1
|
Yi S, Guo X, Lou W, Mao S, Luan G, Lu X. Structure, Regulation, and Significance of Cyanobacterial and Chloroplast Adenosine Triphosphate Synthase in the Adaptability of Oxygenic Photosynthetic Organisms. Microorganisms 2024; 12:940. [PMID: 38792770 PMCID: PMC11124002 DOI: 10.3390/microorganisms12050940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
In cyanobacteria and chloroplasts (in algae and plants), ATP synthase plays a pivotal role as a photosynthetic membrane complex responsible for producing ATP from adenosine diphosphate and inorganic phosphate, utilizing a proton motive force gradient induced by photosynthesis. These two ATP synthases exhibit similarities in gene organization, amino acid sequences of subunits, structure, and functional mechanisms, suggesting that cyanobacterial ATP synthase is probably the evolutionary precursor to chloroplast ATP synthase. In this review, we explore the precise synthesis and assembly of ATP synthase subunits to address the uneven stoichiometry within the complex during transcription, translation, and assembly processes. We also compare the regulatory strategies governing ATP synthase activity to meet varying energy demands in cyanobacteria and chloroplasts amid fluctuating natural environments. Furthermore, we delve into the role of ATP synthase in stress tolerance and photosynthetic carbon fixation efficiency in oxygenic photosynthetic organisms (OPsOs), along with the current researches on modifying ATP synthase to enhance carbon fixation efficiency under stress conditions. This review aims to offer theoretical insights and serve as a reference for understanding the functional mechanisms of ATP synthase, sparking innovative ideas for enhancing photosynthetic carbon fixation efficiency by utilizing ATP synthase as an effective module in OPsOs.
Collapse
Affiliation(s)
- Siyan Yi
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China;
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha 410004, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (X.G.); (G.L.); (X.L.)
| | - Xin Guo
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (X.G.); (G.L.); (X.L.)
- College of Live Science, Henan University, Kaifeng 450001, China
| | - Wenjing Lou
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (X.G.); (G.L.); (X.L.)
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Shaoming Mao
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China;
- Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha 410004, China
| | - Guodong Luan
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (X.G.); (G.L.); (X.L.)
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Xuefeng Lu
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (X.G.); (G.L.); (X.L.)
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| |
Collapse
|
2
|
Rühle T, Leister D. Assembly of F1F0-ATP synthases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:849-60. [PMID: 25667968 DOI: 10.1016/j.bbabio.2015.02.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/28/2015] [Accepted: 02/02/2015] [Indexed: 12/31/2022]
Abstract
F1F0-ATP synthases are multimeric protein complexes and common prerequisites for their correct assembly are (i) provision of subunits in appropriate relative amounts, (ii) coordination of membrane insertion and (iii) avoidance of assembly intermediates that uncouple the proton gradient or wastefully hydrolyse ATP. Accessory factors facilitate these goals and assembly occurs in a modular fashion. Subcomplexes common to bacteria and mitochondria, but in part still elusive in chloroplasts, include a soluble F1 intermediate, a membrane-intrinsic, oligomeric c-ring, and a membrane-embedded subcomplex composed of stator subunits and subunit a. The final assembly step is thought to involve association of the preformed F1-c10-14 with the ab2 module (or the ab8-stator module in mitochondria)--mediated by binding of subunit δ in bacteria or OSCP in mitochondria, respectively. Despite the common evolutionary origin of F1F0-ATP synthases, the set of auxiliary factors required for their assembly in bacteria, mitochondria and chloroplasts shows clear signs of evolutionary divergence. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
Affiliation(s)
- Thilo Rühle
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München (LMU), Großhaderner Straße 2, 82152 Planegg-Martinsried, Germany.
| | - Dario Leister
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München (LMU), Großhaderner Straße 2, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
3
|
Malyan AN. Noncatalytic nucleotide binding sites: properties and mechanism of involvement in ATP synthase activity regulation. BIOCHEMISTRY (MOSCOW) 2014; 78:1512-23. [PMID: 24490737 DOI: 10.1134/s0006297913130099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
ATP synthases (FoF1-ATPases) of chloroplasts, mitochondria, and bacteria catalyze ATP synthesis or hydrolysis coupled with the transmembrane transfer of protons or sodium ions. Their activity is regulated through their reversible inactivation resulting from a decreased transmembrane potential difference. The inactivation is believed to conserve ATP previously synthesized under conditions of sufficient energy supply against unproductive hydrolysis. This review is focused on the mechanism of nucleotide-dependent regulation of the ATP synthase activity where the so-called noncatalytic nucleotide binding sites are involved. Properties of these sites varying upon free enzyme transition to its membrane-bound form, their dependence on membrane energization, and putative mechanisms of noncatalytic site-mediated regulation of the ATP synthase activity are discussed.
