptosis significantly in RT112 cells while it had no effect on MGH-U1 cells. Although a variety of PI3-kinases and PI3-K like kinases (including ATM) could be inhibited by WM, our observation of increased early lethality by WM treatment in RT112 is in agreement with previous results. They suggest that the WM-dependent radiosensitization of RT112 is a direct consequence of the inhibition of DNA-PK, resulting in the inhibition of DSB repair in the fast component. This early effect in the p53 deficient cell line could also indicate that processes other than apoptosis may contribute to the increased radiosensitization. In our opinion, the expression level of DNA-PKcs in human tumor cells may be a good predictor for the success of DNA-PKcs inhibitors when used as radiosensitizers.
Collapse
Affiliation(s)
- Trinidad Ortiz
- Departamento de Biología Celular, Facultad de Biologia, Universidad de Sevilla Avda. Reina Mercedes s/n, 41012 Sevilla, Spain.
| | | | | | | | | | | | | |
Collapse
|
42
|
Guirouilh-Barbat J, Redon C, Pommier Y. Transcription-coupled DNA double-strand breaks are mediated via the nucleotide excision repair and the Mre11-Rad50-Nbs1 complex. Mol Biol Cell 2008; 19:3969-81. [PMID: 18632984 PMCID: PMC2526702 DOI: 10.1091/mbc.e08-02-0215] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 06/20/2008] [Accepted: 06/29/2008] [Indexed: 11/11/2022] Open
Abstract
The cellular activity of Yondelis (trabectedin, Ecteinascidin 743, Et743) is known to depend on transcription-coupled nucleotide excision repair (TCR). However, the subsequent cellular effects of Et743 are not fully understood. Here we show that Et743 induces both transcription- and replication-coupled DNA double-strand breaks (DSBs) that are detectible by neutral COMET assay and as gamma-H2AX foci that colocalize with 53BP1, Mre11, Ser(1981)-pATM, and Thr(68)-pChk2. The transcription coupled-DSBs (TC-DSBs) induced by Et743 depended both on TCR and Mre11-Rad50-Nbs1 (MRN) and were associated with DNA-PK-dependent gamma-H2AX foci. In contrast to DNA-PK, ATM phosphorylated H2AX both in NER-proficient and -deficient cells, but its full activation was dependent on H2AX as well as DNA-PK, suggesting a positive feedback loop: DNA-PK-gamma-H2AX-ATM. Knocking-out H2AX or inactivating DNA-PK reduced Et743's antiproliferative activity, whereas ATM and MRN tended to act as survival factors. Our results highlight the interplays between ATM and DNA-PK and their impacts on H2AX phosphorylation and cell survival. They also suggest that gamma-H2AX may serve as a biomarker in patients treated with Et743 and that molecular profiling of tumors for TCR, MRN, ATM, and DNA-PK might be useful to anticipate tumor response to Et743 treatment.
Collapse
Affiliation(s)
- Josée Guirouilh-Barbat
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255
| | - Christophe Redon
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255
| |
Collapse
|
43
|
Pavón MA, Parreño M, León X, Sancho FJ, Céspedes MV, Casanova I, Lopez-Pousa A, Mangues MA, Quer M, Barnadas A, Mangues R. Ku70 predicts response and primary tumor recurrence after therapy in locally advanced head and neck cancer. Int J Cancer 2008; 123:1068-79. [PMID: 18546291 DOI: 10.1002/ijc.23635] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
5-Fluorouracil and cisplatin-based induction chemotherapy (IC) is commonly used to treat locally advanced head and neck squamous cell carcinoma (HNSCC). The role of nonhomologous end joining (NHEJ) genes (Ku70, Ku80 and DNA-PKcs) in double-strand break (DSB) repair, genomic instability and apoptosis suggest a possible impact on tumor response to radiotherapy, 5-fluorouracil or cisplatin, as these agents are direct or indirect inductors of DSBs. We evaluated the relationship between Ku80, Ku70 or DNA PKcs mRNA expression in pretreatment tumor biopsies, and tumor response to IC or local recurrence, in 50 patients with HNSCC. Additionally, in an independent cohort of 75 patients with HNSCC, we evaluated the relationship between tumor Ku70 protein expression and the same clinical outcomes or patient survival. Tumors in the responder group had significantly higher mRNA levels for Ku70, Ku80 and DNA-PKcs than those in the nonresponder group. Ku70 mRNA was the marker most significantly associated with response to IC. Moreover, high tumor Ku70 mRNA expression was associated with significantly longer local recurrence-free survival (LRFS). Ku70 protein expression was also significantly related to response, and patients with higher percentage of tumor cells expressing Ku70 had longer LRFS. In addition, the percentage of Ku70 positive cells, tumor localization and node involvement were significantly associated with overall survival of patient. Therefore, Ku70 expression is a candidate predictive marker that could distinguish patients who are likely to benefit from chemoradiotherapy or radiotherapy after the induction chemotherapy treatment, suggesting a contribution of the NHEJ system in HNSCC clinical outcome.
