1
|
Kudo Y, Tamagawa T, Nishio K, Kaneko T, Yonehara Y, Tsunoda M. Nuclear localization of propiece IL-1α in HeLa cells. J Oral Sci 2022; 64:151-155. [PMID: 35236814 DOI: 10.2334/josnusd.21-0540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
PURPOSE The study aimed to examine the nuclear localization of propiece interleukin (IL)-1α (ppIL-1α) and extracellular release rates of ppIL-1α, pIL-1α, and mIL-1α. METHODS The subcellular localization of IL-1α molecules was observed in HeLa cells transfected with green fluorescent protein (GFP)-tagged IL-1α. Extracellular release efficiency was examined using N-terminal HiBiT-tagged IL-1α. The nuclear localization status of ppIL-1α was examined by incubating ppIL-1α transfectants with 0.1% Triton X-100 solution or with complete medium on ice. RESULTS The results indicated the diffuse cytoplasmic and nuclear localization for m and p and ppIL-1, respectively. All IL-1α forms were released from the cells even in the steady state, and the release efficiency was 25%, 13%, and 8% for mIL-1α, pIL-1α, and ppIL-1α, respectively. Under oxidative stress condition, GFP-mIL-1α was totally diminished, but weak staining of GFP-pIL-1α and GFP-ppIL-1α was detected; nuclear localization of GFP-ppIL-1α was completely abolished by 0.1% Triton X-100 treatment, however, it remained in the nucleus after culture in complete medium on ice. CONCLUSION The results of this study showed that ppIL-1α was localized in the nucleus and released extracellularly even in the steady state. Moreover, its cellular localization is not firm, and it is presumed to be floating in the nucleoplasm.
Collapse
Affiliation(s)
- Yoshihiro Kudo
- Division of Oral Structural and Functional Biology, Nihon University Graduate School of Dentistry.,Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry
| | - Takaaki Tamagawa
- Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry
| | - Kensuke Nishio
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry
| | - Tadayoshi Kaneko
- Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry
| | - Yoshiyuki Yonehara
- Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry
| | - Mariko Tsunoda
- Department of Pathology, Nihon University School of Dentistry.,Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry
| |
Collapse
|
2
|
Moravec CE, Voit GC, Otterlee J, Pelegri F. Identification of maternal-effect genes in zebrafish using maternal crispants. Development 2021; 148:dev199536. [PMID: 34463742 PMCID: PMC8543149 DOI: 10.1242/dev.199536] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/19/2021] [Indexed: 01/25/2023]
Abstract
In animals, early development is dependent on a pool of maternal factors, both RNA and proteins, which are required for basic cellular processes and cell differentiation until zygotic genome activation. The role of the majority of these maternally expressed factors is not fully understood. By exploiting the biallelic editing ability of CRISPR-Cas9, we identify and characterize maternal-effect genes in a single generation, using a maternal crispant technique. We validated the ability to generate biallelic mutations in the germ line by creating maternal crispants that phenocopied previously characterized maternal-effect genes: birc5b, tmi and mid1ip1. Additionally, by targeting maternally expressed genes of unknown function in zebrafish, we identified two maternal-effect zebrafish genes, kpna7 and fhdc3. The genetic identity of these maternal crispants was confirmed by sequencing haploid progeny from F0 females, which allowed the analysis of newly induced lesions in the maternal germ line. Our studies show that maternal crispants allow for the effective identification and primary characterization of maternal-effect genes in a single generation, facilitating the reverse genetics analysis of maternal factors that drive embryonic development.
Collapse
Affiliation(s)
| | | | | | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin-Madison, WI 53706, USA
| |
Collapse
|
3
|
Haggag YA, Matchett KB, Falconer RA, Isreb M, Jones J, Faheem A, McCarron P, El-Tanani M. Novel Ran-RCC1 Inhibitory Peptide-Loaded Nanoparticles Have Anti-Cancer Efficacy In Vitro and In Vivo. Cancers (Basel) 2019; 11:cancers11020222. [PMID: 30769871 PMCID: PMC6406988 DOI: 10.3390/cancers11020222] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/31/2019] [Accepted: 02/11/2019] [Indexed: 12/12/2022] Open
Abstract
The delivery of anticancer agents to their subcellular sites of action is a significant challenge for effective cancer therapy. Peptides, which are integral to several oncogenic pathways, have significant potential to be utilised as cancer therapeutics due to their selectivity, high potency and lack of normal cell toxicity. Novel Ras protein-Regulator of chromosome condensation 1 (Ran-RCC1) inhibitory peptides designed to interact with Ran, a novel therapeutic target in breast cancer, were delivered by entrapment into polyethylene glycol-poly (lactic-co-glycolic acid) PEG-PLGA polymeric nanoparticles (NPs). A modified double emulsion solvent evaporation technique was used to optimise the physicochemical properties of these peptide-loaded biodegradable NPs. The anti-cancer activity of peptide-loaded NPs was studied in vitro using Ran-expressing metastatic breast (MDA-MB-231) and lung cancer (A549) cell lines, and in vivo using Solid Ehrlich Carcinoma-bearing mice. The anti-metastatic activity of peptide-loaded NPs was investigated using migration, invasion and colony formation assays in vitro. A PEG-PLGA-nanoparticle encapsulating N-terminal peptide showed a pronounced antitumor and anti-metastatic action in lung and breast cancer cells in vitro and caused a significant reduction of tumor volume and associated tumor growth inhibition of breast cancer model in vivo. These findings suggest that the novel inhibitory peptides encapsulated into PEGylated PLGA NPs are delivered effectively to interact and deactivate Ran. This novel Ran-targeting peptide construct shows significant potential for therapy of breast cancer and other cancers mediated by Ran overexpression.
Collapse
Affiliation(s)
- Yusuf A Haggag
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Tanta, Tanta 31111, Egypt.
- School of Pharmacy and Pharmaceutical Sciences, Saad Centre for Pharmacy and Diabetes, Ulster University, Cromore Road, Coleraine, Co. Londonderry BT52 1SA, UK.
| | - Kyle B Matchett
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, C-TRIC, Altnagelvin Hospital Campus, Ulster University, Glenshane Road, Derry/Londonderry BT47 6SB, Northern Ireland, UK.
| | - Robert A Falconer
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK.
| | - Mohammad Isreb
- School of Pharmacy and Clinical Sciences, University of Bradford, Bradford BD7 1DP, UK.
| | - Jason Jones
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK.
| | - Ahmed Faheem
- Department of Pharmacy, Health and Well-being, University of Sunderland, Sunderland SR1 3SD, UK.
| | - Paul McCarron
- School of Pharmacy and Pharmaceutical Sciences, Saad Centre for Pharmacy and Diabetes, Ulster University, Cromore Road, Coleraine, Co. Londonderry BT52 1SA, UK.
| | - Mohamed El-Tanani
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK.
- Imhotep Diagnostics and Therapeutics, Europa Tool House, Springbank, Industrial Estate, Dunmurry BT17 0QL, Northern Ireland, UK.
- School of Chemistry and Biosciences, University of Bradford, Bradford BD7 1DP, UK.
| |
Collapse
|
4
|
Beck M, Hurt E. The nuclear pore complex: understanding its function through structural insight. Nat Rev Mol Cell Biol 2016; 18:73-89. [PMID: 27999437 DOI: 10.1038/nrm.2016.147] [Citation(s) in RCA: 432] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nuclear pore complexes (NPCs) fuse the inner and outer nuclear membranes to form channels across the nuclear envelope. They are large macromolecular assemblies with a complex composition and diverse functions. Apart from facilitating nucleocytoplasmic transport, NPCs are involved in chromatin organization, the regulation of gene expression and DNA repair. Understanding the molecular mechanisms underlying these functions has been hampered by a lack of structural knowledge about the NPC. The recent convergence of crystallographic and biochemical in vitro analysis of nucleoporins (NUPs), the components of the NPC, with cryo-electron microscopic imaging of the entire NPC in situ has provided first pseudo-atomic view of its central core and revealed that an unexpected network of short linear motifs is an important spatial organization principle. These breakthroughs have transformed the way we understand NPC structure, and they provide an important base for functional investigations, including the elucidation of the molecular mechanisms underlying clinically manifested mutations of the nucleocytoplasmic transport system.
Collapse
Affiliation(s)
- Martin Beck
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, Heidelberg D-69117, Germany
| | - Ed Hurt
- Biochemistry Center of Heidelberg University, INF328, Heidelberg D-69120, Germany
| |
Collapse
|
5
|
Matsuura Y. Mechanistic Insights from Structural Analyses of Ran-GTPase-Driven Nuclear Export of Proteins and RNAs. J Mol Biol 2015; 428:2025-39. [PMID: 26519791 DOI: 10.1016/j.jmb.2015.09.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/28/2015] [Indexed: 12/13/2022]
Abstract
Understanding how macromolecules are rapidly exchanged between the nucleus and the cytoplasm through nuclear pore complexes is a fundamental problem in biology. Exportins are Ran-GTPase-dependent nuclear transport factors that belong to the karyopherin-β family and mediate nuclear export of a plethora of proteins and RNAs, except for bulk mRNA nuclear export. Exportins bind cargo macromolecules in a Ran-GTP-dependent manner in the nucleus, forming exportin-cargo-Ran-GTP complexes (nuclear export complexes). Transient weak interactions between exportins and nucleoporins containing characteristic FG (phenylalanine-glycine) repeat motifs facilitate nuclear pore complex passage of nuclear export complexes. In the cytoplasm, nuclear export complexes are disassembled, thereby releasing the cargo. GTP hydrolysis by Ran promoted in the cytoplasm makes the disassembly reaction virtually irreversible and provides thermodynamic driving force for the overall export reaction. In the past decade, X-ray crystallography of some of the exportins in various functional states coupled with functional analyses, single-particle electron microscopy, molecular dynamics simulations, and small-angle solution X-ray scattering has provided rich insights into the mechanism of cargo binding and release and also begins to elucidate how exportins interact with the FG repeat motifs. The knowledge gained from structural analyses of nuclear export is being translated into development of clinically useful inhibitors of nuclear export to treat human diseases such as cancer and influenza.