Collapse
Affiliation(s)
- A N Malyan
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
4
|
Samra HS, He F, Degner NR, Richter ML. The role of specific beta-gamma subunit interactions in oxyanion stimulation of the MgATP hydrolysis of a hybrid photosynthetic F1-ATPase. J Bioenerg Biomembr 2008; 40:69-76. [PMID: 18415008 DOI: 10.1007/s10863-008-9131-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 01/09/2008] [Indexed: 11/25/2022]
Abstract
Pairs of cysteine residues were introduced into the twisted N- and C-terminal helices of the gamma subunit of the chloroplast F1-ATPase to test, via disulfide cross-linking, potential inter-helical movements involved in catalysis of ATP hydrolysis. The extent of disulfide cross-linking was determined by estimating the amount of free sulfhydryl available for labeling with fluoresceinyl maleimide before and after cross-linking. Significant disulfide formation (50-75%) was observed between cysteines introduced at positions 30 and 31 in the N-terminal helix and 276 and 278 in the C-terminal helix. Cross-linking had no apparent effect on catalysis, therefore eliminating the involvement of large-scale inter-helical movements within this region of the gamma subunit in cooperative ATP hydrolysis. However, the presence of the two cysteines together in the gammaV31C/A276C double mutant, irrespective of whether or not they were cross-linked together, lowered the MgATPase activity by more than 70% and completely eliminated the well-known activating effect of the oxyanion sulfite. The CaATPase activity was unaffected. Similar but less pronounced effects were seen with the gammaK30C/A276C double mutant. The results indicate that residues at or near positions 31 and 276 within the twisted helical pair of the gamma subunit are required to overcome Mg2+ inhibition of ATP hydrolysis. These residues are likely to be involved in forming a point of contact between the gamma and beta subunits that is responsible for this effect.
Collapse
Affiliation(s)
- Hardeep S Samra
- Department of Molecular Biosciences, The University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | | | | | | |
Collapse
|
5
|
Wu G, Ortiz-Flores G, Ortiz-Lopez A, Ort DR. A Point Mutation in atpC1 Raises the Redox Potential of the Arabidopsis Chloroplast ATP Synthase γ-Subunit Regulatory Disulfide above the Range of Thioredoxin Modulation. J Biol Chem 2007; 282:36782-9. [DOI: 10.1074/jbc.m707007200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
6
|
Samra HS, Gao F, He F, Hoang E, Chen Z, Gegenheimer PA, Berrie CL, Richter ML. Structural Analysis of the Regulatory Dithiol-containing Domain of the Chloroplast ATP Synthase γ Subunit. J Biol Chem 2006; 281:31041-9. [PMID: 16895914 DOI: 10.1074/jbc.m603315200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gamma subunit of the F1 portion of the chloroplast ATP synthase contains a critically placed dithiol that provides a redox switch converting the enzyme from a latent to an active ATPase. The switch prevents depletion of intracellular ATP pools in the dark when photophosphorylation is inactive. The dithiol is located in a special regulatory segment of about 40 amino acids that is absent from the gamma subunits of the eubacterial and mitochondrial enzymes. Site-directed mutagenesis was used to probe the relationship between the structure of the gamma regulatory segment and its function in ATPase regulation via its interaction with the inhibitory epsilon subunit. Mutations were designed using a homology model of the chloroplast gamma subunit based on the analogous structures of the bacterial and mitochondrial homologues. The mutations included (a) substituting both of the disulfide-forming cysteines (Cys199 and Cys205) for alanines, (b) deleting nine residues containing the dithiol, (c) deleting the region distal to the dithiol (residues 224-240), and (d) deleting the entire segment between residues 196 and 241 with the exception of a small spacer element, and (e) deleting pieces from a small loop segment predicted by the model to interact with the dithiol domain. Deletions within the dithiol domain and within parts of the loop segment resulted in loss of redox control of the ATPase activity of the F1 enzyme. Deleting the distal segment, the whole regulatory domain, or parts of the loop segment had the additional effect of reducing the maximum extent of inhibition obtained upon adding the epsilon subunit but did not abolish epsilon binding. The results suggest a mechanism by which the gamma and epsilon subunits interact with each other to induce the latent state of the enzyme.