Collapse
Affiliation(s)
- Miguel Angel Pavón
- Grup d'Oncogènesi i Antitumorals, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER) and Institut de Recerca, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Clavijo C, Chen JL, Kim KJ, Reyland ME, Ann DK. Protein kinase Cdelta-dependent and -independent signaling in genotoxic response to treatment of desferroxamine, a hypoxia-mimetic agent. Am J Physiol Cell Physiol 2007; 292:C2150-60. [PMID: 17563398 DOI: 10.1152/ajpcell.00425.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Protein kinase C (PKC) plays a critical role in diseases such as cancer, stroke, and cardiac ischemia and participates in a variety of signal transduction pathways including apoptosis, cell proliferation, and tumor suppression. Here, we demonstrate that PKCdelta is proteolytically cleaved and translocated to the nucleus in a time-dependent manner on treatment of desferroxamine (DFO), a hypoxia-mimetic agent. Specific knockdown of the endogenous PKCdelta by RNAi (sh-PKCdelta) or expression of the kinase-dead (Lys376Arg) mutant of PKCdelta (PKCdeltaKD) conferred modulation on the cellular adaptive responses to DFO treatment. Notably, the time-dependent accumulation of DFO-induced phosphorylation of Ser-139-H2AX (gamma-H2AX), a hallmark for DNA damage, was altered by sh-PKCdelta, and sh-PKCdelta completely abrogated the activation of caspase-3 in DFO-treated cells. Expression of Lys376Arg-mutated PKCdelta-enhanced green fluorescent protein (EGFP) appears to abrogate DFO/hypoxia-induced activation of endogenous PKCdelta and caspase-3, suggesting that PKCdeltaKD-EGFP serves a dominant-negative function. Additionally, DFO treatment also led to the activation of Chk1, p53, and Akt, where DFO-induced activation of p53, Chk1, and Akt occurred in both PKCdelta-dependent and -independent manners. In summary, these findings suggest that the activation of a PKCdelta-mediated signaling network is one of the critical contributing factors involved in fine-tuning of the DNA damage response to DFO treatment.
Collapse
Affiliation(s)
- Carlos Clavijo
- Department of Molecular Pharmacology, University of Southern California, Los Angeles, USA
| | | | | | | | | |
Collapse
|
45
|
Kubota Y, Kinoshita K, Suetomi K, Fujimori A, Takahashi S. Mcl-1 Depletion in Apoptosis Elicited by Ionizing Radiation in Peritoneal Resident Macrophages of C3H Mice. THE JOURNAL OF IMMUNOLOGY 2007; 178:2923-31. [PMID: 17312137 DOI: 10.4049/jimmunol.178.5.2923] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Remarkably, apoptosis was induced by exposing peritoneal resident macrophages (PRM) of C3H mice, but not other strains of mice, to ionizing radiation. The molecular mechanism of this strain-specific apoptosis in PRM was studied. The apoptosis elicited in C3H mouse PRM 4 h after exposure was effectively blocked by proteasome inhibitors. Irradiation-induced disruption of mitochondrial transmembrane potential and the release of cytochrome c into the cytosol were also suppressed by a proteasome inhibitor but not by a caspase inhibitor. To determine whether the apoptosis occurred due to a depletion of antiapoptotic proteins, Bcl-2 family proteins were examined. Irradiation markedly decreased the level of Mcl-1, but not Bcl-2, Bcl-X(L), Bax, A1, or cIAP1. Mcl-1's depletion was suppressed by a proteasome inhibitor but not by a caspase inhibitor. The amount of Mcl-1 was well correlated with the rate of apoptosis in C3H mouse PRM exposed to irradiation and not affected by irradiation in radioresistant B6 mouse PRM. Irradiation increased rather than decreased the Mcl-1 mRNA expression in C3H mouse PRM. On the other hand, Mcl-1 protein synthesis was markedly suppressed by irradiation. Global protein synthesis was also suppressed by irradiation in C3H mouse PRM but not in B6 mouse PRM. The down-regulation of Mcl-1 expression with Mcl-1-specific small interfering RNA or antisense oligonucleotide significantly induced apoptosis in both C3H and B6 mouse PRM without irradiation. It was concluded that the apoptosis elicited in C3H mouse PRM by ionizing radiation was attributable to the depletion of Mcl-1 through radiation-induced arrest of global protein synthesis.