Collapse
Affiliation(s)
- Yoshiyuki Matsuura
- Division of Biological Science and Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya 466-8550, Japan.
| |
Collapse
|
6
|
Structure of importin-α bound to a non-classical nuclear localization signal of the influenza A virus nucleoprotein. Sci Rep 2015; 5:15055. [PMID: 26456934 PMCID: PMC4601014 DOI: 10.1038/srep15055] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/16/2015] [Indexed: 02/08/2023] Open
Abstract
A non-classical nuclear localization signal (ncNLS) of influenza A virus nucleoprotein (NP) is critical for nuclear import of viral genomic RNAs that transcribe and replicate in the nucleus of infected cells. Here we report a 2.3 Å resolution crystal structure of mouse importin-α1 in complex with NP ncNLS. The structure reveals that NP ncNLS binds specifically and exclusively to the minor NLS-binding site of importin-α. Structural and functional analyses identify key binding pockets on importin-α as potential targets for antiviral drug development. Unlike many other NLSs, NP ncNLS binds to the NLS-binding domain of importin-α weakly with micromolar affinity. These results suggest that a modest inhibitor with low affinity to importin-α could have anti-influenza activity with minimal cytotoxicity.
Collapse
|
7
|
Kulshreshtha V, Ayalew LE, Islam A, Tikoo SK. Conserved arginines of bovine adenovirus-3 33K protein are important for transportin-3 mediated transport and virus replication. PLoS One 2014; 9:e101216. [PMID: 25019945 PMCID: PMC4096500 DOI: 10.1371/journal.pone.0101216] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 06/04/2014] [Indexed: 01/14/2023] Open
Abstract
The L6 region of bovine adenovirus (BAdV)-3 encodes a spliced protein designated 33K. The 33K specific sera detected five major proteins and three minor proteins in transfected or virus infected cells, which could arise by internal initiation of translation and alternative splicing. The 33K protein is predominantly localized to the nucleus of BAdV-3 infected cells. The 33K nuclear transport utilizes both classical importin-α/-β and importin-β dependent nuclear import pathways and preferentially binds to importin-α5 and transportin-3 receptors, respectively. Analysis of mutant 33K proteins demonstrated that amino acids 201–240 of the conserved C-terminus of 33K containing RS repeat are required for nuclear localization and, binding to both importin-α5 and transportin-3 receptors. Interestingly, the arginine residues of conserved RS repeat are required for binding to transportin-3 receptor but not to importin-α5 receptor. Moreover, mutation of arginines residues of RS repeat proved lethal for production of progeny virus. Our results suggest that arginines of RS repeat are required for efficient nuclear transport of 33K mediated by transportin-3, which appears to be essential for replication and production of infectious virion.
Collapse
Affiliation(s)
- Vikas Kulshreshtha
- VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lisanework E. Ayalew
- VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Azharul Islam
- VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Suresh K. Tikoo
- VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| |
Collapse
|
8
|
Wang Y, Lin S, Song Q, Li K, Tao H, Huang J, Chen X, Que S, He H. Genome-wide identification of heat shock proteins (Hsps) and Hsp interactors in rice: Hsp70s as a case study. BMC Genomics 2014; 15:344. [PMID: 24884676 PMCID: PMC4035072 DOI: 10.1186/1471-2164-15-344] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/28/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Heat shock proteins (Hsps) perform a fundamental role in protecting plants against abiotic stresses. Although researchers have made great efforts on the functional analysis of individual family members, Hsps have not been fully characterized in rice (Oryza sativa L.) and little is known about their interactors. RESULTS In this study, we combined orthology-based approach with expression association data to screen rice Hsps for the expression patterns of which strongly correlated with that of heat responsive probe-sets. Twenty-seven Hsp candidates were identified, including 12 small Hsps, six Hsp70s, three Hsp60s, three Hsp90s, and three clpB/Hsp100s. Then, using a combination of interolog and expression profile-based methods, we inferred 430 interactors of Hsp70s in rice, and validated the interactions by co-localization and function-based methods. Subsequent analysis showed 13 interacting domains and 28 target motifs were over-represented in Hsp70s interactors. Twenty-four GO terms of biological processes and five GO terms of molecular functions were enriched in the positive interactors, whose expression levels were positively associated with Hsp70s. Hsp70s interaction network implied that Hsp70s were involved in macromolecular translocation, carbohydrate metabolism, innate immunity, photosystem II repair and regulation of kinase activities. CONCLUSIONS Twenty-seven Hsps in rice were identified and 430 interactors of Hsp70s were inferred and validated, then the interacting network of Hsp70s was induced and the function of Hsp70s was analyzed. Furthermore, two databases named Rice Heat Shock Proteins (RiceHsps) and Rice Gene Expression Profile (RGEP), and one online tool named Protein-Protein Interaction Predictor (PPIP), were constructed and could be accessed at http://bioinformatics.fafu.edu.cn/.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Huaqin He
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
9
|
Fukumoto M, Sekimoto T, Yoneda Y. Proteomic analysis of importin α-interacting proteins in adult mouse brain. Cell Struct Funct 2011; 36:57-67. [PMID: 21307607 DOI: 10.1247/csf.10026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Many transport factors, such as importins and exportins, have been identified, and the molecular mechanisms underlying nucleocytoplasmic transport have been characterized. The specific molecules that are carried by each transport factor and the temporal profiles that characterize the movements of various proteins into or out of the nucleus, however, have yet to be elucidated. Here, we used a proteomic approach to identify molecules that are transported into the nuclei of adult mouse brain cells via importin α5. We identified 48 proteins in total, among which we chose seven to characterize more extensively: acidic (leucine-rich) nuclear phosphoprotein 32 family member A (Anp32a), far upstream element binding protein 1 (FUBP1), thyroid hormone receptor β1 (TRβ1), transaldolase 1, CDC42 effector protein 4 (CDC42-ep4), Coronin 1B, and brain-specific creatine kinase (CK-B). Analyses using green fluorescent protein (GFP)-fused proteins showed that Anp32a, FUBP1, and TRβ1 were localized in the nucleus, whereas transaldolase 1, CDC42-ep4, CK-B, and Coronin 1B were distributed in both the cytoplasm and nucleus. Using a digitonin-permeabilized in vitro transport assay, we demonstrated that, with the exception of CK-B, these proteins were transported into the nucleus by importin α5 together with importin β and Ran. Further, we found that leptomycin B (LMB) treatment increased nuclear CK-B-GFP signals, suggesting that CK-B enters the nucleus and is then exported in a CRM1-dependent manner. Thus, we identified a comprehensive set of candidate proteins that are transported into the nucleus in a manner dependent on importin α5, which enhances our understanding of nucleocytoplasmic signaling in neural cells.
Collapse
Affiliation(s)
- Masahiro Fukumoto
- Department of Frontier Biosciences, Osaka University Graduate School of Frontier Biosciences, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
10
|
von Brandenstein MG, Ngum Abety A, Depping R, Roth T, Koehler M, Dienes HP, Fries JWU. A p38-p65 transcription complex induced by endothelin-1 mediates signal transduction in cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1613-22. [PMID: 18457675 DOI: 10.1016/j.bbamcr.2008.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 03/31/2008] [Accepted: 04/01/2008] [Indexed: 11/29/2022]
Abstract
Endothelin-1 is a powerful mitogen for various tumor and non-tumor cells. Its signaling cascade induces the inflammatory NF-kappaB complex, leading to expression of a number of target genes. In this context, MAPK p38 has been regarded as a potential phosphate donor for the p65 subunit of NF-kappaB. In the present study in HeLa cells, we have found that ET-1 induced signalling activates the NF-kappaB transcription complex (TC) in the nucleus at 6 h specifically via ET-A - but not ET-B receptor. The TC contains p65, p38 (alpha and beta) - binding to the NLS of p65 in the cytoplasm - as well as p50, but no IkappaBalpha. Specific p38 inhibition by SB203580 or by siRNA interferes markedly with gene expression of several target genes. Complex formation occurs in the cytoplasm, and both transcription factors transmigrate as a complex in the nucleus. Overexpression of p38, treatment with Chrysin, MG132, or dimethylformamide shows dependence of TC on p38 as partner. In other tumor cells lines studied, ET-1 activates TC, with p38 as an important complex partner of p65. TC-induction by ET-1 contains about twice the amount of p38 than by TNFalpha. Thus, p38 may be an additional therapeutic target to control inflammatory gene expression in tumor cells.
Collapse
|
11
|
Yasuda Y, Miyamoto Y, Saiwaki T, Yoneda Y. Mechanism of the stress-induced collapse of the Ran distribution. Exp Cell Res 2006; 312:512-20. [PMID: 16368437 DOI: 10.1016/j.yexcr.2005.11.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 10/28/2005] [Accepted: 11/11/2005] [Indexed: 11/17/2022]
Abstract
The small GTPase Ran plays a central role in several key nuclear functions, including nucleocytoplasmic transport, cell cycle progression, and assembly of the nuclear envelope. In a previous study, we showed that cellular stress induces the nuclear accumulation of importin alpha, and that this appears to be triggered by a collapse in the Ran gradient, leading to the down-regulation of classical nuclear transport. We report here that a decrease in stress-induced ATP is associated with an increase in cytoplasmic Ran levels. A luciferin-luciferase assay showed that cellular stress decreased the intracellular levels of ATP. Treatment of the cells with ATP-depleting agents altered the distribution of Ran. Furthermore, when exogenous ATP was introduced in oxidative stress-treated cells, a normal distribution of Ran was restored. In addition, a pull-down experiment with an importin beta1 variant that binds to RanGTP showed that oxidative stress was accompanied by a decrease in intracellular RanGTP levels. These findings indicate that the decrease in ATP levels induced by cellular stress causes a decrease in RanGTP levels and a collapse of Ran distribution.
