1
|
Maissner FF, Silva CAO, Farias AB, Costa EP, Nepomuceno-Silva JL, da Silva JR, Mury FB. α-Glucosidase isoform G contributes to heme detoxification in Rhodnius prolixus and its knockdown affects Trypanosoma cruzi metacyclogenesis. CURRENT RESEARCH IN INSECT SCIENCE 2024; 6:100100. [PMID: 39507746 PMCID: PMC11539128 DOI: 10.1016/j.cris.2024.100100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024]
Abstract
The triatomine bug Rhodnius prolixus is a hematophagous hemipteran and a primary vector of Trypanosoma cruzi, the causative agent of Chagas' disease (CD), in Central America and Northern South America. Blood-feeding poses significant challenges for hematophagous organisms, particularly due to the release of high doses of pro-oxidant free heme during hemoglobin digestion. In this arthropod, most of the free heme in the gut is aggregated into hemozoin (Hz), an inert and non-oxidative biocrystal. Two major components present in the perimicrovillar membranes (PMM) of triatomine insects have been previously implicated in heme crystallization: lipids and the biochemical marker of the PMM, the enzyme α-glucosidase. In this study, we investigated the role of R. prolixus α-glucosidase isoform G (Rp-αGluG) in heme detoxification and the effects of its knockdown on the insect physiology. The effect of α-glucosidase isoform G (αGluG) knockdown on T. cruzi proliferation and metacyclogenesis was also investigated. Initially, a 3D structure of Rp-αGluG was predicted by comparative modeling and then subjected to molecular docking with the heme molecule, providing in silico support for understanding the process of Hz biocrystallization. Next, adult females of R. prolixus were challenged with RNAi against Rp-αGluG (dsαGluG) to assess physiological and phenotypic changes caused by its knockdown. Our data show that the group challenged with dsαGluG produced less Hz, resulting in more intact hemoglobin available in the digestive tract. These animals also laid fewer eggs, which had a lower hatching rate. In addition, T. cruzi metacyclogenesis was significantly lower in the dsαGluG group. The present work demonstrates the importance of Rp-αGluG in heme detoxification, the digestive and reproductive physiology of R. prolixus, as well as its influence on the life cycle of T. cruzi. Since heme neutralization is a vital process for hematophagous bugs, our study provides useful information for the development of new strategies targeting the Hz formation and potentially affecting the vectorial transmission of Chagas disease.
Collapse
Affiliation(s)
| | | | - André Borges Farias
- Laboratório Integrado de Computação Científica (LICC), CM/UFRJ, Macaé, RJ, Brazil
| | - Evenilton Pessoa Costa
- Laboratório Integrado de Biociências Translacionais (LIBT), NUPEM/UFRJ, Macaé, RJ, Brazil
| | | | - José Roberto da Silva
- Instituto Nacional de Entomologia Molecular (INCT-EM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), NUPEM/UFRJ, Macaé, RJ, Brazil
| | - Flávia Borges Mury
- Laboratório Integrado de Biociências Translacionais (LIBT), NUPEM/UFRJ, Macaé, RJ, Brazil
- Instituto Nacional de Entomologia Molecular (INCT-EM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Walter-Nuno AB, Taracena-Agarwal M, Oliveira MP, Oliveira MF, Oliveira PL, Paiva-Silva GO. Export of heme by the feline leukemia virus C receptor regulates mitochondrial biogenesis and redox balance in the hematophagous insect Rhodnius prolixus. FASEB J 2024; 38:e23691. [PMID: 38780525 DOI: 10.1096/fj.202301671rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Heme is a prosthetic group of proteins involved in vital physiological processes. It participates, for example, in redox reactions crucial for cell metabolism due to the variable oxidation state of its central iron atom. However, excessive heme can be cytotoxic due to its prooxidant properties. Therefore, the control of intracellular heme levels ensures the survival of organisms, especially those that deal with high concentrations of heme during their lives, such as hematophagous insects. The export of heme initially attributed to the feline leukemia virus C receptor (FLVCR) has recently been called into question, following the discovery of choline uptake by the same receptor in mammals. Here, we found that RpFLVCR is a heme exporter in the midgut of the hematophagous insect Rhodnius prolixus, a vector for Chagas disease. Silencing RpFLVCR decreased hemolymphatic heme levels and increased the levels of intracellular dicysteinyl-biliverdin, indicating heme retention inside midgut cells. FLVCR silencing led to increased expression of heme oxygenase (HO), ferritin, and mitoferrin mRNAs while downregulating the iron importers Malvolio 1 and 2. In contrast, HO gene silencing increased FLVCR and Malvolio expression and downregulated ferritin, revealing crosstalk between heme degradation/export and iron transport/storage pathways. Furthermore, RpFLVCR silencing strongly increased oxidant production and lipid peroxidation, reduced cytochrome c oxidase activity, and activated mitochondrial biogenesis, effects not observed in RpHO-silenced insects. These data support FLVCR function as a heme exporter, playing a pivotal role in heme/iron metabolism and maintenance of redox balance, especially in an organism adapted to face extremely high concentrations of heme.
Collapse
Affiliation(s)
- Ana Beatriz Walter-Nuno
- Instituto de Bioquimica Medica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Mabel Taracena-Agarwal
- Instituto de Bioquimica Medica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Matheus P Oliveira
- Instituto de Bioquimica Medica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcus F Oliveira
- Instituto de Bioquimica Medica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquimica Medica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Gabriela O Paiva-Silva
- Instituto de Bioquimica Medica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Wang J, Chai Y, Yang J, Chen K, Liu G, Luo J, Guan G, Ren Q, Yin H. Insight into Hyalomma anatolicum biology by comparative genomics analyses. Int J Parasitol 2024; 54:157-170. [PMID: 37858900 DOI: 10.1016/j.ijpara.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023]
Abstract
Hyalomma anatolicum is an obligatory blood-sucking ectoparasite and contributes to the transmission of Crimean-Congo haemorrhagic fever (CCHF) virus, Theileria spp. and Babesia spp. Progress in exploring the adaptive strategy of this ectoparasite and developing tools to fight it has been hindered by the lack of a complete genome. Herein, we assembled the genome using diverse sources of data from multiple sequencing platforms and annotated the 1.96 Gb genome of Hy. anatolicum. Comparative genome analyses and the predicted protein encoding genes reveal unique facets of this genome, including gene family expansion associated with blood feeding and digestion, multi-gene families involved in detoxification, a great number of neuropeptides and corresponding receptors regulating tick growth, development, and reproduction, and glutathione S-transferase genes playing roles in insecticide resistance and detoxification of multiple xenobiotic factors. This high quality reference genome provides fundamental data for obtaining insights into a variety of aspects of tick biology and developing novel strategies to fight notorious tick vectors of human and animal pathogens.
Collapse
Affiliation(s)
- Jinming Wang
- State Key Laboratory for Animal Disease and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Yijun Chai
- State Key Laboratory for Animal Disease and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China
| | - Jifei Yang
- State Key Laboratory for Animal Disease and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China
| | - Kai Chen
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guangyuan Liu
- State Key Laboratory for Animal Disease and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China
| | - Jianxun Luo
- State Key Laboratory for Animal Disease and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China
| | - Guiquan Guan
- State Key Laboratory for Animal Disease and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Qiaoyun Ren
- State Key Laboratory for Animal Disease and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China.
| | - Hong Yin
- State Key Laboratory for Animal Disease and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou, Gansu 730046, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
4
|
Fazito do Vale V, Hevillin Rocha Simtob B, Ferreira Malta LG, Pessoa de Siqueira E. The common bed bug Cimex lectularius synthesizes hemozoin as an essential defense against the toxic effects of heme. Exp Parasitol 2023; 255:108653. [PMID: 37951390 DOI: 10.1016/j.exppara.2023.108653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
The common bed bug Cimex lectularius (Linnaeus 1758) is an ectoparasite that feeds preferably on human blood, being considered an important public health issue. Blood-feeding is a challenging process for hematophagous organisms, and one of the inherent risks with this kind of diet is the liberation of high doses of free heme after the digestion of hemoglobin. In order to deal with this potent cytotoxic agent, such organisms have acquired different defense mechanisms. Here, we use UV-visible spectrophotometry and infrared spectroscopy to show that C. lectularius crystalizes free heme to form the much less dangerous compound, hemozoin. According to our results, the peak of formation of hemozoin in the intestinal contents occurred 4-5 days after the blood meal, primarily in the posterior midgut. The quantification of the rate of conversion of heme to hemozoin revealed that at the end of digestion all the heme was in the form of hemozoin. Inhibition of the synthesis of hemozoin using the anti-malarial drug quinine led to an increase in both catalase activity in the intestinal epithelium and the mortality of the bed bugs, indicating that the insects were unable to cope with the oxidative stress generated by the overload of free heme. The data presented here show for the first time how C. lectularius deals with free heme, and how the process of formation of hemozoin is essential for the survival of these insects. Since resistance to insecticides is a common feature among field populations of bed bugs, there is an urgent need to develop alternative control methods. Thus, targeting the synthesis of hemozoin emerges as a possible novel strategy to fight bed bugs.
Collapse
Affiliation(s)
- Vladimir Fazito do Vale
- Grupo de Pesquisa Triatomíneos, Instituto René Rachou, Fiocruz, Belo Horizonte, 30190-002, Brazil.
| | | | | | - Ezequias Pessoa de Siqueira
- Grupo de Pesquisa Química de Produtos Naturais Bioativos, Instituto René Rachou, Fiocruz, Belo Horizonte, 30190-002, Brazil.
| |
Collapse
|
5
|
Orchard I, Al-Dailami AN, Leyria J, Lange AB. Malpighian tubules of Rhodnius prolixus: More than post-prandial diuresis. FRONTIERS IN INSECT SCIENCE 2023; 3:1167889. [PMID: 38469518 PMCID: PMC10926411 DOI: 10.3389/finsc.2023.1167889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/14/2023] [Indexed: 03/13/2024]
Abstract
Rhodnius prolixus, a major vector of Chagas disease, may be considered the model upon which the foundations of insect physiology and biochemistry were built. It is an obligate blood feeder in which the blood meal triggers growth, development and reproduction. The blood meal also triggers a post-prandial diuresis to maintain osmotic homeostasis. In R. prolixus, as with other insects, the Malpighian tubules play a critical role in this diuresis, and much has been learned about diuresis in R. prolixus, and in other model insects. But the post-genomic era has brought new insights, identifying functions quite apart from diuresis for Malpighian tubules. Indeed, microarrays, transcriptomes, and proteomics have revealed the major roles that Malpighian tubules play in immunity, detoxification, pesticide resistance, and in tolerance to overall stress. This is particularly relevant to R. prolixus since gorging on blood creates several challenges in addition to osmotic balance. Xenobiotics may be present in the blood or toxins may be produced by metabolism of blood; and these must be neutralized and excreted. These processes have not been well described at the molecular level for Malpighian tubules of R. prolixus. This paper will review the involvement of Malpighian tubules in immunity and detoxification, identifying new aspects for Malpighian tubule physiology of R. prolixus by virtue of a transcriptome analysis. The transcriptome analysis indicates the potential of Malpighian tubules of R. prolixus to mount a robust innate immune response, and to contribute to antioxidant production and heme detoxification.
Collapse
Affiliation(s)
- Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | | | | | | |
Collapse
|
6
|
Miyazawa K, Itoh SG, Watanabe H, Uchihashi T, Yanaka S, Yagi-Utsumi M, Kato K, Arakawa K, Okumura H. Tardigrade Secretory-Abundant Heat-Soluble Protein Has a Flexible β-Barrel Structure in Solution and Keeps This Structure in Dehydration. J Phys Chem B 2021; 125:9145-9154. [PMID: 34375104 DOI: 10.1021/acs.jpcb.1c04850] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Secretory-abundant heat-soluble (SAHS) proteins are unique heat-soluble proteins of Tardigrada and are believed to play an essential role in anhydrobiosis, a latent state of life induced by desiccation. To investigate the dynamic properties, molecular dynamics (MD) simulations of a SAHS protein, RvSAHS1, were performed in solution and under dehydrating conditions. For comparison purposes, MD simulations of a human liver-type fatty-acid binding protein (LFABP) were performed in solution. Furthermore, high-speed atomic force microscopy observations were conducted to ascertain the results of the MD simulations. Three properties of RvSAHS1 were found as follows. (1) The entrance region of RvSAHS1 is more flexible and can be more extensive in solutions compared with that of a human LFABP because there is no salt bridge between the βD and βE strands. (2) The intrinsically disordered domain in the N-terminal region significantly fluctuates and can form an amphiphilic α-helix. (3) The size of the entrance region gets smaller along with dehydration, keeping the β-barrel structure. Overall, the obtained results provide atomic-level dynamics of SAHS proteins.
