1
|
Zhu S, Sun R, Guo X, Bao Y, Zhang D. Regulation, targets and functions of CHK. Front Cell Dev Biol 2022; 10:1068952. [PMID: 36568988 PMCID: PMC9780368 DOI: 10.3389/fcell.2022.1068952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Src family kinases (SFKs) play pivotal roles in multiple signaling pathways (Yeatman, 2004). SFK activity is inhibited by phosphorylation at its C-terminal tyrosine, by CSK (C-terminal Src kinase) and CHK (CSK-homologous kinase). CHK expression is restricted to normal hematopoietic cells, brain, and colon tissues. Downregulation of CHK in brain and colon tumors contributes to tumorigenicity in these tissues. CHK does not phosphorylate Src efficiently, however, in contrast to CSK, CHK inhibits Src kinase activity allosterically. Although the functions of CHK are still largely unknown, potential substrates of CHK including β-synuclein, α-tubulin, α-spectrin, 14-3-3, and Hsp90 have been identified. CHK is regulated epigenetically via promoter methylation. As the unknown roles of CHK are beginning to be revealed, current knowledge of regulation, molecular targets and functions of CHK is summarized, and important topics for future CHK research are discussed.
Collapse
Affiliation(s)
- Shudong Zhu
- School of Medicine, Nantong University, Nantong, China,Argus Pharmaceuticals, Changsha, China,*Correspondence: Shudong Zhu,
| | - Rong Sun
- School of Medicine, Nantong University, Nantong, China
| | | | | | - Dianzheng Zhang
- Department of Bio-medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| |
Collapse
|
2
|
Liang F, Fu X, Ding S, Li L. Use of a Network-Based Method to Identify Latent Genes Associated with Hearing Loss in Children. Front Cell Dev Biol 2021; 9:783500. [PMID: 34912812 PMCID: PMC8667072 DOI: 10.3389/fcell.2021.783500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Hearing loss is a total or partial inability to hear. Approximately 5% of people worldwide experience this condition. Hearing capacity is closely related to language, social, and basic emotional development; hearing loss is particularly serious in children. The pathogenesis of childhood hearing loss remains poorly understood. Here, we sought to identify new genes potentially associated with two types of hearing loss in children: congenital deafness and otitis media. We used a network-based method incorporating a random walk with restart algorithm, as well as a protein-protein interaction framework, to identify genes potentially associated with either pathogenesis. A following screening procedure was performed and 18 and 87 genes were identified, which potentially involved in the development of congenital deafness or otitis media, respectively. These findings provide novel biomarkers for clinical screening of childhood deafness; they contribute to a genetic understanding of the pathogenetic mechanisms involved.
Collapse
Affiliation(s)
- Feng Liang
- Anaesthesia Department, China-Japan Union Hospital, JiLin University, Changchun, China
| | - Xin Fu
- Anaesthesia Department, China-Japan Union Hospital, JiLin University, Changchun, China
| | - ShiJian Ding
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Lin Li
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Kim JH, Kim K, Kim I, Seong S, Kim N. c-Src–Dependent and –Independent Functions of Matk in Osteoclasts and Osteoblasts. THE JOURNAL OF IMMUNOLOGY 2018; 200:2455-2463. [DOI: 10.4049/jimmunol.1700582] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 01/17/2018] [Indexed: 11/19/2022]
|
4
|