Collapse
Affiliation(s)
- Yoshinari Yasuda
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
12
|
Miura K, Yoshinobu K, Imaizumi T, Haruna K, Miyamoto Y, Yoneda Y, Nakagata N, Araki M, Miyakawa T, Yamamura KI, Araki K. Impaired expression of importin/karyopherin β1 leads to post-implantation lethality. Biochem Biophys Res Commun 2006; 341:132-8. [PMID: 16414015 DOI: 10.1016/j.bbrc.2005.12.151] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 12/24/2005] [Indexed: 01/23/2023]
Abstract
Importin beta1 (Impbeta)/karyopherin beta1 (Kpnb1) mediates the nuclear import of a large variety of substrates. This study aimed to investigate the requirement for the Kpnb1 gene in mouse development, using a gene trap line, B6-CB-Ayu8108(GtgeoIMEG) (Ayu8108(geo)), in which the trap vector was inserted into the promoter region of the Kpnb1 gene, but in reverse orientation of the Kpnb1 gene. Ayu8108(geo/geo) homozygous embryos could develop to the blastocyst stage, but died before embryonic day 5.5, and expression of the Kpnb1 gene in homozygous blastocysts was undetectable. We also replaced the betageo gene with Impbeta cDNA through Cre-mediated recombination to rescue Impbeta expression. Homozygous mice for the rescued allele Ayu8108(Impbeta/Impbeta) were born and developed normally. These results demonstrated that the cause of post-implantation lethality of Ayu8108(geo/geo) homozygous embryos was impaired expression of the Kpnb1 gene, indicating indispensable roles of Impbeta1 in early development of mice.
Collapse
Affiliation(s)
- Katsutaka Miura
- Institute of Molecular Embryology and Genetics, Kumamoto University, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kitamura R, Sekimoto T, Ito S, Harada S, Yamagata H, Masai H, Yoneda Y, Yanagi K. Nuclear import of Epstein-Barr virus nuclear antigen 1 mediated by NPI-1 (Importin alpha5) is up- and down-regulated by phosphorylation of the nuclear localization signal for which Lys379 and Arg380 are essential. J Virol 2006; 80:1979-91. [PMID: 16439554 PMCID: PMC1367128 DOI: 10.1128/jvi.80.4.1979-1991.2006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA-1) is essential for replication of episomal EBV DNAs and maintenance of latency. Multifunctional EBNA-1 is phosphorylated, but the significance of EBNA-1 phosphorylation is not known. Here, we examined the effects on nuclear translocation of Ser phosphorylation of the EBNA-1 nuclear localization signal (NLS) sequence, 379Lys-Arg-Pro-Arg-Ser-Pro-Ser-Ser386. We found that Lys379Ala and Arg380Ala substitutions greatly reduced nuclear transport and steady-state levels of green fluorescent protein (GFP)-EBNA1, whereas Pro381Ala, Arg382Ala, Pro384Ala, and Glu378Ala substitutions did not. Microinjection of modified EBNA-1 NLS peptide-inserted proteins and NLS peptides cross-linked to bovine serum albumin (BSA) showed that Ala substitution for three NLS Ser residues reduced the efficiency of nuclear import. Similar microinjection analyses demonstrated that phosphorylation of Ser385 accelerated the rate of nuclear import, but phosphorylation of Ser383 and Ser386 reduced it. However, transfection analyses of GFP-EBNA1 mutants with the Ser-to-Ala substitution causing reduced nuclear import efficiency did not result in a decrease in the nuclear accumulation level of EBNA-1. The results suggest dynamic nuclear transport control of phosphorylated EBNA-1 proteins, although the nuclear localization level of EBNA-1 that binds to cellular chromosomes and chromatin seems unchanged. The karyopherin alpha NPI-1 (importin alpha5), a nuclear import adaptor, bound more strongly to Ser385-phosphorylated NLS than to any other phosphorylated or nonphosphorylated forms. Rch1 (importin alpha1) bound only weakly and Qip1 (importin alpha3) did not bind to the Ser385-phosphorylated NLS. These findings suggest that the amino-terminal 379Lys-Arg380 is essential for the EBNA-1 NLS and that Ser385 phosphorylation up-regulates nuclear transport efficiency of EBNA-1 by increasing its binding affinity to NPI-1, while phosphorylation of Ser386 and Ser383 down-regulates it.
Collapse
Affiliation(s)
- Ryo Kitamura
- AIDS Research Center, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku, Tokyo 162-8640, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Aratani S, Oishi T, Fujita H, Nakazawa M, Fujii R, Imamoto N, Yoneda Y, Fukamizu A, Nakajima T. The nuclear import of RNA helicase A is mediated by importin-α3. Biochem Biophys Res Commun 2006; 340:125-33. [PMID: 16375861 DOI: 10.1016/j.bbrc.2005.11.161] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 11/29/2005] [Indexed: 10/25/2022]
Abstract
RNA helicase A (RHA), an ATPase/helicase, regulates the gene expression at various steps including transcriptional activation and RNA processing. RHA is known to shuttle between the nucleus and cytoplasm. We identified the nuclear localization signal (NLS) of RHA and analyzed the nuclear import mechanisms. The NLS of RHA (RHA-NLS) consisting of 19 amino acid residues is highly conserved through species and does not have the consensus classical NLS. In vitro nuclear import assays revealed that the nuclear import of RHA was Ran-dependent and mediated with the classical importin-alpha/beta-dependent pathway. The binding assay indicated that the basic residues in RHA-NLS were used for interaction with importin-alpha. Furthermore, the nuclear import of RHA-NLS was supported by importin-alpha1 and preferentially importin-alpha3. Our results indicate that the nuclear import of RHA is mediated by the importin-alpha3/importin-beta-dependent pathway and suggest that the specificity for importin may regulate the functions of cargo proteins.
Collapse
Affiliation(s)
- Satoko Aratani
- Department of Genome Science, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Miyauchi Y, Michigami T, Sakaguchi N, Sekimoto T, Yoneda Y, Pike JW, Yamagata M, Ozono K. Importin 4 Is Responsible for Ligand-independent Nuclear Translocation of Vitamin D Receptor. J Biol Chem 2005; 280:40901-8. [PMID: 16207705 DOI: 10.1074/jbc.m509347200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vitamin D receptor (VDR) is localized in nuclei and acts as a ligand-dependent transcription factor. To clarify the molecular mechanisms underlying the nuclear translocation of VDR, we utilized an in vitro nuclear transport assay using digitonin-permeabilized semi-intact cells. In this assay, recombinant whole VDR-(4-427) and a truncated mutant VDR-(4-232) lacking the carboxyl terminus of VDR were imported to nuclei even in the absence of ligand. In contrast, VDR-(91-427) lacking the amino-terminal DNA-binding domain was not imported to nuclei in the absence of ligand, and was efficiently imported in its liganded form. These results suggested that there are two distinct mechanisms underlying the nuclear transport of VDR; ligand-dependent and -independent pathways, and that the different regions of VDR are responsible for these processes. Therefore, we performed the yeast two-hybrid screening using VDR-(4-232) as the bait to explore the molecules responsible for ligand-independent nuclear translocation of VDR, and have identified importin 4 as an interacting protein. In the reconstruction experiments where transport factors were applied as recombinant proteins, recombinant importin 4 facilitated nuclear translocation of VDR regardless of its ligand, whereas importin beta failed in transporting VDR even in the presence of ligand. In conclusion, importin 4, not importin beta, is responsible for the ligand-independent nuclear translocation of VDR.
Collapse
Affiliation(s)
- Yoshiteru Miyauchi
- Department of Environmental Medicine, Osaka Medical Center and Research Institute for Maternal and Child Health, 840 Murodo-cho, Izumi, Osaka 594-1101, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Fradin C, Zbaida D, Elbaum M. Dissociation of nuclear import cargo complexes by the protein Ran: a fluorescence correlation spectroscopy study. C R Biol 2005; 328:1073-82. [PMID: 16314286 DOI: 10.1016/j.crvi.2005.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 10/01/2005] [Accepted: 10/03/2005] [Indexed: 11/27/2022]
Abstract
In nucleated cells, proteins designed for nuclear import form complexes with soluble nuclear transport receptors prior to translocation across the nuclear envelope. The directionality of transport is due to the asymmetric distribution of the protein Ran, which dissociates import cargo complexes only in its nuclear RanGTP form. Using fluorescence correlation spectroscopy, we have studied the stability of cargo complexes in solution in the presence and in the absence of RanGTP. We find that RanGTP has a higher affinity for the major import receptor, the importin alpha/beta heterodimer, when importin alpha does not carry a cargo, suggesting that some nuclear transport targets might be preferentially released.
Collapse
Affiliation(s)
- Cécile Fradin
- Department of Physics and Astronomy, 1280 Main St. W, Hamilton, ON, L8S4M1, Canada.
| | | | | |
Collapse
|
17
|
Furuta M, Kose S, Koike M, Shimi T, Hiraoka Y, Yoneda Y, Haraguchi T, Imamoto N. Heat-shock induced nuclear retention and recycling inhibition of importin alpha. Genes Cells 2005; 9:429-41. [PMID: 15147272 DOI: 10.1111/j.1356-9597.2004.00734.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Heat-shock induces a strong stress response and modifies all aspects of cellular physiology, which involves dynamic changes in the nucleocytoplasmic distributions of a variety of proteins. Many distinct nucleocytoplasmic transport pathways exist in eukaryotic cells, but how a particular transport pathway is regulated under different cellular conditions remains elusive. The finding of this study indicate that conventional nuclear import, which is mediated by importin alpha/beta, is down-regulated, while the nuclear import of 70 kD heat-shock cognate protein is up-regulated in heat-shock cells. Among the factors involved in the mediation of the conventional nuclear import, significant levels of importin alpha accumulate in the nucleus in response to heat-shock. An analysis of the behaviour of importin alpha with fluorescence recovery after photobleaching and fluorescence loss in photobleaching studies show that nuclear importin alpha becomes less mobile and its nucleocytoplasmic recycling is impaired in heat-shock cells. These data coincided well with biochemical and cytological studies. Our present data show that heat-shock induces the nuclear accumulation, nuclear retention, and recycling inhibition of importin alpha, resulting in the suppression of conventional nuclear import. This suggests a new regulatory mechanism for the adaptation of cells to environmental changes, such as heat-shock.
