1
|
Doghish AS, El-Sayyad GS, Abdel Mageed SS, Abd-Elmawla MA, Sallam AAM, El Tabaa MM, Rizk NI, Ashraf A, Mohammed OA, Mangoura SA, Al-Noshokaty TM, Zaki MB, El-Dakroury WA, Elrebehy MA, Abdel-Reheim MA, Elballal MS, Abulsoud AI. The emerging role of miRNAs in pituitary adenomas: From molecular signatures to diagnostic potential. Exp Cell Res 2024; 442:114279. [PMID: 39389336 DOI: 10.1016/j.yexcr.2024.114279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Pituitary adenomas (PAs) are an array of tumors originating from the pituitary gland. PAs are sorted as functional or nonfunctional according to their hormonal activity and classified according to size into microadenomas and macroadenomas. Still, the cellular events that trigger the transformations in pituitary neoplasms are not fully understood, and the current classification methods do not precisely predict clinical behavior. A rising number of researches have emphasized the role of miRNAs, that drawn more attention as oncogenic molecules or tumor suppressors. The etiopathological mechanisms of PAs include multiple molecular cascades that are influenced by different miRNAs. miRNAs control the cell cycle control, pro- or antiapoptotic processes, and tumor invasion and metastasis. miRNAs offer a novel perspective on tumor features and behaviors and might be valuable in prognostication and therapeutic plans. In pituitary adenomas, miRNAs showed a specific expression pattern depending on their size, cell origin, remission, and treatments. Screening miRNA expression patterns is promising to monitor and evaluate recurrence, as well as to investigate the efficacy of radiation and chemotherapy for PAs exhibiting aggressive behavior. Thus, the current review investigated the interplay of the miRNAs' pivotal role in offering new opportunities to translate these innovative epigenetic tools into healthcare applications.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Gharieb S El-Sayyad
- Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Cairo, Egypt; Microbiology and Immunology Department, Faculty of Pharmacy, Galala University, Galala City, Suez, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Safwat Abdelhady Mangoura
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Tohada M Al-Noshokaty
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Galala University, New Galala City, 43713, Suez, Egypt
| | | | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang, Republic of Korea
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| |
Collapse
|
2
|
Wang X, ShiYang X, Ma W, Wu X, Lu Y. Extracellular signal-regulated protein kinase 5 modulates the spindle assembly to coordinate the oocyte meiotic maturation. Theriogenology 2024; 226:335-342. [PMID: 38959844 DOI: 10.1016/j.theriogenology.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Extracellular signal-regulated protein kinase 5 (Erk5), a member of the mitogen-activated protein kinase (MAPK) family, is ubiquitously expressed in all eukaryotic cells and is implicated in the various mitotic processes such as cell survival, proliferation, migration, and differentiation. However, the potential functional roles of Erk5 in oocyte meiosis have not been fully determined. In this study, we document that ERK5 participates in the meiotic maturation of mouse oocytes by regulating the spindle assembly to ensure the meiotic progression. We unexpectedly found that phosphorylated ERK5 was localized in the spindle pole region at metaphase I and II stages by immunostaining analysis. Inhibition of ERK5 activity using its specific inhibitor XMD8-92 dramatically reduced the incidence of first polar body extrusion. In addition, inhibition of ERK5 evoked the spindle assembly checkpoint to arrest oocytes at metaphase I stage by impairing the spindle assembly, chromosome alignment and kinetochore-microtubule attachment. Mechanically, over-strengthened microtubule stability was shown to disrupt the microtubule dynamics and thus compromise the spindle assembly in ERK5-inhibited oocytes. Conversely, overexpression of ERK5 caused decreased level of acetylated α-tubulin and spindle defects. Collectively, we conclude that ERK5 plays an important role in the oocyte meiotic maturation by regulating microtubule dynamics and spindle assembly.
Collapse
Affiliation(s)
- Xia Wang
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Xiayan ShiYang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Ma
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China; Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, China
| | - Xue Wu
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China; Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, China
| | - Yajuan Lu
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, China.
| |
Collapse
|
3
|
Mondru AK, Wilkinson B, Aljasir MA, Alrumayh A, Greaves G, Emmett M, Albohairi S, Pritchard-Jones R, Cross MJ. The ERK5 pathway in BRAFV600E melanoma cells plays a role in development of acquired resistance to dabrafenib but not vemurafenib. FEBS Lett 2024; 598:2011-2027. [PMID: 38977937 DOI: 10.1002/1873-3468.14960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/28/2024] [Accepted: 05/14/2024] [Indexed: 07/10/2024]
Abstract
Malignant melanoma, an aggressive skin cancer with a poor prognosis, frequently features BRAFV600E mutation resulting in activation of the MAPK pathway and melanocyte proliferation and survival. BRAFV600E inhibitors like vemurafenib and dabrafenib have enhanced patient survival, yet drug resistance remains a significant challenge. We investigated the role of the ERK5 pathway in BRAFV600E melanoma cells and cells with acquired resistance to PLX4720 (vemurafenib) and dabrafenib. In BRAFV600E melanoma, ERK5 inhibition minimally affected viability compared to ERK1/2 inhibition. In vemurafenib-resistant cells, ERK5 inhibition alone didn't impact viability or restore drug sensitivity to vemurafenib. However, in dabrafenib-resistant cells, ERK5 inhibition reduced viability and enhanced the anti-proliferative effect of MEK1/2 inhibition. Targeting the ERK5 pathway may represent a therapeutic opportunity in dabrafenib-resistant melanoma.
Collapse
Affiliation(s)
- Anil Kumar Mondru
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| | - Beth Wilkinson
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| | - Mohammad A Aljasir
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| | - Ahmed Alrumayh
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| | - Georgia Greaves
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| | - Maxine Emmett
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| | - Saad Albohairi
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| | - Rowan Pritchard-Jones
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| | - Michael J Cross
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| |
Collapse
|
4
|
Lombardi Z, Gardini L, Kashchuk AV, Menconi A, Lulli M, Tusa I, Tubita A, Maresca L, Stecca B, Capitanio M, Rovida E. Importin subunit beta-1 mediates ERK5 nuclear translocation, and its inhibition synergizes with ERK5 kinase inhibitors in reducing cancer cell proliferation. Mol Oncol 2024. [PMID: 38965815 DOI: 10.1002/1878-0261.13674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/30/2024] [Accepted: 05/27/2024] [Indexed: 07/06/2024] Open
Abstract
The mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase 5 (ERK5) is emerging as a promising target in cancer. Indeed, alterations of the MEK5/ERK5 pathway are present in many types of cancer, including melanoma. One of the key events in MAPK signalling is MAPK nuclear translocation and its subsequent regulation of gene expression. Likewise, the effects of ERK5 in supporting cancer cell proliferation have been linked to its nuclear localization. Despite many processes regulating ERK5 nuclear translocation having been determined, the nuclear transporters involved have not yet been identified. Here, we investigated the role of importin subunit alpha (α importin) and importin subunit beta-1 (importin β1) in ERK5 nuclear shuttling to identify additional targets for cancer treatment. Either importin β1 knockdown or the α/β1 importin inhibitor ivermectin reduced the nuclear amount of overexpressed and endogenous ERK5 in HEK293T and A375 melanoma cells, respectively. These results were confirmed in single-molecule microscopy in HeLa cells. Moreover, immunofluorescence analysis showed that ivermectin impairs epidermal growth factor (EGF)-induced ERK5 nuclear shuttling in HeLa cells. Both co-immunoprecipitation experiments and proximity ligation assay provided evidence that ERK5 and importin β1 interact and that this interaction is further induced by EGF administration and prevented by ivermectin treatment. The combination of ivermectin and the ERK5 inhibitor AX15836 synergistically reduced cell viability and colony formation ability in A375 and HeLa cells and was more effective than single treatments in preventing the growth of A375 and HeLa spheroids. The increased reduction of cell viability upon the same combination was also observed in patient-derived metastatic melanoma cells. The combination of ivermectin and ERK5 inhibitors other than AX15836 provided similar effects on cell viability. The identification of importin β1 as the nuclear transporter of ERK5 may be exploited for additional ERK5-inhibiting strategies for cancer therapy.
Collapse
Affiliation(s)
- Zoe Lombardi
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Italy
| | - Lucia Gardini
- National Institute of Optics, National Research Council, Florence, Italy
- European Laboratory of Non-Linear Spectroscopy (LENS), Florence, Italy
| | - Anatolii V Kashchuk
- European Laboratory of Non-Linear Spectroscopy (LENS), Florence, Italy
- Department of Physics and Astronomy, University of Florence, Italy
| | - Alessio Menconi
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Italy
| | - Matteo Lulli
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Italy
| | - Ignazia Tusa
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Italy
| | - Alessandro Tubita
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Italy
| | - Luisa Maresca
- Core Research Laboratory - Institute for Cancer Research and Prevention (ISPRO), Florence, Italy
| | - Barbara Stecca
- Core Research Laboratory - Institute for Cancer Research and Prevention (ISPRO), Florence, Italy
| | - Marco Capitanio
- European Laboratory of Non-Linear Spectroscopy (LENS), Florence, Italy
- Department of Physics and Astronomy, University of Florence, Italy
| | - Elisabetta Rovida
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Italy
| |
Collapse
|
5
|
Wen L, Liu Z, Zhou L, Liu Z, Li Q, Geng B, Xia Y. Bone and Extracellular Signal-Related Kinase 5 (ERK5). Biomolecules 2024; 14:556. [PMID: 38785963 PMCID: PMC11117709 DOI: 10.3390/biom14050556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/17/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Bones are vital for anchoring muscles, tendons, and ligaments, serving as a fundamental element of the human skeletal structure. However, our understanding of bone development mechanisms and the maintenance of bone homeostasis is still limited. Extracellular signal-related kinase 5 (ERK5), a recently identified member of the mitogen-activated protein kinase (MAPK) family, plays a critical role in the pathogenesis and progression of various diseases, especially neoplasms. Recent studies have highlighted ERK5's significant role in both bone development and bone-associated pathologies. This review offers a detailed examination of the latest research on ERK5 in different tissues and diseases, with a particular focus on its implications for bone health. It also examines therapeutic strategies and future research avenues targeting ERK5.
Collapse
Affiliation(s)
- Lei Wen
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- Department of Orthopedics and Trauma Surgery, Affiliated Hospital of Yunnan University, Kunming 650032, China
| | - Zirui Liu
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Libo Zhou
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Zhongcheng Liu
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Qingda Li
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Bin Geng
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Yayi Xia
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| |
Collapse
|
6
|
Alharbi B, Alnajjar LI, Alhassan HH, Khan S, Jawaid T, Abdullaev BS, Alshammari N, Yadav DK, Adnan M, Shamsi A. Identification of mitogen-activated protein kinase 7 inhibitors from natural products: Combined virtual screening and dynamic simulation studies. J Mol Recognit 2024; 37:e3067. [PMID: 37956676 DOI: 10.1002/jmr.3067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/22/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
Mitogen-activated protein kinase 7 (MAPK7) is a serine/threonine protein kinase that belongs to the MAPK family and plays a vital role in various cellular processes such as cell proliferation, differentiation, gene transcription, apoptosis, metabolism, and cell survival. The elevated expression of MAPK7 has been associated with the onset and progression of multiple aggressive tumors in humans, underscoring the potential of targeting MAPK7 pathways in therapeutic research. This pursuit holds promise for the advancement of anticancer drug development by developing potential MAPK7 inhibitors. To look for potential MAPK7 inhibitors, we exploited structure-based virtual screening of natural products from the ZINC database. First, the Lipinski rule of five criteria was used to filter a large library of ~90,000 natural compounds, followed by ADMET and pan-assay interference compounds (PAINS) filters. Then, top hits were chosen based on their strong binding affinity as determined by molecular docking. Further, interaction analysis was performed to find effective and specific compounds that can precisely bind to the binding pocket of MAPK7. Consequently, two compounds, ZINC12296700 and ZINC02123081, exhibited significant binding affinity and demonstrated excellent drug-like properties. All-atom molecular dynamics simulations for 200 ns confirmed the stability of MAPK7-ZINC12296700 and MAPK7-ZINC02123081 docked complexes. According to the molecular mechanics Poisson-Boltzmann surface area investigation, the binding affinities of both complexes were considerable. Overall, the result suggests that ZINC12296700 and ZINC02123081 might be used as promising leads to develop novel MAPK7 inhibitors. Since these compounds would interfere with the kinase activity of MAPK7, therefore, may be implemented to control cell growth and proliferation in cancer after required validations.