Kent D, Copley M, Benz C, Dykstra B, Bowie M, Eaves C. Regulation of Hematopoietic Stem Cells by the Steel Factor/KIT Signaling Pathway: Fig. 1. Clin Cancer Res 2008; 14:1926-30. [DOI: 10.1158/1078-0432.ccr-07-5134] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Bougeret C, Jiang S, Keydar I, Avraham H. Functional analysis of Csk and CHK kinases in breast cancer cells. J Biol Chem 2001; 276:33711-20. [PMID: 11445575 DOI: 10.1074/jbc.m104209200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this report, we analyzed the expression and kinase activities of Csk and CHK kinases in normal breast tissues and breast tumors and their involvement in HRG-mediated signaling in breast cancer cells. Csk expression and kinase activity were abundant in normal human breast tissues, breast carcinomas, and breast cancer cell lines, whereas CHK expression was negative in normal breast tissues and low in some breast tumors and in the MCF-7 breast cancer cell line. CHK kinase activity was not detected in human breast carcinoma tissues (12 of 12) or in the MCF-7 breast cancer cell line (due to the low level of CHK protein expression), but was significantly induced upon heregulin (HRG) stimulation. We have previously shown that CHK associates with the ErbB-2/neu receptor upon HRG stimulation via its SH2 domain and that it down-regulates the ErbB-2/neu-activated Src kinases. Our new findings demonstrate that Csk has no effect on ErbB-2/neu-activated Src kinases upon HRG treatment and that its kinase activity is not modulated by HRG. CHK significantly inhibited in vitro cell growth, transformation, and invasion induced upon HRG stimulation. In addition, tumor growth of wt CHK-transfected MCF-7 cells was significantly inhibited in nude mice. Furthermore, CHK down-regulated c-Src and Lyn protein expression and kinase activity, and the entry into mitosis was delayed in the wt CHK-transfected MCF-7 cells upon HRG treatment. These results indicate that CHK, but not Csk, is involved in HRG-mediated signaling pathways, down-regulates ErbB-2/neu-activated Src kinases, and inhibits invasion and transformation of breast cancer cells upon HRG stimulation. These findings strongly suggest that CHK is a novel negative growth regulator of HRG-mediated ErbB-2/neu and Src family kinase signaling pathways in breast cancer cells.
Collapse
Affiliation(s)
- C Bougeret
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
6
|
Beghini A, Ripamonti CB, Peterlongo P, Roversi G, Cairoli R, Morra E, Larizza L. RNA hyperediting and alternative splicing of hematopoietic cell phosphatase (PTPN6) gene in acute myeloid leukemia. Hum Mol Genet 2000; 9:2297-304. [PMID: 11001933 DOI: 10.1093/oxfordjournals.hmg.a018921] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The SH2 domain-containing tyrosine phosphatase PTPN6 (SHP-1, PTP1C, HCP) is a 68 kDa cytoplasmic protein primarily expressed in hematopoietic cell development, proliferation and receptor-mediated mitogenic signaling pathways. By means of direct dephosphorylation, it down-regulates a broad spectrum of growth-promoting receptors, including the Kit tyrosine kinase, activated to elicit a prominent cascade of intracellular events by stem cell factor binding. The pivotal contribution of PTPN6 in modulating myeloid cell signaling has been revealed by the finding that shp-1 mutation is responsible for the overexpansion and inappropriate activation of myelomonocytic populations in motheaten (me/me) and motheaten viable (me(v)/me(v)) mice. Association of PTPN6 with c-Kit and negative modulation of the myeloid leukocyte signal transduction pathways prompted us to examine the expression of the protein tyrosine phosphatase PTPN6 gene in CD34(+)/CD117(+) blasts from acute myeloid leukemia patients. We identified and cloned cDNAs representing novel PTPN6 mRNA species, derived from aberrant splicing within the N-SH2 domain leading to retention of intron 3. Sequence analysis of cDNA clones revealed multiple A-->G editing conversions. The editing of PTPN6 mRNA mainly occurred as an A-->G conversion of A(7866), which represents the putative branch site in IVS3 of PTPN6 mRNA. Evidence that editing of A(7866) abrogates splicing has been obtained in vitro by using an edited clone and its backward clone generated by site-directed mutagenesis. The level of the aberrant intron-retaining splice variant, evaluated by semi-quantitative RT-PCR, was lower in CD117(+)-AML bone marrow mononuclear cells at remission than at diagnosis, suggesting the involvement of post-transcriptional PTPN6 processing in leukemogenesis.