Collapse
Affiliation(s)
- Hardeep S Samra
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Richter ML, Samra HS, He F, Giessel AJ, Kuczera KK. Coupling proton movement to ATP synthesis in the chloroplast ATP synthase. J Bioenerg Biomembr 2006; 37:467-73. [PMID: 16691485 DOI: 10.1007/s10863-005-9493-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The chloroplast F(0)F(1)-ATP synthase-ATPase is a tiny rotary motor responsible for coupling ATP synthesis and hydrolysis to the light-driven electrochemical proton gradient. Reversible oxidation/reduction of a dithiol, located within a special regulatory domain of the gamma subunit of the chloroplast F(1) enzyme, switches the enzyme between an inactive and an active state. This regulatory mechanism is unique to the ATP synthases of higher plants and its physiological significance lies in preventing nonproductive depletion of essential ATP pools in the dark. The three-dimensional structure of the chloroplast F(1) gamma subunit has not yet been solved. To examine the mechanism of dithiol regulation, a model of the chloroplast gamma subunit was obtained through segmental homology modeling based on the known structures of the mitochondrial and bacterial gamma subunits, together with de novo construction of the unknown regulatory domain. The model has provided considerable insight into how the dithiol might modulate catalytic function. This has, in turn, suggested a mechanism by which rotation of subunits in F(0), the transmembrane proton channel portion of the enzyme, can be coupled, via the epsilon subunit, to rotation of the gamma subunit of F(1) to achieve the 120 degrees (or 90 degrees +30 degrees) stepping action that is characteristic of F(1) gamma subunit rotation.
Collapse
Affiliation(s)
- Mark L Richter
- Departments of Chemistry and Molecular Biosciences, The University of Kansas, Lawrence, Kansas 66045, USA.
| | | | | | | | | |
Collapse
|
8
|
Ni ZL, Dong H, Wei JM. N-terminal deletion of the gamma subunit affects the stabilization and activity of chloroplast ATP synthase. FEBS J 2005; 272:1379-85. [PMID: 15752355 DOI: 10.1111/j.1742-4658.2005.04570.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Five truncation mutants of chloroplast ATP synthase gamma subunit from spinach (Spinacia oleracea) lacking 8, 12, 16, 20 or 60 N-terminal amino acids were generated by PCR by a mutagenesis method. The recombinant gamma genes were overexpressed in Escherichia coli and assembled with alphabeta subunits into a native complex. The wild-type (WT) alphabetagamma assembly i.e. alphabetagammaWT exhibited high (Mg2+)-dependent and (Ca2+)-dependent ATP hydrolytic activity. Deletions of eight residues of the gamma subunit N-terminus caused a decrease in rates of ATP hydrolysis to 30% of that of the alphabetaWT assembly. Furthermore, only approximately 6% of ATP hydrolytic activity was retained with the sequential deletions of gamma subunit up to 20 residues compared with the activity of the alphabetaWT assembly. The inhibitory effect of the epsilon subunit on ATP hydrolysis of these alphabetagamma assemblies varied to a large extent. These observations indicate that the N-terminus of the gamma subunit is very important, together with other regions of the gamma subunit, in stabilization of the enzyme complex or during cooperative catalysis. In addition, the in vitro binding assay showed that the gamma subunit N-terminus is not a crucial region in binding of the epsilon subunit.