Collapse
Affiliation(s)
- Bandar Alharbi
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Lina I Alnajjar
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hassan H Alhassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Shama Khan
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Science, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Talha Jawaid
- Department of Pharmacology, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Bekhzod S Abdullaev
- Department of Strategic Development, Innovation and Research, New Uzbekistan University, Tashkent, Uzbekistan
- Department of Oncology, School of Medicine, Central Asian University, Tashkent, Uzbekistan
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Incheon, South Korea
- Arontier Co., Seoul, Republic of Korea
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Anas Shamsi
- Center for Medical and Bio-Allied Health Sciences Research Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
7
|
Kim C. Extracellular Signal-Regulated Kinases Play Essential but Contrasting Roles in Osteoclast Differentiation. Int J Mol Sci 2023; 24:15342. [PMID: 37895023 PMCID: PMC10607827 DOI: 10.3390/ijms242015342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Bone homeostasis is regulated by the balanced actions of osteoblasts that form the bone and osteoclasts (OCs) that resorb the bone. Bone-resorbing OCs are differentiated from hematopoietic monocyte/macrophage lineage cells, whereas osteoblasts are derived from mesenchymal progenitors. OC differentiation is induced by two key cytokines, macrophage colony-stimulating factor (M-CSF), a factor essential for the proliferation and survival of the OCs, and receptor activator of nuclear factor kappa-B ligand (RANKL), a factor for responsible for the differentiation of the OCs. Mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinases (ERKs), p38, and c-Jun N-terminal kinases, play an essential role in regulating the proliferation, differentiation, and function of OCs. ERKs have been known to play a critical role in the differentiation and activation of OCs. In most cases, ERKs positively regulate OC differentiation and function. However, several reports present conflicting conclusions. Interestingly, the inhibition of OC differentiation by ERK1/2 is observed only in OCs differentiated from RAW 264.7 cells. Therefore, in this review, we summarize the current understanding of the conflicting actions of ERK1/2 in OC differentiation.
Collapse
Affiliation(s)
- Chaekyun Kim
- BK21 Program in Biomedical Science & Engineering, Laboratory for Leukocyte Signaling Research, Department of Pharmacology, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
8
|
Qiu M, Lin Q, Liu Y, Chen P, Zhou Y, Jiang Y, Zhou Z, Wen Q, Zhou X, Liang X, Gan H, Yu H. Potentially functional genetic variants in RPS6KA4 and MAP2K5 in the MAPK signaling pathway predict HBV-related hepatocellular carcinoma survival. Mol Carcinog 2023; 62:1378-1387. [PMID: 37278562 DOI: 10.1002/mc.23583] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023]
Abstract
Hepatocellular carcinoma (HCC) ranks the third leading cause of cancer deaths with a dismal 5-year survival rate. The mitogen-activated protein kinase (MAPK) signaling pathway is abnormally activated in HCC to promote growth and aggressive metastatic potential of cancer cells. Therefore, genetic variants in the MAPK signaling pathway may serve as potential predictors of Hepatitis B virus (HBV)-related HCC survival. In the present study, we performed a two-stage survival analysis to evaluate the associations between 10,912 single nucleotide polymorphisms (SNPs) in 79 MAPK signaling pathway genes and the overall survival (OS) of 866 HBV-related HCC patients, followed by functional annotation. In combined datasets, we identified two novel and potential functional SNPs (RPS6KA4 rs600377 T>G and MAP2K5 rs17300363 A>C) as prognostic factors for HBV-related HCC, with adjusted allelic hazards ratios of 1.24 (95% confidence interval [CI] = 1.05-1.46, p = 0.010) and 1.48 (1.15-1.91, p = 0.001), respectively. Furthermore, their combined risk genotypes also predicted a poor survival in a dose-response manner in the combined data set (Ptrend < 0.001). Additional functional analysis showed that RPS6KA4 rs600377 G and MAP2K5 rs17300363 C alleles were associated with elevated mRNA expression levels of the corresponding genes in normal tissues. These results provide new insights into the role of genetic variants in the MAPK signaling pathway genes in HBV-related HCC survival.
Collapse
Affiliation(s)
- Moqin Qiu
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qiuling Lin
- Drug Clinical Trial Institution, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yingchun Liu
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Peiqin Chen
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yunxiang Zhou
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yanji Jiang
- Department of Research Service, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zihan Zhou
- Department of Tumor Prevention and Control, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qiuping Wen
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xianguo Zhou
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiumei Liang
- Department of Disease Process Management, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Haijie Gan
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hongping Yu
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
9
|
Le NT. The significance of ERK5 catalytic-independent functions in disease pathways. Front Cell Dev Biol 2023; 11:1235217. [PMID: 37601096 PMCID: PMC10436230 DOI: 10.3389/fcell.2023.1235217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023] Open
Abstract
Extracellular signal-regulated kinase 5 (ERK5), also known as BMK1 or MAPK7, represents a recent addition to the classical mitogen-activated protein kinase (MAPK) family. This family includes well-known members such as ERK1/2, c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK), as well as atypical MAPKs such as ERK3, ERK4, ERK7 (ERK8), and Nemo-like kinase (NLK). Comprehensive reviews available elsewhere provide detailed insights into ERK5, which interested readers can refer to for in-depth knowledge (Nithianandarajah-Jones et al., 2012; Monti et al., Cancers (Basel), 2022, 14). The primary aim of this review is to emphasize the essential characteristics of ERK5 and shed light on the intricate nature of its activation, with particular attention to the catalytic-independent functions in disease pathways.
Collapse
Affiliation(s)
- Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
10
|
de Mattos K, Dumas FO, Campolina-Silva GH, Belleannée C, Viger RS, Tremblay JJ. ERK5 Cooperates With MEF2C to Regulate Nr4a1 Transcription in MA-10 and MLTC-1 Leydig Cells. Endocrinology 2023; 164:bqad120. [PMID: 37539861 PMCID: PMC10435423 DOI: 10.1210/endocr/bqad120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/30/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Abstract
Leydig cells produce hormones required for the development and maintenance of sex characteristics and fertility in males. MEF2 transcription factors are important regulators of Leydig cell gene expression and steroidogenesis. ERK5 is an atypical member of the MAP kinase family that modulates transcription factor activity, either by direct phosphorylation or by acting as a transcriptional coactivator. While MEF2 and ERK5 are known to cooperate transcriptionally, the presence and role of ERK5 in Leydig cells remained unknown. Our goal was to determine whether ERK5 is present in Leydig cells and whether it cooperates with MEF2 to regulate gene expression. We found that ERK5 is present in Leydig cells in testicular tissue and immortalized cell lines. ERK5 knockdown in human chorionic gonadotrophin-treated MA-10 Leydig cells reduced steroidogenesis and decreased Star and Nr4a1 expression. Luciferase assays using a synthetic reporter plasmid containing 3 MEF2 elements revealed that ERK5 enhances MEF2-dependent promoter activation. Although ERK5 did not cooperate with MEF2 on the Star promoter in Leydig cell lines, we found that ERK5 and MEF2C do cooperate on the Nr4a1 promoter, which contains 2 adjacent MEF2 elements. Mutation of each MEF2 element in a short version of the Nr4a1 promoter significantly decreased the ERK5/MEF2C cooperation, indicating that both MEF2 elements need to be intact. The ERK5/MEF2C cooperation did not require phosphorylation of MEF2C on Ser387. Taken together, our data identify ERK5 as a new regulator of MEF2 activity in Leydig cells and provide potential new insights into mechanisms that regulate Leydig cell gene expression and function.
Collapse
Affiliation(s)
- Karine de Mattos
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, G1V 4G2, Canada
| | - Félix-Olivier Dumas
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, G1V 4G2, Canada
| | - Gabriel Henrique Campolina-Silva
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, G1V 4G2, Canada
| | - Clémence Belleannée
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, G1V 4G2, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Robert S Viger
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, G1V 4G2, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Jacques J Tremblay
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, G1V 4G2, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
| |
Collapse
|
11
|
Sánchez-Fdez A, Matilla-Almazán S, Del Carmen S, Abad M, Arconada-Luque E, Jiménez-Suárez J, Chinchilla-Tábora LM, Ruíz-Hidalgo MJ, Sánchez-Prieto R, Pandiella A, Esparís-Ogando A. Etiopathogenic role of ERK5 signaling in sarcoma: prognostic and therapeutic implications. Exp Mol Med 2023; 55:1247-1257. [PMID: 37332046 PMCID: PMC10317974 DOI: 10.1038/s12276-023-01008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 06/20/2023] Open
Abstract
Sarcomas constitute a heterogeneous group of rare and difficult-to-treat tumors that can affect people of all ages, representing one of the most common forms of cancer in childhood and adolescence. Little is known about the molecular entities involved in sarcomagenesis. Therefore, the identification of processes that lead to the development of the disease may uncover novel therapeutic opportunities. Here, we show that the MEK5/ERK5 signaling pathway plays a critical role in the pathogenesis of sarcomas. By developing a mouse model engineered to express a constitutively active form of MEK5, we demonstrate that the exclusive activation of the MEK5/ERK5 pathway can promote sarcomagenesis. Histopathological analyses identified these tumors as undifferentiated pleomorphic sarcomas. Bioinformatic studies revealed that sarcomas are the tumors in which ERK5 is most frequently amplified and overexpressed. Moreover, analysis of the impact of ERK5 protein expression on overall survival in patients diagnosed with different sarcoma types in our local hospital showed a 5-fold decrease in median survival in patients with elevated ERK5 expression compared with those with low expression. Pharmacological and genetic studies revealed that targeting the MEK5/ERK5 pathway drastically affects the proliferation of human sarcoma cells and tumor growth. Interestingly, sarcoma cells with knockout of ERK5 or MEK5 were unable to form tumors when engrafted into mice. Taken together, our results reveal a role of the MEK5/ERK5 pathway in sarcomagenesis and open a new scenario to be considered in the treatment of patients with sarcoma in which the ERK5 pathway is pathophysiologically involved.
Collapse
Affiliation(s)
- Adrián Sánchez-Fdez
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC)-CSIC, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-Universidad de Salamanca, Salamanca, Spain
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Sofía Matilla-Almazán
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC)-CSIC, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Sofía Del Carmen
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departmento de Patología, Hospital Universitario de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | - Mar Abad
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departmento de Patología, Hospital Universitario de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | - Elena Arconada-Luque
- Universidad de Castilla-La Mancha, Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, Spain
| | - Jaime Jiménez-Suárez
- Universidad de Castilla-La Mancha, Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, Spain
| | - Luis Miguel Chinchilla-Tábora
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Departmento de Patología, Hospital Universitario de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | - Mª José Ruíz-Hidalgo
- Universidad de Castilla-La Mancha, Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, Spain
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Área de Bioquímica y Biología Molecular. Facultad de Medicina, Albacete, Spain
| | - Ricardo Sánchez-Prieto
- Universidad de Castilla-La Mancha, Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad asociada al CSIC, Albacete, Spain
- Universidad de Castilla-La Mancha, Departamento de Ciencias Médicas, Facultad de Medicina, Albacete, Spain
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Madrid, Spain
- Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas (IIBM-CSIC)-Universidad de Castilla-La Mancha (UCLM), Albacete, Spain
| | - Atanasio Pandiella
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC)-CSIC, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Azucena Esparís-Ogando
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC)-CSIC, Salamanca, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|
12
|
Matsushita MT, Wang H, Abel GM, Xia Z. Inducible and Conditional Activation of Adult Neurogenesis Rescues Cadmium-Induced Hippocampus-Dependent Memory Deficits in ApoE4-KI Mice. Int J Mol Sci 2023; 24:9118. [PMID: 37298071 PMCID: PMC10253189 DOI: 10.3390/ijms24119118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The apolipoprotein E (ApoE) gene is a genetic risk factor for late-onset Alzheimer's disease, in which ε4 allele carriers have increased risk compared to the common ε3 carriers. Cadmium (Cd) is a toxic heavy metal and a potential neurotoxicant. We previously reported a gene-environment interaction (GxE) effect between ApoE4 and Cd that accelerates or increases the severity of the cognitive decline in ApoE4-knockin (ApoE4-KI) mice exposed to 0.6 mg/L CdCl2 through drinking water compared to control ApoE3-KI mice. However, the mechanisms underlying this GxE effect are not yet defined. Because Cd impairs adult neurogenesis, we investigated whether genetic and conditional stimulation of adult neurogenesis can functionally rescue Cd-induced cognitive impairment in ApoE4-KI mice. We crossed either ApoE4-KI or ApoE3-KI to an inducible Cre mouse strain, Nestin-CreERTM:caMEK5-eGFPloxP/loxP (designated as caMEK5), to generate ApoE4-KI:caMEK5 and ApoE3-KI:caMEK5. Tamoxifen administration in these mice genetically and conditionally induces the expression of caMEK5 in adult neural stem/progenitor cells, enabling the stimulation of adult neurogenesis in the brain. Male ApoE4-KI:caMEK5 and ApoE3-KI:caMEK5 mice were exposed to 0.6 mg/L CdCl2 throughout the experiment, and tamoxifen was administered once Cd-induced impairment in spatial working memory was consistently observed. Cd exposure impaired spatial working memory earlier in ApoE4-KI:caMEK5 than in ApoE3-KI:caMEK5 mice. In both strains, these deficits were rescued after tamoxifen treatment. Consistent with these behavioral findings, tamoxifen treatment enhanced adult neurogenesis by increasing the morphological complexity of adult-born immature neurons. These results provide evidence for a direct link between impaired spatial memory and adult neurogenesis in this GxE model.