Collapse
Affiliation(s)
- A Beghini
- Department of Biology and Genetics, University of Milan, Medical Faculty, 20133 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
c-Kit is a receptor tyrosine kinase that binds stem cell factor (SCF). Structurally, c-Kit contains five immunoglobulin-like domains extracellularly and a catalytic domain divided into two regions by a 77 amino acid insert intracellularly. Studies in white spotting and steel mice have shown that functional SCF and c-Kit are critical in the survival and development of stem cells involved in hematopoiesis, pigmentation and reproduction. Mutations in c-Kit are associated with a variety of human diseases. Interaction of SCF with c-Kit rapidly induces receptor dimerization and increases in autophosphorylation activity. Downstream of c-Kit, multiple signal transduction components are activated, including phosphatidylinositol-3-kinase, Src family members, the JAK/STAT pathway and the Ras-Raf-MAP kinase cascade. Structure-function studies have begun to address the role of these signaling components in SCF-mediated responses. This review will focus on the biochemical mechanism of action of SCF in hematopoietic cells.
Collapse
Affiliation(s)
- D Linnekin
- Basic Research Laboratory, National Cancer Institute-Frederick Cancer Research and Development Center, MD 21702-1201, USA.
| |
Collapse
|
8
|
The Receptor Protein Tyrosine Phosphatase, PTP-RO, Is Upregulated During Megakaryocyte Differentiation and Is Associated With the c-Kit Receptor. Blood 1999. [DOI: 10.1182/blood.v94.2.539] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractWe have recently isolated a cDNA encoding a novel human receptor-type tyrosine phosphatase, termed PTP-RO (for a protein tyrosine phosphatase receptor omicron), from 5-fluorouracil–treated murine bone marrow cells. PTP-RO is a human homologue of murine PTPλ and is related to the homotypically adhering κ and μ receptor-type tyrosine phosphatases. PTP-RO is expressed in human megakaryocytic cell lines, primary bone marrow megakaryocytes, and stem cells. PTP-RO mRNA and protein expression are upregulated upon phorbol 12-myristate 13-acetate (PMA) treatment of the megakaryocytic cell lines CMS, CMK, and Dami. To elucidate the function of PTP-RO in megakaryocytic cells and its potential involvement in the stem cell factor (SCF)/c-Kit receptor pathway, COS-7 and 293 cells were cotransfected with the cDNAs of both the c-Kit tyrosine kinase receptor and PTP-RO. PTP-RO was found to be associated with the c-Kit receptor in these transfected cells and the SCF/Kit ligand induced a rapid tyrosine phosphorylation of PTP-RO. Interestingly, these transfected cells demonstrated a decrease in their proliferative response to the SCF/Kit ligand. In addition, we assessed the association of PTP-RO with c-Kit in vivo. The results demonstrated that PTP-RO associates with c-Kit but not with the tyrosine kinase receptor FGF-R and that PTP-RO is tyrosine-phosphorylated after SCF stimulation of Mo7e and CMK cells. Antisense oligonucleotides directed against PTP-RO mRNA sequences significantly inhibited megakaryocyte progenitor proliferation. Therefore, these data show that the novel tyrosine kinase phosphatase PTP-RO is involved in megakaryocytopoiesis and that its function is mediated by the SCF/c-Kit pathway.
Collapse
|
9
|
The Receptor Protein Tyrosine Phosphatase, PTP-RO, Is Upregulated During Megakaryocyte Differentiation and Is Associated With the c-Kit Receptor. Blood 1999. [DOI: 10.1182/blood.v94.2.539.414k40_539_549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have recently isolated a cDNA encoding a novel human receptor-type tyrosine phosphatase, termed PTP-RO (for a protein tyrosine phosphatase receptor omicron), from 5-fluorouracil–treated murine bone marrow cells. PTP-RO is a human homologue of murine PTPλ and is related to the homotypically adhering κ and μ receptor-type tyrosine phosphatases. PTP-RO is expressed in human megakaryocytic cell lines, primary bone marrow megakaryocytes, and stem cells. PTP-RO mRNA and protein expression are upregulated upon phorbol 12-myristate 13-acetate (PMA) treatment of the megakaryocytic cell lines CMS, CMK, and Dami. To elucidate the function of PTP-RO in megakaryocytic cells and its potential involvement in the stem cell factor (SCF)/c-Kit receptor pathway, COS-7 and 293 cells were cotransfected with the cDNAs of both the c-Kit tyrosine kinase receptor and PTP-RO. PTP-RO was found to be associated with the c-Kit receptor in these transfected cells and the SCF/Kit ligand induced a rapid tyrosine phosphorylation of PTP-RO. Interestingly, these transfected cells demonstrated a decrease in their proliferative response to the SCF/Kit ligand. In addition, we assessed the association of PTP-RO with c-Kit in vivo. The results demonstrated that PTP-RO associates with c-Kit but not with the tyrosine kinase receptor FGF-R and that PTP-RO is tyrosine-phosphorylated after SCF stimulation of Mo7e and CMK cells. Antisense oligonucleotides directed against PTP-RO mRNA sequences significantly inhibited megakaryocyte progenitor proliferation. Therefore, these data show that the novel tyrosine kinase phosphatase PTP-RO is involved in megakaryocytopoiesis and that its function is mediated by the SCF/c-Kit pathway.