Collapse
Affiliation(s)
- Kazuhisa Miyazawa
- Department of Structural Molecular Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | - Satoru G Itoh
- Department of Structural Molecular Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | - Hiroki Watanabe
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Department of Physics, Nagoya University, Nagoya 464-8602, Japan
| | - Takayuki Uchihashi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Department of Physics, Nagoya University, Nagoya 464-8602, Japan.,Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya 464-8601, Japan
| | - Saeko Yanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan.,Department of Functional Molecular Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 465-8603, Japan
| | - Maho Yagi-Utsumi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan.,Department of Functional Molecular Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 465-8603, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan.,Department of Functional Molecular Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 465-8603, Japan
| | - Kazuharu Arakawa
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan.,Faculty of Environment and Information Studies, Keio University, Fujisawa 252-0882, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa 252-0882, Japan
| | - Hisashi Okumura
- Department of Structural Molecular Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8787, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.,Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
7
|
Ouali R, Vieira LR, Salmon D, Bousbata S. Early Post-Prandial Regulation of Protein Expression in the Midgut of Chagas Disease Vector Rhodnius prolixus Highlights New Potential Targets for Vector Control Strategy. Microorganisms 2021; 9:microorganisms9040804. [PMID: 33920371 PMCID: PMC8069306 DOI: 10.3390/microorganisms9040804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/04/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022] Open
Abstract
Chagas disease is a vector-borne parasitic disease caused by the flagellated protozoan Trypanosoma cruzi and transmitted to humans by a large group of bloodsucking triatomine bugs. Triatomine insects, such as Rhodnius prolixus, ingest a huge amount of blood in a single meal. Their midgut represents an important interface for triatomine–trypanosome interactions. Furthermore, the development of parasites and their vectorial transmission are closely linked to the blood feeding and digestion; thus, an understanding of their physiology is essential for the development of new strategies to control triatomines. In this study, we used label-free quantitative proteomics to identify and analyze the early effect of blood feeding on protein expression in the midgut of Rhodnius prolixus. We both identified and quantified 124 proteins in the anterior midgut (AM) and 40 in the posterior midgut (PM), which vary significantly 6 h after feeding. The detailed analysis of these proteins revealed their predominant involvement in the primary function of hematophagy, including proteases, proteases inhibitors, amino acids metabolism, primary metabolites processing, and protein folding. Interestingly, our proteomics data show a potential role of the AM in protein digestion. Moreover, proteins related to detoxification processes and innate immunity, which are largely accepted to be triggered by blood ingestion, were mildly modulated. Surprisingly, one third of blood-regulated proteins in the AM have unknown function. This work contributes to the improvement of knowledge on the digestive physiology of triatomines in the early hours post-feeding. It provides key information for selecting new putative targets for the development of triatomine control tools and their potential role in the vector competence, which could be applied to other vector species.
Collapse
Affiliation(s)
- Radouane Ouali
- Proteomic Plateform, Laboratory of Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, 6041 Gosselies, Belgium
- Correspondence: (R.O.); (S.B.)
| | - Larissa Rezende Vieira
- Laboratory of Molecular Biology of Trypanosomatids, Institute of Medical Biochemistry Leopoldo de Meis, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21941-902, Brazil; (L.R.V.); (D.S.)
| | - Didier Salmon
- Laboratory of Molecular Biology of Trypanosomatids, Institute of Medical Biochemistry Leopoldo de Meis, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro RJ 21941-902, Brazil; (L.R.V.); (D.S.)
| | - Sabrina Bousbata
- Proteomic Plateform, Laboratory of Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, 6041 Gosselies, Belgium
- Correspondence: (R.O.); (S.B.)
| |
Collapse
|
8
|
Oliveira DS, Brito NF, Franco TA, Moreira MF, Leal WS, Melo ACA. Functional Characterization of Odorant Binding Protein 27 (RproOBP27) From Rhodnius prolixus Antennae. Front Physiol 2018; 9:1175. [PMID: 30210359 PMCID: PMC6119777 DOI: 10.3389/fphys.2018.01175] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 08/06/2018] [Indexed: 11/25/2022] Open
Abstract
Olfactory proteins mediate a wide range of essential behaviors for insect survival. Odorant binding proteins (OBPs) are small soluble olfactory proteins involved in the transport of odor molecules (=odorants) through the sensillum lymph to odorant receptors, which are housed on the dendritic membrane of olfactory sensory neurons also known as olfactory receptor neurons. Thus, a better understanding of the role(s) of OBPs from Rhodnius prolixus, one of the main vectors of Chagas disease, may ultimately lead to new strategies for vector management. Here we aimed at functionally characterize OBPs from R. prolixus. Genes of interest were selected using conventional bioinformatics approaches and subsequent quantification by qPCR. We screened and estimated expression in different tissues of 17 OBPs from R. prolixus adults. These analyses showed that 11 OBPs were expressed in all tissues, whereas six OBP genes were specific to antennae. Two OBP genes, RproOBP6 and RproOBP13, were expressed in both male and female antennae thus suggesting that they might be involved in the recognition of semiochemicals mediating behaviors common to both sexes, such host finding (for a blood meal). Transcripts for RproOBP17 and RproOBP21 were enriched in female antennae and possibly involved in the detection of oviposition attractants or other semiochemicals mediating female-specific behaviors. By contrast, RproOBP26 and RproOBP27 might be involved in the reception of sex pheromones given that their transcripts were highly expressed in male antennae. To test this hypothesis, we silenced RproOBP27 using RNAi and examined the sexual behavior of the phenotype. Indeed, adult males treated with dsOBP27 spent significantly less time close to females as compared to controls. Additionally, docking analysis suggested that RproOBP27 binds to putative sex pheromones. We therefore concluded that RproOBP27 might be a pheromone-binding protein.
Collapse
Affiliation(s)
- Daniele S Oliveira
- Laboratório de Bioquímica e Biologia Molecular de Vetores, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathália F Brito
- Laboratório de Bioquímica e Biologia Molecular de Vetores, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thiago A Franco
- Laboratório de Bioquímica e Biologia Molecular de Vetores, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Monica F Moreira
- Laboratório de Bioquímica e Biologia Molecular de Vetores, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular-CNPq, Rio de Janeiro, Brazil
| | - Walter S Leal
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| | - Ana C A Melo
- Laboratório de Bioquímica e Biologia Molecular de Vetores, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular-CNPq, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Ferreira CM, Stiebler R, Saraiva FM, Lechuga GC, Walter-Nuno AB, Bourguignon SC, Gonzalez MS, Azambuja P, Gandara ACP, Menna-Barreto RFS, Paiva-Silva GO, Paes MC, Oliveira MF. Heme crystallization in a Chagas disease vector acts as a redox-protective mechanism to allow insect reproduction and parasite infection. PLoS Negl Trop Dis 2018; 12:e0006661. [PMID: 30036366 PMCID: PMC6084092 DOI: 10.1371/journal.pntd.0006661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/02/2018] [Accepted: 07/03/2018] [Indexed: 12/18/2022] Open
Abstract
Heme crystallization as hemozoin represents the dominant mechanism of heme disposal in blood feeding triatomine insect vectors of the Chagas disease. The absence of drugs or vaccine for the Chagas disease causative agent, the parasite Trypanosoma cruzi, makes the control of vector population the best available strategy to limit disease spread. Although heme and redox homeostasis regulation is critical for both triatomine insects and T. cruzi, the physiological relevance of hemozoin for these organisms remains unknown. Here, we demonstrate that selective blockage of heme crystallization in vivo by the antimalarial drug quinidine, caused systemic heme overload and redox imbalance in distinct insect tissues, assessed by spectrophotometry and fluorescence microscopy. Quinidine treatment activated compensatory defensive heme-scavenging mechanisms to cope with excessive heme, as revealed by biochemical hemolymph analyses, and fat body gene expression. Importantly, egg production, oviposition, and total T. cruzi parasite counts in R. prolixus were significantly reduced by quinidine treatment. These effects were reverted by oral supplementation with the major insect antioxidant urate. Altogether, these data underscore the importance of heme crystallization as the main redox regulator for triatomine vectors, indicating the dual role of hemozoin as a protective mechanism to allow insect fertility, and T. cruzi life-cycle. Thus, targeting heme crystallization in insect vectors represents an innovative way for Chagas disease control, by reducing simultaneously triatomine reproduction and T. cruzi transmission. Chagas disease is a fatal illness caused by Trypanosoma cruzi parasites, which are transmitted by blood sucking triatomine insect vectors. Although blood is a natural food source for these insects, its digestion releases toxic products, which poses a dietary challenge for both triatomine insects and trypanosomes. To overcome this, triatomines eliminate these toxic blood products by a unique process of heme crystallization into hemozoin that take place in their digestive tract. Here we describe that this detoxification process represents the major mechanism for redox balance control, and is necessary to allow triatomine insect reproduction, and Trypanosoma cruzi infection. Disruption of heme crystallization in triatomine insects thus represents a new venue for Chagas disease control, by targeting at the same time insect reproduction and parasite transmission.
Collapse
Affiliation(s)
- Caroline M. Ferreira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata Stiebler
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Francis M. Saraiva
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guilherme C. Lechuga
- Departamento de Biologia Celular e Molecular, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Ana Beatriz Walter-Nuno
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Saulo C. Bourguignon
- Departamento de Biologia Celular e Molecular, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Marcelo S. Gonzalez
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Biologia Geral, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Patrícia Azambuja
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Caroline P. Gandara
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Gabriela O. Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia C. Paes
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcus F. Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
10
|
Ferreira CM, Oliveira MP, Paes MC, Oliveira MF. Modulation of mitochondrial metabolism as a biochemical trait in blood feeding organisms: the redox vampire hypothesis redux. Cell Biol Int 2018; 42:683-700. [PMID: 29384241 DOI: 10.1002/cbin.10945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/27/2018] [Indexed: 12/31/2022]
Abstract
Hematophagous organisms undergo remarkable metabolic changes during the blood digestion process, increasing fermentative glucose metabolism, and reducing respiratory rates, both consequence of functional mitochondrial remodeling. Here, we review the pathways involved in energy metabolism and mitochondrial functionality in a comparative framework across different hematophagous species, and consider how these processes regulate redox homeostasis during blood digestion. The trend across distinct species indicate that a switch in energy metabolism might represent an important defensive mechanism to avoid the potential harmful interaction of oxidants generated from aerobic energy metabolism with products derived from blood digestion. Indeed, in insect vectors, blood feeding transiently reduces respiratory rates and oxidant production, irrespective of tissue and insect model. On the other hand, a different scenario is observed in several unrelated parasite species when exposed to blood digestion products, as respiratory rates reduce and mitochondrial oxidant production increase. The emerging picture indicates that re-wiring of energy metabolism, through reduced mitochondrial function, culminates in improved tolerance to redox insults and seems to represent a key step for hematophagous organisms to cope with the overwhelming and potentially toxic blood meal.
Collapse
Affiliation(s)
- Caroline M Ferreira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil
| | - Matheus P Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil.,Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, 90095, USA
| | - Marcia C Paes
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Marcus F Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-590, Brazil
| |
Collapse
|
11
|
Walter-Nuno AB, Taracena ML, Mesquita RD, Oliveira PL, Paiva-Silva GO. Silencing of Iron and Heme-Related Genes Revealed a Paramount Role of Iron in the Physiology of the Hematophagous Vector Rhodnius prolixus. Front Genet 2018; 9:19. [PMID: 29456553 PMCID: PMC5801409 DOI: 10.3389/fgene.2018.00019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 01/16/2018] [Indexed: 12/19/2022] Open
Abstract
Iron is an essential element for most organisms However, free iron and heme, its complex with protoporphyrin IX, can be extremely cytotoxic, due to the production of reactive oxygen species, eventually leading to oxidative stress. Thus, eukaryotic cells control iron availability by regulating its transport, storage and excretion as well as the biosynthesis and degradation of heme. In the genome of Rhodnius prolixus, the vector of Chagas disease, we identified 36 genes related to iron and heme metabolism We performed a comprehensive analysis of these genes, including identification of homologous genes described in other insect genomes. We observed that blood-meal modulates the expression of ferritin, Iron Responsive protein (IRP), Heme Oxygenase (HO) and the heme exporter Feline Leukemia Virus C Receptor (FLVCR), components of major pathways involved in the regulation of iron and heme metabolism, particularly in the posterior midgut (PM), where an intense release of free heme occurs during the course of digestion. Knockdown of these genes impacted the survival of nymphs and adults, as well as molting, oogenesis and embryogenesis at different rates and time-courses. The silencing of FLVCR caused the highest levels of mortality in nymphs and adults and reduced nymph molting. The oogenesis was mildly affected by the diminished expression of all of the genes whereas embryogenesis was dramatically impaired by the knockdown of ferritin expression. Furthermore, an intense production of ROS in the midgut of blood-fed insects occurs when the expression of ferritin, but not HO, was inhibited. In this manner, the degradation of dietary heme inside the enterocytes may represent an oxidative challenge that is counteracted by ferritins, conferring to this protein a major antioxidant role. Taken together these results demonstrate that the regulation of iron and heme metabolism is of paramount importance for R. prolixus physiology and imbalances in the levels of these key proteins after a blood- meal can be extremely deleterious to the insects in their various stages of development.
Collapse
Affiliation(s)
- Ana B Walter-Nuno
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Mabel L Taracena
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Rafael D Mesquita
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Gabriela O Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Whiten SR, Eggleston H, Adelman ZN. Ironing out the Details: Exploring the Role of Iron and Heme in Blood-Sucking Arthropods. Front Physiol 2018; 8:1134. [PMID: 29387018 PMCID: PMC5776124 DOI: 10.3389/fphys.2017.01134] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/22/2017] [Indexed: 12/12/2022] Open
Abstract
Heme and iron are essential molecules for many physiological processes and yet have the ability to cause oxidative damage such as lipid peroxidation, protein degradation, and ultimately cell death if not controlled. Blood-sucking arthropods have evolved diverse methods to protect themselves against iron/heme-related damage, as the act of bloodfeeding itself is high risk, high reward process. Protective mechanisms in medically important arthropods include the midgut peritrophic matrix in mosquitoes, heme aggregation into the crystalline structure hemozoin in kissing bugs and hemosomes in ticks. Once heme and iron pass these protective mechanisms they are presumed to enter the midgut epithelial cells via membrane-bound transporters, though relatively few iron or heme transporters have been identified in bloodsucking arthropods. Upon iron entry into midgut epithelial cells, ferritin serves as the universal storage protein and transport for dietary iron in many organisms including arthropods. In addition to its role as a nutrient, heme is also an important signaling molecule in the midgut epithelial cells for many physiological processes including vitellogenesis. This review article will summarize recent advancements in heme/iron uptake, detoxification and exportation in bloodfeeding arthropods. While initial strides have been made at ironing out the role of dietary iron and heme in arthropods, much still remains to be discovered as these molecules may serve as novel targets for the control of many arthropod pests.