Collapse
Affiliation(s)
| | | | | | - Zhengui Xia
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
13
|
Tusa I, Menconi A, Tubita A, Rovida E. Pathophysiological Impact of the MEK5/ERK5 Pathway in Oxidative Stress. Cells 2023; 12:cells12081154. [PMID: 37190064 DOI: 10.3390/cells12081154] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/22/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Oxidative stress regulates many physiological and pathological processes. Indeed, a low increase in the basal level of reactive oxygen species (ROS) is essential for various cellular functions, including signal transduction, gene expression, cell survival or death, as well as antioxidant capacity. However, if the amount of generated ROS overcomes the antioxidant capacity, excessive ROS results in cellular dysfunctions as a consequence of damage to cellular components, including DNA, lipids and proteins, and may eventually lead to cell death or carcinogenesis. Both in vitro and in vivo investigations have shown that activation of the mitogen-activated protein kinase kinase 5/extracellular signal-regulated kinase 5 (MEK5/ERK5) pathway is frequently involved in oxidative stress-elicited effects. In particular, accumulating evidence identified a prominent role of this pathway in the anti-oxidative response. In this respect, activation of krüppel-like factor 2/4 and nuclear factor erythroid 2-related factor 2 emerged among the most frequent events in ERK5-mediated response to oxidative stress. This review summarizes what is known about the role of the MEK5/ERK5 pathway in the response to oxidative stress in pathophysiological contexts within the cardiovascular, respiratory, lymphohematopoietic, urinary and central nervous systems. The possible beneficial or detrimental effects exerted by the MEK5/ERK5 pathway in the above systems are also discussed.
Collapse
Affiliation(s)
- Ignazia Tusa
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Alessio Menconi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Alessandro Tubita
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| |
Collapse
|
14
|
Miller D, Harnor SJ, Martin MP, Noble RA, Wedge SR, Cano C. Modulation of ERK5 Activity as a Therapeutic Anti-Cancer Strategy. J Med Chem 2023; 66:4491-4502. [PMID: 37002872 PMCID: PMC10108346 DOI: 10.1021/acs.jmedchem.3c00072] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Indexed: 04/03/2023]
Abstract
The extracellular signal-regulated kinase 5 (ERK5) signaling pathway is one of four conventional mitogen-activated protein (MAP) kinase pathways. Genetic perturbation of ERK5 has suggested that modulation of ERK5 activity may have therapeutic potential in cancer chemotherapy. This Miniperspective examines the evidence for ERK5 as a drug target in cancer, the structure of ERK5, and the evolution of structurally distinct chemotypes of ERK5 kinase domain inhibitors. The emerging complexities of ERK5 pharmacology are discussed, including the confounding phenomenon of paradoxical ERK5 activation by small-molecule ERK5 inhibitors. The impact of the recent development and biological evaluation of potent and selective bifunctional degraders of ERK5 and future opportunities in ERK modulation are also explored.
Collapse
Affiliation(s)
- Duncan
C. Miller
- Cancer
Research Horizons Therapeutic Innovation, Newcastle Drug Discovery
Group, Newcastle University Centre for Cancer, School of Natural and
Environmental Sciences, Newcastle University, Bedson Building, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Suzannah J. Harnor
- Cancer
Research Horizons Therapeutic Innovation, Newcastle Drug Discovery
Group, Newcastle University Centre for Cancer, School of Natural and
Environmental Sciences, Newcastle University, Bedson Building, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Mathew P. Martin
- Cancer
Research Horizons Therapeutic Innovation, Newcastle Drug Discovery
Group, Translational and Clinical Research
Institute, Paul O’Gorman Building, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Richard A. Noble
- Cancer
Research Horizons Therapeutic Innovation, Newcastle Drug Discovery
Group, Translational and Clinical Research
Institute, Paul O’Gorman Building, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Stephen R. Wedge
- Cancer
Research Horizons Therapeutic Innovation, Newcastle Drug Discovery
Group, Translational and Clinical Research
Institute, Paul O’Gorman Building, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Celine Cano
- Cancer
Research Horizons Therapeutic Innovation, Newcastle Drug Discovery
Group, Newcastle University Centre for Cancer, School of Natural and
Environmental Sciences, Newcastle University, Bedson Building, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
15
|
Mondru AK, Aljasir MA, Alrumayh A, Nithianandarajah GN, Ahmed K, Muller J, Goldring CEP, Wilm B, Cross MJ. VEGF Stimulates Activation of ERK5 in the Absence of C-Terminal Phosphorylation Preventing Nuclear Localization and Facilitating AKT Activation in Endothelial Cells. Cells 2023; 12:967. [PMID: 36980305 PMCID: PMC10047687 DOI: 10.3390/cells12060967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/02/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Extracellular-signal-regulated kinase 5 (ERK5) is critical for normal cardiovascular development. Previous studies have defined a canonical pathway for ERK5 activation, showing that ligand stimulation leads to MEK5 activation resulting in dual phosphorylation of ERK5 on Thr218/Tyr220 residues within the activation loop. ERK5 then undergoes a conformational change, facilitating phosphorylation on residues in the C-terminal domain and translocation to the nucleus where it regulates MEF2 transcriptional activity. Our previous research into the importance of ERK5 in endothelial cells highlighted its role in VEGF-mediated tubular morphogenesis and cell survival, suggesting that ERK5 played a unique role in endothelial cells. Our current data show that in contrast to EGF-stimulated HeLa cells, VEGF-mediated ERK5 activation in human dermal microvascular endothelial cells (HDMECs) does not result in C-terminal phosphorylation of ERK5 and translocation to the nucleus, but instead to a more plasma membrane/cytoplasmic localisation. Furthermore, the use of small-molecule inhibitors to MEK5 and ERK5 shows that instead of regulating MEF2 activity, VEGF-mediated ERK5 is important for regulating AKT activity. Our data define a novel pathway for ERK5 activation in endothelial cells leading to cell survival.
Collapse
Affiliation(s)
- Anil Kumar Mondru
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Mohammad A. Aljasir
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Ahmed Alrumayh
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Gopika N. Nithianandarajah
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Katie Ahmed
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Jurgen Muller
- Cardiovascular Research Group, School of Pharmacy and Medical Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Christopher E. P. Goldring
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Bettina Wilm
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - Michael J. Cross
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| |
Collapse
|
16
|
You I, Donovan KA, Krupnick NM, Boghossian AS, Rees MG, Ronan MM, Roth JA, Fischer ES, Wang ES, Gray NS. Acute pharmacological degradation of ERK5 does not inhibit cellular immune response or proliferation. Cell Chem Biol 2022; 29:1630-1638.e7. [PMID: 36220104 PMCID: PMC9675722 DOI: 10.1016/j.chembiol.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/26/2022] [Accepted: 09/17/2022] [Indexed: 01/31/2023]
Abstract
Recent interest in the role that extracellular signal-regulated kinase 5 (ERK5) plays in various diseases, particularly cancer and inflammation, has grown. Phenotypes observed from genetic knockdown or deletion of ERK5 suggested that targeting ERK5 could have therapeutic potential in various disease settings, motivating the development ATP-competitive ERK5 inhibitors. However, these inhibitors were unable to recapitulate the effects of genetic loss of ERK5, suggesting that ERK5 may have key kinase-independent roles. To investigate potential non-catalytic functions of ERK5, we report the development of INY-06-061, a potent and selective heterobifunctional degrader of ERK5. In contrast to results reported through genetic knockdown of ERK5, INY-06-061-induced ERK5 degradation did not induce anti-proliferative effects in multiple cancer cell lines or suppress inflammatory responses in primary endothelial cells. Thus, we developed and characterized a chemical tool useful for validating phenotypes reported to be associated with genetic ERK5 ablation and for guiding future ERK5-directed drug discovery efforts.
Collapse
Affiliation(s)
- Inchul You
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Noah M Krupnick
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Matthew G Rees
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Melissa M Ronan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jennifer A Roth
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Eric S Wang
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
17
|
Munmun F, Mohiuddin OA, Hoang VT, Burow ME, Bunnell BA, Sola VM, Carpentieri AR, Witt-Enderby PA. The role of MEK1/2 and MEK5 in melatonin-mediated actions on osteoblastogenesis, osteoclastogenesis, bone microarchitecture, biomechanics, and bone formation. J Pineal Res 2022; 73:e12814. [PMID: 35674448 DOI: 10.1111/jpi.12814] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 12/11/2022]
Abstract
Melatonin, the primary hormone involved in circadian entrainment, plays a significant role in bone physiology. This study aimed to assess the role of MEK1/2 and MEK5 in melatonin-mediated actions in mouse and human mesenchymal stem cells (MSCs) and on bone using small-molecule inhibitors and CRISPR/Cas9 knockout approaches. Consistent with in vitro studies performed in mMSCs and hMSCs, nightly (25 mg/kg, i.p., 45 days) injections with PD184352 (MEK1/2 inhibitor) or Bix02189 (MEK5 inhibitor) or SC-1-151 (MEK1/2/5 inhibitor) demonstrated that MEK1/2 and MEK5 were the primary drivers underlying melatonin's actions on bone density, microarchitecture (i.e., trabecular number, separation, and connectivity density), and bone mechanical properties (i.e., ultimate stress) through increases in osteogenic (RUNX2, BMP-2, FRA-1, OPG) expression and decreases in PPARγ. Furthermore, CRISPR/Cas9 knockout of MEK1 or MEK5 in mMSCs seeded on PLGA scaffolds and placed into critical-size calvarial defects in Balb(c) mice (male and female) revealed that treatment with melatonin (15 mg/L; p.o., nightly, 90 days) mediates sex-specific actions of MEK1 and MEK5 in new bone formation. This study is the first to demonstrate a role for MEK1/2 and MEK5 in modulating melatonin-mediated actions on bone formation in vivo and in a sex-specific manner.
Collapse
Affiliation(s)
- Fahima Munmun
- Division of Pharmaceutical Sciences, Duquesne University School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Omair A Mohiuddin
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Van T Hoang
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Matthew E Burow
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Bruce A Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Veronica M Sola
- Department of Oral Biology, Faculty of Odontology, National University of Cordoba, Cordoba, Argentina
| | - Agata R Carpentieri
- Faculty of Odontology, National University of Cordoba and National Council for Scientific and Technical Research (CONICET); Institute for Health Sciences Research (INICSA), Cordoba, Argentina
| | - Paula A Witt-Enderby
- Division of Pharmaceutical Sciences, Duquesne University School of Pharmacy, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
18
|
Effect of Extracellular Signal-Regulated Protein Kinase 5 Inhibition in Clear Cell Renal Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23158448. [PMID: 35955582 PMCID: PMC9369143 DOI: 10.3390/ijms23158448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
(1) Background: Extracellular signal-regulating kinase 5 (ERK5) has been implicated in many cellular functions, including survival, proliferation, and vascularization. Our objectives were to examine the expression and effect of ERK5 in clear cell renal cell carcinoma (ccRCC). (2) Methods: The expressions of ERK5 and its regulating micro-RNA miR-143 were investigated using immunohistochemistry and quantitative reverse transcriptase PCR in surgical specimens of ccRCC patients. With invitro and in vivo studies, we used pharmacologic ERK5 inhibitor XMD8-92, RNA interference, pre-miR-143 transduction, Western blotting, MTS assay, apoptosis assay, and subcutaneous xenograft model. (3) Results: A strong ERK5 expression in surgical specimen was associated with high-grade (p = 0.01), high-recurrence free rate (p = 0.02), and high cancer-specific survival (p = 0.03). Expression levels of ERK5 and miR-143 expression level were correlated (p = 0.049). Pre-miR-143 transduction into ccRCC cell A498 suppressed ERK5 expression. ERK5 inhibition enhanced cyclin-dependent kinase inhibitor p21 expression and decreased anti-apoptotic molecules BCL2, resulting in decreased cell proliferation and survival both in ccRCC and endothelial cells. In the xenograft model, ERK5 inhibitor XMD8-92 suppressed tumor growth. (4) Conclusions: ERK5 is regulated by miR-143, and ERK5 inhibition is a promising target for ccRCC treatment.
