1
|
Sanchez-Londono M, Rust S, Hernández-Tamayo R, Gomes-Filho J, Thanbichler M, Randau L. Visualization of Type IV-A1 CRISPR-mediated repression of gene expression and plasmid replication. Nucleic Acids Res 2024; 52:12592-12603. [PMID: 39380487 PMCID: PMC11551745 DOI: 10.1093/nar/gkae879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
Type IV CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins) effector complexes are often encoded on plasmids and are proposed to prevent the replication of competing plasmids. The Type IV-A1 CRISPR-Cas system of Pseudomonas oleovorans additionally harbors a CRISPR RNA (crRNA) that tightly regulates the transcript levels of a chromosomal target and represents a natural CRISPR interference (CRISPRi) tool. This study investigates CRISPRi effects of this system using synthetic crRNAs against genome and plasmid sequences. Targeting of reporter genes revealed extended interference in P. oleovorans and Escherichia coli cells producing recombinant CRISPR ribonucleoprotein (crRNP) complexes. RNA sequencing (RNA-seq) analyses of Type IV-A1 CRISPRi-induced transcriptome alterations demonstrated highly effective long-range downregulation of histidine operon expression, whereas CRISPRi effects of dCas9 remained limited to the vicinity of its binding site. Single-molecule microscopy uncovered the localization dynamics of crRNP complexes. The tracks of fluorescently labeled crRNPs co-localized with regions of increased plasmid replication, supporting efficient plasmid targeting. These results identify mechanistic principles that facilitate the application of Type IV-A1 CRISPRi for the regulation of gene expression and plasmid replication.
Collapse
Affiliation(s)
- Mariana Sanchez-Londono
- Department of Biology, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, 35043 Marburg, Germany
| | - Selina Rust
- Department of Biology, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, 35043 Marburg, Germany
| | - Rogelio Hernández-Tamayo
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, 35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Straße 14, 35043 Marburg, Germany
| | - José Vicente Gomes-Filho
- Department of Biology, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, 35043 Marburg, Germany
| | - Martin Thanbichler
- Department of Biology, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, 35043 Marburg, Germany
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, 35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Straße 14, 35043 Marburg, Germany
| | - Lennart Randau
- Department of Biology, Philipps-Universität Marburg, Hans-Meerwein-Str. 6, 35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Straße 14, 35043 Marburg, Germany
| |
Collapse
|
2
|
Monachino E, Jergic S, Lewis JS, Xu ZQ, Lo ATY, O'Shea VL, Berger JM, Dixon NE, van Oijen AM. A Primase-Induced Conformational Switch Controls the Stability of the Bacterial Replisome. Mol Cell 2020; 79:140-154.e7. [PMID: 32464091 DOI: 10.1016/j.molcel.2020.04.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/12/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
Recent studies of bacterial DNA replication have led to a picture of the replisome as an entity that freely exchanges DNA polymerases and displays intermittent coupling between the helicase and polymerase(s). Challenging the textbook model of the polymerase holoenzyme acting as a stable complex coordinating the replisome, these observations suggest a role of the helicase as the central organizing hub. We show here that the molecular origin of this newly found plasticity lies in the 500-fold increase in strength of the interaction between the polymerase holoenzyme and the replicative helicase upon association of the primase with the replisome. By combining in vitro ensemble-averaged and single-molecule assays, we demonstrate that this conformational switch operates during replication and promotes recruitment of multiple holoenzymes at the fork. Our observations provide a molecular mechanism for polymerase exchange and offer a revised model for the replication reaction that emphasizes its stochasticity.
Collapse
Affiliation(s)
- Enrico Monachino
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747, the Netherlands
| | - Slobodan Jergic
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Jacob S Lewis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Zhi-Qiang Xu
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Allen T Y Lo
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Valerie L O'Shea
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicholas E Dixon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| |
Collapse
|
3
|
Perera HM, Behrmann MS, Hoang JM, Griffin WC, Trakselis MA. Contacts and context that regulate DNA helicase unwinding and replisome progression. Enzymes 2019; 45:183-223. [PMID: 31627877 DOI: 10.1016/bs.enz.2019.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hexameric DNA helicases involved in the separation of duplex DNA at the replication fork have a universal architecture but have evolved from two separate protein families. The consequences are that the regulation, translocation polarity, strand specificity, and architectural orientation varies between phage/bacteria to that of archaea/eukaryotes. Once assembled and activated for single strand DNA translocation and unwinding, the DNA polymerase couples tightly to the helicase forming a robust replisome complex. However, this helicase-polymerase interaction can be challenged by various forms of endogenous or exogenous agents that can stall the entire replisome or decouple DNA unwinding from synthesis. The consequences of decoupling can be severe, leading to a build-up of ssDNA requiring various pathways for replication fork restart. All told, the hexameric helicase sits prominently at the front of the replisome constantly responding to a variety of obstacles that require transient unwinding/reannealing, traversal of more stable blocks, and alternations in DNA unwinding speed that regulate replisome progression.