Collapse
Affiliation(s)
- Shavonn R Whiten
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Heather Eggleston
- Genetics Graduate Program, Texas A&M University, College Station, TX, United States
| | - Zach N Adelman
- Department of Entomology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
13
|
Oliveira DS, Brito NF, Nogueira FCS, Moreira MF, Leal WS, Soares MR, Melo ACA. Proteomic analysis of the kissing bug Rhodnius prolixus antenna. JOURNAL OF INSECT PHYSIOLOGY 2017; 100:108-118. [PMID: 28606853 DOI: 10.1016/j.jinsphys.2017.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 06/07/2023]
Abstract
Reception of odorants is essential in insects' life since the chemical signals in the environment (=semiochemicals) convey information about availability of hosts for a blood meal, mates for reproduction, sites for oviposition and other relevant information for fitness in the environment. Once they reach the antennae, these semiochemicals bind to odorant-binding proteins and are transported through the sensillar lymph until reach the odorant receptors. Such perireceptor events, particularly the interactions with transport proteins, are the liaison between the external environment and the entire neuroethological system and, therefore, a potential target to disrupt insect chemical communication. In this study, a proteomic profile of female and male antennae of Rhodnius prolixus, a vector of Chagas disease, was obtained in an attempt to unravel the entire repertoire of olfactory proteins involved in perireceptor events. Using shotgun proteomics and two-dimensional gel electrophoresis approaches followed by nano liquid chromatography coupled with tandem LTQ Velos Orbitrap mass spectrometry, we have identified 581 unique proteins. Putative olfactory proteins, including 17 odorant binding proteins, 6 chemosensory proteins, 2 odorant receptors, 3 transient receptor channels and 1 gustatory receptor were identified. Proteins involved in general cellular functions such as generation of precursor metabolites, energy generation and catabolism were expressed at high levels. Additionally, proteins that take part in signal transduction, ion binding, and stress response, kinase and oxidoreductase activity were frequent in antennae from both sexes. This proteome strategy unraveled for the first time the complex nature of perireceptor and other olfactory events that occur in R. prolixus antennae, including evidence for phosphorylation of odorant-binding and chemosensory proteins. These findings not only increase our understanding of the olfactory process in triatomine species, but also identify potential molecular targets to be explored for population control of such insect vectors.
Collapse
Affiliation(s)
- Daniele S Oliveira
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil
| | - Nathalia F Brito
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil
| | - Fabio C S Nogueira
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil
| | - Monica F Moreira
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Walter S Leal
- University of California-Davis, Department of Molecular and Cellular Biology, 95616 Davis, CA, USA
| | - Marcia R Soares
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil
| | - Ana C A Melo
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil.
| |
Collapse
|
14
|
Sterkel M, Oliveira JHM, Bottino-Rojas V, Paiva-Silva GO, Oliveira PL. The Dose Makes the Poison: Nutritional Overload Determines the Life Traits of Blood-Feeding Arthropods. Trends Parasitol 2017; 33:633-644. [PMID: 28549573 DOI: 10.1016/j.pt.2017.04.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/20/2017] [Accepted: 04/27/2017] [Indexed: 12/21/2022]
Abstract
Vertebrate blood composition is heavily biased towards proteins, and hemoglobin, which is a hemeprotein, is by far the most abundant protein. Typically, hematophagous insects ingest blood volumes several times their weight before the blood meal. This barbarian feast offers an abundance of nutrients, but the degradation of blood proteins generates toxic concentrations of amino acids and heme, along with unparalleled microbiota growth. Despite this challenge, hematophagous arthropods have successfully developed mechanisms that bypass the toxicity of these molecules. While these adaptations allow hematophagous arthropods to tolerate their diet, they also constitute a unique mode of operation for cell signaling, immunity, and metabolism, the study of which may offer insights into the biology of disease vectors and may lead to novel vector-specific control methods.
Collapse
Affiliation(s)
- Marcos Sterkel
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - José Henrique M Oliveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Vanessa Bottino-Rojas
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Gabriela O Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil.
| |
Collapse
|
15
|
de Carvalho DB, Congrains C, Chahad-Ehlers S, Pinotti H, de Brito RA, da Rosa JA. Differential transcriptome analysis supports Rhodnius montenegrensis and Rhodnius robustus (Hemiptera, Reduviidae, Triatominae) as distinct species. PLoS One 2017; 12:e0174997. [PMID: 28406967 PMCID: PMC5390988 DOI: 10.1371/journal.pone.0174997] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/17/2017] [Indexed: 11/18/2022] Open
Abstract
Chagas disease is one of the main parasitic diseases found in Latin America and it is estimated that between six and seven million people are infected worldwide. Its etiologic agent, the protozoan Trypanosoma cruzi, is transmitted by triatomines, some of which from the genus Rhodnius. Twenty species are currently recognized in this genus, including some closely related species with low levels of morphological differentiation, such as Rhodnius montenegrensis and Rhodnius robustus. In order to investigate genetic differences between these two species, we generated large-scale RNA-sequencing data (consisting of four RNA-seq libraries) from the heads and salivary glands of males of R. montenegrensis and R. robustus. Transcriptome assemblies produced for each species resulted in 64,952 contigs for R. montenegrensis and 70,894 contigs for R. robustus, with N50 of approximately 2,100 for both species. SNP calling based on the more complete R. robustus assembly revealed 3,055 fixed interspecific differences and 216 transcripts with high levels of divergence which contained only fixed differences between the two species. A gene ontology enrichment analysis revealed that these highly differentiated transcripts were enriched for eight GO terms related to AP-2 adaptor complex, as well as other interesting genes that could be involved in their differentiation. The results show that R. montenegrensis and R. robustus have a substantial quantity of fixed interspecific polymorphisms, which suggests a high degree of genetic divergence between the two species and likely corroborates the species status of R. montenegrensis.
Collapse
Affiliation(s)
- Danila Blanco de Carvalho
- Department of Parasitology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Carlos Congrains
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), São Paulo, Brazil
| | - Samira Chahad-Ehlers
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), São Paulo, Brazil
| | - Heloisa Pinotti
- Department of Parasitology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Reinaldo Alves de Brito
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), São Paulo, Brazil
| | - João Aristeu da Rosa
- Department of Parasitology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
16
|
Ons S. Neuropeptides in the regulation of Rhodnius prolixus physiology. JOURNAL OF INSECT PHYSIOLOGY 2017; 97:77-92. [PMID: 27210592 DOI: 10.1016/j.jinsphys.2016.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 04/19/2016] [Accepted: 05/18/2016] [Indexed: 06/05/2023]
Abstract
In the kissing bug Rhodnius prolixus, events such as diuresis, antidiuresis, development and reproduction are triggered by blood feeding. Hence, these events can be accurately timed, facilitating physiological experiments. This, combined with its relatively big size, makes R. prolixus an excellent model in insect neuroendocrinological studies. The importance of R. prolixus as a Chagas' disease vector as much as an insect model has motivated the sequencing of its genome in recent years, facilitating genetic and molecular studies. Most crucial physiological processes are regulated by the neuroendocrine system, composed of neuropeptides and their receptors. The identification and characterization of neuropeptides and their receptors could be the first step to find targets for new insecticides. The sequences of 41 neuropeptide precursor genes and the receptors for most of them were identified in the R. prolixus genome. Functional information about many of these molecules was obtained, whereas many neuroendocrine systems are still unstudied in this model species. This review addresses the knowledge available to date regarding the structure, distribution, expression and physiological effects of neuropeptides in R. prolixus, and points to future directions in this research field.
Collapse
Affiliation(s)
- Sheila Ons
- Laboratory of Insects Neurobiology, National Center for Genomic Studies, Faculty of Exact Sciences, National University of La Plata, Bvd 120 1459, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
17
|
Marchant A, Mougel F, Jacquin-Joly E, Costa J, Almeida CE, Harry M. Under-Expression of Chemosensory Genes in Domiciliary Bugs of the Chagas Disease Vector Triatoma brasiliensis. PLoS Negl Trop Dis 2016; 10:e0005067. [PMID: 27792774 PMCID: PMC5085048 DOI: 10.1371/journal.pntd.0005067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 09/22/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In Latin America, the bloodsucking bugs Triatominae are vectors of Trypanosoma cruzi, the parasite that causes Chagas disease. Chemical elimination programs have been launched to control Chagas disease vectors. However, the disease persists because native vectors from sylvatic habitats are able to (re)colonize houses-a process called domiciliation. Triatoma brasiliensis is one example. Because the chemosensory system allows insects to interact with their environment and plays a key role in insect adaption, we conducted a descriptive and comparative study of the chemosensory transcriptome of T. brasiliensis samples from different ecotopes. METHODOLOGY/PRINCIPAL FINDING In a reference transcriptome built using de novo assembly, we found transcripts encoding 27 odorant-binding proteins (OBPs), 17 chemosensory proteins (CSPs), 3 odorant receptors (ORs), 5 transient receptor potential channel (TRPs), 1 sensory neuron membrane protein (SNMPs), 25 takeout proteins, 72 cytochrome P450s, 5 gluthatione S-transferases, and 49 cuticular proteins. Using protein phylogenies, we showed that most of the OBPs and CSPs for T. brasiliensis had well supported orthologs in the kissing bug Rhodnius prolixus. We also showed a higher number of these genes within the bloodsucking bugs and more generally within all Hemipterans compared to the other species in the super-order Paraneoptera. Using both DESeq2 and EdgeR software, we performed differential expression analyses between samples of T. brasiliensis, taking into account their environment (sylvatic, peridomiciliary and domiciliary) and sex. We also searched clusters of co-expressed contigs using HTSCluster. Among differentially expressed (DE) contigs, most were under-expressed in the chemosensory organs of the domiciliary bugs compared to the other samples and in females compared to males. We clearly identified DE genes that play a role in the chemosensory system. CONCLUSION/SIGNIFICANCE Chemosensory genes could be good candidates for genes that contribute to adaptation or plastic rearrangement to an anthropogenic system. The domiciliary environment probably includes less diversity of xenobiotics and probably has more stable abiotic parameters than do sylvatic and peridomiciliary environments. This could explain why both detoxification and cuticle protein genes are less expressed in domiciliary bugs. Understanding the molecular basis for how vectors adapt to human dwellings may reveal new tools to control disease vectors; for example, by disrupting chemical communication.
Collapse
Affiliation(s)
- Axelle Marchant
- UMR Evolution, Génomes, Comportement, Ecologie, CNRS-IRD- Univ. Paris-Sud, Université Paris Saclay, Campus CNRS, Gif-sur-Yvette – France
- UFR Sciences, Université Paris Sud, Orsay, France
| | - Florence Mougel
- UMR Evolution, Génomes, Comportement, Ecologie, CNRS-IRD- Univ. Paris-Sud, Université Paris Saclay, Campus CNRS, Gif-sur-Yvette – France
- UFR Sciences, Université Paris Sud, Orsay, France
| | - Emmanuelle Jacquin-Joly
- INRA, UMR 1392, Institut d’Ecologie et des Sciences de l’Environnement de Paris, Route de Saint Cyr, Versailles, France
| | - Jane Costa
- Laboratório de Biodiversidade Entomológica; Instituto Oswaldo Cruz - Fiocruz; Rio de Janeiro; Brasil Instituto Oswaldo Cruz, Fiocruz – Brazil
| | - Carlos Eduardo Almeida
- Universidade Estadual de Campinas (Uncamp), Campinas São Paulo – Brazil
- Universidade Federal da Paraíba (UFPB), Paraíba – Brazil
| | - Myriam Harry
- UMR Evolution, Génomes, Comportement, Ecologie, CNRS-IRD- Univ. Paris-Sud, Université Paris Saclay, Campus CNRS, Gif-sur-Yvette – France
- UFR Sciences, Université Paris Sud, Orsay, France
| |
Collapse
|
18
|
Costa EP, Façanha AR, Cruz CS, Silva JN, Machado JA, Carvalho GM, Fernandes MR, Martins R, Campos E, Romeiro NC, Githaka NW, Konnai S, Ohashi K, Vaz IS, Logullo C. A novel mechanism of functional cooperativity regulation by thiol redox status in a dimeric inorganic pyrophosphatase. Biochim Biophys Acta Gen Subj 2016; 1861:2922-2933. [PMID: 27664315 DOI: 10.1016/j.bbagen.2016.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/30/2016] [Accepted: 09/18/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Inorganic PPases are essential metal-dependent enzymes that convert pyrophosphate into orthophosphate. This reaction is quite exergonic and provides a thermodynamic advantage for many ATP-driven biosynthetic reactions. We have previously demonstrated that cytosolic PPase from R. microplus embryos is an atypical Family I PPase. Here, we explored the functional role of the cysteine residues located at the homodimer interface, its redox sensitivity, as well as structural and kinetic parameters related to thiol redox status. METHODS In this work, we used prokaryotic expression system for recombinant protein overexpression, biochemical approaches to assess kinetic parameters, ticks embryos and computational approaches to analyze and predict critical amino acids as well as physicochemical properties at the homodimer interface. RESULTS Cysteine 339, located at the homodimer interface, was found to play an important role in stabilizing a functional cooperativity between the two catalytic sites, as indicated by kinetics and Hill coefficient analyses of the WT-rBmPPase. WT-rBmPPase activity was up-regulated by physiological antioxidant molecules such as reduced glutathione and ascorbic acid. On the other hand, hydrogen peroxide at physiological concentrations decreased the affinity of WT-rBmPPase for its substrate (PPi), probably by inducing disulfide bridge formation. CONCLUSIONS Our results provide a new angle in understanding redox control by disulfide bonds formation in enzymes from hematophagous arthropods. The reversibility of the down-regulation is dependent on hydrophobic interactions at the dimer interface. GENERAL SIGNIFICANCE This study is the first report on a soluble PPase where dimeric cooperativity is regulated by a redox mechanism, according to cysteine redox status.