Collapse
Affiliation(s)
- Yoshihisa Kubota
- Environmental and Toxicological Sciences Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | | | | | | | | |
Collapse
|
46
|
Schild-Poulter C, Shih A, Tantin D, Yarymowich NC, Soubeyrand S, Sharp PA, Haché RJG. DNA-PK phosphorylation sites on Oct-1 promote cell survival following DNA damage. Oncogene 2007; 26:3980-8. [PMID: 17213819 DOI: 10.1038/sj.onc.1210165] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Octamer transcription factor-1 (Oct-1) has recently been shown to function as a stress sensor that promotes cell survival subsequent to DNA damage. Here, we show that the survival signal imparted by Oct-1 following exposure to ionizing radiation (IR) is dependent upon DNA-dependent protein kinase (DNA-PK)-dependent phosphorylation of a cluster of 13 specific ser/thr residues within the N-terminal transcriptional regulatory domain of Oct-1. Although IR treatment did not affect the recruitment of Oct-1 to the histone H2B promoter, the recruitment of RNA polymerase II, TATA-binding protein and histone H4 acetylation were strongly reduced, consistent with a decrease in Oct-1 transcriptional regulatory potential following IR exposure. Ser/Thr-Ala substitution of 13 sites present in Oct-1 transcriptional regulatory domain eliminated Oct-1 phosphorylation subsequent to IR exposure. Further, these substitutions prevented Oct-1 from rescuing the survival of IR-treated Oct-1-/- murine embryonic fibroblasts, providing a direct link between DNA-PK-dependent phosphorylation and the contribution of Oct-1 to cell survival. These results implicate Oct-1 as a primary effector in a DNA-PK-dependent cell survival pathway that is activated by double-stranded DNA breaks.
Collapse
Affiliation(s)
- C Schild-Poulter
- Department of Medicine, The Ottawa Health Research Institute, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
47
|
Zhang D, Zaugg K, Mak TW, Elledge SJ. A role for the deubiquitinating enzyme USP28 in control of the DNA-damage response. Cell 2006; 126:529-42. [PMID: 16901786 DOI: 10.1016/j.cell.2006.06.039] [Citation(s) in RCA: 268] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 02/02/2006] [Accepted: 06/09/2006] [Indexed: 01/29/2023]
Abstract
The Chk2-p53-PUMA pathway is a major regulator of DNA-damage-induced apoptosis in response to double-strand breaks in vivo. Through analysis of 53BP1 complexes we have discovered a new ubiquitin protease, USP28, which regulates this pathway. Using a human cell line that faithfully recapitulated the Chk2-p53-PUMA pathway, we show that USP28 is required to stabilize Chk2 and 53BP1 in response to DNA damage. In this cell line, both USP28 and Chk2 are required for DNA-damage-induced apoptosis, and they accomplish this in part through regulation of the p53 induction of proapoptotic genes like PUMA. Our studies implicate DNA-damage-induced ubiquitination and deubiquitination as a major regulator of the DNA-damage response for Chk2, 53BP1, and a number of other proteins in the DNA-damage checkpoint pathway, including several mediators, such as Mdc1, Claspin, and TopBP1.