Collapse
Affiliation(s)
- Maiko Furuta
- Cellular Dynamics Laboratory, Discovery Research Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Kose S, Furuta M, Koike M, Yoneda Y, Imamoto N. The 70-kD heat shock cognate protein (hsc70) facilitates the nuclear export of the import receptors. ACTA ACUST UNITED AC 2005; 171:19-25. [PMID: 16203861 PMCID: PMC2171223 DOI: 10.1083/jcb.200506074] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transport receptors of the importin beta family continuously shuttle between the nucleus and cytoplasm. We previously reported that the nuclear export of importin beta involves energy-requiring step(s) in living cells. Here, we show that the in vitro nuclear export of importin beta also requires energy input. Cytosol, depleted of ATP-binding proteins, did not support the sufficient nuclear export of importin beta. Further purification revealed that the active component in the absorbed fraction was a 70-kD heat shock cognate protein (hsc70). The addition of recombinant hsc70, but not an ATPase-deficient hsc70 mutant, to the depleted cytosol restored the export activity. In living cells, depletion of hsc70 caused the significant nuclear accumulation of importin beta. These effects of hsc70 were observed in the nuclear export of importin beta, but also for other import receptors, transportin and importin alpha. These results suggest that hsc70 broadly modulates nucleocytoplasmic transport systems by regulating the nuclear export of receptor proteins.
Collapse
Affiliation(s)
- Shingo Kose
- Cellular Dynamics Laboratory, Discovery Research Institute, RIKEN, Wako, Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|
19
|
Guerra-Peraza O, Kirk D, Seltzer V, Veluthambi K, Schmit AC, Hohn T, Herzog E. Coat proteins of Rice tungro bacilliform virus and Mungbean yellow mosaic virus contain multiple nuclear-localization signals and interact with importin alpha. J Gen Virol 2005; 86:1815-1826. [PMID: 15914861 DOI: 10.1099/vir.0.80920-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transport of the viral genome into the nucleus is an obligatory step in the replication cycle of plant pararetro- and geminiviruses. In both these virus types, the multifunctional coat protein (CP) is thought to be involved in this process. Here, a green fluorescent protein tagging approach was used to demonstrate nuclear import of the CPs of Rice tungro bacilliform virus (RTBV) and Mungbean yellow mosaic virus--Vigna (MYMV) in Nicotiana plumbaginifolia protoplasts. In both cases, at least two nuclear localization signals (NLSs) were identified and characterized. The NLSs of RTBV CP are located within both N- and C-terminal regions (residues 479KRPK/497KRK and 744KRK/758RRK), and those of MYMV CP within the N-terminal part (residues 3KR and 41KRRR). The MYMV and RTBV CP NLSs resemble classic mono- and bipartite NLSs, respectively. However, the N-terminal MYMV CP NLS and both RTBV CP NLSs show peculiarities in the number and position of basic residues. In vitro pull-down assays revealed interaction of RTBV and MYMV CPs with the nuclear import factor importin alpha, suggesting that both CPs are imported into the nucleus via an importin alpha-dependent pathway. The possibility that this pathway could serve for docking of virions to the nucleus is discussed.
Collapse
Affiliation(s)
- O Guerra-Peraza
- Friedrich Miescher Institute, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - D Kirk
- Friedrich Miescher Institute, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - V Seltzer
- Institut de Biologie Moléculaire des Plantes, UPR-CNRS 2357, Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - K Veluthambi
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, India
| | - A C Schmit
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, India
| | - T Hohn
- University of Basel, Botanical Institute, Plant Health Unit, Schoenbeinstrasse 6, 4056 Basel, Switzerland
- Friedrich Miescher Institute, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - E Herzog
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, India
- Friedrich Miescher Institute, Maulbeerstrasse 66, 4058 Basel, Switzerland
| |
Collapse
|
20
|
Hu W, Philips AS, Kwok JC, Eisbacher M, Chong BH. Identification of nuclear import and export signals within Fli-1: roles of the nuclear import signals in Fli-1-dependent activation of megakaryocyte-specific promoters. Mol Cell Biol 2005; 25:3087-108. [PMID: 15798196 PMCID: PMC1069587 DOI: 10.1128/mcb.25.8.3087-3108.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Ets factor Friend leukemia integration 1 (Fli-1) is an important regulator of megakaryocytic (Mk) differentiation. Here, we demonstrate two novel nuclear localization signals (NLSs) within Fli-1: one (NLS1) is located at the N terminus, and another (NLS2) is within the Ets domain. Nuclear accumulation of Fli-1 reflected the combined functional effects of the two discrete NLSs. Each NLS can independently direct nuclear transport of a carrier protein, with mutations within the NLSs affecting nuclear accumulation. NLS1 has a bipartite motif, whereas the NLS2 region contains a nonclassical NLS. Both NLSs bind importin alpha (IMPalpha) and IMPbeta, with NLS1 and NLS2 being predominantly recognized by IMPalpha and IMPbeta, respectively. Fli-1 also contains one nuclear export signal. Leptomycin B abolished its cytoplasmic accumulation, showing CRM1 dependency. We demonstrate that Ets domain binding to specific target DNA effectively blocks IMP binding, indicating that the targeted DNA binding plays a role in localizing Fli-1 to its destination and releasing IMPs for recycling back to the cytoplasm. Finally, by analyzing full-length Fli-1 carrying NLS1, NLS2, and combined NLS1-NLS2 mutations, we conclude that two functional NLSs exist in Fli-1 and that each NLS is sufficient to target Fli-1 to the nucleus for activation of Mk-specific genes.
Collapse
Affiliation(s)
- Wei Hu
- Centre for Thrombosis and Vascular Research, Department of Medicine, SXt. George Clinical School, University of New South Wales, Sydney, New South Wales 2217, Australia
| | | | | | | | | |
Collapse
|
21
|
Kotera I, Sekimoto T, Miyamoto Y, Saiwaki T, Nagoshi E, Sakagami H, Kondo H, Yoneda Y. Importin alpha transports CaMKIV to the nucleus without utilizing importin beta. EMBO J 2005; 24:942-51. [PMID: 15719015 PMCID: PMC554133 DOI: 10.1038/sj.emboj.7600587] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Accepted: 01/27/2005] [Indexed: 12/20/2022] Open
Abstract
Ca(2+)/calmodulin-dependent protein kinase type IV (CaMKIV) plays an essential role in the transcriptional activation of cAMP response element-binding protein-mediated signaling pathways. Although CaMKIV is localized predominantly in the nucleus, the molecular mechanism of the nuclear import of CaMKIV has not been elucidated. We report here that importin alpha is able to carry CaMKIV into the nucleus without the need for importin beta or any other soluble proteins in digitonin-permeabilized cells. An importin beta binding-deficient mutant (DeltaIBB) of importin alpha also carried CaMKIV into the nucleus, which strongly suggests that CaMKIV is transported in an importin beta-independent manner. While CaMKIV directly interacted with the C-terminal region of importin alpha, the CaMKIV/importin alpha complex did not form a ternary complex with importin beta, which explains the nonrequirement of importin beta for the nuclear transport of CaMKIV. The cytoplasmic microinjection of importin alpha-DeltaIBB enhanced the rate of nuclear translocation of CaMKIV in vivo. This is the first report to demonstrate definitely that mammalian importin alpha solely carries a cargo protein into the nucleus without utilizing the classical importin beta-dependent transport system.
Collapse
Affiliation(s)
- Ippei Kotera
- Department of Cell Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Toshihiro Sekimoto
- Department of Cell Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yoichi Miyamoto
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Takuya Saiwaki
- Department of Cell Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Emi Nagoshi
- Department of Cell Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hiroyuki Sakagami
- Department of Cell Biology, Graduate School of Medicine, Tohoku University, Aoba-ku, Sendai, Japan
| | - Hisatake Kondo
- Department of Cell Biology, Graduate School of Medicine, Tohoku University, Aoba-ku, Sendai, Japan
| | - Yoshihiro Yoneda
- Department of Cell Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
22
|
Sakakida Y, Miyamoto Y, Nagoshi E, Akashi M, Nakamura TJ, Mamine T, Kasahara M, Minami Y, Yoneda Y, Takumi T. Importin alpha/beta mediates nuclear transport of a mammalian circadian clock component, mCRY2, together with mPER2, through a bipartite nuclear localization signal. J Biol Chem 2005; 280:13272-8. [PMID: 15689618 DOI: 10.1074/jbc.m413236200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Circadian rhythms, which period is approximately one day, are generated by endogenous biological clocks. These clocks are found throughout the animal kingdom, as well as in plants and even in prokaryotes. Molecular mechanisms for circadian rhythms are based on transcriptional oscillation of clock component genes, consisting of interwoven autoregulatory feedback loops. Among the loops, the nuclear transport of clock proteins is a crucial step for transcriptional regulation. In the present study, we showed that the nuclear entry of mCRY2, a mammalian clock component, is mediated by the importin alpha/beta system through a bipartite nuclear localization signal in its carboxyl end. In vitro transport assay using digitonin-permeabilized cells demonstrated that all three importin alphas, alpha1 (Rch1), alpha3 (Qip-1), and alpha7 (NPI-2), can mediate mCRY2 import. mCRY2 with the mutant nuclear localization signal failed to transport mPER2 into the nucleus of mammalian cultured cells, indicating that the nuclear localization signal identified in mCRY2 is physiologically significant. These results suggest that the importin alpha/beta system is involved in nuclear entry of mammalian clock components, which is indispensable to transcriptional oscillation of clock genes.