Collapse
Affiliation(s)
- Evenilton P Costa
- Laboratório de Química e Função de Proteínas e Peptídeos, Laboratório de Biologia Tecidual e Celular and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - Arnoldo R Façanha
- Laboratório de Química e Função de Proteínas e Peptídeos, Laboratório de Biologia Tecidual e Celular and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - Criscila S Cruz
- Laboratório de Química e Função de Proteínas e Peptídeos, Laboratório de Biologia Tecidual e Celular and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil; Laboratório Integrado de Bioquímica Hatisaburo Masuda, Laboratório Integrado de Computação Científica, Núcleo de Pesquisas em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Jhenifer N Silva
- Laboratório de Química e Função de Proteínas e Peptídeos, Laboratório de Biologia Tecidual e Celular and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - Josias A Machado
- Laboratório de Química e Função de Proteínas e Peptídeos, Laboratório de Biologia Tecidual e Celular and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - Gabriel M Carvalho
- Laboratório de Química e Função de Proteínas e Peptídeos, Laboratório de Biologia Tecidual e Celular and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - Mariana R Fernandes
- Laboratório de Química e Função de Proteínas e Peptídeos, Laboratório de Biologia Tecidual e Celular and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - Renato Martins
- Laboratório de Química e Função de Proteínas e Peptídeos, Laboratório de Biologia Tecidual e Celular and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - Eldo Campos
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, Laboratório Integrado de Computação Científica, Núcleo de Pesquisas em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Nelilma C Romeiro
- Laboratório Integrado de Bioquímica Hatisaburo Masuda, Laboratório Integrado de Computação Científica, Núcleo de Pesquisas em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé (NUPEM), Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Naftaly W Githaka
- Tick Unit, International Livestock Research Institute, P.O. Box 30709, Nairobi, Kenya
| | - Satoru Konnai
- Laboratory of Infectious Diseases, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Japan
| | - Kazuhiko Ohashi
- Laboratory of Infectious Diseases, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Japan
| | - Itabajara S Vaz
- Faculdade de Veterinária e Centro de Biotecnologia do Estado do Rio Grande do Sul, Universidade Federal do Rio Grande do Sul, Brazil
| | - Carlos Logullo
- Laboratório de Química e Função de Proteínas e Peptídeos, Laboratório de Biologia Tecidual e Celular and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil.
| |
Collapse
|
19
|
Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection. Proc Natl Acad Sci U S A 2015; 112:14936-41. [PMID: 26627243 DOI: 10.1073/pnas.1506226112] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Rhodnius prolixus not only has served as a model organism for the study of insect physiology, but also is a major vector of Chagas disease, an illness that affects approximately seven million people worldwide. We sequenced the genome of R. prolixus, generated assembled sequences covering 95% of the genome (∼ 702 Mb), including 15,456 putative protein-coding genes, and completed comprehensive genomic analyses of this obligate blood-feeding insect. Although immune-deficiency (IMD)-mediated immune responses were observed, R. prolixus putatively lacks key components of the IMD pathway, suggesting a reorganization of the canonical immune signaling network. Although both Toll and IMD effectors controlled intestinal microbiota, neither affected Trypanosoma cruzi, the causal agent of Chagas disease, implying the existence of evasion or tolerance mechanisms. R. prolixus has experienced an extensive loss of selenoprotein genes, with its repertoire reduced to only two proteins, one of which is a selenocysteine-based glutathione peroxidase, the first found in insects. The genome contained actively transcribed, horizontally transferred genes from Wolbachia sp., which showed evidence of codon use evolution toward the insect use pattern. Comparative protein analyses revealed many lineage-specific expansions and putative gene absences in R. prolixus, including tandem expansions of genes related to chemoreception, feeding, and digestion that possibly contributed to the evolution of a blood-feeding lifestyle. The genome assembly and these associated analyses provide critical information on the physiology and evolution of this important vector species and should be instrumental for the development of innovative disease control methods.
Collapse
|
20
|
Paes MC, Silveira AB, Ventura-Martins G, Luciano M, Coelho MGP, Todeschini AR, Bianconi ML, Atella GC, Silva-Neto MAC. CALCIUM-INDUCED LIPID PEROXIDATION IS MEDIATED BY RHODNIUS HEME-BINDING PROTEIN (RHBP) AND PREVENTED BY VITELLIN. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2015; 90:104-115. [PMID: 26111116 DOI: 10.1002/arch.21248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Lipid peroxidation is promoted by the quasi-lipoxygenase (QL) activity of heme proteins and enhanced by the presence of free calcium. Unlike mammalian plasma, the hemolymph of Rhodnius prolixus, a vector of Chagas disease, contains both a free heme-binding protein (RHBP) and circulating lipoproteins. RHBP binds and prevents the heme groups of the proteins from participating in lipid peroxidation reactions. Herein, we show that despite being bound to RHBP, heme groups promote lipid peroxidation through a calcium-dependent QL reaction. This reaction is readily inhibited by the presence of ethylene glycol tetraacetic acid (EGTA), the antioxidant butylated hydroxytoluene or micromolar levels of the main yolk phosphoprotein vitellin (Vt). The inhibition of lipid peroxidation is eliminated by the in vitro dephosphorylation of Vt, indicating that this reaction depends on the interaction of free calcium ions with negatively charged phosphoamino acids. Our results demonstrate that calcium chelation mediated by phosphoproteins occurs via an antioxidant mechanism that protects living organisms from lipid peroxidation.
Collapse
Affiliation(s)
- Marcia C Paes
- Laboratório de Interação Tripanossomatídeos e Vetores, Departamento de Bioquímica, Instituto de Biologia Roberto Alcântara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brasil
- Laboratório de Bioquímica de Lipídios e Lipoproteínas, Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Alan B Silveira
- Laboratório de Sinalização Celular, Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Prédio do Centro de Ciências da Saúde, Bloco D, Subsolo, Sala 05, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brasil
| | - Guilherme Ventura-Martins
- Laboratório de Sinalização Celular, Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Prédio do Centro de Ciências da Saúde, Bloco D, Subsolo, Sala 05, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brasil
| | - Monalisa Luciano
- Laboratório de Interação Tripanossomatídeos e Vetores, Departamento de Bioquímica, Instituto de Biologia Roberto Alcântara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brasil
| | - Marsen G P Coelho
- Laboratório de Interação Tripanossomatídeos e Vetores, Departamento de Bioquímica, Instituto de Biologia Roberto Alcântara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brasil
- Laboratório de Bioquímica Aplicada e Bioquímica de Proteínas e Produtos Naturais, Departamento de Bioquímica, Instituto de Biologia Roberto Alcântara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brasil
| | - Adriane R Todeschini
- Instituto Nacional de Ciência e Tecnologia -em Entomologia Molecular (INCT-EM), Universidade Federal, Prédio do Centro de Ciências da Saúde, Bloco H, Segundo andar, Sala 30, Cidade Universitária, Ilha do Fundão, Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brasil
| | - M Lucia Bianconi
- Laboratório de Glicobiologia Estrutural e Funcional, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Georgia C Atella
- Laboratório de Biocalorimetria, Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Prédio do Centro de Ciências da Saúde, Bloco E, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brasil
| | - Mário A C Silva-Neto
- Laboratório de Sinalização Celular, Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Prédio do Centro de Ciências da Saúde, Bloco D, Subsolo, Sala 05, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brasil
- Laboratório de Bioquímica de Lipídios e Lipoproteínas, Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
21
|
Heme Signaling Impacts Global Gene Expression, Immunity and Dengue Virus Infectivity in Aedes aegypti. PLoS One 2015; 10:e0135985. [PMID: 26275150 PMCID: PMC4537099 DOI: 10.1371/journal.pone.0135985] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/28/2015] [Indexed: 02/01/2023] Open
Abstract
Blood-feeding mosquitoes are exposed to high levels of heme, the product of hemoglobin degradation. Heme is a pro-oxidant that influences a variety of cellular processes. We performed a global analysis of heme-regulated Aedes aegypti (yellow fever mosquito) transcriptional changes to better understand influence on mosquito physiology at the molecular level. We observed an iron- and reactive oxygen species (ROS)-independent signaling induced by heme that comprised genes related to redox metabolism. By modulating the abundance of these transcripts, heme possibly acts as a danger signaling molecule. Furthermore, heme triggered critical changes in the expression of energy metabolism and immune response genes, altering the susceptibility towards bacteria and dengue virus. These findings seem to have implications on the adaptation of mosquitoes to hematophagy and consequently on their ability to transmit diseases. Altogether, these results may also contribute to the understanding of heme cell biology in eukaryotic cells.
Collapse
|
22
|
Villalobos-Sambucaro MJ, Riccillo FL, Calderón-Fernández GM, Sterkel M, Diambra LA, Ronderos JR. Genomic and functional characterization of a methoprene-tolerant gene in the kissing-bug Rhodnius prolixus. Gen Comp Endocrinol 2015; 216:1-8. [PMID: 25963043 DOI: 10.1016/j.ygcen.2015.04.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 04/08/2015] [Accepted: 04/11/2015] [Indexed: 11/25/2022]
Abstract
Metamorphosis, which depends upon a fine balance between two groups of lipid-soluble hormones such as juvenile hormones (JHs) and ecdysteroids, is an important feature in insect evolution. While it is clear that the onset of metamorphosis depends on the decrease of JH levels, the way in which these hormones exert their activities is not fully understood in Triatominae species. The discovery of a Drosophila melanogaster mutant resistant to the treatment with the JH analog methoprene, led finally to the description of the methoprene-tolerant gene in Tribolium castaneum (TcMet) as a putative JH receptor. Here we present the genomic and functional characterization of an ortholog of the methoprene-tolerant gene in the hemimetabolous insect Rhodnius prolixus (RpMet). The analysis of the R. prolixus gene showed that the exonic structure is different from that described for holometabolous species, although all the critical protein motifs are well conserved. Expression analysis showed the presence of RpMet mRNA in all the tested tissues: ovary, testis, rectum, Malpighian tubules and salivary glands. When juvenile individuals were treated with RpMet specific double strand RNA (dsRNA), we observed abnormal molting events that resulted in individuals with morphological alterations (adultoids). Similarly, treatment of newly emerged fed females with dsRNA resulted in an abnormal development of the ovaries, with eggs revealing anomalies in size and accumulation of yolk, as well as a decrease in the amount of heme-binding protein. Altogether, our results validate that RpMet is involved in the transduction of JH signaling, controlling metamorphosis and reproduction in R. prolixus.
Collapse
Affiliation(s)
- María José Villalobos-Sambucaro
- Cátedra de Histología y Embriología Animal, (Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata), La Plata, Argentina; Centro Regional de Estudios Genómicos (CREG), (Facultad de Ciencias Exactas, Universidad Nacional de La Plata), La Plata, Argentina
| | - Fernando Luis Riccillo
- Cátedra de Histología y Embriología Animal, (Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata), La Plata, Argentina; Centro Regional de Estudios Genómicos (CREG), (Facultad de Ciencias Exactas, Universidad Nacional de La Plata), La Plata, Argentina
| | - Gustavo Mario Calderón-Fernández
- Cátedra de Histología y Embriología Animal, (Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata), La Plata, Argentina; Instituto de Investigaciones Bioquímicas La Plata (INIBIOLP), (Universidad Nacional de La Plata-CONICET), La Plata, Argentina
| | - Marcos Sterkel
- Centro Regional de Estudios Genómicos (CREG), (Facultad de Ciencias Exactas, Universidad Nacional de La Plata), La Plata, Argentina
| | - Luis Anibal Diambra
- Centro Regional de Estudios Genómicos (CREG), (Facultad de Ciencias Exactas, Universidad Nacional de La Plata), La Plata, Argentina
| | - Jorge Rafael Ronderos
- Cátedra de Histología y Embriología Animal, (Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata), La Plata, Argentina; Centro Regional de Estudios Genómicos (CREG), (Facultad de Ciencias Exactas, Universidad Nacional de La Plata), La Plata, Argentina.
| |
Collapse
|
23
|
Taracena ML, Oliveira PL, Almendares O, Umaña C, Lowenberger C, Dotson EM, Paiva-Silva GO, Pennington PM. Genetically modifying the insect gut microbiota to control Chagas disease vectors through systemic RNAi. PLoS Negl Trop Dis 2015; 9:e0003358. [PMID: 25675102 PMCID: PMC4326462 DOI: 10.1371/journal.pntd.0003358] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 10/17/2014] [Indexed: 11/19/2022] Open
Abstract
Technologies based on RNA interference may be used for insect control. Sustainable strategies are needed to control vectors of Chagas disease such as Rhodnius prolixus. The insect microbiota can be modified to deliver molecules to the gut. Here, Escherichia coli HT115(DE3) expressing dsRNA for the Rhodnius heme-binding protein (RHBP) and for catalase (CAT) were fed to nymphs and adult triatomine stages. RHBP is an egg protein and CAT is an antioxidant enzyme expressed in all tissues by all developmental stages. The RNA interference effect was systemic and temporal. Concentrations of E. coli HT115(DE3) above 3.35 × 107 CFU/mL produced a significant RHBP and CAT gene knockdown in nymphs and adults. RHBP expression in the fat body was reduced by 99% three days after feeding, returning to normal levels 10 days after feeding. CAT expression was reduced by 99% and 96% in the ovary and the posterior midgut, respectively, five days after ingestion. Mortality rates increased by 24-30% in first instars fed RHBP and CAT bacteria. Molting rates were reduced by 100% in first instars and 80% in third instars fed bacteria producing RHBP or CAT dsRNA. Oviposition was reduced by 43% (RHBP) and 84% (CAT). Embryogenesis was arrested in 16% (RHBP) and 20% (CAT) of laid eggs. Feeding females 105 CFU/mL of the natural symbiont, Rhodococcus rhodnii, transformed to express RHBP-specific hairpin RNA reduced RHBP expression by 89% and reduced oviposition. Modifying the insect microbiota to induce systemic RNAi in R. prolixus may result in a paratransgenic strategy for sustainable vector control. Rhodnius prolixus is an important vector of Chagas disease. The development of insecticide resistance in triatomines has raised the need for new control methods. We propose, as a proof-of-concept, the use of symbiotic bacteria expressing dsRNA in a paratransgenic approach to control vector-borne disease. We first show that ingestion of E. coli, producing long dsRNA specific for R. prolixus genes, can produce systemic RNAi in this insect. By targeting genes with antioxidant function (RHBP and catalase), we show that RNAi effects on nymphs and adult females are systemic and temporal, affecting development and fecundity. Finally, we show that the natural vector symbiont, R. rhodnii, also can be modified to induce systemic RNA interference. The E. coli system can serve to screen potential targets for development of a symbiont-based vector control product that then can be transferred to R. rhodnii.