Collapse
Affiliation(s)
- Zhang-Lin Ni
- Shanghai Institute of Plant Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | |
Collapse
|
9
|
Du Z, Tucker WC, Richter ML, Gromet-Elhanan Z. Assembled F1-(alpha beta ) and Hybrid F1-alpha 3beta 3gamma -ATPases from Rhodospirillum rubrum alpha, wild type or mutant beta, and chloroplast gamma subunits. Demonstration of Mg2+versus Ca2+-induced differences in catalytic site structure and function. J Biol Chem 2001; 276:11517-23. [PMID: 11278351 DOI: 10.1074/jbc.m007568200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Refolding together the expressed alpha and beta subunits of the Rhodospirillum rubrum F(1)(RF(1))-ATPase led to assembly of only alpha(1)beta(1) dimers, showing a stable low MgATPase activity. When incubated in the presence of AlCl(3), NaF and either MgAD(T)P or CaAD(T)P, all dimers associated into closed alpha(3)beta(3) hexamers, which also gained a low CaATPase activity. Both hexamer ATPase activities exhibited identical rates and properties to the open dimer MgATPase. These results indicate that: a) the hexamer, as the dimer, has no catalytic cooperativity; b) aluminium fluoride does not inhibit their MgATPase activity; and c) it does enable the assembly of RrF(1)-alpha(3)beta(3) hexamers by stabilizing their noncatalytic alpha/beta interfaces. Refolding of the RrF(1)-alpha and beta subunits together with the spinach chloroplast F(1) (CF(1))-gamma enabled a simple one-step assembly of two different hybrid RrF(1)-alpha(3)beta(3)/CF(1)gamma complexes, containing either wild type RrF(1)-beta or the catalytic site mutant RrF(1)beta-T159S. They exhibited over 100-fold higher CaATPase and MgATPase activities than the stabilized hexamers and showed very different catalytic properties. The hybrid wild type MgATPase activity was, as that of RrF(1) and CF(1) and unlike its higher CaATPase activity, regulated by excess free Mg(2+) ions, stimulated by sulfite, and inhibited by azide. The hybrid mutant had on the other hand a low CaATPase but an exceptionally high MgATPase activity, which was much less sensitive to the specific MgATPase effectors. All these very different ATPase activities were regulated by thiol modulation of the hybrid unique CF(1)-gamma disulfide bond. These hybrid complexes can provide information on the as yet unknown factors that couple ATP binding and hydrolysis to both thiol modulation and rotational motion of their CF(1)-gamma subunit.
Collapse
Affiliation(s)
- Z Du
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
10
|
Tucker WC, Du Z, Gromet-Elhanan Z, Richter ML. Formation and properties of hybrid photosynthetic F1-ATPases. Demonstration of different structural requirements for stimulation and inhibition by tentoxin. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:2179-86. [PMID: 11277942 DOI: 10.1046/j.1432-1327.2001.02110.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A hybrid ATPase composed of cloned chloroplast ATP synthase beta and gamma subunits (betaC and gammaC) and the cloned alpha subunit from the Rhodospirillum rubrum ATP synthase (alphaR) was assembled using solubilized inclusion bodies and a simple single-step folding procedure. The catalytic properties of the assembled alpha3Rbeta3CgammaC were compared to those of the core alpha3Cbeta3CgammaC complex of the native chloroplast coupling factor 1 (CF1) and to another recently described hybrid enzyme containing R. rubrum alpha and beta subunits and the CF1 gamma subunit (alpha3Rbeta3RgammaC). All three enzymes were similarly stimulated by dithiothreitol and inhibited by copper chloride in response to reduction and oxidation, respectively, of the disulfide bond in the chloroplast gamma subunit. In addition, all three enzymes exhibited the same concentration dependence for inhibition by the CF1 epsilon subunit. Thus the CF1 gamma subunit conferred full redox regulation and normal epsilon binding to the two hybrid enzymes. Only the native CF1 alpha3Cbeta3CgammaC complex was inhibited by tentoxin, confirming the requirement for both CF1 alpha and beta subunits for tentoxin inhibition. However, the alpha3Rbeta3CgammaC complex, like the alpha3Cbeta3CgammaC complex, was stimulated by tentoxin at concentrations in excess of 10 microm. In addition, replacement of the aspartate at position 83 in betaC with leucine resulted in the loss of stimulation in the alpha3Rbeta3CgammaC hybrid. The results indicate that both inhibition and stimulation by tentoxin require a similar structural contribution from the beta subunit, but differ in their requirements for alpha subunit structure.