Collapse
|
19
|
Arconada-Luque E, Jiménez-Suarez J, Pascual-Serra R, Nam-Cha SH, Moline T, Cimas FJ, Fliquete G, Ortega-Muelas M, Roche O, Fernández-Aroca DM, Muñoz Velasco R, García-Flores N, Garnés-García C, Sánchez-Fdez A, Matilla-Almazán S, Sánchez-Arévalo Lobo VJ, Hernández-Losa J, Belandia B, Pandiella A, Esparís-Ogando A, Ramón y Cajal S, del Peso L, Sánchez-Prieto R, Ruiz-Hidalgo MJ. ERK5 Is a Major Determinant of Chemical Sarcomagenesis: Implications in Human Pathology. Cancers (Basel) 2022; 14:cancers14143509. [PMID: 35884568 PMCID: PMC9316148 DOI: 10.3390/cancers14143509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2022] [Accepted: 07/16/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Sarcoma is a heterogeneous group of tumors poorly studied with few therapeutic opportunities. Interestingly, the role of MAPKs still remains unclear in sarcomatous pathology. Here, we describe for the first time the critical role of ERK5 in the biology of soft tissue sarcoma by using in vitro and in vivo approaches in a murine experimental model of chemical sarcomagenesis. Indeed, our observations were extrapolated to a short series of human leiomyosarcoma and rhabdomyosarcomas. Furthermore, transcriptome analysis allows us to demonstrate the critical role of KLF2 in the biological effects of ERK5. Therefore, the data presented here open new windows in the diagnosis and therapy of soft tissue sarcomas. Abstract Sarcomas are a heterogeneous group of tumors in which the role of ERK5 is poorly studied. To clarify the role of this MAPK in sarcomatous pathology, we used a murine 3-methyl-cholanthrene (3MC)-induced sarcoma model. Our data show that 3MC induces pleomorphic sarcomas with muscle differentiation, showing an increased expression of ERK5. Indeed, this upregulation was also observed in human sarcomas of muscular origin, such as leiomyosarcoma or rhabdomyosarcoma. Moreover, in cell lines derived from these 3MC-induced tumors, abrogation of Mapk7 expression by using specific shRNAs decreased in vitro growth and colony-forming capacity and led to a marked loss of tumor growth in vivo. In fact, transcriptomic profiling in ERK5 abrogated cell lines by RNAseq showed a deregulated gene expression pattern for key biological processes such as angiogenesis, migration, motility, etc., correlating with a better prognostic in human pathology. Finally, among the various differentially expressed genes, Klf2 is a key mediator of the biological effects of ERK5 as indicated by its specific interference, demonstrating that the ERK5–KLF2 axis is an important determinant of sarcoma biology that should be further studied in human pathology.
Collapse
Affiliation(s)
- Elena Arconada-Luque
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
| | - Jaime Jiménez-Suarez
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
| | - Raquel Pascual-Serra
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
| | - Syong Hyun Nam-Cha
- Servicio de Anatomía Patológica, Hospital General de Albacete, 02008 Albacete, Spain;
| | - Teresa Moline
- Grupo de Patología Molecular Traslacional, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona Centro de Investigación Biomédica en RED de Cancer CIBERONC, 08035 Barcelona, Spain; (T.M.); (G.F.); (J.H.-L.); (S.R.y.C.)
| | - Francisco J. Cimas
- Unidad de Bioquímica y Biología Molecular, Servicio de Instrumentación Biomédica, Universidad de Castilla-La Mancha, 02008 Albacete, Spain;
| | - Germán Fliquete
- Grupo de Patología Molecular Traslacional, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona Centro de Investigación Biomédica en RED de Cancer CIBERONC, 08035 Barcelona, Spain; (T.M.); (G.F.); (J.H.-L.); (S.R.y.C.)
| | - Marta Ortega-Muelas
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
| | - Olga Roche
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
- Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Diego M. Fernández-Aroca
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
| | - Raúl Muñoz Velasco
- Grupo de Oncología Molecular, Facultad de Ciencias Experimentales, Instituto de Investigación Biosanitaria, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain; (R.M.V.); (V.J.S.-A.L.)
- Departamento de Anatomía Patológica, Instituto de Investigación Hospital 12 de Octubre, Av. Córdoba, s/n, 28041 Madrid, Spain
| | - Natalia García-Flores
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
| | - Cristina Garnés-García
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
| | - Adrián Sánchez-Fdez
- Instituto de Biología Molecular y Celular del Cáncer-CSIC, 37007 Salamanca, Spain; (A.S.-F.); (S.M.-A.); (A.P.); (A.E.-O.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en RED de Cancer CIBERONC, 37007 Salamanca, Spain
| | - Sofía Matilla-Almazán
- Instituto de Biología Molecular y Celular del Cáncer-CSIC, 37007 Salamanca, Spain; (A.S.-F.); (S.M.-A.); (A.P.); (A.E.-O.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en RED de Cancer CIBERONC, 37007 Salamanca, Spain
| | - Víctor J. Sánchez-Arévalo Lobo
- Grupo de Oncología Molecular, Facultad de Ciencias Experimentales, Instituto de Investigación Biosanitaria, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain; (R.M.V.); (V.J.S.-A.L.)
- Departamento de Anatomía Patológica, Instituto de Investigación Hospital 12 de Octubre, Av. Córdoba, s/n, 28041 Madrid, Spain
| | - Javier Hernández-Losa
- Grupo de Patología Molecular Traslacional, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona Centro de Investigación Biomédica en RED de Cancer CIBERONC, 08035 Barcelona, Spain; (T.M.); (G.F.); (J.H.-L.); (S.R.y.C.)
| | - Borja Belandia
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, 28029 Madrid, Spain;
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer-CSIC, 37007 Salamanca, Spain; (A.S.-F.); (S.M.-A.); (A.P.); (A.E.-O.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en RED de Cancer CIBERONC, 37007 Salamanca, Spain
| | - Azucena Esparís-Ogando
- Instituto de Biología Molecular y Celular del Cáncer-CSIC, 37007 Salamanca, Spain; (A.S.-F.); (S.M.-A.); (A.P.); (A.E.-O.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en RED de Cancer CIBERONC, 37007 Salamanca, Spain
| | - Santiago Ramón y Cajal
- Grupo de Patología Molecular Traslacional, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona Centro de Investigación Biomédica en RED de Cancer CIBERONC, 08035 Barcelona, Spain; (T.M.); (G.F.); (J.H.-L.); (S.R.y.C.)
| | - Luis del Peso
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), 28029 Madrid, Spain;
- Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias CIBERES, 28029 Madrid, Spain
| | - Ricardo Sánchez-Prieto
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
- Departamento de Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Departamento de Biología del Cáncer, Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’, Consejo Superior de Investigaciones Científicas (IIBM-CSIC)-Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Correspondence:
| | - María José Ruiz-Hidalgo
- Laboratorio de Oncología Molecular, Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas, Unidad Asociada de Biomedicina UCLM, Unidad Asociada al CSIC, Universidad de Castilla-La Mancha, 02008 Albacete, Spain; (E.A.-L.); (J.J.-S.); (R.P.-S.); (M.O.-M.); (O.R.); (D.M.F.-A.); (N.G.-F.); (C.G.-G.); (M.J.R.-H.)
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Área de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| |
Collapse
|
20
|
Cook SJ, Lochhead PA. ERK5 Signalling and Resistance to ERK1/2 Pathway Therapeutics: The Path Less Travelled? Front Cell Dev Biol 2022; 10:839997. [PMID: 35903549 PMCID: PMC9315226 DOI: 10.3389/fcell.2022.839997] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/13/2022] [Indexed: 12/01/2022] Open
Abstract
The RAS-regulated RAF-MEK1/2-ERK1/2 signalling pathway is frequently de-regulated in human cancer. Melanoma in particular exhibits a high incidence of activating BRAFV600E/K and NRASQ61L/K mutations and such cells are addicted to the activity of these mutant oncoproteins. As a result three different BRAF inhibitors (BRAFi) have now been approved for BRAFV600E/K- mutant melanoma and have transformed the treatment of this disease. Despite this, clinical responses are typically transient as tumour cells develop resistance. These resistance mechanisms frequently involve reinstatement of ERK1/2 signalling and BRAFi are now deployed in combination with one of three approved MEK1/2 inhibitors (MEKi) to provide more durable, but still transient, clinical responses. Furthermore, inhibitors to ERK1/2 (ERK1/2i) have also been developed to counteract ERK1/2 signalling. However, recent studies have suggested that BRAFi/MEKi and ERK1/2i resistance can arise through activation of a parallel signalling pathway leading to activation of ERK5, an unusual protein kinase that contains both a kinase domain and a transcriptional transactivation domain. Here we review the evidence supporting ERK5 as a mediator of BRAFi/MEKi and ERK1/2i resistance. We also review the challenges in targeting ERK5 signalling with small molecules, including paradoxical activation of the transcriptional transactivation domain, and discuss new therapeutic modalities that could be employed to target ERK5.
Collapse
Affiliation(s)
- Simon J. Cook
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Pamela A. Lochhead
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
21
|
Huang CJ, Choo KB, Chen CF. The MicroRNA-Signaling-Peroxisome Proliferator-Activated Receptor Gamma Connection in the Modulation of Adipogenesis: Bioinformatics Projection on Chicken. Poult Sci 2022; 101:101950. [PMID: 35689996 PMCID: PMC9192975 DOI: 10.1016/j.psj.2022.101950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/19/2022] [Accepted: 04/15/2022] [Indexed: 10/29/2022] Open
|
22
|
Greenblatt MB, Shim JH, Bok S, Kim JM. The Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase Pathway in Osteoblasts. J Bone Metab 2022; 29:1-15. [PMID: 35325978 PMCID: PMC8948490 DOI: 10.11005/jbm.2022.29.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/17/2022] [Indexed: 12/01/2022] Open
Abstract
Extracellular signal-regulated kinases (ERKs) are evolutionarily ancient signal transducers of the mitogen-activated protein kinase (MAPK) family that have long been linked to the regulation of osteoblast differentiation and bone formation. Here, we review the physiological functions, biochemistry, upstream activators, and downstream substrates of the ERK pathway. ERK is activated in skeletal progenitors and regulates osteoblast differentiation and skeletal mineralization, with ERK serving as a key regulator of Runt-related transcription factor 2, a critical transcription factor for osteoblast differentiation. However, new evidence highlights context-dependent changes in ERK MAPK pathway wiring and function, indicating a broader set of physiological roles associated with changes in ERK pathway components or substrates. Consistent with this importance, several human skeletal dysplasias are associated with dysregulation of the ERK MAPK pathway, including neurofibromatosis type 1 and Noonan syndrome. The continually broadening array of drugs targeting the ERK pathway for the treatment of cancer and other disorders makes it increasingly important to understand how interference with this pathway impacts bone metabolism, highlighting the importance of mouse studies to model the role of the ERK MAPK pathway in bone formation.
Collapse
Affiliation(s)
- Matthew B. Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical, New York, NY,
USA
- Research Division, Hospital for Special Surgery, New York, NY,
USA
| | - Jae-Hyuck Shim
- Division of Rheumatology, Department of Medicine, UMass Chan Medical School, Worcester, MA,
USA
- Horae Gene Therapy Center, and Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA,
USA
| | - Seoyeon Bok
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical, New York, NY,
USA
| | - Jung-Min Kim
- Division of Rheumatology, Department of Medicine, UMass Chan Medical School, Worcester, MA,
USA
| |
Collapse
|
23
|
Clinical Significance and Regulation of ERK5 Expression and Function in Cancer. Cancers (Basel) 2022; 14:cancers14020348. [PMID: 35053510 PMCID: PMC8773716 DOI: 10.3390/cancers14020348] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 02/06/2023] Open
Abstract
Extracellular signal-regulated kinase 5 (ERK5) is a unique kinase among MAPKs family members, given its large structure characterized by the presence of a unique C-terminal domain. Despite increasing data demonstrating the relevance of the ERK5 pathway in the growth, survival, and differentiation of normal cells, ERK5 has recently attracted the attention of several research groups given its relevance in inflammatory disorders and cancer. Accumulating evidence reported its role in tumor initiation and progression. In this review, we explore the gene expression profile of ERK5 among cancers correlated with its clinical impact, as well as the prognostic value of ERK5 and pERK5 expression levels in tumors. We also summarize the importance of ERK5 in the maintenance of a cancer stem-like phenotype and explore the major known contributions of ERK5 in the tumor-associated microenvironment. Moreover, although several questions are still open concerning ERK5 molecular regulation, different ERK5 isoforms derived from the alternative splicing process are also described, highlighting the potential clinical relevance of targeting ERK5 pathways.