Collapse
Affiliation(s)
- Mabel L. Taracena
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundão, Rio de Janeiro, Brasil
- eCentro de Estudios en Salud. Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Pedro L. Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundão, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Brasil
| | - Olivia Almendares
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Atlanta, Georgia, United States of America
| | - Claudia Umaña
- eCentro de Estudios en Salud. Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Carl Lowenberger
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Ellen M. Dotson
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Atlanta, Georgia, United States of America
| | - Gabriela O. Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundão, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Brasil
- * E-mail: (GOPS); (PMP)
| | - Pamela M. Pennington
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail: (GOPS); (PMP)
| |
Collapse
|
24
|
Ribeiro JMC, Genta FA, Sorgine MHF, Logullo R, Mesquita RD, Paiva-Silva GO, Majerowicz D, Medeiros M, Koerich L, Terra WR, Ferreira C, Pimentel AC, Bisch PM, Leite DC, Diniz MMP, Junior JLDSGV, Da Silva ML, Araujo RN, Gandara ACP, Brosson S, Salmon D, Bousbata S, González-Caballero N, Silber AM, Alves-Bezerra M, Gondim KC, Silva-Neto MAC, Atella GC, Araujo H, Dias FA, Polycarpo C, Vionette-Amaral RJ, Fampa P, Melo ACA, Tanaka AS, Balczun C, Oliveira JHM, Gonçalves RLS, Lazoski C, Rivera-Pomar R, Diambra L, Schaub GA, Garcia ES, Azambuja P, Braz GRC, Oliveira PL. An insight into the transcriptome of the digestive tract of the bloodsucking bug, Rhodnius prolixus. PLoS Negl Trop Dis 2014; 8:e2594. [PMID: 24416461 PMCID: PMC3886914 DOI: 10.1371/journal.pntd.0002594] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/04/2013] [Indexed: 12/14/2022] Open
Abstract
The bloodsucking hemipteran Rhodnius prolixus is a vector of Chagas' disease, which affects 7-8 million people today in Latin America. In contrast to other hematophagous insects, the triatomine gut is compartmentalized into three segments that perform different functions during blood digestion. Here we report analysis of transcriptomes for each of the segments using pyrosequencing technology. Comparison of transcript frequency in digestive libraries with a whole-body library was used to evaluate expression levels. All classes of digestive enzymes were highly expressed, with a predominance of cysteine and aspartic proteinases, the latter showing a significant expansion through gene duplication. Although no protein digestion is known to occur in the anterior midgut (AM), protease transcripts were found, suggesting secretion as pro-enzymes, being possibly activated in the posterior midgut (PM). As expected, genes related to cytoskeleton, protein synthesis apparatus, protein traffic, and secretion were abundantly transcribed. Despite the absence of a chitinous peritrophic membrane in hemipterans - which have instead a lipidic perimicrovillar membrane lining over midgut epithelia - several gut-specific peritrophin transcripts were found, suggesting that these proteins perform functions other than being a structural component of the peritrophic membrane. Among immunity-related transcripts, while lysozymes and lectins were the most highly expressed, several genes belonging to the Toll pathway - found at low levels in the gut of most insects - were identified, contrasting with a low abundance of transcripts from IMD and STAT pathways. Analysis of transcripts related to lipid metabolism indicates that lipids play multiple roles, being a major energy source, a substrate for perimicrovillar membrane formation, and a source for hydrocarbons possibly to produce the wax layer of the hindgut. Transcripts related to amino acid metabolism showed an unanticipated priority for degradation of tyrosine, phenylalanine, and tryptophan. Analysis of transcripts related to signaling pathways suggested a role for MAP kinases, GTPases, and LKBP1/AMP kinases related to control of cell shape and polarity, possibly in connection with regulation of cell survival, response of pathogens and nutrients. Together, our findings present a new view of the triatomine digestive apparatus and will help us understand trypanosome interaction and allow insights into hemipteran metabolic adaptations to a blood-based diet.
Collapse
Affiliation(s)
- José M. C. Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Fernando A. Genta
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos H. F. Sorgine
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Logullo
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael D. Mesquita
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela O. Paiva-Silva
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - David Majerowicz
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Medeiros
- Instituto Nacional de Metrologia Qualidade e Tecnologia, Diretoria de Metrologia Aplicada às Ciências da Vida, Programa de Biotecnologia, Prédio 27, CEP 25250-020, Duque de Caxias, Rio de Janeiro, Brazil
| | - Leonardo Koerich
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, CEP 21944-970, Rio de Janeiro, Brazil
| | - Walter R. Terra
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Clélia Ferreira
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - André C. Pimentel
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo M. Bisch
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel C. Leite
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michelle M. P. Diniz
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Lídio da S. G. V. Junior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Technological Innovation, Evandro Chagas Institute, Ananindeua, Pará, Brazil
| | - Manuela L. Da Silva
- Instituto Nacional de Metrologia Qualidade e Tecnologia, Diretoria de Metrologia Aplicada às Ciências da Vida, Programa de Biotecnologia, Prédio 27, CEP 25250-020, Duque de Caxias, Rio de Janeiro, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo N. Araujo
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Parasitologia do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Caroline P. Gandara
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sébastien Brosson
- Institute for Molecular Biology and Medicine (IBMM), Université Libre de Bruxelles, Gosselies, Belgium
| | - Didier Salmon
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sabrina Bousbata
- Institute for Molecular Biology and Medicine (IBMM), Université Libre de Bruxelles, Gosselies, Belgium
| | | | - Ariel Mariano Silber
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Michele Alves-Bezerra
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Katia C. Gondim
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mário Alberto C. Silva-Neto
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Georgia C. Atella
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helena Araujo
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe A. Dias
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carla Polycarpo
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel J. Vionette-Amaral
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Fampa
- Instituto de Biologia, DBA, UFRRJ, Seropédica, Rio de Janeiro, Brazil
| | - Ana Claudia A. Melo
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aparecida S. Tanaka
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carsten Balczun
- Zoology/Parasitology Group, Ruhr-Universität, Bochum, Germany
| | - José Henrique M. Oliveira
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata L. S. Gonçalves
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiano Lazoski
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, CEP 21944-970, Rio de Janeiro, Brazil
| | - Rolando Rivera-Pomar
- Centro Regional de Estudios Genomicos, Universidad Nacional de La Plata, Florencio Varela, Argentina
- Centro de Bioinvestigaciones, Universidad Nacional del Noroeste de Buenos Aires, Pergamino, Argentina
| | - Luis Diambra
- Centro Regional de Estudios Genomicos, Universidad Nacional de La Plata, Florencio Varela, Argentina
| | | | - Elói S. Garcia
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Azambuja
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Glória R. C. Braz
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L. Oliveira
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Cabrera AR, Shirk PD, Duehl AJ, Donohue KV, Grozinger CM, Evans JD, Teal PEA. Genomic organization and reproductive regulation of a large lipid transfer protein in the varroa mite, Varroa destructor (Anderson & Trueman). INSECT MOLECULAR BIOLOGY 2013; 22:505-522. [PMID: 23834736 DOI: 10.1111/imb.12040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The complete genomic region and corresponding transcript of the most abundant protein in phoretic varroa mites, Varroa destructor (Anderson & Trueman), were sequenced and have homology with acarine hemelipoglycoproteins and the large lipid transfer protein (LLTP) super family. The genomic sequence of VdLLTP included 14 introns and the mature transcript coded for a predicted polypeptide of 1575 amino acid residues. VdLLTP shared a minimum of 25% sequence identity with acarine LLTPs. Phylogenetic assessment showed VdLLTP was most closely related to Metaseiulus occidentalis vitellogenin and LLTP proteins of ticks; however, no heme binding by VdLLTP was detected. Analysis of lipids associated with VdLLTP showed that it was a carrier for free and esterified C12 -C22 fatty acids from triglycerides, diacylglycerides and monoacylglycerides. Additionally, cholesterol and β-sitosterol were found as cholesterol esters linked to common fatty acids. Transcript levels of VdLLTP were 42 and 310 times higher in phoretic female mites when compared with males and quiescent deutonymphs, respectively. Coincident with initiation of the reproductive phase, VdLLTP transcript levels declined to a third of those in phoretic female mites. VdLLTP functions as an important lipid transporter and should provide a significant RNA interference target for assessing the control of varroa mites.
Collapse
|
26
|
Walter-Nuno AB, Oliveira MP, Oliveira MF, Gonçalves RL, Ramos IB, Koerich LB, Oliveira PL, Paiva-Silva GO. Silencing of maternal heme-binding protein causes embryonic mitochondrial dysfunction and impairs embryogenesis in the blood sucking insect Rhodnius prolixus. J Biol Chem 2013; 288:29323-32. [PMID: 23986441 DOI: 10.1074/jbc.m113.504985] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heme molecule is the prosthetic group of many hemeproteins involved in essential physiological processes, such as electron transfer, transport of gases, signal transduction, and gene expression modulation. However, heme is a pro-oxidant molecule capable of propagating reactions leading to the generation of reactive oxygen species. The blood-feeding insect Rhodnius prolixus releases enormous amounts of heme during host blood digestion in the midgut lumen when it is exposed to a physiological oxidative challenge. Additionally, this organism produces a hemolymphatic heme-binding protein (RHBP) that transports heme to pericardial cells for detoxification and to growing oocytes for yolk granules and as a source of heme for embryo development. Here, we show that silencing of RHBP expression in female fat bodies reduced total RHBP circulating in the hemolymph, promoting oxidative damage to hemolymphatic proteins. Moreover, RHBP knockdown did not cause reduction in oviposition but led to the production of heme-depleted eggs (white eggs). A lack of RHBP did not alter oocyte fecundation. However, produced white eggs were nonviable. Embryo development cellularization and vitellin yolk protein degradation, processes that normally occur in early stages of embryogenesis, were compromised in white eggs. Total cytochrome c content, cytochrome c oxidase activity, citrate synthase activity, and oxygen consumption, parameters that indicate mitochondrial function, were significantly reduced in white eggs compared with normal dark red eggs. Our results showed that reduction of heme transport from females to growing oocytes by RHBP leads to embryonic mitochondrial dysfunction and impaired embryogenesis.
Collapse
|
27
|
Medeiros MN, Logullo R, Ramos IB, Sorgine MHF, Paiva-Silva GO, Mesquita RD, Machado EA, Coutinho MA, Masuda H, Capurro ML, Ribeiro JM, Cardoso Braz GR, Oliveira PL. Transcriptome and gene expression profile of ovarian follicle tissue of the triatomine bug Rhodnius prolixus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:823-31. [PMID: 21736942 PMCID: PMC3740404 DOI: 10.1016/j.ibmb.2011.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 06/13/2011] [Accepted: 06/16/2011] [Indexed: 05/24/2023]
Abstract
Insect oocytes grow in close association with the ovarian follicular epithelium (OFE), which escorts the oocyte during oogenesis and is responsible for synthesis and secretion of the eggshell. We describe a transcriptome of OFE of the triatomine bug Rhodnius prolixus, a vector of Chagas disease, to increase our knowledge of the role of FE in egg development. Random clones were sequenced from a cDNA library of different stages of follicle development. The transcriptome showed high commitment to transcription, protein synthesis, and secretion. The most abundant cDNA was a secreted (S) small, proline-rich protein with maximal expression in the vitellogenic follicle, suggesting a role in oocyte maturation. We also found Rp45, a chorion protein already described, and a putative chitin-associated cuticle protein that was an eggshell component candidate. Six transcripts coding for proteins related to the unfolded-protein response (UPR) by were chosen and their expression analyzed. Surprisingly, transcripts related to UPR showed higher expression during early stages of development and downregulation during late stages, when transcripts coding for S proteins participating in chorion formation were highly expressed. Several transcripts with potential roles in oogenesis and embryo development are also discussed. We propose that intense protein synthesis at the FE results in reticulum stress (RS) and that lowering expression of a set of genes related to cell survival should lead to degeneration of follicular cells at oocyte maturation. This paradoxical suppression of UPR suggests that ovarian follicles may represent an interesting model for studying control of RS and cell survival in professional S cell types.