Collapse
Affiliation(s)
- W C Tucker
- Department of Molecular Biosciences, University of Kansas, Lawrence 66045, USA
| | | | | | | |
Collapse
|
11
|
Richter ML, Hein R, Huchzermeyer B. Important subunit interactions in the chloroplast ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1458:326-42. [PMID: 10838048 DOI: 10.1016/s0005-2728(00)00084-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
General structural features of the chloroplast ATP synthase are summarized highlighting differences between the chloroplast enzyme and other ATP synthases. Much of the review is focused on the important interactions between the epsilon and gamma subunits of the chloroplast coupling factor 1 (CF(1)) which are involved in regulating the ATP hydrolytic activity of the enzyme and also in transferring energy from the membrane segment, chloroplast coupling factor 0 (CF(0)), to the catalytic sites on CF(1). A simple model is presented which summarizes properties of three known states of activation of the membrane-bound form of CF(1). The three states can be explained in terms of three different bound conformational states of the epsilon subunit. One of the three states, the fully active state, is only found in the membrane-bound form of CF(1). The lack of this state in the isolated form of CF(1), together with the confirmed presence of permanent asymmetry among the alpha, beta and gamma subunits of isolated CF(1), indicate that ATP hydrolysis by isolated CF(1) may involve only two of the three potential catalytic sites on the enzyme. Thus isolated CF(1) may be different from other F(1) enzymes in that it only operates on 'two cylinders' whereby the gamma subunit does not rotate through a full 360 degrees during the catalytic cycle. On the membrane in the presence of a light-induced proton gradient the enzyme assumes a conformation which may involve all three catalytic sites and a full 360 degrees rotation of gamma during catalysis.
Collapse
Affiliation(s)
- M L Richter
- Department of Molecular Biosciences, The University of Kansas, Lawrence 66045, USA
| | | | | |
Collapse
|
12
|
Tucker WC, Du Z, Hein R, Richter ML, Gromet-Elhanan Z. Hybrid Rhodospirillum rubrum F(0)F(1) ATP synthases containing spinach chloroplast F(1) beta or alpha and beta subunits reveal the essential role of the alpha subunit in ATP synthesis and tentoxin sensitivity. J Biol Chem 2000; 275:906-12. [PMID: 10625626 DOI: 10.1074/jbc.275.2.906] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trace amounts ( approximately 5%) of the chloroplast alpha subunit were found to be absolutely required for effective restoration of catalytic function to LiCl-treated chromatophores of Rhodospirillum rubrum with the chloroplast beta subunit (Avital, S., and Gromet-Elhanan, Z. (1991) J. Biol. Chem. 266, 7067-7072). To clarify the role of the alpha subunit in the rebinding of beta, restoration of catalytic function, and conferral of sensitivity to the chloroplast-specific inhibitor tentoxin, LiCl-treated chromatophores were analyzed by immunoblotting before and after reconstitution with mixtures of R. rubrum and chloroplast alpha and beta subunits. The treated chromatophores were found to have lost, in addition to most of their beta subunits, approximately a third of the alpha subunits, and restoration of catalytic activity required rebinding of both subunits. The hybrid reconstituted with the R. rubrum alpha and chloroplast beta subunits was active in ATP synthesis as well as hydrolysis, and both activities were completely resistant to tentoxin. In contrast, a hybrid reconstituted with both chloroplast alpha and beta subunits restored only a MgATPase activity, which was fully inhibited by tentoxin. These results indicate that all three copies of the R. rubrum alpha subunit are required for proton-coupled ATP synthesis, whereas for conferral of tentoxin sensitivity at least one copy of the chloroplast alpha subunit is required together with the chloroplast beta subunit. The hybrid system was further used to examine the effects of amino acid substitution at position 83 of the beta subunit on sensitivity to tentoxin.