Collapse
|
10
|
Yamashita H, Avraham S, Jiang S, Dikic I, Avraham H. The Csk homologous kinase associates with TrkA receptors and is involved in neurite outgrowth of PC12 cells. J Biol Chem 1999; 274:15059-65. [PMID: 10329710 DOI: 10.1074/jbc.274.21.15059] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Csk homologous kinase (CHK), a member of the Csk regulatory tyrosine kinase family, is expressed primarily in brain and hematopoietic cells. The role of CHK in the nervous system is as yet unknown. Using PC12 cells as a model system of neuronal cells, we show that CHK participates in signaling mediated by TrkA receptors. CHK was found to be associated with tyrosine-phosphorylated TrkA receptors in PC12 cells upon stimulation with NGF. Binding assays and far Western blotting analysis, using glutathione S-transferase fusion proteins containing the Src homology 2 (SH2) and SH3 domains of CHK, demonstrate that the SH2 domain of CHK binds directly to the tyrosine-phosphorylated TrkA receptors. Site-directed mutagenesis of TrkA cDNA, as well as phosphopeptide inhibition of the in vitro interaction of the CHK-SH2 domain or native CHK with TrkA receptors, indicated that the residue Tyr-785 on TrkA is required for its binding to the CHK-SH2 domain upon NGF stimulation. In addition, overexpression of CHK resulted in enhanced activation of the mitogen-activated protein kinase pathway upon NGF stimulation, and microinjection of anti-CHK antibodies, but not anti-Csk antibodies, inhibited neurite outgrowth of PC12 cells in response to NGF. Thus, CHK is a novel signaling molecule that participates in TrkA signaling, associates directly with TrkA receptors upon NGF stimulation, and is involved in neurite outgrowth of PC12 cells in response to NGF.
Collapse
Affiliation(s)
- H Yamashita
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
11
|
Dutt P, Wang JF, Groopman JE. Stromal Cell-Derived Factor-1α and Stem Cell Factor/ kit Ligand Share Signaling Pathways in Hemopoietic Progenitors: A Potential Mechanism for Cooperative Induction of Chemotaxis. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.7.3652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Stromal cell-derived factor (SDF-1α), the ligand for CXCR4, is a chemokine that acts as a potent chemoattractant for hemopoietic progenitor cells. Stem cell factor/kit ligand (SCF/KL), an early acting cytokine, has recently been reported to enhance the chemotaxis induced by SDF-1α. However, very little is known about downstream signaling events following these receptor-ligand interactions. To investigate these events, we utilized a model progenitor cell line, CTS, which expresses both the CXCR4 and c-kit receptors. We observed strong Ca2+ mobilization and enhancement of chemotaxis following treatment with SDF-1α or SCF/KL. A combination of these factors enhanced this chemotaxis in CTS cells as well as in CD34+ bone marrow cells. Prior treatment of CTS cells with pertussis toxin inhibited the SDF-1α-induced chemotaxis, suggesting that SDF-1α signaling involves a pertussis-sensitive Gi-coupled protein. SDF-1α treatment resulted in a rapid phosphorylation of the focal adhesion molecules RAFTK (related adhesion focal tyrosine kinase), paxillin, and p130cas, which then declined within minutes. SCF/KL alone or in combination with SDF-1α induced a rapid and sustained effect on phosphorylation of these substrates. SDF-1α treatment resulted in a rapid and robust activation of p44/42 mitogen-activated protein kinase compared with the relatively weak and delayed effect of SCF/KL treatment. Interestingly, a delayed but sustained activation of mitogen-activated protein kinase activation was observed when the factors were used in combination. Such cooperativity in downstream signaling pathways may explain the enhanced chemotaxis of progenitors observed with SDF-1α in combination with SCF/KL.