Collapse
Affiliation(s)
- Marcelo N. Medeiros
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brasil
| | - Raquel Logullo
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brasil
| | - Isabela B. Ramos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brasil
| | - Marcos H. F. Sorgine
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brasil
| | - Gabriela O. Paiva-Silva
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brasil
| | - Rafael D. Mesquita
- Instituto Federal de Educação do Rio de Janeiro, Rio de Janeiro, RJ
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brasil
| | - Ednildo Alcantara Machado
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brasil
| | - Maria Alice Coutinho
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brasil
| | - Hatisaburo Masuda
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brasil
| | - Margareth L. Capurro
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo; São Paulo; SP
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brasil
| | - José M.C. Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, 12735 Twinbrook Parkway, Room 2E32, Rockville MD 20852 USA
| | - Glória Regina Cardoso Braz
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brasil
| | - Pedro L Oliveira
- Instituto Federal de Educação do Rio de Janeiro, Rio de Janeiro, RJ
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brasil
| |
Collapse
|
28
|
Stiebler R, Soares JBRC, Timm BL, Silva JR, Mury FB, Dansa-Petretski M, Oliveira MF. On the mechanisms involved in biological heme crystallization. J Bioenerg Biomembr 2011; 43:93-9. [PMID: 21301942 DOI: 10.1007/s10863-011-9335-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Blood-feeding organisms digest hemoglobin, releasing large quantities of heme inside their digestive tracts. Free heme is very toxic, and these organisms have evolved several mechanisms to protect against its deleterious effects. One of these adaptations is the crystallization of heme into the dark-brown pigment hemozoin (Hz). Here we review the process of Hz formation, focusing on organisms other than Plasmodium that have contributed to a better understanding of heme crystallization. Hemozoin has been found in several distinct classes of organisms including protozoa, helminths and insects and Hz formation is the predominant form of heme detoxification. The available evidence indicates that amphiphilic structures such as phospholipid membranes and lipid droplets accompanied by specific proteins play a major role in heme crystallization. Because this process is specific to a number of blood-feeding organisms and absent in their hosts, Hz formation is an attractive target for the development of novel drugs to control illnesses associated with these hematophagous organisms.
Collapse
Affiliation(s)
- Renata Stiebler
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
29
|
Caiaffa CD, Stiebler R, Oliveira MF, Lara FA, Paiva-Silva GO, Oliveira PL. Sn-protoporphyrin inhibits both heme degradation and hemozoin formation in Rhodnius prolixus midgut. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 40:855-860. [PMID: 20851767 DOI: 10.1016/j.ibmb.2010.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 08/18/2010] [Indexed: 05/29/2023]
Abstract
Hematophagy is a feeding habit that involves the ingestion of huge amounts of heme. The hematophagous hemipteran Rhodnius prolixus evolved many genetic resources to protect cells against heme toxicity. The primary barrier against the deleterious effects of heme is the aggregation of heme into hemozoin in the midgut lumen. Hemozoin formation is followed by the enzymatic degradation of heme by means of a unique pathway whose end product is dicysteinyl-biliverdin IX-γ (Rhodnius prolixus biliverdin, RpBv). These mechanisms are complemented by a heme-binding protein (RHBP) in the hemolymph that attenuates the pro-oxidant effects of heme. In this work, we show that when insects are fed with blood enriched with a heme analog, Sn-protoporphyrin (SnPP-IX), both hemozoin synthesis and RpBv production are inhibited in a dose-dependent manner. These effects are accompanied by increased oxidative damage to the midgut epithelium and inhibition of oviposition, indicating that hemozoin formation and heme degradation are protective mechanisms that work together and contributed to the adaptation of this insect to successfully feed on vertebrate blood.
Collapse
Affiliation(s)
- C D Caiaffa
- Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, CEP 21941-590, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
30
|
Toh SQ, Glanfield A, Gobert GN, Jones MK. Heme and blood-feeding parasites: friends or foes? Parasit Vectors 2010; 3:108. [PMID: 21087517 PMCID: PMC2999593 DOI: 10.1186/1756-3305-3-108] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 11/18/2010] [Indexed: 12/01/2022] Open
Abstract
Hemoparasites, like malaria and schistosomes, are constantly faced with the challenges of storing and detoxifying large quantities of heme, released from their catabolism of host erythrocytes. Heme is an essential prosthetic group that forms the reactive core of numerous hemoproteins with diverse biological functions. However, due to its reactive nature, it is also a potentially toxic molecule. Thus, the acquisition and detoxification of heme is likely to be paramount for the survival and establishment of parasitism. Understanding the underlying mechanism involved in this interaction could possibly provide potential novel targets for drug and vaccine development, and disease treatment. However, there remains a wide gap in our understanding of these mechanisms. This review summarizes the biological importance of heme for hemoparasite, and the adaptations utilized in its sequestration and detoxification.
Collapse
Affiliation(s)
- Shu Qin Toh
- Queensland Institute of Medical Research, Herston, Queensland, 4006, Australia.
| | | | | | | |
Collapse
|
31
|
Gonçalves RLS, Machado ACL, Paiva-Silva GO, Sorgine MHF, Momoli MM, Oliveira JHM, Vannier-Santos MA, Galina A, Oliveira PL, Oliveira MF. Blood-feeding induces reversible functional changes in flight muscle mitochondria of Aedes aegypti mosquito. PLoS One 2009; 4:e7854. [PMID: 19924237 PMCID: PMC2773413 DOI: 10.1371/journal.pone.0007854] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 10/21/2009] [Indexed: 11/18/2022] Open
Abstract
Background Hematophagy poses a challenge to blood-feeding organisms since products of blood digestion can exert cellular deleterious effects. Mitochondria perform multiple roles in cell biology acting as the site of aerobic energy-transducing pathways, and also an important source of reactive oxygen species (ROS), modulating redox metabolism. Therefore, regulation of mitochondrial function should be relevant for hematophagous arthropods. Here, we investigated the effects of blood-feeding on flight muscle (FM) mitochondria from the mosquito Aedes aegypti, a vector of dengue and yellow fever. Methodology/Principal Findings Blood-feeding caused a reversible reduction in mitochondrial oxygen consumption, an event that was parallel to blood digestion. These changes were most intense at 24 h after blood meal (ABM), the peak of blood digestion, when oxygen consumption was inhibited by 68%. Cytochromes c and a+a3 levels and cytochrome c oxidase activity of the electron transport chain were all reduced at 24 h ABM. Ultrastructural and molecular analyses of FM revealed that mitochondria fuse upon blood meal, a condition related to reduced ROS generation. Consistently, BF induced a reversible decrease in mitochondrial H2O2 formation during blood digestion, reaching their lowest values at 24 h ABM where a reduction of 51% was observed. Conclusion Blood-feeding triggers functional and structural changes in hematophagous insect mitochondria, which may represent an important adaptation to blood feeding.
Collapse
Affiliation(s)
- Renata L. S. Gonçalves
- Laboratório de Bioquímica Redox, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Inflamação e Metabolismo, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (INBEB), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina L. Machado
- Laboratório de Bioquímica Redox, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Inflamação e Metabolismo, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (INBEB), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela O. Paiva-Silva
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Marcos H. F. Sorgine
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Marisa M. Momoli
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Henrique M. Oliveira
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Marcos A. Vannier-Santos
- Laboratório de Biomorfologia Parasitária, Instituto de Pesquisa Gonçalo Moniz, Fiocruz, Salvador, Bahia, Brazil
| | - Antonio Galina
- Laboratório de Bioenergética & Fisiologia Mitocondrial, Instituto de Bioquímica Médica, Programa de Bioquímica e Biofísica Celular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L. Oliveira
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Marcus F. Oliveira
- Laboratório de Bioquímica Redox, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Inflamação e Metabolismo, Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem (INBEB), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
32
|
Magalhaes T, Oliveira IF, Melo-Santos MAV, Oliveira CMF, Lima CA, Ayres CFJ. Expression of defensin, cecropin, and transferrin in Aedes aegypti (Diptera: Culicidae) infected with Wuchereria bancrofti (Spirurida: Onchocercidae), and the abnormal development of nematodes in the mosquito. Exp Parasitol 2008; 120:364-71. [PMID: 18809401 DOI: 10.1016/j.exppara.2008.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 07/21/2008] [Accepted: 09/01/2008] [Indexed: 11/16/2022]
Abstract
The temporal expression of defensin, cecropin and transferrin was assessed in Aedes aegypti naturally refractory to Wuchereria bancrofti upon infection with this worm, in parallel to analysis of filarial development in the insect. Compared to controls, transcription of defensin and cecropin was higher in infected mosquitoes as soon as 2h post infection and peaked before 48h. Transferrin transcription was higher in infected mosquitoes at 24h, and at 48h was almost leveled to controls. At 72h and 7 days post infection, levels of all transcripts in infected insects decreased gradually and were similar to controls in most cases. Worm development in A. aegypti was visually abnormal from the beginning of infection. Here, we report, for the first time, the up-regulation of endogenous immune molecules in A. aegypti infected with W. bancrofti and provide a description of the worm development inside the insect. The specificities of A. aegypti-W. bancrofti model compared to other mosquito-filaria systems are discussed.
Collapse
Affiliation(s)
- Tereza Magalhaes
- Department of Entomology, Centro de Pesquisas Aggeu Magalhães/FIOCRUZ, Av. Moraes Rego s/n, Cidade Universitária, Recife PE, CEP 50670-420, Brazil
| | | | | | | | | | | |
Collapse
|
33
|
Magalhaes T, Brackney DE, Beier JC, Foy BD. Silencing an Anopheles gambiae catalase and sulfhydryl oxidase increases mosquito mortality after a blood meal. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2008; 68:134-43. [PMID: 18454489 PMCID: PMC2673501 DOI: 10.1002/arch.20238] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Catalase is a potent antioxidant, likely involved in post-blood meal homeostasis in mosquitoes. This enzyme breaks down H2O2, preventing the formation of the hydroxyl radical (HO*). Quiescins are newly classified sulfhydryl oxidases that bear a thioredoxin motif at the N-terminal and an ERV1-like portion at the C-terminal. These proteins have a major role in generating disulfides in intra- or extracellular environments, and thus participate in redox reactions. In the search for molecules to serve as targets for novel anti-mosquito strategies, we have silenced a catalase and a putative quiescin/sulfhydryl oxidase (QSOX), from the African malaria vector Anopheles gambiae, through RNA interference (RNAi) experiments. We observed that the survival of catalase- and QSOX-silenced insects was reduced over controls following blood digestion, most likely due to the compromised ability of mosquitoes to scavenge and/or prevent damage caused by blood meal-derived oxidative stress. The higher mortality effect was more accentuated in catalase-silenced mosquitoes, where catalase activity was reduced to low levels. Lipid peroxidation was higher in QSOX-silenced mosquitoes suggesting the involvement of this protein in redox homeostasis following a blood meal. This study points to the potential of molecules involved in antioxidant response and redox metabolism to serve as targets of novel anti-mosquito strategies and offers a screening methodology for finding targetable mosquito molecules.
Collapse
Affiliation(s)
- T Magalhaes
- Department of Epidemiology and Public Health, University of Miami, Miami, Florida, USA.
| | | | | | | |
Collapse
|
34
|
Haemozoin formation. Mol Biochem Parasitol 2008; 157:127-36. [DOI: 10.1016/j.molbiopara.2007.11.005] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 11/05/2007] [Accepted: 11/06/2007] [Indexed: 11/18/2022]
|
35
|
Negari S, Sulpher J, Pacello F, Ingrey K, Battistoni A, Lee BC. A role for Haemophilus ducreyi Cu,ZnSOD in resistance to heme toxicity. Biometals 2007; 21:249-58. [PMID: 17704897 DOI: 10.1007/s10534-007-9113-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 07/31/2007] [Indexed: 11/27/2022]
Abstract
The Cu,Zn superoxide dismutase (Cu,ZnSOD) from Haemophilus ducreyi is the only enzyme of this class which binds a heme molecule at its dimer interface. To explore the role of the enzyme in this heme-obligate bacterium, a sodC mutant was created by insertional inactivation. No difference in growth rate was observed during heme limitation. In contrast, under heme rich conditions growth of the sodC mutant was impaired compared to the wild type strain. This growth defect was abolished by supplementation of exogenous catalase. Genetic complementation of the sodC mutant in trans demonstrated that the enzymatic property or the heme-binding activity of the protein could repair the growth defect of the sodC mutant. These results indicate that Cu,ZnSOD protects Haemophilus ducreyi from heme toxicity.
Collapse
Affiliation(s)
- Shahin Negari
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, Canada, K1H 8M5
| | | | | | | | | | | |
Collapse
|
36
|
Oliveira MF, Gandara ACP, Braga CMS, Silva JR, Mury FB, Dansa-Petretski M, Menezes D, Vannier-Santos MA, Oliveira PL. Heme crystallization in the midgut of triatomine insects. Comp Biochem Physiol C Toxicol Pharmacol 2007; 146:168-174. [PMID: 17254848 DOI: 10.1016/j.cbpc.2006.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 10/26/2006] [Accepted: 12/08/2007] [Indexed: 11/15/2022]
Abstract
Hemozoin (Hz) is a heme crystal produced by several blood-feeding organisms in order to detoxify free heme released upon hemoglobin (Hb) digestion. Here we show that heme crystallization also occurs in three species of triatomine insects. Ultraviolet-visible and infrared light absorption spectra of insoluble pigments isolated from the midgut of three triatomine species Triatoma infestans, Dipetalogaster maximus and Panstrongylus megistus indicated that all produce Hz. Morphological analysis of T. infestans and D. maximus midguts revealed the close association of Hz crystals to perimicrovillar membranes and also as multicrystalline assemblies, forming nearly spherical structures. Heme crystallization was promoted by isolated perimicrovillar membranes from all three species of triatomine bugs in vitro in heat-sensitive reactions. In conclusion, the data presented here indicate that Hz formation is an ancestral adaptation of Triatominae to a blood-sucking habit and that the presence of perimicrovillar membranes plays a central role in this process.