Collapse
|
24
|
|
25
|
An ERK5-KLF2 signalling module regulates early embryonic gene expression and telomere rejuvenation in stem cells. Biochem J 2021; 478:4119-4136. [PMID: 34780645 PMCID: PMC8718266 DOI: 10.1042/bcj20210646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022]
Abstract
The ERK5 MAP kinase signalling pathway drives transcription of naïve pluripotency genes in mouse Embryonic Stem Cells (mESCs). However, how ERK5 impacts on other aspects of mESC biology has not been investigated. Here, we employ quantitative proteomic profiling to identify proteins whose expression is regulated by the ERK5 pathway in mESCs. This reveals a function for ERK5 signalling in regulating dynamically expressed early embryonic 2-cell stage (2C) genes including the mESC rejuvenation factor ZSCAN4. ERK5 signalling and ZSCAN4 induction in mESCs increases telomere length, a key rejuvenative process required for prolonged culture. Mechanistically, ERK5 promotes ZSCAN4 and 2C gene expression via transcription of the KLF2 pluripotency transcription factor. Surprisingly, ERK5 also directly phosphorylates KLF2 to drive ubiquitin-dependent degradation, encoding negative feedback regulation of 2C gene expression. In summary, our data identify a regulatory module whereby ERK5 kinase and transcriptional activities bi-directionally control KLF2 levels to pattern 2C gene transcription and a key mESC rejuvenation process.
Collapse
|
26
|
Gámez-García A, Bolinaga-Ayala I, Yoldi G, Espinosa-Gil S, Diéguez-Martínez N, Megías-Roda E, Muñoz-Guardiola P, Lizcano JM. ERK5 Inhibition Induces Autophagy-Mediated Cancer Cell Death by Activating ER Stress. Front Cell Dev Biol 2021; 9:742049. [PMID: 34805151 PMCID: PMC8600073 DOI: 10.3389/fcell.2021.742049] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/19/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy is a highly conserved intracellular process that preserves cellular homeostasis by mediating the lysosomal degradation of virtually any component of the cytoplasm. Autophagy is a key instrument of cellular response to several stresses, including endoplasmic reticulum (ER) stress. Cancer cells have developed high dependency on autophagy to overcome the hostile tumor microenvironment. Thus, pharmacological activation or inhibition of autophagy is emerging as a novel antitumor strategy. ERK5 is a novel member of the MAP kinase family that is activated in response to growth factors and different forms of stress. Recent work has pointed ERK5 as a major player controlling cancer cell proliferation and survival. Therefore small-molecule inhibitors of ERK5 have shown promising therapeutic potential in different cancer models. Here, we report for the first time ERK5 as a negative regulator of autophagy. Thus, ERK5 inhibition or silencing induced autophagy in a panel of human cancer cell lines with different mutation patterns. As reported previously, ERK5 inhibitors (ERK5i) induced apoptotic cancer cell death. Importantly, we found that autophagy mediates the cytotoxic effect of ERK5i, since ATG5ˉ/ˉ autophagy-deficient cells viability was not affected by these compounds. Mechanistically, ERK5i stimulated autophagic flux independently of the canonical regulators AMPK or mTORC1. Moreover, ERK5 inhibition resulted in ER stress and activation of the Unfolded Protein Response (UPR) pathways. Specifically, ERK5i induced expression of the ER luminal chaperone BiP (a hallmark of ER stress), the UPR markers CHOP and ATF4, and the spliced form of XBP1. Pharmacological inhibition of UPR with chemical chaperone TUDC, or ATF4 silencing, resulted in impaired ERK5i-mediated UPR, autophagy and cytotoxicity. Overall, our results suggest that ERK5 inhibition induces autophagy-mediated cancer cell death by activating ER stress. Since ERK5 inhibition sensitizes cancer cells and tumors to chemotherapy, future work will determine the relevance of UPR and autophagy in the combined use of chemotherapy and ERK5i to tackle Cancer.
Collapse
Affiliation(s)
- Andrés Gámez-García
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Idoia Bolinaga-Ayala
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Protein Kinases in Cancer Research, Vall Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Guillermo Yoldi
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Sergio Espinosa-Gil
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Protein Kinases in Cancer Research, Vall Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Nora Diéguez-Martínez
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Protein Kinases in Cancer Research, Vall Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Elisabet Megías-Roda
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Protein Kinases in Cancer Research, Vall Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Pau Muñoz-Guardiola
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Jose M Lizcano
- Departament de Bioquímica i Biologia Molecular and Institut de Neurociències, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Protein Kinases in Cancer Research, Vall Hebron Institut de Recerca (VHIR), Barcelona, Spain
| |
Collapse
|
27
|
Kaur P, Goyal N. Pathogenic role of mitogen activated protein kinases in protozoan parasites. Biochimie 2021; 193:78-89. [PMID: 34706251 DOI: 10.1016/j.biochi.2021.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/29/2021] [Accepted: 10/21/2021] [Indexed: 01/18/2023]
Abstract
Protozoan parasites with complex life cycles have high mortality rates affecting billions of human lives. Available anti-parasitic drugs are inadequate due to variable efficacy, toxicity, poor patient compliance and drug-resistance. Hence, there is an urgent need for the development of safer and better chemotherapeutics. Mitogen Activated Protein Kinases (MAPKs) have drawn much attention as potential drug targets. This review summarizes unique structural and functional features of MAP kinases and their possible role in pathogenesis of obligate intracellular protozoan parasites namely, Leishmania, Trypanosoma, Plasmodium and Toxoplasma. It also provides an overview of available knowledge concerning the target proteins of parasite MAPKs and the need to understand and unravel unknown interaction network(s) of MAPK(s).
Collapse
Affiliation(s)
- Pavneet Kaur
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Neena Goyal
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India.
| |
Collapse
|
28
|
Iezaki T, Hinoi E. [Phosphorylation of Smurf2 at Thr249 by Erk5 regulates TGF-β signaling]. Nihon Yakurigaku Zasshi 2021; 156:271-274. [PMID: 34470930 DOI: 10.1254/fpj.21029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Vertebral bone and limb bone are formed by endochondral ossification, which is replaced with bone tissue by osteoblasts after cartilage formation. Bone growth is regulated by the balance between epiphyseal chondrocyte proliferation and ossification. We attempted to elucidate the mechanism of chondrocyte differentiation and maturation regulated by the Extracellular-signal-regulated kinase 5 (Erk5) signal. Erk5 is a serine/threonine kinase belonging to the mitogen-activated protein kinase (MAPK) family, which includes Erk1/2, JNK, and p38. Mesenchymal stem cell-specific Erk5-deficient mice exhibited the phenotype of deformities of the metatarsal bones, enlargement of the long bones in limbs, and overgrowth of cartilage tissue. Based on this result, we searched for factors that directly phosphorylate Erk5, and We demonstrated that Erk5 directly phosphorylates and activates Smurf2 (a ubiquitin E3 ligase) at Thr249 to activate its function and promotes ubiquitination-mediated degradation. The TGF-β-Smad signal suppresses the proliferation of many cells and regulates the production of extracellular matrix. Our findings may lead to the development of novel drugs targeting TGF-β associated diseases. In this paper, we investigated the function of Smurf2Thr249 phosphorylation and the possibility as new therapeutic target for various diseases.
Collapse
Affiliation(s)
- Takashi Iezaki
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University
| | - Eiichi Hinoi
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University
| |
Collapse
|
29
|
Small molecule ERK5 kinase inhibitors paradoxically activate ERK5 signalling: be careful what you wish for…. Biochem Soc Trans 2021; 48:1859-1875. [PMID: 32915196 PMCID: PMC7609025 DOI: 10.1042/bst20190338] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022]
Abstract
ERK5 is a protein kinase that also contains a nuclear localisation signal and a transcriptional transactivation domain. Inhibition of ERK5 has therapeutic potential in cancer and inflammation and this has prompted the development of ERK5 kinase inhibitors (ERK5i). However, few ERK5i programmes have taken account of the ERK5 transactivation domain. We have recently shown that the binding of small molecule ERK5i to the ERK5 kinase domain stimulates nuclear localisation and paradoxical activation of its transactivation domain. Other kinase inhibitors paradoxically activate their intended kinase target, in some cases leading to severe physiological consequences highlighting the importance of mitigating these effects. Here, we review the assays used to monitor ERK5 activities (kinase and transcriptional) in cells, the challenges faced in development of small molecule inhibitors to the ERK5 pathway, and classify the molecular mechanisms of paradoxical activation of protein kinases by kinase inhibitors.
Collapse
|
30
|
Paudel R, Fusi L, Schmidt M. The MEK5/ERK5 Pathway in Health and Disease. Int J Mol Sci 2021; 22:ijms22147594. [PMID: 34299213 PMCID: PMC8303459 DOI: 10.3390/ijms22147594] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
The MEK5/ERK5 mitogen-activated protein kinases (MAPK) cascade is a unique signaling module activated by both mitogens and stress stimuli, including cytokines, fluid shear stress, high osmolarity, and oxidative stress. Physiologically, it is mainly known as a mechanoreceptive pathway in the endothelium, where it transduces the various vasoprotective effects of laminar blood flow. However, it also maintains integrity in other tissues exposed to mechanical stress, including bone, cartilage, and muscle, where it exerts a key function as a survival and differentiation pathway. Beyond its diverse physiological roles, the MEK5/ERK5 pathway has also been implicated in various diseases, including cancer, where it has recently emerged as a major escape route, sustaining tumor cell survival and proliferation under drug stress. In addition, MEK5/ERK5 dysfunction may foster cardiovascular diseases such as atherosclerosis. Here, we highlight the importance of the MEK5/ERK5 pathway in health and disease, focusing on its role as a protective cascade in mechanical stress-exposed healthy tissues and its function as a therapy resistance pathway in cancers. We discuss the perspective of targeting this cascade for cancer treatment and weigh its chances and potential risks when considering its emerging role as a protective stress response pathway.
Collapse
|
31
|
Inhibition of MEK5/ERK5 signaling overcomes acquired resistance to the third generation EGFR inhibitor, osimertinib, via enhancing Bim-dependent apoptosis. Cancer Lett 2021; 519:141-149. [PMID: 34245854 DOI: 10.1016/j.canlet.2021.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/15/2021] [Accepted: 07/06/2021] [Indexed: 11/22/2022]
Abstract
The promising therapeutic efficacy of the third generation EGFR inhibitor, osimertinib (AZD9291), for the treatment of patients with EGFR-mutant non-small cell lung cancer (NSCLC) has been demonstrated in the clinic both as first-line and second line therapy. However, inevitable acquired resistance limits its long-term benefit to patients and is thus a significant clinical challenge. The current study focuses on studying the potential role of targeting MEK5-ERK5 signaling in overcoming acquired resistance to osimertinib. Osimertinib and other third generation EGFR inhibitors exerted a rapid and sustained suppressive effect on ERK5 phosphorylation primarily in EGFR-mutant NSCLC cell lines and lost this activity in some osimertinib-resistant cell lines. Osimertinib combined with either ERK5 or MEK5 inhibitors synergistically decreased the survival of osimertinib-resistant cell lines with enhanced induction of apoptosis primarily via augmenting Bim expression. Moreover, the combination effectively inhibited the growth of osimertinib-resistant xenografts in vivo. Together, these findings suggest the potential role of MEK5-ERK5 signaling in modulating development of acquired resistance to osimertinib and value of targeting this signaling as a potential strategy in overcoming acquired resistance to osimertinib and possibly other third generation EGFR inhibitors.