Collapse
Affiliation(s)
- Himasha M Perera
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, United States
| | - Megan S Behrmann
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, United States
| | - Joy M Hoang
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, United States
| | - Wezley C Griffin
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, United States
| | - Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, United States.
| |
Collapse
|
4
|
Phenotypes of dnaXE145A Mutant Cells Indicate that the Escherichia coli Clamp Loader Has a Role in the Restart of Stalled Replication Forks. J Bacteriol 2017; 199:JB.00412-17. [PMID: 28947673 DOI: 10.1128/jb.00412-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/18/2017] [Indexed: 12/27/2022] Open
Abstract
The Escherichia colidnaXE145A mutation was discovered in connection with a screen for multicopy suppressors of the temperature-sensitive topoisomerase IV mutation parE10 The gene for the clamp loader subunits τ and γ, dnaX, but not the mutant dnaXE145A , was found to suppress parE10(Ts) when overexpressed. Purified mutant protein was found to be functional in vitro, and few phenotypes were found in vivo apart from problems with partitioning of DNA in rich medium. We show here that a large number of the replication forks that initiate at oriC never reach the terminus in dnaXE145A mutant cells. The SOS response was found to be induced, and a combination of the dnaXE145A mutation with recBC and recA mutations led to reduced viability. The mutant cells exhibited extensive chromosome fragmentation and degradation upon inactivation of recBC and recA, respectively. The results indicate that the dnaXE145A mutant cells suffer from broken replication forks and that these need to be repaired by homologous recombination. We suggest that the dnaX-encoded τ and γ subunits of the clamp loader, or the clamp loader complex itself, has a role in the restart of stalled replication forks without extensive homologous recombination.IMPORTANCE The E. coli clamp loader complex has a role in coordinating the activity of the replisome at the replication fork and loading β-clamps for lagging-strand synthesis. Replication forks frequently encounter obstacles, such as template lesions, secondary structures, and tightly bound protein complexes, which will lead to fork stalling. Some pathways of fork restart have been characterized, but much is still unknown about the actors and mechanisms involved. We have in this work characterized the dnaXE145A clamp loader mutant. We find that the naturally occurring obstacles encountered by a replication fork are not tackled in a proper way by the mutant clamp loader and suggest a role for the clamp loader in the restart of stalled replication forks.
Collapse
|
5
|
Abstract
DNA replication in Escherichia coli initiates at oriC, the origin of replication and proceeds bidirectionally, resulting in two replication forks that travel in opposite directions from the origin. Here, we focus on events at the replication fork. The replication machinery (or replisome), first assembled on both forks at oriC, contains the DnaB helicase for strand separation, and the DNA polymerase III holoenzyme (Pol III HE) for DNA synthesis. DnaB interacts transiently with the DnaG primase for RNA priming on both strands. The Pol III HE is made up of three subassemblies: (i) the αɛθ core polymerase complex that is present in two (or three) copies to simultaneously copy both DNA strands, (ii) the β2 sliding clamp that interacts with the core polymerase to ensure its processivity, and (iii) the seven-subunit clamp loader complex that loads β2 onto primer-template junctions and interacts with the α polymerase subunit of the core and the DnaB helicase to organize the two (or three) core polymerases. Here, we review the structures of the enzymatic components of replisomes, and the protein-protein and protein-DNA interactions that ensure they remain intact while undergoing substantial dynamic changes as they function to copy both the leading and lagging strands simultaneously during coordinated replication.
Collapse
Affiliation(s)
- J S Lewis
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - S Jergic
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - N E Dixon
- Centre for Medical & Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
6
|
Tondnevis F, Gillilan RE, Bloom LB, McKenna R. Solution study of the Escherichia coli DNA polymerase III clamp loader reveals the location of the dynamic ψχ heterodimer. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2015; 2:054701. [PMID: 26798827 PMCID: PMC4711647 DOI: 10.1063/1.4927407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/15/2015] [Indexed: 06/05/2023]
Abstract
Several X-ray crystal structures of the E. coli core clamp loader containing the five core (δ', δ, and three truncated γ) subunits have been determined, but they lack the ψ and χ subunits. We report the first solution structure of the complete seven-subunit clamp loader complex using small angle X-ray scattering. This structure not only provides information about the location of the χ and ψ subunits but also provides a model of the dynamic nature of the clamp loader complex.