Collapse
Affiliation(s)
- Dong Zhang
- Howard Hughes Medical Institute, Department of Genetics, Harvard Partners Center for Genetics and Genomics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
48
|
N/A, 黄 志, 陈 孝. N/A. Shijie Huaren Xiaohua Zazhi 2006; 14:2217-2222. [DOI: 10.11569/wcjd.v14.i22.2217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
49
|
Baserga M, Hale MA, Ke X, Wang ZM, Yu X, Callaway CW, McKnight RA, Lane RH. Uteroplacental insufficiency increases p53 phosphorylation without triggering the p53-MDM2 functional circuit response in the IUGR rat kidney. Am J Physiol Regul Integr Comp Physiol 2006; 291:R412-8. [PMID: 16914427 DOI: 10.1152/ajpregu.00880.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Uteroplacental insufficiency (UPI) leads to intrauterine growth restriction (IUGR), which predisposes infants toward renal insufficiency early in life and increases the risk of kidney-related adult morbidities, such as hypertension. This compromised in utero environment has been demonstrated to impair nephrogenesis, as evidenced by a reduced nephron endowment in humans and in rats rendered IUGR by UPI. Concordantly, we have observed that IUGR rats have increased kidney p53 protein levels associated with increased apoptosis. Several factors can regulate p53 gene expression and activity, including posttranslational modifications and protein-protein interactions in the cell. Among these, two important mechanisms are 1) phosphorylation of the amino terminal serine 15 [phospho-p53 (Ser15)], which increases p53 stability and apoptotic activity, and 2) the murine double-minute (MDM2) functional circuit that limits further p53-induced apoptosis by promoting proteosomal degradation of p53. We hypothesize that UPI induces an increase in phospho-p53 (Ser15) in association with an absent MDM2 response, predisposing the kidney to increased apoptosis. To test our hypothesis, we induced IUGR through bilateral uterine artery ligation of the pregnant rat. UPI significantly increased phospho-p53 (Ser15), as well as ataxia teleangiectasia-mutated kinase/A-T-related kinase and dsDNA-activated protein kinase kinase levels, which induce phosphorylation of p53. In contrast, UPI induced no increase in kidney MDM2 mRNA and protein levels in IUGR pups. We conclude that among multiple mechanisms that affect nephrogenesis, UPI induces an increase in p53 phosphorylation without a corresponding increase in MDM2 expression, and we speculate that this response may contribute to the increased apoptosis previously described in the IUGR kidney.
Collapse
Affiliation(s)
- Mariana Baserga
- University of Utah School of Medicine, Department of Pediatrics, Division of Neonatology, PO Box 581289, Salt Lake City, UT 84158, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Yeo EJ, Ryu JH, Chun YS, Cho YS, Jang IJ, Cho H, Kim J, Kim MS, Park JW. YC-1 Induces S Cell Cycle Arrest and Apoptosis by Activating Checkpoint Kinases. Cancer Res 2006; 66:6345-52. [PMID: 16778212 DOI: 10.1158/0008-5472.can-05-4460] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypoxia-inducible factor-1alpha (HIF-1alpha) seems central to tumor growth and progression because it up-regulates genes essential for angiogenesis and the hypoxic adaptation of cancer cells, which is why HIF-1alpha inhibition is viewed as a cancer therapy strategy. Paradoxically, HIF-1alpha also leads to cell cycle arrest or the apoptosis of cancer cells. Thus, the possibility cannot be ruled out that HIF-1alpha inhibitors unlock cell cycle arrest under hypoxic conditions and prevent cell death, which would limit the anticancer effect of HIF-1alpha inhibitors. Previously, we reported on the development of YC-1 as an anticancer agent that inhibits HIF-1alpha. In the present study, we evaluated the effects of YC-1 on hypoxia-induced cell cycle arrest and cell death. It was found that YC-1 does not reverse the antiproliferative effect of hypoxia, but rather that it induces S-phase arrest and apoptosis at therapeutic concentrations that inhibit HIF-1alpha and tumor growth; however, YC-1 did not stimulate cyclic guanosine 3',5'-monophosphate production in this concentration range. It was also found that YC-1 activates the checkpoint kinase-mediated intra-S-phase checkpoint, independently of ataxia-telangiectasia mutated kinase or ataxia-telangiectasia mutated and Rad3-related kinase. These results imply that YC-1 does not promote the regrowth of hypoxic tumors because of its cell cycle arrest effect. Furthermore, YC-1 may induce the combined anticancer effects of HIF-1alpha inhibition and cell growth inhibition.
Collapse
Affiliation(s)
- Eun-Jin Yeo
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|