Collapse
Affiliation(s)
- Yoko Sakakida
- Osaka Bioscience Institute, Suita, Osaka 565-0874, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sekimoto T, Fukumoto M, Yoneda Y. 14-3-3 suppresses the nuclear localization of threonine 157-phosphorylated p27(Kip1). EMBO J 2004; 23:1934-42. [PMID: 15057270 PMCID: PMC404318 DOI: 10.1038/sj.emboj.7600198] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2003] [Accepted: 03/11/2004] [Indexed: 01/12/2023] Open
Abstract
p27(Kip1) (p27), a CDK inhibitor, migrates into the nucleus, where it controls cyclin-CDK complex activity for proper cell cycle progression. We report here that the classical bipartite-type basic amino-acid cluster and the two downstream amino acids of the C-terminal region of p27 function as a nuclear localization signal (NLS) for its full nuclear import activity. Importin alpha3 and alpha5, but not alpha1, transported p27 into the nucleus in conjunction with importin beta, as evidenced by an in vitro transport assay. It is known that Akt phosphorylates Thr 157 of p27 and this reduces the nuclear import activity of p27. Using a pull-down experiment, 14-3-3 was identified as the Thr157-phosphorylated p27NLS-binding protein. Although importin alpha5 bound to Thr157-phosphorylated p27NLS, 14-3-3 competed with importin alpha5 for binding to it. Thus, 14-3-3 sequestered phosphorylated p27NLS from importin alpha binding, resulting in cytoplasmic localization of NLS-phosphorylated p27. These findings indicate that 14-3-3 suppresses importin alpha/beta-dependent nuclear localization of Thr157-phosphorylated p27, suggesting implications for cell cycle disorder in Akt-activated cancer cells.
Collapse
Affiliation(s)
- Toshihiro Sekimoto
- Department of Cell Biology and Neuroscience, Graduate School of Medicine, Osaka University, Yamada-oka, Suita, Osaka, Japan
| | - Masahiro Fukumoto
- Department of Cell Biology and Neuroscience, Graduate School of Medicine, Osaka University, Yamada-oka, Suita, Osaka, Japan
| | - Yoshihiro Yoneda
- Department of Cell Biology and Neuroscience, Graduate School of Medicine, Osaka University, Yamada-oka, Suita, Osaka, Japan
- Laboratories for Biomolecular Networks, Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, Yamada-oka, Suita, Osaka, Japan
- Laboratories for Biomolecular Networks, Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan. Tel.: +81 6 6879 3210; Fax: +81 6 6879 3219; E-mail:
| |
Collapse
|
24
|
Steggerda SM, Paschal BM. Regulation of nuclear import and export by the GTPase Ran. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 217:41-91. [PMID: 12019565 DOI: 10.1016/s0074-7696(02)17012-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review focuses on the control of nuclear import and export pathways by the small GTPase Ran. Transport of signal-containing cargo substrates is mediated by receptors that bind to the cargo proteins and RNAs and deliver them to the appropriate cellular compartment. Ran is an evolutionarily conserved member of the Ras superfamily that regulates all receptor-mediated transport between the nucleus and the cytoplasm. We describe the identification and characterization of the RanGTPase and its binding partners: the guanine nucleotide exchange factor, RanGEF; the GTPase activating protein, RanGAP; the soluble import and export receptors; Ran-binding domain-(RBD) containing proteins; and NTF2 and related factors.
Collapse
Affiliation(s)
- Susanne M Steggerda
- Center for Cell Signaling and Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville 22908, USA
| | | |
Collapse
|
25
|
Miyamoto Y, Hieda M, Harreman MT, Fukumoto M, Saiwaki T, Hodel AE, Corbett AH, Yoneda Y. Importin alpha can migrate into the nucleus in an importin beta- and Ran-independent manner. EMBO J 2002; 21:5833-42. [PMID: 12411501 PMCID: PMC131066 DOI: 10.1093/emboj/cdf569] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A classical nuclear localization signal (NLS)-containing protein is transported into the nucleus via the formation of a NLS-substrate/importin alpha/beta complex. In this study, we found that importin alpha migrated into the nucleus without the addition of importin beta, Ran or any other soluble factors in an in vitro transport assay. A mutant importin alpha lacking the importin beta-binding domain efficiently entered the nucleus. Competition experiments showed that this import pathway for importin alpha is distinct from that of importin beta. These results indicate that importin alpha alone can enter the nucleus via a novel pathway in an importin beta- and Ran-independent manner. Furthermore, this process is evolutionarily conserved as similar results were obtained in Saccharomyces cerevisiae. Moreover, the import rate of importin alpha differed among individual nuclei of permeabilized cells, as demonstrated by time-lapse experiments. This heterogeneous nuclear accumulation of importin alpha was affected by the addition of ATP, but not ATPgammaS. These results suggest that the nuclear import machinery for importin alpha at individual nuclear pore complexes may be regulated by reaction(s) that require ATP hydrolysis.
Collapse
Affiliation(s)
| | | | - Michelle T. Harreman
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, 2-2 Yamada-oka, Suita,Osaka 565-0871, Japan and
Department of Biochemistry,Emory University School of Medicine, 1510 Clifton Road, NE, Atlanta, GA 30322, USA Corresponding author e-mail: Y.Miyamoto and M.Hieda contributed equally to this work
| | | | | | - Alec E. Hodel
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, 2-2 Yamada-oka, Suita,Osaka 565-0871, Japan and
Department of Biochemistry,Emory University School of Medicine, 1510 Clifton Road, NE, Atlanta, GA 30322, USA Corresponding author e-mail: Y.Miyamoto and M.Hieda contributed equally to this work
| | - Anita H. Corbett
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, 2-2 Yamada-oka, Suita,Osaka 565-0871, Japan and
Department of Biochemistry,Emory University School of Medicine, 1510 Clifton Road, NE, Atlanta, GA 30322, USA Corresponding author e-mail: Y.Miyamoto and M.Hieda contributed equally to this work
| | - Yoshihiro Yoneda
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University, 2-2 Yamada-oka, Suita,Osaka 565-0871, Japan and
Department of Biochemistry,Emory University School of Medicine, 1510 Clifton Road, NE, Atlanta, GA 30322, USA Corresponding author e-mail: Y.Miyamoto and M.Hieda contributed equally to this work
| |
Collapse
|
26
|
Bäuerle M, Doenecke D, Albig W. The requirement of H1 histones for a heterodimeric nuclear import receptor. J Biol Chem 2002; 277:32480-9. [PMID: 12080050 DOI: 10.1074/jbc.m202765200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
After synthesis in the cytoplasm, H1 histones are imported into the nucleus through an energy-dependent process that can be mediated by an importin beta-importin 7 (Impbeta-Imp7) heterodimer. H1 histones contain two structurally different types of nuclear localization signals (NLS). The first type of NLS resides within the unstructured C-terminal domain and is rich in basic amino acids. In contrast, the highly conserved central domain of the H1 histone contains comparatively few basic amino acids but also represents a functional NLS. The competence for the nuclear import of this globular domain seems to be based on its secondary structure. Here, we show that the Impbeta-Imp7 heterodimer is the only receptor for H1 import. Furthermore, we identified the import receptors mediating the in vitro transport of different NLS of the H1 histone. Using the digitonin-permeabilized cell import assay we show that Impbeta is the most efficient import receptor for the globular domain of H1 histones, whereas the heterodimer of Impbeta and Imp7 is the functional receptor for the entire C-terminal domain. However, short fragments of the C-terminal domain are imported in vitro by at least four different importins, which resembles the import pathway of ribosomal proteins and core histones. In addition, we show that heterodimerization of Impbeta with Imp7 is absolutely necessary for their proper function as an import receptor for H1 histones. These findings point to a chaperone-like function of the heterodimeric complex in addition to its function as an import receptor. It appears that the Impbeta-Imp7 heterodimer is specialized for NLS consisting of extended basic domains.
Collapse
Affiliation(s)
- Marc Bäuerle
- Institut für Biochemie und Molekulare Zellbiologie, Abteilung für Molekularbiologie, Universität Göttingen, D-37073 Göttingen, Germany
| | | | | |
Collapse
|
27
|
Miyamoto Y, Kim J, Yuba S, Yoneda Y. Genomic organization and chromosomal localization of the importin alpha1 gene in the mouse. Gene 2002; 288:49-56. [PMID: 12034493 DOI: 10.1016/s0378-1119(02)00456-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Importin alpha1 (also referred to as NPI1 or importin alphaS1) gene encodes a member of the cytosolic receptor protein superfamily that recognizes classical monopartite and bipartite basic type nuclear localization signals and mediates nuclear protein import via an importin beta-dependent pathway. Here we report on the organization of the importin alpha1 locus in the mouse genome. The gene is approximately 40 kb in length from the translation initiation codon to the poly(A) additional site. The translated region of the gene is comprised of 13 coding exons and the exon-intron boundaries conform to the GT/AG rule. Importin alpha1 was mapped to a middle region of mouse chromosome 16 by fluorescence in situ hybridization analysis. Moreover, it was found by reverse transcriptase polymerase chain reaction analysis that importin alpha1 is widely expressed in various tissues in adult mice and at various stages during embyogenesis. This study is the first example that provides detailed genomic information on nuclear transport factors such as importins and exportins and provides a basis for further studies such as the generation of mutants in mice for purposes of investigating the role of importin alpha1 in development and differentiation.
Collapse
Affiliation(s)
- Yoichi Miyamoto
- Department of Cell Biology and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Japan
| | | | | | | |
Collapse
|
28
|
Plafker SM, Macara IG. Ribosomal protein L12 uses a distinct nuclear import pathway mediated by importin 11. Mol Cell Biol 2002; 22:1266-75. [PMID: 11809816 PMCID: PMC134630 DOI: 10.1128/mcb.22.4.1266-1275.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2001] [Revised: 07/25/2001] [Accepted: 11/19/2001] [Indexed: 11/20/2022] Open
Abstract
Ribosome biogenesis requires the nuclear translocation of ribosomal proteins from their site of synthesis in the cytoplasm to the nucleus. Analyses of the import mechanisms have revealed that most ribosomal proteins can be delivered to the nucleus by multiple transport receptors (karyopherins or importins). We now provide evidence that ribosomal protein L12 (rpL12) is distinguished from the bulk of ribosomal proteins because it accesses the importin 11 pathway as a major route into the nucleus. rpL12 specifically and directly interacted with importin 11 in vitro and in vivo. Both rpL12 binding to and import by importin 11 were inhibited by another importin 11 substrate, UbcM2, indicating that these two cargoes may bind overlapping sites on the transport receptor. In contrast, the import of rpL23a, a ribosomal protein that uses the general ribosomal protein import system, was not competed by UbcM2, and in an in vitro binding assay, importin 11 did not bind to the nuclear localization signal of rpL23a. Furthermore, in a transient transfection assay, the nuclear accumulation of rpL12 was increased by coexpressed importin 11, but not by other importins. These data are consistent with importin 11 being a mediator of rpL12 nuclear import. Taken together, these results indicate that rpL12 uses a distinct nuclear import pathway that may contribute to a mechanism for regulating ribosome synthesis and/or maturation.