Collapse
Affiliation(s)
- Marcus F Oliveira
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, 21941-590, Brazil.
| | - Ana Caroline P Gandara
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Cláudia M S Braga
- Petrobrás/CENPES, Divisão de Química, Setor de Química Orgânica, Cidade Universitária, Rio de Janeiro, RJ, 21949-900, Brazil
| | - José R Silva
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Flavia B Mury
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Marílvia Dansa-Petretski
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Diego Menezes
- Centro de Pesquisas Gonçalo Moniz, Fiocruz, Salvador, BA, Brazil
| | | | - Pedro L Oliveira
- Instituto de Bioquímica Médica, Programa de Biotecnologia e Biologia Molecular, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, 21941-590, Brazil
| |
Collapse
|
37
|
Silva JR, Mury FB, Oliveira MF, Oliveira PL, Silva CP, Dansa-Petretski M. Perimicrovillar membranes promote hemozoin formation into Rhodnius prolixus midgut. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:523-31. [PMID: 17517329 DOI: 10.1016/j.ibmb.2007.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 01/09/2007] [Accepted: 01/12/2007] [Indexed: 05/15/2023]
Abstract
Rhodnius prolixus is a hematophagous insect that ingests large quantities of blood in each blood-feeding session. This ingested blood provides important nutrients to sustain the insect's oogenesis and metabolic pathways. During the digestive process, however, huge amounts of heme are generated as a consequence of the hemoglobin breakdown. Heme is an extremely dangerous molecule, since it can generate reactive oxygen species in the presence of oxygen that impair the normal metabolism of the insect. Part of the hemoglobin-derived heme can associate with the perimicrovillar membranes (PMM) in the gut lumen of R. prolixus; in this study we demonstrate the participation of the PMM in a heme detoxification process. These membranes were able to successfully induce heme aggregation into hemozoin (Hz). Heme aggregation was not dependent on the erythrocyte membranes, since the contribution of these membranes to the process was negligible, demonstrating that the ability to induce heme aggregation is a feature of the PMM, possibly representing a pre-adaptation of the hemipterans to feeding on blood.
Collapse
Affiliation(s)
- José R Silva
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Av Alberto Lamego, 2000, Campos dos Goytacazes, Brazil
| | | | | | | | | | | |
Collapse
|
38
|
Pereira LOR, Oliveira PL, Almeida IC, Paiva-Silva GO. Biglutaminyl-biliverdin IX alpha as a heme degradation product in the dengue fever insect-vector Aedes aegypti. Biochemistry 2007; 46:6822-9. [PMID: 17508725 PMCID: PMC2763637 DOI: 10.1021/bi700011d] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hemoglobin digestion in the midgut of hematophagous animals results in the release of its prosthetic group, heme, which is a pro-oxidant molecule. Heme enzymatic degradation is a protective mechanism that has been described in several organisms, including plants, bacteria, and mammals. This reaction is catalyzed by heme oxygenase and results in formation of carbon monoxide, ferrous ion, and biliverdin IXalpha. During digestion, a large amount of a green pigment is produced and secreted into the intestinal lumen of Aedes aegypti adult females. In the case of another blood-sucking insect, the kissing-bug Rhodnius prolixus, we have recently shown that heme degradation involves a complex pathway that generates dicysteinyl-biliverdin IX gamma. The light absorption spectrum of the Aedes purified pigment was similar to that of biliverdin, but its mobility on a reverse-phase chromatography column suggested a compound less hydrophobic than biliverdin IXalpha. Structural characterization by ESI-MS revealed that the mosquito pigment is the alpha isomer of biliverdin bound to two glutamine residues by an amide bond. This biglutaminyl-biliverdin is formed by oxidative cleavage of the heme porphyrin ring followed by two subsequent additions of glutamine residues to the biliverdin IXalpha. The role of this pathway in the adaptation of this insect vector to a blood-feeding habit is discussed.
Collapse
Affiliation(s)
- Luiza O. R. Pereira
- Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-590, Brazil
| | - Pedro L. Oliveira
- Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-590, Brazil
| | - Igor C. Almeida
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
- Departamento de Parasitologia, Universidade de São Paulo, São Paulo, SP 05508-900, Brazil
- To whom correspondence should be addressed: Gabriela O. Paiva-Silva, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, CCS, sala 5, bloco D subsolo, Ilha do Fundão, Rio de Janeiro, 21941-590, Brazil, Tel.:55(21)25626751; Fax:55(21)22905436; E-Mail: ; and Igor C. Almeida, Department of Biological Sciences, University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, USA, Tel.: (915)747-6086; Fax: (915)747-5808; E-Mail:
| | - Gabriela O. Paiva-Silva
- Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-590, Brazil
- To whom correspondence should be addressed: Gabriela O. Paiva-Silva, Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, CCS, sala 5, bloco D subsolo, Ilha do Fundão, Rio de Janeiro, 21941-590, Brazil, Tel.:55(21)25626751; Fax:55(21)22905436; E-Mail: ; and Igor C. Almeida, Department of Biological Sciences, University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, USA, Tel.: (915)747-6086; Fax: (915)747-5808; E-Mail:
| |
Collapse
|
39
|
Corrêa Soares JBR, Maya-Monteiro CM, Bittencourt-Cunha PRB, Atella GC, Lara FA, d'Avila JCP, Menezes D, Vannier-Santos MA, Oliveira PL, Egan TJ, Oliveira MF. Extracellular lipid droplets promote hemozoin crystallization in the gut of the blood flukeSchistosoma mansoni. FEBS Lett 2007; 581:1742-50. [PMID: 17418143 DOI: 10.1016/j.febslet.2007.03.054] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 02/08/2007] [Accepted: 03/20/2007] [Indexed: 11/28/2022]
Abstract
Hemozoin (Hz) is a heme crystal produced upon hemoglobin digestion as the main mechanism of heme disposal in several hematophagous organisms. Here, we show that, in the helminth Schistosoma mansoni, Hz formation occurs in extracellular lipid droplets (LDs). Transmission electron microscopy of adult worms revealed the presence of numerous electron-lucent round structures similar to LDs in gut lumen, where multicrystalline Hz assemblies were found associated to their surfaces. Female regurgitates promoted Hz formation in vitro in reactions partially inhibited by boiling. Fractionation of regurgitates showed that Hz crystallization activity was essentially concentrated on lower density fractions, which have small amounts of pre-formed Hz crystals, suggesting that hydrophilic-hydrophobic interfaces, and not Hz itself, play a key catalytic role in Hz formation in S. mansoni. Thus, these data demonstrate that LDs present in the gut lumen of S. mansoni support Hz formation possibly by allowing association of heme to the lipid-water interface of these structures.
Collapse
Affiliation(s)
- Juliana B R Corrêa Soares
- Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Citelli M, Lara FA, da Silva Vaz I, Oliveira PL. Oxidative stress impairs heme detoxification in the midgut of the cattle tick, Rhipicephalus (Boophilus) microplus. Mol Biochem Parasitol 2006; 151:81-8. [PMID: 17123644 DOI: 10.1016/j.molbiopara.2006.10.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 10/18/2006] [Accepted: 10/19/2006] [Indexed: 11/19/2022]
Abstract
In the cattle tick Rhipicephalus (Boophilus) microplus digestion of blood is intracellular, accomplished by the so-called digest cells that fill the midgut lumen. Hydrolysis of hemoglobin in the digestive vesicles of these cells results in the release of large amounts of heme, a pro-oxidant compound, whose iron atom, together with H(2)O(2), may participate in the Fenton reaction and lead to the production of hydroxyl radicals. Here, we investigated the role of catalase, an enzyme responsible for H(2)O(2) detoxification. Fully engorged female ticks injected with 3-amino-1,2,4-triazole (AT), a catalase inhibitor, showed increased H(2)O(2) in the gut, together with diminished life span and lower egg-laying rates. Increased mortality observed upon AT injection was reversed by further injection of exogenous catalase, 2 days after AT treatment, confirming that increased death was due to inhibition of this enzyme by AT. In primary cultures of digest cells, intracellular H(2)O(2) is limited to specific organelles, while treatment with AT in vitro resulted in increased H(2)O(2) spreading all over the cell, confirming the role of catalase in regulating H(2)O(2) levels. Ticks fed on a calf that had been injected with AT showed marked inhibition of catalase activity in the gut and diminished life span, oviposition and engorgement. Digest cells of these ticks had an altered morphology, showing heme spread all over the cytosol, instead of being limited to the hemosomes. The amount of aggregated heme found in isolated hemosome was also strongly decreased in AT-treated cattle. All together, our results indicate that catalase performs an important role in the control of redox balance in R. microplus, which dramatically affects hemosome formation and stability. This enzyme may be a target in the development of new methods for tick control.
Collapse
Affiliation(s)
- Marta Citelli
- Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | | | | | | |
Collapse
|
41
|
Rhythmic expression of the cycle gene in a hematophagous insect vector. BMC Mol Biol 2006; 7:38. [PMID: 17069657 PMCID: PMC1636064 DOI: 10.1186/1471-2199-7-38] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Accepted: 10/27/2006] [Indexed: 11/18/2022] Open
Abstract
Background A large number of organisms have internal circadian clocks that enable them to adapt to the cyclic changes of the external environment. In the model organism Drosophila melanogaster, feedback loops of transcription and translation are believed to be crucial for the maintenance of the central pacemaker. In this mechanism the cycle (or bmal1) gene, which is constitutively expressed, plays a critical role activating the expression of genes that will later inhibit their own activity, thereby closing the loop. Unlike Drosophila, the molecular clock of insect vectors is poorly understood, despite the importance of circadian behavior in the dynamic of disease transmission. Results Here we describe the sequence, genomic organization and circadian expression of cycle in the crepuscular/nocturnal hematophagous sandfly Lutzomyia longipalpis, the main vector of visceral leishmaniasis in the Americas. Deduced amino acid sequence revealed that sandfly cycle has a C-terminal transactivation domain highly conserved among eukaryotes but absent in D. melanogaster. Moreover, an alternative form of the transcript was also identified. Interestingly, while cycle expression in Drosophila and other Diptera is constitutive, in sandflies it is rhythmic in males and female heads but constitutive in the female body. Blood-feeding, which causes down-regulation of period and timeless in this species, does not affect cycle expression. Conclusion Sequence and expression analysis of cycle in L. longipalpis show interesting differences compared to Drosophila suggesting that hematophagous vector species might present interesting new models to study the molecular control of insect circadian clocks.
Collapse
|
42
|
Silva JR, Gomes-Silva L, Lins UC, Nogueira NFS, Dansa-Petretski M. The haemoxisome: a haem-iron containing structure in the Rhodnius prolixus midgut cells. JOURNAL OF INSECT PHYSIOLOGY 2006; 52:542-50. [PMID: 16713601 DOI: 10.1016/j.jinsphys.2006.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 01/11/2006] [Accepted: 01/12/2006] [Indexed: 05/09/2023]
Abstract
Rhodnius prolixus midgut was analysed using transmission electron microscopy and electron spectroscopic imaging in order to localize the cellular structures involved in haem metabolism. In the posterior midgut, special cellular electron-dense structures were observed. These structures are here designated haemoxisomes. Haemoxisomes are present in the epithelial cells at various time points after a blood meal. Several days after the blood meal, some of them become less electron-dense. By electron spectroscopic imaging, large amounts of iron and oxygen were detected in these cellular structures. The iron is probably bound to the porphyrin ring as an iron-protoporphyrin IX complex, as detected using the diaminobenzidine technique. An interesting observation was the presence of endoplasmic reticulum surrounding the haemoxisomes during some special periods. Iron content was monitored in the posterior midgut epithelium and was found to be constant at the initial days after a blood meal, but slightly higher at the end of the digestive process (from 13th up to 20th day). These results are in agreement with the observation that the appearance of the haemoxisomes changes at the end of the digestive process. The ability to degrade haem seems to depend on the presence of endoplasmic reticulum as observed using a haem degradation assay in the presence of an endoplasmic reticulum-enriched fraction. Taken together these results suggest that haemoxisomes may play a role in intracellular haem detoxification.
Collapse
Affiliation(s)
- José Roberto Silva
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Av. Alberto Lamego 2000, Campos dos Goytacazes, Rio de Janeiro, RJ 28015-620, Brazil
| | | | | | | | | |
Collapse
|
43
|
Paiva-Silva GO, Cruz-Oliveira C, Nakayasu ES, Maya-Monteiro CM, Dunkov BC, Masuda H, Almeida IC, Oliveira PL. A heme-degradation pathway in a blood-sucking insect. Proc Natl Acad Sci U S A 2006; 103:8030-5. [PMID: 16698925 PMCID: PMC1472424 DOI: 10.1073/pnas.0602224103] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hematophagous insects are vectors of diseases that affect hundreds of millions of people worldwide. A common physiological event in the life of these insects is the hydrolysis of host hemoglobin in the digestive tract, leading to a massive release of heme, a known prooxidant molecule. Diverse organisms, from bacteria to plants, express the enzyme heme oxygenase, which catalyzes the oxidative degradation of heme to biliverdin (BV) IX, CO, and iron. Here, we show that the kissing bug Rhodnius prolixus, a vector of Chagas' disease, has a unique heme-degradation pathway wherein heme is first modified by addition of two cysteinylglycine residues before cleavage of the porphyrin ring, followed by trimming of the dipeptides. Furthermore, in contrast to most known heme oxygenases, which generate BV IXalpha, in this insect, the end product of heme detoxification is a dicysteinyl-BV IXgamma. Based on these results, we propose a heme metabolizing pathway that includes the identified intermediates produced during modification and cleavage of the heme porphyrin ring.