Collapse
Affiliation(s)
- Farzaneh Tondnevis
- Biochemistry and Molecular Biology, University of Florida , P.O. BOX 100245, Gainesville, Florida 32610, USA
| | - Richard E Gillilan
- Cornell High Energy Synchrotron Source (CHESS), Cornell University , 161 Synchrotron Drive, Ithaca, New York 14853, USA
| | - Linda B Bloom
- Biochemistry and Molecular Biology, University of Florida , P.O. BOX 100245, Gainesville, Florida 32610, USA
| | - Robert McKenna
- Biochemistry and Molecular Biology, University of Florida , P.O. BOX 100245, Gainesville, Florida 32610, USA
| |
Collapse
|
7
|
Kinetic analysis of PCNA clamp binding and release in the clamp loading reaction catalyzed by Saccharomyces cerevisiae replication factor C. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:31-8. [PMID: 25450506 DOI: 10.1016/j.bbapap.2014.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/17/2014] [Accepted: 09/23/2014] [Indexed: 11/22/2022]
Abstract
DNA polymerases require a sliding clamp to achieve processive DNA synthesis. The toroidal clamps are loaded onto DNA by clamp loaders, members of the AAA+family of ATPases. These enzymes utilize the energy of ATP binding and hydrolysis to perform a variety of cellular functions. In this study, a clamp loader-clamp binding assay was developed to measure the rates of ATP-dependent clamp binding and ATP-hydrolysis-dependent clamp release for the Saccharomyces cerevisiae clamp loader (RFC) and clamp (PCNA). Pre-steady-state kinetics of PCNA binding showed that although ATP binding to RFC increases affinity for PCNA, ATP binding rates and ATP-dependent conformational changes in RFC are fast relative to PCNA binding rates. Interestingly, RFC binds PCNA faster than the Escherichia coli γ complex clamp loader binds the β-clamp. In the process of loading clamps on DNA, RFC maintains contact with PCNA while PCNA closes, as the observed rate of PCNA closing is faster than the rate of PCNA release, precluding the possibility of an open clamp dissociating from DNA. Rates of clamp closing and release are not dependent on the rate of the DNA binding step and are also slower than reported rates of ATP hydrolysis, showing that these rates reflect unique intramolecular reaction steps in the clamp loading pathway.
Collapse
|
8
|
Hayner JN, Douma LG, Bloom LB. The interplay of primer-template DNA phosphorylation status and single-stranded DNA binding proteins in directing clamp loaders to the appropriate polarity of DNA. Nucleic Acids Res 2014; 42:10655-67. [PMID: 25159615 PMCID: PMC4176372 DOI: 10.1093/nar/gku774] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Sliding clamps are loaded onto DNA by clamp loaders to serve the critical role of coordinating various enzymes on DNA. Clamp loaders must quickly and efficiently load clamps at primer/template (p/t) junctions containing a duplex region with a free 3′OH (3′DNA), but it is unclear how clamp loaders target these sites. To measure the Escherichia coli and Saccharomyces cerevisiae clamp loader specificity toward 3′DNA, fluorescent β and PCNA clamps were used to measure clamp closing triggered by DNA substrates of differing polarity, testing the role of both the 5′phosphate (5′P) and the presence of single-stranded binding proteins (SSBs). SSBs inhibit clamp loading by both clamp loaders on the incorrect polarity of DNA (5′DNA). The 5′P groups contribute selectivity to differing degrees for the two clamp loaders, suggesting variations in the mechanism by which clamp loaders target 3′DNA. Interestingly, the χ subunit of the E. coli clamp loader is not required for SSB to inhibit clamp loading on phosphorylated 5′DNA, showing that χ·SSB interactions are dispensable. These studies highlight a common role for SSBs in directing clamp loaders to 3′DNA, as well as uncover nuances in the mechanisms by which SSBs perform this vital role.
Collapse
Affiliation(s)
- Jaclyn N Hayner
- Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Lauren G Douma
- Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Linda B Bloom
- Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
9
|
Abstract
To achieve the high degree of processivity required for DNA replication, DNA polymerases associate with ring-shaped sliding clamps that encircle the template DNA and slide freely along it. The closed circular structure of sliding clamps necessitates an enzyme-catalyzed mechanism, which not only opens them for assembly and closes them around DNA, but specifically targets them to sites where DNA synthesis is initiated and orients them correctly for replication. Such a feat is performed by multisubunit complexes known as clamp loaders, which use ATP to open sliding clamp rings and place them around the 3' end of primer-template (PT) junctions. Here we discuss the structure and composition of sliding clamps and clamp loaders from the three domains of life as well as T4 bacteriophage, and provide our current understanding of the clamp-loading process.