Collapse
Affiliation(s)
- W C Tucker
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
13
|
Günther S, Huchzermeyer B. Nucleotide binding of an ADP analog to cooperating sites of chloroplast F1-ATPase (CF1). EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:541-8. [PMID: 10632724 DOI: 10.1046/j.1432-1327.2000.01029.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pre-steady state nucleotide binding to the chloroplast F1-ATPase (CF1) was measured in a stopped-flow apparatus by monitoring the change of fluorescence intensity of TNP-ADP upon binding. The analysis of the time courses led to the proposal of a mechanism of nucleotide binding with the following characteristics. (a) It involves three sites binding nucleotides in a concerted manner. (b) Each binding site is able to undergo a conformational change from a loose binding state into a state refraining from any direct release of the bound nucleotide into the medium. Only the reverse reaction via the loose binding state enables release out of the tight binding state. (c) Due to very strong negative cooperativity, a maximum of two of the three sites can be found in the state of tight binding. (d) Cooperativity between the three sites leads to a slower nucleotide binding of the second nucleotide compared to the first nucleotide. Furthermore, the conformational change from the loose binding state to the tight binding state is slowed down if one of the other sites already is in the tight binding state. Three-sites mechanisms in which rotation leads to an exchange of the properties of the binding sites failed to simulate the observed time courses of nucleotide binding. However, as the experimental set up was designed to prevent catalysis taking place, our results entirely agree with the current finding that rotation requires catalytic turnover of the enzyme.
Collapse
Affiliation(s)
- S Günther
- ITZ School of Veterinary Medicine, Hannover, Germany
| | | |
Collapse
|
14
|
Sokolov M, Lu L, Tucker W, Gao F, Gegenheimer PA, Richter ML. The 20 C-terminal amino acid residues of the chloroplast ATP synthase gamma subunit are not essential for activity. J Biol Chem 1999; 274:13824-9. [PMID: 10318787 DOI: 10.1074/jbc.274.20.13824] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been suggested that the last seven to nine amino acid residues at the C terminus of the gamma subunit of the ATP synthase act as a spindle for rotation of the gamma subunit with respect to the alpha beta subunits during catalysis (Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628). To test this hypothesis we selectively deleted C-terminal residues from the chloroplast gamma subunit, two at a time starting at the sixth residue from the end and finishing at the 20th residue from the end. The mutant gamma genes were overexpressed in Escherichia coli and assembled with a native alpha3beta3 complex. All the mutant forms of gamma assembled as effectively as the wild-type gamma. Deletion of the terminal 6 residues of gamma resulted in a significant increase (>50%) in the Ca-dependent ATPase activity when compared with the wild-type assembly. The increased activity persisted even after deletion of the C-terminal 14 residues, well beyond the seven residues proposed to form the spindle. Further deletions resulted in a decreased activity to approximately 19% of that of the wild-type enzyme after deleting all 20 C-terminal residues. The results indicate that the tip of the gammaC terminus is not essential for catalysis and raise questions about the role of the C terminus as a spindle for rotation.
Collapse
Affiliation(s)
- M Sokolov
- Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | | | | | |
Collapse
|
15
|
The biogenesis and assembly of photosynthetic proteins in thylakoid membranes1. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1411:21-85. [PMID: 10216153 DOI: 10.1016/s0005-2728(99)00043-2] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
16
|
Kagawa Y, Hamamoto T. Intramolecular rotation in ATP synthase: dynamic and crystallographic studies on thermophilic F1. Biochem Biophys Res Commun 1997; 240:247-56. [PMID: 9388462 DOI: 10.1006/bbrc.1997.7574] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A single molecule of ATP synthase (F0F1) is by itself a rotary motor, the smallest ever found, and this biomotor is driven by an electrochemical potential of H+ (delta microH+). F0F1 is composed of an ion-conducting portion (F0) and a catalytic portion (F1). The major breakthroughs in studies on the mechanochemical coupling have been the direct observation of the rotation of a stable alpha 3 beta 3 gamma complex of thermophilic F1 (TF1), and X-ray crystallography of the alpha 3 beta 3 gamma portion of mitochondrial F1 (MF1) and the alpha 3 beta 3 oligomer of TF1. This review focuses on the dynamics of TF1, demonstrated by a crucial experiment. The torque of the rotation was estimated to be 42 pN.nm from the delta microH+ and frictional force. Important unsolved problems are the crystallography of F0, elastic energy conversion, and the stator and rotor of this biomotor.