Collapse
Affiliation(s)
- Parmesh Dutt
- Divisions of Experimental Medicine and Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Jian-Feng Wang
- Divisions of Experimental Medicine and Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Jerome E. Groopman
- Divisions of Experimental Medicine and Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| |
Collapse
|
12
|
Hirao A, Huang XL, Suda T, Yamaguchi N. Overexpression of C-terminal Src kinase homologous kinase suppresses activation of Lyn tyrosine kinase required for VLA5-mediated Dami cell spreading. J Biol Chem 1998; 273:10004-10. [PMID: 9545346 DOI: 10.1074/jbc.273.16.10004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Csk homologous kinase (Chk), which is co-expressed with C-terminal Src kinase (Csk) in hematopoietic cells, negatively regulates Src family kinases in vitro with selectivity toward Lyn but not c-Src in platelets. To explore the role of Src family kinases in hematopoietic cell adhesion, we overexpressed Chk in the megakaryocytic cell line Dami and established clones exhibiting a 10-fold increase in the amount of Chk. Overexpression of Chk was found to suppress VLA5 integrin-mediated cell spreading, but not cell attachment, throughout fibronectin (FN) stimulation. Deletion and point mutagenesis analyses of Chk showed that this suppression was dependent upon both the SH3 domain, which is responsible for membrane anchoring, and kinase activity. FN-induced cell spreading accompanied a sustained increase in Lyn activity with coincidental kinetics and the activation of Lyn was also suppressed by overexpression of Chk but not a Chk mutant lacking the SH3 domain. Expression of a truncated Lyn mutant lacking the kinase domain inhibited both cell spreading and Lyn activation upon stimulation with FN. These results suggest that sustained activation of Lyn, which is regulated by membrane-anchored Chk, plays a crucial role in VLA5-mediated cell spreading but not cell attachment to a FN substrate.
Collapse
Affiliation(s)
- A Hirao
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University School of Medicine, Kumamoto 860-0811, Japan
| | | | | | | |
Collapse
|
13
|
Kozlowski M, Larose L, Lee F, Le DM, Rottapel R, Siminovitch KA. SHP-1 binds and negatively modulates the c-Kit receptor by interaction with tyrosine 569 in the c-Kit juxtamembrane domain. Mol Cell Biol 1998; 18:2089-99. [PMID: 9528781 PMCID: PMC121439 DOI: 10.1128/mcb.18.4.2089] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/1997] [Accepted: 12/22/1997] [Indexed: 02/07/2023] Open
Abstract
The SH2 domain-containing SHP-1 tyrosine phosphatase has been shown to negatively regulate a broad spectrum of growth factor- and cytokine-driven mitogenic signaling pathways. Included among these is the cascade of intracellular events evoked by stem cell factor binding to c-Kit, a tyrosine kinase receptor which associates with and is dephosphorylated by SHP-1. Using a series of glutathione S-transferase (GST) fusion proteins containing either tyrosine-phosphorylated segments of the c-Kit cytosolic region or the SH2 domains of SHP-1, we have shown that SHP-1 interacts with c-Kit by binding selectively to the phosphorylated c-Kit juxtamembrane region and that the association of c-Kit with the larger of the two SHP-1 isoforms may be mediated through either the N-terminal or C-terminal SHP-1 SH2 domain. The results of binding assays with mutagenized GST-Kit juxtamembrane fusion proteins and competitive inhibition assays with phosphopeptides encompassing each c-Kit juxtamembrane region identified the tyrosine residue at position 569 as the major site for binding of SHP-1 to c-Kit and suggested that tyrosine 567 contributes to, but is not required for, this interaction. By analysis of Ba/F3 cells retrovirally transduced to express c-Kit receptors, phenylalanine substitution of c-Kit tyrosine residue 569 was shown to be associated with disruption of c-Kit-SHP-1 binding and induction of hyperproliferative responses to stem cell factor. Although phenylalanine substitution of c-Kit tyrosine residue 567 in the Ba/F3-c-Kit cells did not alter SHP-1 binding to c-Kit, the capacity of a second c-Kit-binding tyrosine phosphatase, SHP-2, to associate with c-Kit was markedly reduced, and the cells again showed hyperproliferative responses to stem cell factor. These data therefore identify SHP-1 binding to tyrosine 569 on c-Kit as an interaction pivotal to SHP-1 inhibitory effects on c-Kit signaling, but they indicate as well that cytosolic protein tyrosine phosphatases other than SHP-1 may also negatively regulate the coupling of c-Kit engagement to proliferation.