Collapse
|
32
|
Weng J, Yang Y, Song D, Huo R, Li H, Chen Y, Nam Y, Zhou Q, Jiao Y, Fu W, Yan Z, Wang J, Xu H, Di L, Li J, Wang S, Zhao J, Wang J, Cao Y. Somatic MAP3K3 mutation defines a subclass of cerebral cavernous malformation. Am J Hum Genet 2021; 108:942-950. [PMID: 33891857 PMCID: PMC8206158 DOI: 10.1016/j.ajhg.2021.04.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/30/2021] [Indexed: 12/22/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) are vascular disorders that affect up to 0.5% of the total population. About 20% of CCMs are inherited because of familial mutations in CCM genes, including CCM1/KRIT1, CCM2/MGC4607, and CCM3/PDCD10, whereas the etiology of a majority of simplex CCM-affected individuals remains unclear. Here, we report somatic mutations of MAP3K3, PIK3CA, MAP2K7, and CCM genes in CCM lesions. In particular, somatic hotspot mutations of PIK3CA are found in 11 of 38 individuals with CCMs, and a MAP3K3 somatic mutation (c.1323C>G [p.Ile441Met]) is detected in 37.0% (34 of 92) of the simplex CCM-affected individuals. Strikingly, the MAP3K3 c.1323C>G mutation presents in 95.7% (22 of 23) of the popcorn-like lesions but only 2.5% (1 of 40) of the subacute-bleeding or multifocal lesions that are predominantly attributed to mutations in the CCM1/2/3 signaling complex. Leveraging mini-bulk sequencing, we demonstrate the enrichment of MAP3K3 c.1323C>G mutation in CCM endothelium. Mechanistically, beyond the activation of CCM1/2/3-inhibited ERK5 signaling, MEKK3 p.Ile441Met (MAP3K3 encodes MEKK3) also activates ERK1/2, JNK, and p38 pathways because of mutation-induced MEKK3 kinase activity enhancement. Collectively, we identified several somatic activating mutations in CCM endothelium, and the MAP3K3 c.1323C>G mutation defines a primary CCM subtype with distinct characteristics in signaling activation and magnetic resonance imaging appearance.
Collapse
|
33
|
Ma KH, Lippner DS, Basi KA, DeLeon SM, Cappuccio WR, Rhoomes MO, Hildenberger DM, Hoard-Fruchey HM, Rockwood GA. Cyanide Poisoning Compromises Gene Pathways Modulating Cardiac Injury in Vivo. Chem Res Toxicol 2021; 34:1530-1541. [PMID: 33914522 DOI: 10.1021/acs.chemrestox.0c00467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Smoke inhalation from a structure fire is a common route of cyanide poisoning in the U.S. Cyanide inhibits cellular respiration, often leading to death. Its rapid distribution throughout the body can result in injuries to multiple organs, and cyanide victims were reported to experience myocardial infarction and other cardiac complications. However, molecular mechanisms of such complications are yet to be elucidated. While FDA-approved CN antidotes such as sodium thiosulfate and hydroxocobalamin are clinically used, they have foreseeable limitations during mass casualty situations because they require intravenous administration. To facilitate the development of better antidotes and therapeutic treatments, a global view of molecular changes induced by cyanide exposure is necessary. As an exploratory pursuit, we performed oligonucleotide microarrays to establish cardiac transcriptomes of an animal model of nose-only inhalation exposure to hydrogen cyanide (HCN), which is relevant to smoke inhalation. We also profiled cardiac transcriptomes after subcutaneous injection of potassium cyanide (KCN). Although the KCN injection model has often been used to evaluate medical countermeasures, this study demonstrated that cardiac transcriptomes are largely different from that of the HCN inhalation model at multiple time points within 24 h after exposure. Pathway analysis identified that HCN-induced transcriptomes were enriched with genes encoding mediators of pathways critical in modulation of cardiac complications and that a large number of such genes were significantly decreased in expression. We utilized the upstream regulatory analysis to propose drugs that can be potentially employed to treat cyanide-induced cardiac complications.
Collapse
Affiliation(s)
- Ki H Ma
- Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Dennean S Lippner
- Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Kelly A Basi
- U.S. Army Combat Capabilities Development Command, Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Susan M DeLeon
- Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - William R Cappuccio
- Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Melissa O Rhoomes
- Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Diane M Hildenberger
- Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Heidi M Hoard-Fruchey
- Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Gary A Rockwood
- Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| |
Collapse
|
34
|
Tubita A, Tusa I, Rovida E. Playing the Whack-A-Mole Game: ERK5 Activation Emerges Among the Resistance Mechanisms to RAF-MEK1/2-ERK1/2- Targeted Therapy. Front Cell Dev Biol 2021; 9:647311. [PMID: 33777953 PMCID: PMC7991100 DOI: 10.3389/fcell.2021.647311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Molecularly tailored therapies have opened a new era, chronic myeloid leukemia being the ideal example, in the treatment of cancer. However, available therapeutic options are still unsatisfactory in many types of cancer, and often fail due to the occurrence of resistance mechanisms. With regard to small-molecule compounds targeting the components of the Mitogen-Activated Protein Kinase (MAPK) cascade RAF-MEK1/2-ERK1/2, these drugs may result ineffective as a consequence of the activation of compensatory pro-survival/proliferative signals, including receptor tyrosine kinases, PI3K, as well as other components of the MAPK family such as TPL2/COT. The MAPK ERK5 has been identified as a key signaling molecule in the biology of several types of cancer. In this review, we report pieces of evidence regarding the activation of the MEK5-ERK5 pathway as a resistance mechanism to RAF-MEK1/2-ERK1/2 inhibitors. We also highlight the known and possible mechanisms underlying the cross-talks between the ERK1/2 and the ERK5 pathways, the characterization of which is of great importance to maximize, in the future, the impact of RAF-MEK1/2-ERK1/2 targeting. Finally, we emphasize the need of developing additional therapeutically relevant MEK5-ERK5 inhibitors to be used for combined treatments, thus preventing the onset of resistance to cancer therapies relying on RAF-MEK1/2-ERK1/2 inhibitors.
Collapse
Affiliation(s)
- Alessandro Tubita
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Ignazia Tusa
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
35
|
Kedika SR, Shukla SP, Udugamasooriya DG. Design of a dual ERK5 kinase activation and autophosphorylation inhibitor to block cancer stem cell activity. Bioorg Med Chem Lett 2020; 30:127552. [DOI: 10.1016/j.bmcl.2020.127552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
|
36
|
Zhang C, Qin J, Zhang S, Zhang N, Tan B, Siwko S, Zhang Y, Wang Q, Chen J, Qian M, Liu M, Du B. ADP/P2Y 1 aggravates inflammatory bowel disease through ERK5-mediated NLRP3 inflammasome activation. Mucosal Immunol 2020; 13:931-945. [PMID: 32518369 DOI: 10.1038/s41385-020-0307-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 04/30/2020] [Accepted: 05/15/2020] [Indexed: 02/04/2023]
Abstract
Inflammasomes are essential for inflammation and pathogen elimination in response to microbial infection and endogenous danger signals. However, the mechanism of inflammasome activation by endogenous danger signals mediated posttranslational modification and the connection between inflammasomes and inflammatory diseases remains elusive. In this study, we found that ADP was highly released from injured colonic tissue as a danger signal during inflammatory bowel disease. Consequently, extracellular ADP activated the NLRP3 inflammasome through P2Y1 receptor-mediated calcium signaling, which led to the maturation and secretion of IL-1β and further aggravation of experimental colitis. Genetic ablation or pharmacological blockade of the P2Y1 receptor significantly ameliorated DSS-induced colitis and endotoxic shock through reducing NLRP3 inflammasome activation. Moreover, ERK5-mediated tyrosine phosphorylation of ASC was essential for activation of the NLRP3 inflammasome. Thus, our study provides a novel theoretical basis for posttranslational modification of ASC in NLRP3 inflammasome activation and revealed that ADP/P2Y1 is a potential drug target for inflammatory bowel disease.
Collapse
Affiliation(s)
- Chengfei Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China.,Department of Pathology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Juliang Qin
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China.,Joint Center for Translational Medicine, Fengxian District Central Hospital, No. 6600 Nanfeng Road, Fengxian District, Shanghai, 201499, China
| | - Su Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China
| | - Na Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China
| | - Binhe Tan
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China
| | - Stefan Siwko
- Institute of Biosciences and Technology, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Houston, TX, 77030, USA
| | - Ying Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China
| | - Qin Wang
- Joint Center for Translational Medicine, Fengxian District Central Hospital, No. 6600 Nanfeng Road, Fengxian District, Shanghai, 201499, China
| | - Jinlian Chen
- Joint Center for Translational Medicine, Fengxian District Central Hospital, No. 6600 Nanfeng Road, Fengxian District, Shanghai, 201499, China
| | - Min Qian
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China
| | - Mingyao Liu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China.
| | - Bing Du
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
37
|
Mita-Mendoza NK, Magallon-Tejada A, Parmar P, Furtado R, Aldrich M, Saidi A, Taylor T, Smith J, Seydel K, Daily JP. Dimethyl fumarate reduces TNF and Plasmodium falciparum induced brain endothelium activation in vitro. Malar J 2020; 19:376. [PMID: 33087130 PMCID: PMC7579885 DOI: 10.1186/s12936-020-03447-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 10/16/2020] [Indexed: 11/10/2022] Open
Abstract
Background Cerebral malaria (CM) is associated with morbidity and mortality despite the use of potent anti-malarial agents. Brain endothelial cell activation and dysfunction from oxidative and inflammatory host responses and products released by Plasmodium falciparum-infected erythrocytes (IE), are likely the major contributors to the encephalopathy, seizures, and brain swelling that are associated with CM. The development of adjunctive therapy to reduce the pathological consequences of host response pathways could improve outcomes. A potentially protective role of the nuclear factor E2-related factor 2 (NRF2) pathway, which serves as a therapeutic target in brain microvascular diseases and central nervous system (CNS) inflammatory diseases such as multiple sclerosis was tested to protect endothelial cells in an in vitro culture system subjected to tumour necrosis factor (TNF) or infected red blood cell exposure. NRF2 is a transcription factor that mediates anti-oxidant and anti-inflammatory responses. Methods To accurately reflect clinically relevant parasite biology a unique panel of parasite isolates derived from patients with stringently defined CM was developed. The effect of TNF and these parasite lines on primary human brain microvascular endothelial cell (HBMVEC) activation in an in vitro co-culture model was tested. HBMVEC activation was measured by cellular release of IL6 and nuclear translocation of NFκB. The transcriptional and functional effects of dimethyl fumarate (DMF), an FDA approved drug which induces the NRF2 pathway, on host and parasite induced HBMVEC activation was characterized. In addition, the effect of DMF on parasite binding to TNF stimulated HBMVEC in a semi-static binding assay was examined. Results Transcriptional profiling demonstrates that DMF upregulates the NRF2-Mediated Oxidative Stress Response, ErbB4 Signaling Pathway, Peroxisome Proliferator-activated Receptor (PPAR) Signaling and downregulates iNOS Signaling and the Neuroinflammation Signaling Pathway on TNF activated HBMVEC. The parasite lines derived from eight paediatric CM patients demonstrated increased binding to TNF activated HBMVEC and varied in their binding and activation of HBMVEC. Overall DMF reduced both TNF and CM derived parasite activation of HBMVEC. Conclusions These findings provide evidence that targeting the NRF2 pathway in TNF and parasite activated HBMVEC mediates multiple protective pathways and may represent a novel adjunctive therapy to improve infection outcomes in CM.
Collapse
Affiliation(s)
- Neida K Mita-Mendoza
- Department of Microbiology & Immunology and Infectious Diseases, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ariel Magallon-Tejada
- Seattle Biomedical Research Institute, Seattle, WA, USA.,Department of Research in Parasitology, Gorgas Memorial Research Institute for Health Studies, Panama City, Panama
| | - Priyanka Parmar
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Raquel Furtado
- Department of Microbiology & Immunology and Infectious Diseases, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Margaret Aldrich
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alex Saidi
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre 3, Malawi
| | - Terrie Taylor
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre 3, Malawi.,Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Joe Smith
- Seattle Children's Research Institute, Seattle, WA, USA.,Department of Global Health, University of Washington, Seattle, WA, USA
| | - Karl Seydel
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre 3, Malawi.,Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Johanna P Daily
- Department of Microbiology & Immunology and Infectious Diseases, Albert Einstein College of Medicine, Bronx, NY, USA. .,Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
38
|
Zhong M, Zhang X, Shi X, Zheng C. Halofuginone inhibits LPS-induced attachment of monocytes to HUVECs. Int Immunopharmacol 2020; 87:106753. [DOI: 10.1016/j.intimp.2020.106753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/17/2020] [Accepted: 06/25/2020] [Indexed: 01/20/2023]
|
39
|
Wang C, Chen Z, Nie L, Tang M, Feng X, Su D, Zhang H, Xiong Y, Park JM, Chen J. Extracellular signal-regulated kinases associate with and phosphorylate DHPS to promote cell proliferation. Oncogenesis 2020; 9:85. [PMID: 32989218 PMCID: PMC7522278 DOI: 10.1038/s41389-020-00271-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/30/2020] [Accepted: 09/15/2020] [Indexed: 11/09/2022] Open
Abstract
The ERK1/2 pathway is one of the most commonly dysregulated pathways in human cancers and controls many vital cellular processes. Although many ERK1/2 kinase substrates have been identified, the diversity of ERK1/2 mediated processes suggests the existence of additional targets. Here, we identified Deoxyhypusine synthase (DHPS), an essential hypusination enzyme regulating protein translation, as a major and direct-binding protein of ERK1/2. Further experiments showed that ERK1/2 phosphorylate DHPS at Ser-233 site. The Ser-233 phosphorylation of DHPS by ERK1/2 is important for its function in cell proliferation. Moreover, we found that higher DHPS expression correlated with poor prognosis in lung adenocarcinoma and increased resistance to inhibitors of the ERK1/2 pathway. In summary, our results suggest that ERK1/2-mediated DHPS phosphorylation is an important mechanism that underlies protein translation and that DHPS expression is a potent biomarker of response to therapies targeting ERK1/2-pathway.