Collapse
Affiliation(s)
- Gabriela O. Paiva-Silva
- *Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, CEP 21941-590, Rio de Janeiro, Brazil
| | - Christine Cruz-Oliveira
- *Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, CEP 21941-590, Rio de Janeiro, Brazil
| | - Ernesto S. Nakayasu
- Department of Biological Sciences, University of Texas, El Paso, TX 79968-0519
- Departamento de Parasitologia, Universidade de São Paulo, São Paulo, SP 05508-900, Brazil
| | - Clarissa M. Maya-Monteiro
- Departamento de Fisiologia e Farmacodinâmica, Instituto Oswaldo Cruz, RJ, 21045-900, Rio de Janeiro, Brazil; and
| | - Boris C. Dunkov
- Department of Biochemistry and Molecular Biophysics, Center for Insect Science, University of Arizona, Tucson, AZ 85721
| | - Hatisaburo Masuda
- *Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, CEP 21941-590, Rio de Janeiro, Brazil
| | - Igor C. Almeida
- Department of Biological Sciences, University of Texas, El Paso, TX 79968-0519
- Departamento de Parasitologia, Universidade de São Paulo, São Paulo, SP 05508-900, Brazil
- **To whom correspondence may be addressed at:
Department of Biological Sciences, University of Texas, 500 West University Avenue, El Paso, TX 79968-0519. E-mail:
| | - Pedro L. Oliveira
- *Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, CEP 21941-590, Rio de Janeiro, Brazil
- To whom correspondence may be addressed at:
Instituto de Bioquímica Médica, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, CCS, Sala 5 Bloco D subsolo, Ilha do Fundão, 21941-590, Rio de Janeiro, Brazil. E-mail:
| |
Collapse
|
44
|
Meireles-Filho ACA, da S Rivas GB, Gesto JSM, Machado RC, Britto C, de Souza NA, Peixoto AA. The biological clock of an hematophagous insect: locomotor activity rhythms, circadian expression and downregulation after a blood meal. FEBS Lett 2005; 580:2-8. [PMID: 16337945 DOI: 10.1016/j.febslet.2005.11.031] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 11/10/2005] [Accepted: 11/13/2005] [Indexed: 11/29/2022]
Abstract
Despite the importance of circadian rhythms in vector-borne disease transmission, very little is known about its molecular control in hematophagous insect vectors. In Drosophila melanogaster, a negative feedback loop of gene expression has been shown to contribute to the clock mechanism. Here, we describe some features of the circadian clock of the sandfly Lutzomyia longipalpis, a vector of visceral leishmaniasis. Compared to D. melanogaster, sandfly period and timeless, two negative elements of the feedback loop, show similar peaks of mRNA abundance. On the other hand, the expression of Clock (a positive transcription factor) differs between the two species, raising the possibility that the different phases of Clock expression could be associated with the observed differences in circadian activity rhythms. In addition, we show a reduction in locomotor activity after a blood meal, which is correlated with downregulation of period and timeless expression levels. Our results suggest that the circadian pacemaker and its control over the activity rhythms in this hematophagous insect are modulated by blood intake.
Collapse
Affiliation(s)
- Antonio C A Meireles-Filho
- Department of Biochemistry and Molecular Biology, Instituto Oswaldo Cruz--Fiocruz, Av. Brasil 4365, Manguinhos, CEP 21045-900, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
45
|
Oliveira MF, Kycia SW, Gomez A, Kosar AJ, Bohle DS, Hempelmann E, Menezes D, Vannier-Santos MA, Oliveira PL, Ferreira ST. Structural and morphological characterization of hemozoin produced by Schistosoma mansoni and Rhodnius prolixus. FEBS Lett 2005; 579:6010-6. [PMID: 16229843 DOI: 10.1016/j.febslet.2005.09.035] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Revised: 07/22/2005] [Accepted: 09/05/2005] [Indexed: 11/30/2022]
Abstract
Hemozoin (Hz) is a heme crystal produced upon the digestion of hemoglobin (Hb) by blood-feeding organisms as a main mechanism of heme disposal. The structure of Hz consists of heme dimers bound by reciprocal iron-carboxylate interactions and stabilized by hydrogen bonds. We have recently described heme crystals in the blood fluke, Schistosoma mansoni, and in the kissing bug, Rhodnius prolixus. Here, we characterized the structures and morphologies of the heme crystals from those two organisms and compared them to synthetic beta-hematin (betaH). Synchrotron radiation X-ray powder diffraction showed that all heme crystals share the same unit cell and structure. The heme crystals isolated from S. mansoni and R. prolixus consisted of very regular units assembled in multicrystalline spherical structures exhibiting remarkably distinct surface morphologies compared to betaH. In both organisms, Hz formation occurs inside lipid droplet-like particles or in close association to phospholipid membranes. These results show, for the first time, the structural and morphological characterization of natural Hz samples obtained from these two blood-feeding organisms. Moreover, Hz formation occurring in close association to a hydrophobic environment seems to be a common trend for these organisms and may be crucial to produce very regular shaped phases, allowing the formation of multicrystalline assemblies in the guts of S. mansoni and R. prolixus.
Collapse
Affiliation(s)
- Marcus F Oliveira
- Instituto de Bioquímica Médica, Programas de Biologia Molecular e Biotecnologia, Bioquímica e Biofísica Celular, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, RJ 21941-590, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Atella GC, Gondim KC, Machado EA, Medeiros MN, Silva-Neto MAC, Masuda H. Oogenesis and egg development in triatomines: a biochemical approach. AN ACAD BRAS CIENC 2005; 77:405-30. [PMID: 16127549 DOI: 10.1590/s0001-37652005000300005] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In triatomines, as well as in other insects, accumulation of yolk is a process in which an extra-ovarian tissue, the fat body, produces yolk proteins that are packed in the egg. The main protein, synthesized by the fat body, which is accumulated inside the oocyte, is vitellogenin. This process is also known as vitellogenesis. There are growing evidences in triatomines that besides fat body the ovary also produces yolk proteins. The way these yolk proteins enter the oocyte will be discussed. Yolk is a complex material composed of proteins, lipids, carbohydrates and other minor components which are packed inside the oocyte in an organized manner. Fertilization triggers embryogenesis, a process where an embryo will develop. During embryogenesis the yolk will be used for the construction of a new individual, the first instar nymph. The challenge for the next decade is to understand how and where these egg proteins are used up together with their non-protein components, in pace with the genetic program of the embryo, which enables cell differentiation (early phase of embryogenesis) and embryo differentiation (late phase) inside the egg.
Collapse
Affiliation(s)
- Georgia C Atella
- Bloco H, Centro de Ciências da Saúde, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21944-590, Brazil
| | | | | | | | | | | |
Collapse
|
47
|
Maya-Monteiro CM, Alves LR, Pinhal N, Abdalla DSP, Oliveira PL. HeLp, a heme-transporting lipoprotein with an antioxidant role. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:81-88. [PMID: 14976984 DOI: 10.1016/j.ibmb.2003.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plasma lipoproteins involved in lipid transport are target for free radical-evoked pathological conditions in several mammalian models. The main hemolymphatic protein of Boophilus microplus is a heme-binding lipoprotein (HeLp, for Heme LipoProtein) that carries dietary heme produced from degradation of vertebrate hemoglobin to tissues of the tick. Addition of heme to phospholipid liposomes resulted in intense lipid peroxidation, which was inhibited by addition of HeLp. HeLp prevented lysis of red blood cells by heme. HeLp also inhibited reactions of heme with tert-butyl hydroperoxide (t-BOOH) or hydrogen peroxide. HeLp, quite differently from other lipoproteins, presents a protective intrinsic mechanism to counteract heme toxicity, while preserving the heme molecule to be reused by the tick. This is the first report of a lipoprotein acting as an antioxidant particle against heme-induced radical damage.
Collapse
Affiliation(s)
- Clarissa M Maya-Monteiro
- Departamento de Bioquímica Médica, ICB, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil.
| | | | | | | | | |
Collapse
|
48
|
Geiser DL, Chavez CA, Flores-Munguia R, Winzerling JJ, Pham DQD. Aedes aegypti ferritin. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3667-74. [PMID: 12950250 DOI: 10.1046/j.1432-1033.2003.03709.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Diseases transmitted by hematophagous (blood-feeding) insects are responsible for millions of human deaths worldwide. In hematophagous insects, the blood meal is important for regulating egg maturation. Although a high concentration of iron is toxic for most organisms, hematophagous insects seem unaffected by the iron load in a blood meal. One means by which hematophagous insects handle this iron load is, perhaps, by the expression of iron-binding proteins, specifically the iron storage protein ferritin. In vertebrates, ferritin is an oligomer composed of two types of subunits called heavy and light chains, and is part of the constitutive antioxidant response. Previously, we found that the insect midgut, a main site of iron load, is also a primary site of ferritin expression and that, in the yellow fever mosquito, Aedes aegypti, the expression of the ferritin heavy-chain homologue (HCH) is induced following blood feeding. We now show that the expression of the Aedes ferritin light-chain homologue (LCH) is also induced with blood-feeding, and that the genes of the LCH and HCH are tightly clustered. mRNA levels for both LCH- and HCH-genes increase with iron, H2O2 and hemin treatment, and the temporal expression of the genes is very similar. These results confirm that ferritin could serve as the cytotoxic protector in mosquitoes against the oxidative challenge of the bloodmeal. Finally, although the Aedes LCH has no iron responsive element (IRE) at its 5'-untranslated region (UTR), the 5'-UTR contains several introns that are alternatively spliced, and this alternative splicing event is different from any ferritin message seen to date.
Collapse
Affiliation(s)
- Dawn L Geiser
- College of Agriculture and Life Sciences, The University of Arizona, Tucson, AZ, USA
| | | | | | | | | |
Collapse
|
49
|
Pham DQD, Shaffer JJ, Chavez CA, Douglass PL. Identification and mapping of the promoter for the gene encoding the ferritin heavy-chain homologue of the yellow fever mosquito Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:51-62. [PMID: 12459200 DOI: 10.1016/s0965-1748(02)00167-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Mosquitoes are responsible for the transmission of numerous human diseases. The recent development of transgenic mosquitoes provides a new tool to examine molecular interactions between insect vectors and the pathogens they transmit. One focus in generating transgenic mosquito lies on expressing anti-pathogenic proteins at primary sites of pathogenic invasions, specifically the mosquito gut. Promoters that direct the expression of anti-pathogenic proteins in the mosquito gut are thus sought after because they may provide ways to hinder pathogenic development in the mosquito. Here, we report the identification and mapping of a strong promoter from the Aedes aegypti ferritin heavy-chain homologue (HCH) gene. All known insect ferritin HCH genes are expressed in the gut and inducible by an iron overload. Our transfection assays and DNase I footprinting analyses show that the mosquito ferritin HCH-gene contains regulatory elements both upstream and downstream of the transcriptional start site. The promoter of this gene contains a CF2 site, two GATA-binding sites, an E2F site, a TATA-box, an AP-1 site and a C/EBP binding site.
Collapse
Affiliation(s)
- D Q-D Pham
- Department of Biological Sciences, University of Wisconsin-Parkside, Kenosha, WI 53141-2000, USA.
| | | | | | | |
Collapse
|
50
|
Logullo C, Moraes J, Dansa-Petretski M, Vaz IS, Masuda A, Sorgine MHF, Braz GR, Masuda H, Oliveira PL. Binding and storage of heme by vitellin from the cattle tick, Boophilus microplus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:1805-1811. [PMID: 12429132 DOI: 10.1016/s0965-1748(02)00162-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We have previously shown (, Curr. Biol. 9, 703-706) that the cattle tick Boophilus microplus does not synthesize heme, relying solely on the recovery of the heme from the diet to make all its hemeproteins. Here we present evidence that Vitellin (VN(1)), the main tick yolk protein, is a reservoir of heme for embryo development. VN was isolated from eggs at different days throughout embryogenesis. Immediately after oviposition, Boophilus VN contains approximately one mol of heme/mol of protein. During embryo development about one third of egg VN is degraded. The remaining VN molecules bind part of the heme released. These results suggest that VN functions as a heme reservoir, binding any free heme that exceeds the amount needed for development. In vitro measurement of the binding of heme to VN showed that each VN molecule binds up to 31 heme molecules. The association of heme with VN strongly inhibits heme-induced lipid peroxidation, suggesting that binding of heme is an important antioxidant mechanism to protect embryo cells from oxidative damage. This mechanism allows this hematophagous arthropod to safely store heme obtained from a blood meal inside their eggs for future use. Taken together our data suggest that, besides its known roles, VN also plays additional functions as a heme deposit and an antioxidant protective molecule.
Collapse
Affiliation(s)
- C Logullo
- Departamento de Bioquímica Médica, ICB - CCS - UFRJ, Bloco D, sala DS-5, Ilha do Fundão, Cidade Universitária, Rio de Janeiro, Brazil, CEP 21941-690.
| | | | | | | | | | | | | | | | | |
Collapse
|