Collapse
Affiliation(s)
- Y Kagawa
- Department of Biochemistry, Jichi Medical School, Tochigi, Japan.
| | | |
Collapse
|
17
|
Abstract
The structure of the core catalytic unit of ATP synthase, alpha 3 beta 3 gamma, has been determined by X-ray crystallography, revealing a roughly symmetrical arrangement of alternating alpha and beta subunits around a central cavity in which helical portions of gamma are found. A low-resolution structural model of F0, based on electron spectroscopic imaging, locates subunit a and the two copies of subunit b outside of a subunit c oligomer. The structures of individual subunits epsilon and c (largely) have been solved by NMR spectroscopy, but the oligomeric structure of c is still unknown. The structures of subunits a and delta remain undefined, that of b has not yet been defined but biochemical evidence indicates a credible model. Subunits gamma, epsilon, b, and delta are at the interface between F1 and F0; gamma epsilon complex forms one element of the stalk, interacting with c at the base and alpha and beta at the top. The locations of b and delta are less clear. Elucidation of the structure F0, of the stalk, and of the entire F1F0 remains a challenging goal.
Collapse
Affiliation(s)
- J Weber
- Department of Biochemistry, University of Rochester Medical Center, NY 14642, USA
| | | |
Collapse
|
18
|
Abstract
An X-ray structure of the F1 portion of the mitochondrial ATP synthase shows asymmetry and differences in nucleotide binding of the catalytic beta subunits that support the binding change mechanism with an internal rotation of the gamma subunit. Other structural and mutational probes of the F1 and F0 portions of the ATP synthase are reviewed, together with kinetic and other evaluations of catalytic site occupancy and behavior during hydrolysis or synthesis of ATP. Subunit function as related to proton translocation and rotational catalysis is considered. Physical demonstrations of the gamma subunit rotation have been achieved. The findings have implications for other enzymatic catalyses.
Collapse
Affiliation(s)
- P D Boyer
- Molecular Biology Institute, University of California, Los Angeles 90095-1570, USA
| |
Collapse
|
19
|
Pinet E, Gomis JM, Girault G, Cavelier F, Verducci J, Noël JP, André F. Tentoxin has at least two binding sites on CF1 and epsilon-depleted CF1 ATPases isolated from spinach chloroplast. FEBS Lett 1996; 395:217-20. [PMID: 8898099 DOI: 10.1016/0014-5793(96)01043-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A new procedure for synthesis of 14C-labeled tentoxin [14C-MePhe[(Z)delta]3-tentoxin], with a high specific activity, is described. Binding experiments with CF1 or CF1-epsilon isolated from spinach chloroplast have been carried out using equilibrium dialysis technique. The results show the presence of two classes of binding sites. The association constants of the two major binding sites were derived from non-linear fitting of the binding curves. At 4 degrees C, the first binding site has a value of Ka1 = 8.2 x 10(5) M(-1) in CF1 and 8.7 x 10(5) M(-1) in CF1-epsilon, while the second binding site has lower affinity with Ka2 = 1.5 x 10(4) M(-1) in CF1 and 2.3 x 10(3) M(-1) in CF1-epsilon.
Collapse
Affiliation(s)
- E Pinet
- Département de Biologie Cellulaire et Moléculaire, CEA-Saclay, Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Richter ML, Gao F. The chloroplast ATP synthase: structural changes during catalysis. J Bioenerg Biomembr 1996; 28:443-9. [PMID: 8951092 DOI: 10.1007/bf02113987] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This article summarizes some of the evidence for the existence of light-driven structural changes in the epsilon and gamma subunits of the chloroplast ATP synthase. Formation of a transmembrane proton gradient results in: (1) a changed in the position of the epsilon subunit such that it becomes exposed to polyclonal antibodies and to reagents which selectively modify epsilon Lys109; (2) enhanced solvent accessibility of several sulfhydryl residues on the gamma subunit; and (3) release/exchange of tightly bound ADP from the enzyme. Theses and related experimental observations can, at least partially, be explained in terms of two different bound conformational states of the epsilon subunit. Evidence for structural changes in the enzyme which are driven by light or nucleotide binding is discussed with special reference to the popular rotational model for catalysis.