Collapse
Affiliation(s)
- Scott M Plafker
- Center for Cell Signaling and Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | |
Collapse
|
29
|
Jäkel S, Mingot JM, Schwarzmaier P, Hartmann E, Görlich D. Importins fulfil a dual function as nuclear import receptors and cytoplasmic chaperones for exposed basic domains. EMBO J 2002; 21:377-86. [PMID: 11823430 PMCID: PMC125346 DOI: 10.1093/emboj/21.3.377] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many nuclear transport pathways are mediated by importin beta-related transport receptors. Here, we identify human importin (Imp) 4b as well as mouse Imp4a, Imp9a and Imp9b as novel family members. Imp4a mediates import of the ribosomal protein (rp) S3a, while Imp9a and Imp9b import rpS7, rpL18a and apparently numerous other substrates. Ribosomal proteins, histones and many other nuclear import substrates are very basic proteins that aggregate easily with cytoplasmic polyanions such as RNA. Imp9 effectively prevents such precipitation of, for example, rpS7 and rpL18a by covering their basic domains. The same applies to Imp4, Imp5, Imp7 and Impbeta and their respective basic import substrates. The Impbeta-Imp7 heterodimer appears specialized for the most basic proteins, such as rpL4, rpL6 and histone H1, and is necessary and sufficient to keep them soluble in a cytoplasmic environment prior to rRNA or DNA binding, respectively. Thus, just as heat shock proteins function as chaperones for exposed hydrophobic patches, importins act as chaperones for exposed basic domains, and we suggest that this represents a major and general cellular function of importins.
Collapse
Affiliation(s)
| | | | | | - Enno Hartmann
- ZMBH, INF 282, D-69120 Heidelberg and
Institut für Biologie der Universität Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany Corresponding author e-mail: S.Jäkel and J.-M.Mingot contributed equally to this work
| | - Dirk Görlich
- ZMBH, INF 282, D-69120 Heidelberg and
Institut für Biologie der Universität Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany Corresponding author e-mail: S.Jäkel and J.-M.Mingot contributed equally to this work
| |
Collapse
|
30
|
Yoneda Y, Kametaka A, Sekimoto T. How Many Pathways Are Available for Nuclear Protein Import in Cells. Acta Histochem Cytochem 2002. [DOI: 10.1267/ahc.35.435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Yoshihiro Yoneda
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University
| | - Ai Kametaka
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University
| | - Toshihiro Sekimoto
- Department of Frontier Biosciences, Graduate School of Frontier Biosciences, Osaka University
| |
Collapse
|
31
|
Abstract
The ability to orchestrate the transport of proteins between nucleus and cytoplasm provides cells with a powerful regulatory mechanism. Selective translocation between these compartments is often used to propagate cellular signals, and it is an intimate part of the processes that control cell division, viral replication, and other cellular events. Therefore, precise experimental control over protein localization, through the agency of light, would provide a powerful tool for the study and manipulation of these events. To this end, a prototype photoregulated nuclear localization signal (NLS) was derived from a native NLS. A library of 30 mutants of the bipartite NLS from Xenopus laevis nucleoplasmin containing a novel, photoisomerizable amino acid was prepared by parallel, solid-phase synthesis and screened in vitro for binding to the nuclear import receptor karyopherin alpha, which mediates the nuclear import of cellular proteins. A single peptide was identified in which the cis and trans photoisomers bind the receptor differentially. The strategy used to obtain this peptide is systematic and empirical; therefore, it is potentially applicable to any peptide-receptor system.
Collapse
Affiliation(s)
- S B Park
- Texas A&M University, Department of Chemistry, PO Box 30012, College Station, TX 77842-3012, USA
| | | |
Collapse
|
32
|
Matsubayashi Y, Fukuda M, Nishida E. Evidence for existence of a nuclear pore complex-mediated, cytosol-independent pathway of nuclear translocation of ERK MAP kinase in permeabilized cells. J Biol Chem 2001; 276:41755-60. [PMID: 11546808 DOI: 10.1074/jbc.m106012200] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The classical mitogen-activated protein kinase (MAPK, also known as ERK) pathway is widely involved in eukaryotic signal transductions. In response to extracellular stimuli, MAPK becomes activated and translocates from the cytoplasm to the nucleus. At least two pathways for the nuclear import of MAPK are shown to exist; passive diffusion of a monomer and Ran-dependent active transport of a dimer, the detailed molecular mechanism of which is unknown. In this study, we have reconstituted nuclear import of MAPK in vitro by using digitonin-permeabilized cells with GFP-fused MAPK protein (GFP-MAPK), which is too large to pass through the nuclear pore by passive diffusion. GFP-MAPK was able to accumulate in the nucleus irrespective of its phosphorylation state. This import of GFP-MAPK occurred even in the absence of any soluble cytosolic factors or ATP but was inhibited by wheat germ agglutinin or an excess amount of importin-beta or at low temperatures. Moreover, MAPK directly bound to an FG repeat region of nucleoporin CAN/Nup214 in vitro. Taken together, these results suggest the third pathway for nuclear import of MAPK, in which MAPK passes through the nuclear pore by directly interacting with the nuclear pore complex.
Collapse
Affiliation(s)
- Y Matsubayashi
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kitashirekawa, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
33
|
Baake M, Bäuerle M, Doenecke D, Albig W. Core histones and linker histones are imported into the nucleus by different pathways. Eur J Cell Biol 2001; 80:669-77. [PMID: 11824786 DOI: 10.1078/0171-9335-00208] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Histones are the major structural proteins in eukaryotic chromosomes. This group of small very basic proteins consists of the H1 linker histones and the core histones H2A, H2B, H3 and H4. Despite their small size, the nuclear import of histones occurs by an active transport mechanism and not simply by diffusion. Histones contain several nuclear localisation signals (NLS) that can be subdivided into two different types of signal structures. We have previously shown that H1 histones are transported by a heterodimeric import receptor complex consisting of importin beta and importin 7, and we now describe the receptors required for the import of the core histones. Competition experiments using the in vitro transport assay indicate that the import pathway of the core histones differs from that of the linker histones and of nuclear proteins with classical NLS. In vitro binding assays show that each of the import receptors importin beta, importin 5, importin 7 and transportin, has the capacity to bind to any of the four core histones. Reconstitution experiments with recombinant factors indicate that each of these factors can independently serve as an import receptor for each of the core histones.
Collapse
Affiliation(s)
- M Baake
- Institut für Biochemie und Molekulare Zellbiologie, Abteilung für Molekularbiologie, Universität Göttingen, Germany
| | | | | | | |
Collapse
|
34
|
Marelli M, Dilworth DJ, Wozniak RW, Aitchison JD. The dynamics of karyopherin-mediated nuclear transport. Biochem Cell Biol 2001. [DOI: 10.1139/o01-149] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The regulated exchange of proteins and nucleic acids between the nucleus and cytoplasm demands a complex interplay between nuclear pore complexes (NPCs), which provide conduits in the nuclear envelope, and mobile transport receptors (or karyopherins, also known as importins/exportins) that bind and mediate the translocation of cargoes through the NPCs. Biochemical characterization of individual karyopherins has led to the identification of many of their cargoes and to the elucidation of the mechanisms by which they mediate transport. Likewise, the characterization of numerous NPC-associated components, in combination with structural studies of NPCs, have begun to address the possible mechanisms that drive nucleocytoplasmic transport, and the role that different nucleoporins play in the transport process. Some recent studies indicate that several NPC-associated factors, previously thought to be stable components of the NPC, dynamically interact with both nuclear and cytoplasmic aspects of the NPC. The mobility of these components challenges our conventional view of the NPC as the stationary phase of transport. These components and their potiential roles in nucleo-cytoplasmic transport are discussed.Key words: Nucleocytoplasmic transport, nuclear pore complex, nucleoporin, karyopherin, Nup2p.
Collapse
|
35
|
Hieda M, Tachibana T, Fukumoto M, Yoneda Y. Nuclear import of the U1A splicesome protein is mediated by importin alpha /beta and Ran in living mammalian cells. J Biol Chem 2001; 276:16824-32. [PMID: 11278401 DOI: 10.1074/jbc.m008299200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
U1A is a component of the uracil-rich small nuclear ribonucleoprotein. The molecular mechanism of nuclear import of U1A was investigated in vivo and in vitro. When recombinant deletion mutants of U1A are injected into the BHK21 cell cytoplasm, the nuclear localization signal (NLS) of U1A is found in the N-terminal half of the central domain (residues 100-144 in mouse U1A). In an in vitro assay, it was found that the U1A-NLS accumulated in only a portion of the nuclei in the absence of cytosolic extract. In contrast, the addition of importin alpha/beta and Ran induced the uniform nuclear accumulation of U1A-NLS in all cells. Furthermore, U1A was found to bind the C-terminal portion of importin alpha. In addition, the in vitro nuclear migration of full-length U1A was found to be exclusively dependent on importin alpha/beta and Ran. Moreover, in living cells, the full-length U1A accumulated in the nucleus in a Ran-dependent manner, and nuclear accumulation was inhibited by the importin beta binding domain of importin alpha. These results suggest that the nuclear import of U1A is mediated by at least two distinct pathways, an importin alpha/beta and Ran-dependent and an -independent pathway in permeabilized cells, and that the latter pathway may be suppressed in intact cells.