Collapse
Affiliation(s)
- M Kozlowski
- Health Canada Life Sciences and the University of Ottawa, Canada.
| | | | | | | | | | | |
Collapse
|
14
|
Zrihan-Licht S, Deng B, Yarden Y, McShan G, Keydar I, Avraham H. Csk homologous kinase, a novel signaling molecule, directly associates with the activated ErbB-2 receptor in breast cancer cells and inhibits their proliferation. J Biol Chem 1998; 273:4065-72. [PMID: 9461599 DOI: 10.1074/jbc.273.7.4065] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Substantial evidence exists supporting direct roles for ErbB-2/neu and Src kinase activation in breast cancer. The Csk homologous kinase (CHK) is a recently identified tyrosine kinase which, like Csk, phosphorylates the C-terminal tyrosine of Src kinases, resulting in inactivation of these enzymes. Recently, we observed that CHK is associated with the ErbB-2/neu receptor upon heregulin stimulation of breast cancer cells. Here, we report that CHK expression was observed in 70 out of 80 primary breast cancer specimens but not in normal breast tissues (0/19). Confocal microscopy analysis revealed co-localization of CHK with ErbB-2 in these primary specimens (6/6). In addition, we observed that the cytoplasmic domain of the ErbB-2/neu receptor is sufficient for its interaction with the CHKSH2 domain. Phosphopeptide inhibition of the in vitro interaction of CHKSH2 or native CHK with ErbB-2/neu, as well as site-directed mutagenesis of ErbB-2/neu, indicated that CHKSH2 binds to Tyr1253 of ErbB-2/neu. Interestingly, autophosphorylation at this site confers oncogenicity to this receptor. Moreover, CHK was able to down-regulate ErbB-2/neu-activated Src kinases. Overexpression of CHK in MCF-7 breast cancer cells markedly inhibited cell growth and proliferative response to heregulin as well as decreased colony formation in soft agar. These studies indicate that CHK binds, via its SH2 domain, to Tyr1253 of the activated ErbB-2/neu and down-regulates the ErbB-2/neu-mediated activation of Src kinases, thereby inhibiting breast cancer cell growth. These data strongly suggest that CHK is a novel negative growth regulator in human breast cancer.
Collapse
Affiliation(s)
- S Zrihan-Licht
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
15
|
Hirao A, Hamaguchi I, Suda T, Yamaguchi N. Translocation of the Csk homologous kinase (Chk/Hyl) controls activity of CD36-anchored Lyn tyrosine kinase in thrombin-stimulated platelets. EMBO J 1997; 16:2342-51. [PMID: 9171348 PMCID: PMC1169835 DOI: 10.1093/emboj/16.9.2342] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Chk/Hyl is a recently isolated non-receptor tyrosine kinase with greatest homology to a ubiquitous negative regulator of Src family kinases, Csk. To understand the significance of co-expression of Chk and Csk in platelets, we examined the subcellular localization of each protein. Chk, but not Csk, was completely translocated from the Triton X-100-soluble to the Triton X-100-insoluble cytoskeletal fraction within 10 s of thrombin stimulation. Chk and Lyn, but not Csk and c-Src, co-fractionated in the higher density lysate fractions of resting platelets, with Chk being found to localize close to CD36 (membrane glycoprotein IV)-anchored Lyn. The kinase activity of co-fractionated Lyn was suppressed 3-fold. In vitro phosphorylation assays showed that Chk suppressed Lyn activity by phosphorylating its C-terminal negative regulatory tyrosine. Upon stimulation of platelets with thrombin, the rapid and complete translocation of Chk away from Lyn caused concomitant activation of Lyn. This activation was accompanied by dephosphorylation of Lyn at its C-terminal negative regulatory tyrosine in cooperation with a protein tyrosine phosphatase. These results suggest that Chk, but not Csk, may function as a translocation-controlled negative regulator of CD36-anchored Lyn in thrombin-induced platelet activation.