Collapse
Affiliation(s)
- Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Litong Nie
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xu Feng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dan Su
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Huimin Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yun Xiong
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jeong-Min Park
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
40
|
Murakami-Sekimata A, Sekimata M, Sato N, Hayasaka Y, Nakano A. Deletion of PIN4 Suppresses the Protein Transport Defects Caused by sec12-4 Mutation in Saccharomyces cerevisiae. Microb Physiol 2020; 30:25-35. [PMID: 32958726 DOI: 10.1159/000509633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/24/2020] [Indexed: 11/19/2022]
Abstract
Newly synthesized secretory proteins are released into the lumen of the endoplasmic reticulum (ER). The secretory proteins are surrounded by coat protein complex II (COPII) vesicles, and transported from the ER and reach their destinations through the Golgi apparatus. Sec12p is a guanine nucleotide exchange factor for Sar1p, which initiates COPII vesicle budding from the ER. The activation of Sar1p by Sec12p and the subsequent COPII coat assembly have been well characterized, but the events that take place upstream of Sec12p remain unclear. In this study, we isolated the novel extragenic suppressor of sec12-4, PIN4/MDT1, a cell cycle checkpoint target. A yeast two-hybrid screening was used to identify Pin4/Mdt1p as a binding partner of the casein kinase I isoform Hrr25p, which we have previously identified as a modulator of Sec12p function. Deletion of PIN4 suppressed both defects of temperature-sensitive growth and the partial protein transport observed in sec12-4 mutants. The results of this study suggest that Pin4p provides novel aspects of Sec12p modulations.
Collapse
Affiliation(s)
- Akiko Murakami-Sekimata
- Division of Theoretical Nursing and Genetics, Graduate School of Medical Science, Yamagata University Faculty of Medicine, Yamagata, Japan,
| | - Masayuki Sekimata
- Radioisotope Research Center, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Natsumi Sato
- Division of Theoretical Nursing and Genetics, Graduate School of Medical Science, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Yuto Hayasaka
- Division of Theoretical Nursing and Genetics, Graduate School of Medical Science, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, Wako, Japan
| |
Collapse
|
41
|
Wang H, Matsushita MT, Zhang L, Abel GM, Mommer BC, Huddy TF, Storm DR, Xia Z. Inducible and Conditional Stimulation of Adult Hippocampal Neurogenesis Rescues Cadmium-Induced Impairments of Adult Hippocampal Neurogenesis and Hippocampus-Dependent Memory in Mice. Toxicol Sci 2020; 177:263-280. [PMID: 32617577 PMCID: PMC7553705 DOI: 10.1093/toxsci/kfaa104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cadmium (Cd) is a heavy metal and an environmental pollutant. However, the full spectrum of its neurotoxicity and the underlying mechanisms are not completely understood. Our previous studies demonstrated that Cd exposure impairs adult hippocampal neurogenesis and hippocampus-dependent memory in mice. This study aims to determine if these adverse effects of Cd exposure can be mitigated by genetically and conditionally enhancing adult neurogenesis. To address this issue, we utilized the transgenic constitutive active MEK5 (caMEK5) mouse strain we previously developed and characterized. This mouse strain enables us to genetically and conditionally activate adult neurogenesis by administering tamoxifen to induce expression of a caMEK5 in adult neural stem/progenitor cells, which stimulates adult neurogenesis through activation of the endogenous extracellular signal-regulated kinase 5 mitogen-activated protein kinase pathway. The caMEK5 mice were exposed to 0.6 mg/l Cd through drinking water for 38 weeks. Once impairment of memory was confirmed, tamoxifen was administered to induce caMEK5 expression and to activate adult neurogenesis. Behavior tests were conducted at various time points to monitor hippocampus-dependent memory. Upon completion of the behavior tests, brain tissues were collected for cellular studies of adult hippocampal neurogenesis. We report here that Cd impaired hippocampus-dependent spatial memory and contextual fear memory in mice. These deficits were rescued by the tamoxifen induction of caMEK5 expression. Furthermore, Cd inhibition of adult hippocampal neurogenesis was also reversed. This rescue experiment provides strong evidence for a direct link between Cd-induced impairments of adult hippocampal neurogenesis and hippocampus-dependent memory.
Collapse
Affiliation(s)
- Hao Wang
- Toxicology Program, Department of Environmental and Occupational Health Sciences
| | - Megumi T Matsushita
- Toxicology Program, Department of Environmental and Occupational Health Sciences
| | - Liang Zhang
- Toxicology Program, Department of Environmental and Occupational Health Sciences
| | - Glen M Abel
- Toxicology Program, Department of Environmental and Occupational Health Sciences
| | - Brett C Mommer
- Toxicology Program, Department of Environmental and Occupational Health Sciences
| | | | - Daniel R Storm
- Department of Pharmacology, University of Washington, Seattle, Washington 98195
| | - Zhengui Xia
- Toxicology Program, Department of Environmental and Occupational Health Sciences
| |
Collapse
|
42
|
Tian S, Lou L, Tian M, Lu G, Tian J, Chen X. MAPK4 deletion enhances radiation effects and triggers synergistic lethality with simultaneous PARP1 inhibition in cervical cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:143. [PMID: 32711558 PMCID: PMC7382858 DOI: 10.1186/s13046-020-01644-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/15/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cervical cancer is one of the most common cancers among females worldwide and advanced patients have extremely poor prognosis. However, adverse reactions and accumulating resistance to radiation therapy require further investigation. METHODS The expression levels of mitogen-activated protein kinase 4 (MAPK4) mRNA were analyzed by real-time PCR and its association with overall survival was analyzed using Kaplan-Mier method. Colony formation, immunofluorescence and western blotting were used to examine the effects of MAPK4 knockout or over-expression on cervical cancer cells after radiation treatment. Drug-sensitivity of cervical cancer cells to PARP1 inhibitors, olaparib or veliparib, was analyzed by CCK-8 cell viability assays, and the 50% inhibitory concentration (IC50) was quantified using GraphPad Prism. The functional effects of MAPK4 knockout on the sensitivity of cervical cancer to radiation treatment and PARP1 inhibitors were further examined using xenograft tumor mouse models in vivo. RESULTS Cervical cancer patients with high MAPK4 mRNA expression have lower survival rate. After radiation treatment, the colony number of MAPK4 knockout cells was markedly reduced, and the markers for DNA double-chain breakage were significantly up-regulated. In addition, MAPK4 knockout reduced protein kinase B (AKT) phosphorylation, whereas its over-expression resulted in opposite effects. In MAPK4 KO cells with irradiation treatment, inhibition of AKT phosphorylation promoted DNA double-chain breakage. Constitutive activation of AKT (CA-AKT) increased the levels of phosphorylated-AKT (p-AKT), and DNA repair-related proteins, phosphorylated-DNA-dependent protein kinase (p-DNA-PK) and RAD51 recombinase (RAD51). Furthermore, MAPK4 knockout was found to affect the sensitivity of cervical cancer cells to poly ADP-ribose polymerase 1 (PARP1) inhibitors by activating the phosphorylation of AKT. Moreover, in vivo results demonstrated that MAPK4 knockout enhanced the sensitivity of cervical cancer to radiation and PARP1 inhibitors in mouse xenograft models. CONCLUSIONS Collectively, our data suggest that combined application of MAPK4 knockout and PARP1 inhibition can be used as therapeutic strategy in radiation treatment for advanced cervical carcinoma.
Collapse
Affiliation(s)
- Shuzhen Tian
- Department of Gynecology, Affiliated Cancer Hospital of Zhengzhou University, Henan Procincical Cancer Hospital, No. 127 Dongming Avenue, Zhengzhou City, 450009, Henan Province, China.
| | - Lili Lou
- Department of Respiratory Medicine, The First Affiliated Hospital Zhengzhou University, Zhengzhou City, 450052, Henan Province, China
| | - Mengyuan Tian
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Henan Procincical Cancer Hospital, Zhengzhou City, 450009, Henan Province, China
| | - Guangping Lu
- Department of Emergency Medicine, The First Affiliated Hospital Zhengzhou University, Zhengzhou City, 450052, Henan Province, China
| | - Jianghua Tian
- Department of Internal Medicine, Peking University Hospital, Beijing, 100871, China
| | - Xi Chen
- School of Basic Medicine, Zhejiang University Medical School, Hangzhou City, 310013, Zhejiang Province, China
| |
Collapse
|
43
|
Erazo T, Espinosa-Gil S, Diéguez-Martínez N, Gómez N, Lizcano JM. SUMOylation Is Required for ERK5 Nuclear Translocation and ERK5-Mediated Cancer Cell Proliferation. Int J Mol Sci 2020; 21:ijms21062203. [PMID: 32209980 PMCID: PMC7139592 DOI: 10.3390/ijms21062203] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 01/09/2023] Open
Abstract
The MAP kinase ERK5 contains an N-terminal kinase domain and a unique C-terminal tail including a nuclear localization signal and a transcriptional activation domain. ERK5 is activated in response to growth factors and stresses and regulates transcription at the nucleus by either phosphorylation or interaction with transcription factors. MEK5-ERK5 pathway plays an important role regulating cancer cell proliferation and survival. Therefore, it is important to define the precise molecular mechanisms implicated in ERK5 nucleo-cytoplasmic shuttling. We previously described that the molecular chaperone Hsp90 stabilizes and anchors ERK5 at the cytosol and that ERK5 nuclear shuttling requires Hsp90 dissociation. Here, we show that MEK5 or overexpression of Cdc37—mechanisms that increase nuclear ERK5—induced ERK5 Small Ubiquitin-related Modifier (SUMO)-2 modification at residues Lys6/Lys22 in cancer cells. Furthermore, mutation of these SUMO sites abolished the ability of ERK5 to translocate to the nucleus and to promote prostatic cancer PC-3 cell proliferation. We also show that overexpression of the SUMO protease SENP2 completely abolished endogenous ERK5 nuclear localization in response to epidermal growth factor (EGF) stimulation. These results allow us to propose a more precise mechanism: in response to MEK5 activation, ERK5 SUMOylation favors the dissociation of Hsp90 from the complex, allowing ERK5 nuclear shuttling and activation of the transcription.
Collapse
|
44
|
Lochhead PA, Tucker JA, Tatum NJ, Wang J, Oxley D, Kidger AM, Johnson VP, Cassidy MA, Gray NS, Noble MEM, Cook SJ. Paradoxical activation of the protein kinase-transcription factor ERK5 by ERK5 kinase inhibitors. Nat Commun 2020; 11:1383. [PMID: 32170057 PMCID: PMC7069993 DOI: 10.1038/s41467-020-15031-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/11/2020] [Indexed: 12/20/2022] Open
Abstract
The dual protein kinase-transcription factor, ERK5, is an emerging drug target in cancer and inflammation, and small-molecule ERK5 kinase inhibitors have been developed. However, selective ERK5 kinase inhibitors fail to recapitulate ERK5 genetic ablation phenotypes, suggesting kinase-independent functions for ERK5. Here we show that ERK5 kinase inhibitors cause paradoxical activation of ERK5 transcriptional activity mediated through its unique C-terminal transcriptional activation domain (TAD). Using the ERK5 kinase inhibitor, Compound 26 (ERK5-IN-1), as a paradigm, we have developed kinase-active, drug-resistant mutants of ERK5. With these mutants, we show that induction of ERK5 transcriptional activity requires direct binding of the inhibitor to the kinase domain. This in turn promotes conformational changes in the kinase domain that result in nuclear translocation of ERK5 and stimulation of gene transcription. This shows that both the ERK5 kinase and TAD must be considered when assessing the role of ERK5 and the effectiveness of anti-ERK5 therapeutics.