Collapse
Affiliation(s)
- M L Richter
- Department of Biochemistry, University of Kansas, Lawrence 66045, USA
| | | |
Collapse
|
21
|
Kaibara C, Matsui T, Hisabori T, Yoshida M. Structural asymmetry of F1-ATPase caused by the gamma subunit generates a high affinity nucleotide binding site. J Biol Chem 1996; 271:2433-8. [PMID: 8576203 DOI: 10.1074/jbc.271.5.2433] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The alpha 3 beta 3 gamma and alpha 3 beta 3 complexes of F1-ATPase from a thermophilic Bacillus PS3 were compared in terms of interaction with trinitrophenyl analogs of ATP and ADP (TNP-ATP and TNP-ADP) that differed from ATP and ADP and did not destabilize the alpha 3 beta 3 complex. The results of equilibrium dialysis show that the alpha 3 beta 3 gamma complex has a high affinity nucleotide binding site and several low affinity sites, whereas the alpha 3 beta 2 complex has only low affinity sites. This is also supported from analysis of spectral change induced by TNP-ADP, which in addition indicates that this high affinity site is located on the beta subunit. Single-site hydrolysis of substoichiometric amounts of TNP-ATP by the alpha 3 beta 3 gamma complex is accelerated by the chase addition of excess ATP, whereas that by the alpha 3 beta 3 complex is not. We further examined the complexes containing mutant beta subunits (Y341L, Y341A, and Y341C). Surprisingly, in spite of very weak affinity of the isolated mutant beta subunits to nucleotides (Odaka, M., Kaibara, C., Amano, T., Matsui, T., Muneyuki, E., Ogasawara, K, Yutani, K., and Yoshida, M. (1994) J. Biochem. (Tokyo) 115, 789-796), a high affinity TNP-ADP binding site is generated on the beta subunit in the mutant alpha 3 beta 3 gamma complexes where single-site TNP-ATP hydrolysis can occur. ATP concentrations required for the chase acceleration of the mutant complexes are higher than that of the wild-type complex. The mutant alpha 3 beta 3 complexes, on the contrary, catalyze single-site hydrolysis of TNP-ATP rather slowly, and there is no chase acceleration. Thus, the gamma subunit is responsible for the generation of a high affinity nucleotide binding site on the beta subunit in F1-ATPase where cooperative catalysis can proceed.
Collapse
Affiliation(s)
- C Kaibara
- Research Laboratory of Resources Utilization, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | |
Collapse
|
22
|
Gromet-Elhanan Z, Sokolov M. The photosynthetic F1-α 3β 3 and α 1β 1 catalytic core complexes. PHOTOSYNTHESIS RESEARCH 1995; 46:79-86. [PMID: 24301570 DOI: 10.1007/bf00020418] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/1995] [Accepted: 06/08/1995] [Indexed: 06/02/2023]
Abstract
Minimal photosynthetic catalytic F1(αβ) core complexes, containing equimolar ratios of the α and β subunits, were isolated from membrane-bound spinach chloroplast CF1 and Rhodospirillum rubrum chromatophore RrF1. A CF1-α3β3 hexamer and RrF1-α1β1 dimer, which were purified from the respective F1(αβ) complexes, exhibit lower rates and different properties from their parent F1-ATPases. Most interesting is their complete resistance to inhibition by the general F1 inhibitor azide and the specific CF1 inhibitor tentoxin. These inhibitors were earlier reported to inhibit multisite, but not unisite, catalysis in all sensitive F1-ATPases and were therefore suggested to block catalytic site cooperativity. The absence of this typical property of all F1-ATPases in the α1β1 dimer is consistant with the view that the dimer contains only a single catalytic site. The α3β3 hexamer contains however all F1 catalytic sites. Therefore the observation that CF1-α3β3 can bind tentoxin and is stimulated by it suggests that the F1γ subunit, which is required for obtaining inhibition by tentoxin as well as azide, plays an important role in the cooperative interactions between the F1-catalytic sites.
Collapse
Affiliation(s)
- Z Gromet-Elhanan
- Department of Biochemistry, The Weizmann Institute of Science, 76100, Rehovot, Israel
| | | |
Collapse
|