Collapse
Affiliation(s)
- M Hieda
- Department of Cell Biology and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka and Institute for Molecular and Cellular Biology, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
36
|
Nagoshi E, Yoneda Y. Dimerization of sterol regulatory element-binding protein 2 via the helix-loop-helix-leucine zipper domain is a prerequisite for its nuclear localization mediated by importin beta. Mol Cell Biol 2001; 21:2779-89. [PMID: 11283257 PMCID: PMC86908 DOI: 10.1128/mcb.21.8.2779-2789.2001] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sterol regulatory element-binding protein 2 (SREBP-2), a transcription factor of the basic helix-loop-helix-leucine zipper (bHLH-Zip) family, is synthesized in the form of a membrane-attached precursor molecule. When cells are deprived of sterols, a two-step proteolytic processing releases the transcriptionally active N-terminal segment of SREBP-2, thereby allowing it to enter the nucleus. In previous studies, we showed that the nuclear import of SREBP-2 occurs via the direct interaction of importin beta with the HLH-Zip domain. In this study, in order to more completely understand the intracellular dynamics of SREBP-2, we focused on the manner by which importin beta recognizes SREBP-2 at the initial step of the import. It was found that the active form of SREBP-2 exists as a stable dimer in solution and that the substitution of leucine residues for alanine in the leucine zipper motif disrupted the dimerization. It was also demonstrated that this mutant protein did not enter the nucleus either in vivo or in vitro. Solution binding assays, which involved the chemical cross-linking of wild-type or mutated SREBP-2 with importin beta, revealed that the import-active complex appeared to be composed of a dimeric form of SREBP-2 and importin beta. In addition, the SREBP-2 binding domain of importin beta corresponded to an overlapping but not identical region for importin alpha binding, which may explain how importin beta is able to recognize the dimeric HLH-Zip directly. These results indicate that dimerization is a prerequisite process for the nuclear import of SREBP-2 mediated by importin beta.
Collapse
Affiliation(s)
- E Nagoshi
- Department of Cell Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
37
|
|
38
|
Nagano T, Itoh N, Ebisutani C, Takatani T, Miyoshi T, Nakanishi T, Tanaka K. The transport mechanism of metallothionein is different from that of classical NLS-bearing protein. J Cell Physiol 2000; 185:440-6. [PMID: 11056015 DOI: 10.1002/1097-4652(200012)185:3<440::aid-jcp15>3.0.co;2-n] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A nuclear localization signal (NLS) has been detected in several nuclear proteins. Classical NLS-mediated nuclear pore targeting is performed by using the cytosolic factors, importin alpha and importin beta, whereas nuclear translocation requires the small GTPase, Ran. In the present study, we demonstrated that nuclear localization of metallothionein (MT) differs from that of classical NLS-mediated substrates. In digitonin-permeabilized BALB/c3T3 cells, biotinylated MT was localized in the nucleus in the presence of ATP and erythrocyte cytosol in the same manner as for SV40 large T NLS-conjugated allophycocyanin (APC-NLS). Under ATP-free conditions, nuclear rim-binding was observed in both transport substrates. Rim-binding of labeled MT was competitively inhibited by the addition of an excess amount of unlabeled MT. Different elution profiles were observed for the localization-promoting activities of MT in the cytosol compared to those of APC-NLS. Furthermore, nuclear localization of MT was determined to be a wheat germ agglutinin-insensitive, GTPgammaS-sensitive, and anti-Ran antibody-sensitive process. Green fluorescent protein-metallothionein (GFP-MT) fusion protein was also localized in the nucleus in the stable transformant of CHL-IU cells. These results strongly suggest that the targeting by MT of the nuclear pore is mediated by cytosolic factor(s) other than importins and that MT requires Ran for its nuclear localization.
Collapse
Affiliation(s)
- T Nagano
- Department of Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
In eukaryotic cells, cell functions are maintained in an orderly manner through the continuous traffic of various proteins between the cell nucleus and the cytoplasm. The nuclear import and export of proteins occurs through nuclear pore complexes and typically requires specific signals: the nuclear localization signal and nuclear export signal, respectively. The transport pathways have been found to be highly divergent, but are known to be largely mediated by importin beta-like transport receptor family molecules. These receptor molecules bind to and carry their cargoes directly or via adapter molecules. A small GTPase Ran ensures the directionality of nuclear transport by regulating the interaction between the receptors and their cargoes through its GTP/GDP cycle. Moreover, it has been recently elucidated how the transport system is involved in various functions of cell physiology, such as cell cycle control.
Collapse
Affiliation(s)
- Y Yoneda
- Department of Cell Biology and Neuroscience, Graduate School of Medicine, Osaka University, Japan.
| |
Collapse
|
40
|
Lee SJ, Imamoto N, Sakai H, Nakagawa A, Kose S, Koike M, Yamamoto M, Kumasaka T, Yoneda Y, Tsukihara T. The adoption of a twisted structure of importin-beta is essential for the protein-protein interaction required for nuclear transport. J Mol Biol 2000; 302:251-64. [PMID: 10964573 DOI: 10.1006/jmbi.2000.4055] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Importin-beta is a nuclear transport factor which mediates the nuclear import of various nuclear proteins. The N-terminal 1-449 residue fragment of mouse importin-beta (impbeta449) possesses the ability to bidirectionally translocate through the nuclear pore complex (NPC), and to bind RanGTP. The structure of the uncomplexed form of impbeta449 has been solved at a 2.6 A resolution by X-ray crystallography. It consists of ten copies of the tandemly arrayed HEAT repeat and exhibits conformational flexibility which is involved in protein-protein interaction for nuclear transport. The overall conformation of the HEAT repeats shows that a twisted motion produces a significantly varied superhelical architecture from the previously reported structure of RanGTP-bound importin-beta. These conformational changes appear to be the sum of small conformational changes throughout the polypeptide. Such a flexibility, which resides in the stacked HEAT repeats, is essential for interaction with RanGTP or with NPCs. Furthermore, it was found that impbeta449 has a structural similarity with another nuclear migrating protein, namely beta-catenin, which is composed of another type of helix-repeated structure of ARM repeat. Interestingly, the essential regions for NPC translocation for both importin-beta and beta-catenin are spatially well overlapped with one another. This strongly indicates the importance of helix stacking of the HEAT or ARM repeats for NPC-passage.
Collapse
Affiliation(s)
- S J Lee
- Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Osaka, Suita, 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Pancio HA, Vander Heyden N, Ratner L. The C-terminal proline-rich tail of human immunodeficiency virus type 2 Vpx is necessary for nuclear localization of the viral preintegration complex in nondividing cells. J Virol 2000; 74:6162-7. [PMID: 10846100 PMCID: PMC112115 DOI: 10.1128/jvi.74.13.6162-6167.2000] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human immunodeficiency virus type 2 (HIV-2), like other lentiviruses, is capable of infecting nondividing T cells and macrophages. The present work shows that in HIV-2-infected cells, Vpx is necessary for efficient nuclear import of the preintegration complex. In agreement with this finding, the subcellular localization of a GFP-Vpx fusion protein was found to be predominantly nuclear. However, deletion of the proline-rich C-terminal 11 residues of Vpx resulted in a shift of the fusion protein to the cytoplasm. Furthermore, the same deletion in the context of the provirus resulted in a decrease in nuclear import of the preintegration complex and attenuated replication in macrophages.
Collapse
Affiliation(s)
- H A Pancio
- Departments of Medicine, Pathology, and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
42
|
Tachibana T, Hieda M, Miyamoto Y, Kose S, Imamoto N, Yoneda Y. Recycling of importin alpha from the nucleus is suppressed by loss of RCC1 function in living mammalian cells. Cell Struct Funct 2000; 25:115-23. [PMID: 10885581 DOI: 10.1247/csf.25.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We previously reported that the nuclear import of substrates containing SV40 T antigen nuclear localization signal (NLS) was suppressed in a temperature-sensitive RCC1 mutant cell line, tsBN2, at nonpermissive temperature. Moreover, it was shown that import into wild type BHK21 cell-derived nuclei gradually decreased in heterokaryons between the tsBN2 and BHK21 cells, although the BHK21 nuclei retained wild type RCC1 and should contain RanGTP (Tachibana et al., 1994). In this study, it was found that in the heterokaryons cultured at non-permissive temperature, endogenous importin alpha was not detected immunocytochemically in the cytoplasm or BHK21 nuclei but only in the tsBN2 nuclei, suggesting that importin alpha cannot be exported from the RCC1-depleted nuclei. In fact, importin alpha microinjected into the nucleus of tsBN2 cells at non-permissive temperature remained in the nucleus. These results strongly support the hypothesis that the recycling of importin alpha from the nucleus requires nuclear RanGTP. Moreover, it was found that cytoplasmic injection of importin alpha restored the import of SV40 T-NLS substrates in the BHK21 nuclei but not the tsBN2 nuclei in the heterokaryons. This indicates that the decrease of importin alpha from the cytoplasm in the heterokaryons leads to a suppression of the efficiency of nuclear import of the T-NLS substrate and provides support for the view that nuclear RanGTP is essential for the nuclear entry of the substrates.
Collapse
Affiliation(s)
- T Tachibana
- Department of Cell Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Conti E, Kuriyan J. Crystallographic analysis of the specific yet versatile recognition of distinct nuclear localization signals by karyopherin alpha. Structure 2000; 8:329-38. [PMID: 10745017 DOI: 10.1016/s0969-2126(00)00107-6] [Citation(s) in RCA: 245] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Karyopherin alpha (importin alpha) is an adaptor molecule that recognizes proteins containing nuclear localization signals (NLSs). The prototypical NLS that is able to bind to karyopherin alpha is that of the SV40 T antigen, and consists of a short positively charged sequence motif. Distinct classes of NLSs (monopartite and bipartite) have been identified that are only partly conserved with respect to one another but are nevertheless recognized by the same receptor. RESULTS We report the crystal structures of two peptide complexes of yeast karyopherin alpha (Kapalpha): one with a human c-myc NLS peptide, determined at 2.1 A resolution, and one with a Xenopus nucleoplasmin NLS peptide, determined at 2.4 A resolution. Analysis of these structures reveals the determinants of specificity for the binding of a relatively hydrophobic monopartite NLS and of a bipartite NLS peptide. The peptides bind Kapalpha in its extended surface groove, which presents a modular array of tandem binding pockets for amino acid residues. CONCLUSIONS Monopartite and bipartite NLSs bind to a different number of amino acid binding pockets and make different interactions within them. The relatively hydrophobic monopartite c-myc NLS binds extensively at a few binding pockets in a similar manner to that of the SV40 T antigen NLS. In contrast, the bipartite nucleoplasmin NLS engages the whole array of pockets with individually more limited but overall more abundant interactions, which include the NLS two basic clusters and the backbone of its non-conserved linker region. Versatility in the specific recognition of NLSs relies on the modular.