Collapse
Affiliation(s)
- A Hirao
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University School of Medicine, Honjo, Japan
| | | | | | | |
Collapse
|
16
|
Price DJ, Rivnay B, Fu Y, Jiang S, Avraham S, Avraham H. Direct association of Csk homologous kinase (CHK) with the diphosphorylated site Tyr568/570 of the activated c-KIT in megakaryocytes. J Biol Chem 1997; 272:5915-20. [PMID: 9038210 DOI: 10.1074/jbc.272.9.5915] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Csk homologous kinase (CHK), formerly MATK, has previously been shown to bind to activated c-KIT. In this report, we characterize the binding of SH2(CHK) to specific phosphotyrosine sites on the c-KIT protein sequence. Phosphopeptide inhibition of the in vitro interaction of SH2(CHK)-glutathione S-transferase fusion protein/c-KIT from SCF/KL-treated Mo7e megakaryocytic cells indicated that two sites on c-KIT were able to bind SH2(CHK). These sites were the Tyr568/570 diphosphorylated sequence and the monophosphorylated Tyr721 sequence. To confirm this, we precipitated native CHK from cellular extracts using phosphorylated peptides linked to Affi-Gel 15. In addition, purified SH2(CHK)-glutathione S-transferase fusion protein was precipitated with the same peptide beads. All of the peptide bead-binding studies were consistent with the direct binding of SH2(CHK) to phosphorylated Tyr568/570 and Tyr721 sites. Binding of FYN and SHC to the diphosphorylated Tyr568/570 site was observed, while binding of Csk to this site was not observed. The SH2(CHK) binding to the two sites is direct and not through phosphorylated intermediates such as FYN or SHC. Site-directed mutagenesis of the full-length c-KIT cDNA followed by transient transfection indicated that only the Tyr568/570, and not the Tyr721, is able to bind SH2(CHK). This indicates that CHK binds to the same site on c-KIT to which FYN binds, possibly bringing the two into proximity on associated c-KIT subunits and leading to the down-regulation of FYN by CHK.
Collapse
Affiliation(s)
- D J Price
- Divisions of Experimental Medicine and Hematology/Oncology, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
17
|
Zrihan-Licht S, Lim J, Keydar I, Sliwkowski MX, Groopman JE, Avraham H. Association of csk-homologous kinase (CHK) (formerly MATK) with HER-2/ErbB-2 in breast cancer cells. J Biol Chem 1997; 272:1856-63. [PMID: 8999872 DOI: 10.1074/jbc.272.3.1856] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Protein-tyrosine kinases, such as HER-2/ErbB-2, have been specifically linked to breast cancer. The Csk-homologous kinase (CHK), formerly MATK, is a tyrosine kinase that contains the Src homology 2 and 3 (SH2 and SH3) domains and demonstrates homology ( approximately 50%) to the Csk tyrosine kinase. Like Csk, CHK is able to phosphorylate and inactivate Src family kinases. In this report, we investigated whether CHK is expressed in breast cancer tissues and whether it participates in the ErbB-2 signaling pathway in T47D and MCF-7 breast cancer cell lines. Immunostaining of the CHK protein in breast tissues demonstrated that primary invasive ductal carcinomas, stage II (13 of 15 cases) and stage I (8 of 15 cases), expressed the CHK protein, while this protein was not detected in the adjacent normal tissues from the same patients. To study the role of CHK in the ErbB-2 signaling pathway, glutathione S-transferase fusion proteins containing the SH2 and SH3 domains of CHK were generated. CHK-SH2 and CHK-SH3-SH2, but not CHK-SH3 or CHK-NH2-SH3, precipitated the tyrosine-phosphorylated ErbB-2 upon stimulation with heregulin. EGF or interleukin-6 stimulation of T47D cells failed to induce CHK-SH2 association with ErbB-2, the EGF-receptor, or the interleukin-6 receptor. In vivo association of the tyrosine-phosphorylated ErbB-2 with CHK was observed in co-immunoprecipitation studies with anti-CHK antibodies. EGF-R, ErbB-3, and ErbB-4 were not detected in the CHK immunoprecipitates or in the precipitates of the GST-SH2 fusion proteins of CHK, suggesting that the association of CHK with ErbB-2 upon heregulin stimulation is receptor-specific (ErbB-2) and ligand-specific (heregulin). These results indicate that CHK might participate in signaling in breast cancer cells by associating, via its SH2 domain, with ErbB-2 following heregulin stimulation.