Collapse
Affiliation(s)
- Pamela A Lochhead
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| | - Julie A Tucker
- York Biomedical Research Institute and Department of Biology, University of York, York, YO10 5DD, UK
| | - Natalie J Tatum
- CRUK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Newcastle University, Newcastle, NE2 4HH, UK
| | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - David Oxley
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Andrew M Kidger
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Victoria P Johnson
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Megan A Cassidy
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Martin E M Noble
- CRUK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Newcastle University, Newcastle, NE2 4HH, UK
| | - Simon J Cook
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| |
Collapse
|
45
|
Targeted Avenues for Cancer Treatment: The MEK5-ERK5 Signaling Pathway. Trends Mol Med 2020; 26:394-407. [PMID: 32277933 DOI: 10.1016/j.molmed.2020.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/20/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Twenty years have passed since extracellular signal-regulated kinase 5 (ERK5) and its upstream activator, mitogen-activated protein kinase 5 (MEK5), first emerged onto the cancer research scene. Although we have come a long way in defining the liaison between dysregulated MEK5-ERK5 signaling and the pathogenesis of epithelial and nonepithelial malignancies, selective targeting of this unique pathway remains elusive. Here, we provide an updated review of the existing evidence for a correlation between aberrant MEK5-ERK5 (phospho)proteomic/transcriptomic profiles, aggressive cancer states, and poor patient outcomes. We then focus on emerging insights from preclinical models regarding the relevance of upregulated ERK5 activity in promoting tumor growth, metastasis, therapy resistance, undifferentiated traits, and immunosuppression, highlighting the opportunities, prospects, and challenges of selectively blocking this cascade for antineoplastic treatment and chemosensitization.
Collapse
|
46
|
Pearson AJ, Fullwood P, Toro Tapia G, Prise I, Smith MP, Xu Q, Jordan A, Giurisato E, Whitmarsh AJ, Francavilla C, Tournier C. Discovery of a Gatekeeper Residue in the C-Terminal Tail of the Extracellular Signal-Regulated Protein Kinase 5 (ERK5). Int J Mol Sci 2020; 21:E929. [PMID: 32023819 PMCID: PMC7037328 DOI: 10.3390/ijms21030929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 01/17/2023] Open
Abstract
The extracellular signal-regulated protein kinase 5 (ERK5) is a non-redundant mitogen-activated protein kinase (MAPK) that exhibits a unique C-terminal extension which comprises distinct structural and functional properties. Here, we sought to elucidate the significance of phosphoacceptor sites in the C-terminal transactivation domain of ERK5. We have found that Thr732 acted as a functional gatekeeper residue controlling C-terminal-mediated nuclear translocation and transcriptional enhancement. Consistently, using a non-bias quantitative mass spectrometry approach, we demonstrated that phosphorylation at Thr732 conferred selectivity for binding interactions of ERK5 with proteins related to chromatin and RNA biology, whereas a number of metabolic regulators were associated with full-length wild type ERK5. Additionally, our proteomic analysis revealed that phosphorylation of the Ser730-Glu-Thr732-Pro motif could occur independently of dual phosphorylation at Thr218-Glu-Tyr220 in the activation loop. Collectively, our results firmly establish the significance of C-terminal phosphorylation in regulating ERK5 function. The post-translational modification of ERK5 on its C-terminal tail might be of particular relevance in cancer cells where ERK5 has be found to be hyperphosphoryated.
Collapse
Affiliation(s)
- Adam J. Pearson
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; (A.J.P.); (Q.X.); (E.G.)
| | - Paul Fullwood
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; (P.F.); (G.T.T.); (M.P.S.); (A.J.W.); (C.F.)
| | - Gabriela Toro Tapia
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; (P.F.); (G.T.T.); (M.P.S.); (A.J.W.); (C.F.)
| | - Ian Prise
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK;
| | - Michael P. Smith
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; (P.F.); (G.T.T.); (M.P.S.); (A.J.W.); (C.F.)
| | - Qiuping Xu
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; (A.J.P.); (Q.X.); (E.G.)
| | - Allan Jordan
- Drug Discovery Unit, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M13 9PT, UK;
| | - Emanuele Giurisato
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; (A.J.P.); (Q.X.); (E.G.)
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Alan J. Whitmarsh
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; (P.F.); (G.T.T.); (M.P.S.); (A.J.W.); (C.F.)
| | - Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; (P.F.); (G.T.T.); (M.P.S.); (A.J.W.); (C.F.)
| | - Cathy Tournier
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; (A.J.P.); (Q.X.); (E.G.)
| |
Collapse
|
47
|
Beyond Kinase Activity: ERK5 Nucleo-Cytoplasmic Shuttling as a Novel Target for Anticancer Therapy. Int J Mol Sci 2020; 21:ijms21030938. [PMID: 32023850 PMCID: PMC7038028 DOI: 10.3390/ijms21030938] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 01/18/2023] Open
Abstract
The importance of mitogen-activated protein kinases (MAPK) in human pathology is underlined by the relevance of abnormalities of MAPK-related signaling pathways to a number of different diseases, including inflammatory disorders and cancer. One of the key events in MAPK signaling, especially with respect to pro-proliferative effects that are crucial for the onset and progression of cancer, is MAPK nuclear translocation and its role in the regulation of gene expression. The extracellular signal-regulated kinase 5 (ERK5) is the most recently discovered classical MAPK and it is emerging as a possible target for cancer treatment. The bigger size of ERK5 when compared to other MAPK enables multiple levels of regulation of its expression and activity. In particular, the phosphorylation of kinase domain and C-terminus, as well as post-translational modifications and chaperone binding, are involved in ERK5 regulation. Likewise, different mechanisms control ERK5 nucleo-cytoplasmic shuttling, underscoring the key role of ERK5 in the nuclear compartment. In this review, we will focus on the mechanisms involved in ERK5 trafficking between cytoplasm and nucleus, and discuss how these processes might be exploited to design new strategies for cancer treatment.
Collapse
|
48
|
Broustas CG, Duval AJ, Chaudhary KR, Friedman RA, Virk RK, Lieberman HB. Targeting MEK5 impairs nonhomologous end-joining repair and sensitizes prostate cancer to DNA damaging agents. Oncogene 2020; 39:2467-2477. [PMID: 31980741 PMCID: PMC7085449 DOI: 10.1038/s41388-020-1163-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/13/2019] [Accepted: 01/15/2020] [Indexed: 12/23/2022]
Abstract
Radiotherapy is commonly used to treat a variety of solid human tumors, including localized prostate cancer. However, treatment failure often ensues due to tumor intrinsic or acquired radioresistance. Here we find that the MEK5/ERK5 signaling pathway is associated with resistance to genotoxic stress in aggressive prostate cancer cells. MEK5 knockdown by RNA interference sensitizes prostate cancer cells to ionizing radiation (IR) and etoposide treatment, as assessed by clonogenic survival and short-term proliferation assays. Mechanistically, MEK5 downregulation impairs phosphorylation of the catalytic subunit of DNA-PK at serine 2056 in response to IR or etoposide treatment. Although MEK5 knockdown does not influence the initial appearance of radiation- and etoposide-induced γH2AX and 53BP1 foci, it markedly delays their resolution, indicating a DNA repair defect. A cell-based assay shows that non-homologous end joining (NHEJ) is compromised in cells with ablated MEK5 protein expression. Finally, MEK5 silencing combined with focal irradiation causes strong inhibition of tumor growth in mouse xenografts, compared with MEK5 depletion or radiation alone. These findings reveal a convergence between MEK5 signaling and DNA repair by NHEJ in conferring resistance to genotoxic stress in advanced prostate cancer and suggest targeting MEK5 as an effective therapeutic intervention in the management of this disease.
Collapse
Affiliation(s)
- Constantinos G Broustas
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| | - Axel J Duval
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Kunal R Chaudhary
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center and Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| | - Renu K Virk
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Howard B Lieberman
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
49
|
Ma C, Geng B, Zhang X, Li R, Yang X, Xia Y. Fluid Shear Stress Suppresses Osteoclast Differentiation in RAW264.7 Cells through Extracellular Signal-Regulated Kinase 5 (ERK5) Signaling Pathway. Med Sci Monit 2020; 26:e918370. [PMID: 31914120 PMCID: PMC6977602 DOI: 10.12659/msm.918370] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Although extracellular signal-regulated kinase 5 (ERK5) is known to be critical for osteoclast differentiation, there are few studies on how fluid shear stress (FSS) regulates osteoclast differentiation through the ERK5 signaling pathway. We examined the expression of nuclear factor of activated T cells c1 (NFATc1) in RAW264.7 cells and its downstream factors, including cathepsin K (CTSK), tartrate-resistant acid phosphatase (TRAP), matrix metalloproteinases-9 (MMP-9) and their relationship with ERK5. Material/Methods RAW264.7 cells were treated with RANKL, XMD8-92 (ERK5 inhibitor), and then loaded onto 12 dyn/cm2 FSS for 4 days. Endpoints measured were osteoclast differentiation, bone resorption, and TRAP activity. Cell viability was detected by using the Cell Counting Kit-8 (CCK-8) assay. Western blot was used to analyze protein expression of phosphorylated-ERK5 (p-ERK5), NFATc1, CTSK, TRAP, and MMP-9. Results FSS inhibited osteoclast differentiation and expression of NFATc1, CTSK, TRAP, and MMP-9; cell viability was not affected. ERK5 expression increased by FSS but not by RANKL, and it was blocked by XMD8-92. Furthermore, FSS suppressed osteoclast differentiation in RAW264.7 cells through ERK5 pathway. Conclusions Our findings demonstrated that FSS inhibited osteoclast differentiation in RAW264.7 cells via the ERK5 pathway through reduced NFATc1 expression and its downstream factors MMP-9, CTSK, and TRAP.
Collapse
Affiliation(s)
- Chongwen Ma
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China (mainland).,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China (mainland)
| | - Bin Geng
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China (mainland).,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China (mainland)
| | - Xiaohui Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China (mainland).,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China (mainland)
| | - Rui Li
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China (mainland).,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China (mainland)
| | - Xinxin Yang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China (mainland).,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China (mainland)
| | - Yayi Xia
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China (mainland).,Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China (mainland)
| |
Collapse
|
50
|
Horie T, Park G, Inaba Y, Hashiuchi E, Iezaki T, Tokumura K, Fukasawa K, Yamada T, Hiraiwa M, Kitaguchi Y, Kamada H, Kaneda K, Tanaka T, Inoue H, Hinoi E. MAPK Erk5 in Leptin Receptor‒Expressing Neurons Controls Body Weight and Systemic Energy Homeostasis in Female Mice. Endocrinology 2019; 160:2837-2848. [PMID: 31555819 DOI: 10.1210/en.2019-00090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 09/11/2019] [Indexed: 01/06/2023]
Abstract
Extracellular signal-regulated kinase 5 (Erk5), a member of the MAPK family, is specifically phosphorylated and activated by MAPK/Erk kinase-5. Although it has been implicated in odor discrimination and long-term memory via its expression in the central nervous system, little is known regarding the physiological importance of neuronal Erk5 in body weight and energy homeostasis. In the current study, systemic insulin injection significantly induced phosphorylation of Erk5 in the hypothalamus. Moreover, Erk5 deficiency in leptin receptor (LepR)‒expressing neurons led to an obesity phenotype, with increased white adipose tissue mass due to increased adipocyte size, only in female mice fed a normal chow diet. Furthermore, Erk5 deficiency in LepR-expressing neurons showed impaired glucose tolerance along with decreased physical activity, food intake, and energy expenditure. These results suggest that Erk5 controls body weight and systemic energy homeostasis probably via its expression in hypothalamic neurons in female mice, thereby providing a target for metabolic diseases such as obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Tetsuhiro Horie
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Gyujin Park
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Yuka Inaba
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Emi Hashiuchi
- Department of Physiology and Metabolism, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takashi Iezaki
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
- Venture Business Laboratory, Organization of Frontier Science and Innovation, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kazuya Tokumura
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
| | - Kazuya Fukasawa
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Takanori Yamada
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Manami Hiraiwa
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Yuka Kitaguchi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Hikari Kamada
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
| | - Tomohiro Tanaka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroshi Inoue
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
- Department of Physiology and Metabolism, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Eiichi Hinoi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa, Japan
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|