Collapse
Affiliation(s)
- E Conti
- Laboratory of Molecular Biophysics, Howard Hughes Medical Institute, The Rockefeller University, New York 10021, USA.
| | | |
Collapse
|
44
|
Haraguchi T, Koujin T, Hayakawa T, Kaneda T, Tsutsumi C, Imamoto N, Akazawa C, Sukegawa J, Yoneda Y, Hiraoka Y. Live fluorescence imaging reveals early recruitment of emerin, LBR, RanBP2, and Nup153 to reforming functional nuclear envelopes. J Cell Sci 2000; 113 ( Pt 5):779-94. [PMID: 10671368 DOI: 10.1242/jcs.113.5.779] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We determined the times when the nuclear membrane, nuclear pore complex (NPC) components, and nuclear import function were recovered during telophase in living HeLa cells. Simultaneous observation of fluorescently-labeled NLS-bearing proteins, lamin B receptor (LBR)-GFP, and Hoechst33342-stained chromosomes revealed that nuclear membranes reassembled around chromosomes by 5 minutes after the onset of anaphase (early telophase) whereas nuclear import function was recovered later, at 8 minutes. GFP-tagged emerin also accumulated on chromosomes 5 minutes after the onset of anaphase. Interestingly, emerin and LBR initially accumulated at distinct, separate locations, but then became uniform 8 minutes after the onset of anaphase, concurrent with the recovery of nuclear import function. We further determined the timing of NPC assembly by immunofluorescence staining of cells fixed at precise times after the onset of anaphase. Taken together, these results showed that emerin, LBR, and several NPC components (RanBP2, Nup153, p62), but not Tpr, reconstitute around chromosomes very early in telophase prior to the recovery of nuclear import activity.
Collapse
Affiliation(s)
- T Haraguchi
- Kansai Advanced Research Center, Communications Research Laboratory, CREST Research Project, Japan Science and Technology Corporation, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Matsubae M, Kurihara T, Tachibana T, Imamoto N, Yoneda Y. Characterization of the nuclear transport of a novel leucine-rich acidic nuclear protein-like protein. FEBS Lett 2000; 468:171-5. [PMID: 10692581 DOI: 10.1016/s0014-5793(00)01218-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We previously reported that the nuclear localization signal (NLS) peptides stimulate the in vitro phosphorylation of several proteins, including a 34 kDa protein. In this study, we show that this specific 34 kDa protein is a novel murine leucine-rich acidic nuclear protein (LANP)-like large protein (mLANP-L). mLANP-L was found to have a basic type NLS. The co-injection of Q69LRan-GTP or SV40 T-antigen NLS peptides prevented the nuclear import of mLANP-L. mLANP-L NLS bound preferentially to Rch1 and NPI-1, but not to the Qip1 subfamily of importin alpha. These findings suggest that mLANP-L is transported into the nucleus by Rch1 and/or NPI-1.
Collapse
Affiliation(s)
- M Matsubae
- Department of Cell Biology, Osaka University, 2-2 Yamada-oka, Suita, Osaka, Japan
| | | | | | | | | |
Collapse
|
46
|
Kjems J, Askjaer P. Rev protein and its cellular partners. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2000; 48:251-98. [PMID: 10987094 DOI: 10.1016/s1054-3589(00)48009-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- J Kjems
- Department of Molecular and Structural Biology, University of Aarhus, Denmark
| | | |
Collapse
|
47
|
Yoneda Y, Hieda M, Nagoshi E, Miyamoto Y. Nucleocytoplasmic protein transport and recycling of Ran. Cell Struct Funct 1999; 24:425-33. [PMID: 10698256 DOI: 10.1247/csf.24.425] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The active transport of proteins into and out of the nucleus is mediated by specific signals, the nuclear localization signal (NLS) and nuclear export signal (NES), respectively. The best characterized NLS is that of the SV40 large T antigen, which contains a cluster of basic amino acids. The NESs were first identified in the protein kinase inhibitor (PKI) and HIV Rev protein, which are rich in leucine residues. The SV40 T-NLS containing transport substrates are carried into the nucleus by an importin alpha/beta heterodimer. Importin alpha recognizes the NLS and acts as an adapter between the NLS and importin beta, whereas importin beta interacts with importin alpha bound to the NLS, and acts as a carrier of the NLS/importin alpha/beta trimer. It is generally thought that importin alpha and beta are part of a large protein family. The leucine rich NES-containing proteins are exported from the nucleus by one of the importin beta family molecules, CRM1/exportin 1. A Ras-like small GTPase Ran plays a crucial role in both import/export pathways and determines the directionality of nuclear transport. It has recently been demonstrated in living cells that Ran actually shuttles between the nucleus and the cytoplasm and that the recycling of Ran is essential for the nuclear transport. Furthermore, it has been shown that nuclear transport factor 2 (NTF2) mediates the nuclear import of RanGDP. This review largely focuses on the issue concerning the functional divergence of importin alpha family molecules and the role of Ran in nucleocytoplasmic protein transport.
Collapse
Affiliation(s)
- Y Yoneda
- Department of Cell Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | | | | | | |
Collapse
|
48
|
Claussen M, Rudt F, Pieler T. Functional modules in ribosomal protein L5 for ribonucleoprotein complex formation and nucleocytoplasmic transport. J Biol Chem 1999; 274:33951-8. [PMID: 10567357 DOI: 10.1074/jbc.274.48.33951] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Ribosomal protein L5 forms a small, extraribosomal complex with 5 S ribosomal RNA, referred to as the 5 S ribonucleoprotein complex, which shuttles between nucleus and cytoplasm in Xenopus oocytes. Mapping elements in L5 that mediate nuclear protein import defines three separate such activities (L5-nuclear localization sequence (NLS)-1, -2, and -3), which are functional in both oocytes and somatic cells. RNA binding activity involves N-terminal as well as C-terminal elements of L5. In contrast to the full-length protein, none of the individual NLSs carrying L5 fragments are able to allow for the predominating accumulation in the nucleoli that is observed with the full-length protein. The separate L5-NLSs differ in respect to two activities. Firstly, only L5-NLS-1 and -3, not L5-NLS-2, are capable of promoting the nuclear transfer of a heterologous, covalently attached ribonucleoprotein complex. Secondly, only L5-NLS-1 is able to bind strongly to a variety of different import receptors; those that recognize L5-NLS-2 and -3 have yet to be identified.
Collapse
Affiliation(s)
- M Claussen
- Institut für Biochemie und Molekulare Zellbiologie, Georg-August-Universität, Humboldtallee 23, D-37073 Göttingen, Germany
| | | | | |
Collapse
|
49
|
Azuma Y, Ogita K, Yoneda Y. Constitutive expression of cytoplasmic activator protein-1 with DNA binding activity and responsiveness to ionotropic glutamate signals in the murine hippocampus. Neuroscience 1999; 92:1295-308. [PMID: 10426485 DOI: 10.1016/s0306-4522(99)00090-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Gel retardation electrophoresis revealed that cytosolic fractions contained DNA binding activity of the transcription factor activator protein-1 with profiles different from those reported in nuclear extracts in murine brain. In particular, activator protein-1 DNA binding was almost undetectable at 25 degrees C in the presence of both KCl and MgCl2 in cytosol fractions. Moreover, cytoplasmic activator protein-1 binding occurred at three different mobilities on the gel when determined at 2 degrees C in the absence of MgCl2. Systemic administration of N-methyl-D-aspartate and kainate led to marked potentiation of cytoplasmic activator protein-1 binding detected as slow bands in the murine hippocampus, without markedly affecting that as a fast band. Immunoblotting and supershift assays revealed much higher expression of both immunoreactive c-Jun and c-Fos in hippocampal cytosolic fractions in response to the administration of kainate than N-methyl-D-aspartate. These results suggest that activator protein-1 may be constitutively expressed in the cytoplasm with DNA binding activity and responsiveness to ionotropic glutamate signals in a manner different from that in the nucleus in the murine hippocampus.
Collapse
Affiliation(s)
- Y Azuma
- Department of Pharmacology, Setsunan University, Hirakata, Osaka, Japan
| | | | | |
Collapse
|
50
|
Nagoshi E, Imamoto N, Sato R, Yoneda Y. Nuclear import of sterol regulatory element-binding protein-2, a basic helix-loop-helix-leucine zipper (bHLH-Zip)-containing transcription factor, occurs through the direct interaction of importin beta with HLH-Zip. Mol Biol Cell 1999; 10:2221-33. [PMID: 10397761 PMCID: PMC25438 DOI: 10.1091/mbc.10.7.2221] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The sterol regulatory element-binding protein-2 (SREBP-2) is produced as a large precursor molecule attached to the endoplasmic reticulum membrane. In response to the sterol depletion, the N-terminal segment of the precursor, which contains a basic helix-loop-helix-leucine zipper domain, is released by two sequential cleavages and is translocated to the nucleus, where it activates the transcription of target genes. The data herein show that released SREBP-2 uses a distinct nuclear transport pathway, which is mediated by importin beta. The mature form of SREBP-2 is actively transported into the nucleus when injected into the cell cytoplasm. SREBP-2 binds directly to importin beta in the absence of importin alpha. Ran-GTP but not Ran-GDP causes the dissociation of the SREBP-2-importin beta complex. G19VRan-GTP inhibits the nuclear import of SREBP-2 in living cells. In the permeabilized cell in vitro transport system, nuclear import of SREBP-2 is reconstituted only by importin beta in conjunction with Ran and its interacting protein p10/NTF2. We further demonstrate that the helix-loop-helix-leucine zipper motif of SREBP-2 contains a novel type of nuclear localization signal, which binds directly to importin beta.
Collapse
Affiliation(s)
- E Nagoshi
- Department of Anatomy and Cell Biology, Osaka University Medical School, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|