Collapse
Affiliation(s)
- S Zrihan-Licht
- Division of Hematology/Oncology, Deaconess and Beth Israel Hospitals, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
18
|
Grgurevich S, Linnekin D, Musso T, Zhang X, Modi W, Varesio L, Ruscetti FW, Ortaldo JR, McVicar DW. The Csk-like proteins Lsk, Hyl, and Matk represent the same Csk homologous kinase (Chk) and are regulated by stem cell factor in the megakaryoblastic cell line MO7e. Growth Factors 1997; 14:103-15. [PMID: 9255603 DOI: 10.3109/08977199709021514] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recently, the cDNAs for Lsk, Matk and Hyl, three Csk-related protein tyrosine kinases, have been cloned. We have examined the relationship of Lsk, Matk and Hyl, and found that the gene for each of these proteins is localized to the same region of human chromosome 19. Further, the proteins encoded by Lsk and Matk cDNAs are immunologically similar. These data strongly suggest that Lsk, Hyl and Matk are the same gene product. Previous reports demonstrating expression of Hyl and Matk in hematopoietic lineages led us to investigate the regulation of Lsk expression in response to stem cell factor (SCF) and granulocyte-macrophage colony stimulating factor (GM-CSF) in M07e, a human leukemic cell line. Induction of Lsk/Hyl/Matk protein and mRNA was observed after treatment with SCF but not with GM-CSF. GM-CSF and IL-3, potent mitogens, had no effect on Lsk/Hyl/Matk expression. In contrast, PMA induced Lsk/Hyl/Matk but did not stimulate proliferation. Therefore, induction of Lsk/ Hyl/Matk does not correlate with the capacity to stimulate proliferation. None of the stimuli examined increased Csk protein or mRNA expression. These data demonstrate differential regulation of Csk family members by cytokines and suggest a role for Lsk/ Hyl/Matk in responses mediated by SCF and PMA. Further, our data demonstrate that, as has been seen in blood monocytes, cytokine driven translational control of Lsk/Hyl/ Matk is likely a critical mode of regulation. Lastly, since our studies strongly suggest that the Lsk, Hyl and Matk kinases are related and regulated distinctly from Csk, we and several of the original authors have agreed to rename this kinase the Csk homologous kinase (Chk).
Collapse
Affiliation(s)
- S Grgurevich
- Laboratory of Experimental Immunology, National Cancer Institute, Frederick, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Avraham H, Ellis MH, Jhun BH, Raja S, Chalasani D, Avraham S. Tyrosine kinases in megakaryocytopoiesis. Stem Cells 1995; 13:380-92. [PMID: 7549897 DOI: 10.1002/stem.5530130409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Protein-tyrosine kinases (PTKs) are of vital importance in a variety of cell functions. Recent studies have provided considerable insight into the binding of growth factors to tyrosine kinase receptors and the consequent induction of signal pathways that lead to a biologic response. Future studies will further delineate the signals that result in a proliferative response and those that induce a differentiation response. Current studies, reviewed here, indicate an important biologic role for PTKs in the regulation of megakaryocyte development and maturation. Whether PTKs function in megakaryocytes in signaling pathways that are similar to pathways in other cells will need to be examined in future studies.
Collapse
Affiliation(s)
- H Avraham
- Division of Hematology/Oncology, New England Deaconess Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|