Collapse
Affiliation(s)
- Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
10
|
Naue N, Beerbaum M, Bogutzki A, Schmieder P, Curth U. The helicase-binding domain of Escherichia coli DnaG primase interacts with the highly conserved C-terminal region of single-stranded DNA-binding protein. Nucleic Acids Res 2013; 41:4507-17. [PMID: 23430154 PMCID: PMC3632105 DOI: 10.1093/nar/gkt107] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
During bacterial DNA replication, DnaG primase and the χ subunit of DNA polymerase III compete for binding to single-stranded DNA-binding protein (SSB), thus facilitating the switch between priming and elongation. SSB proteins play an essential role in DNA metabolism by protecting single-stranded DNA and by mediating several important protein-protein interactions. Although an interaction of SSB with primase has been previously reported, it was unclear which domains of the two proteins are involved. This study identifies the C-terminal helicase-binding domain of DnaG primase (DnaG-C) and the highly conserved C-terminal region of SSB as interaction sites. By ConSurf analysis, it can be shown that an array of conserved amino acids on DnaG-C forms a hydrophobic pocket surrounded by basic residues, reminiscent of known SSB-binding sites on other proteins. Using protein-protein cross-linking, site-directed mutagenesis, analytical ultracentrifugation and nuclear magnetic resonance spectroscopy, we demonstrate that these conserved amino acid residues are involved in the interaction with SSB. Even though the C-terminal domain of DnaG primase also participates in the interaction with DnaB helicase, the respective binding sites on the surface of DnaG-C do not overlap, as SSB binds to the N-terminal subdomain, whereas DnaB interacts with the ultimate C-terminus.
Collapse
Affiliation(s)
- Natalie Naue
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | | | |
Collapse
|
11
|
Hayner JN, Bloom LB. The β sliding clamp closes around DNA prior to release by the Escherichia coli clamp loader γ complex. J Biol Chem 2012; 288:1162-70. [PMID: 23161545 DOI: 10.1074/jbc.m112.406231] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli γ complex clamp loader functions to load the β sliding clamp onto sites of DNA replication and repair. The clamp loader uses the energy of ATP binding and hydrolysis to drive conformational changes allowing for β binding and opening, DNA binding, and then release of the β·DNA complex. Although much work has been done studying the sliding clamp and clamp loader mechanism, kinetic analysis of the events following β·γ complex·DNA formation is not complete. Using fluorescent clamp closing and release assays, we show that β closing is faster than β release, indicating that γ complex closes β before releasing it around DNA. Using a fluorescent ATP hydrolysis assay, we show that there is a burst of ATP hydrolysis before β closing and that β release may be the rate-limiting step in the overall clamp loading reaction. The combined use of these fluorescent assays provides a unique perspective into the E. coli clamp loader by providing a measure of the relative timing of different events in the clamp loading reaction, helping to elucidate the complicated clamp loading mechanism.
Collapse
Affiliation(s)
- Jaclyn N Hayner
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610-0245, USA
| | | |
Collapse
|
12
|
Kelch BA, Makino DL, O'Donnell M, Kuriyan J. Clamp loader ATPases and the evolution of DNA replication machinery. BMC Biol 2012; 10:34. [PMID: 22520345 PMCID: PMC3331839 DOI: 10.1186/1741-7007-10-34] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 04/20/2012] [Indexed: 11/19/2022] Open
Abstract
Clamp loaders are pentameric ATPases of the AAA+ family that operate to ensure processive DNA replication. They do so by loading onto DNA the ring-shaped sliding clamps that tether the polymerase to the DNA. Structural and biochemical analysis of clamp loaders has shown how, despite differences in composition across different branches of life, all clamp loaders undergo the same concerted conformational transformations, which generate a binding surface for the open clamp and an internal spiral chamber into which the DNA at the replication fork can slide, triggering ATP hydrolysis, release of the clamp loader, and closure of the clamp round the DNA. We review here the current understanding of the clamp loader mechanism and discuss the implications of the differences between clamp loaders from the different branches of life.
Collapse
Affiliation(s)
- Brian A Kelch
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| | | | | | | |
Collapse
|
13
|
Paschall CO, Thompson JA, Marzahn MR, Chiraniya A, Hayner JN, O'Donnell M, Robbins AH, McKenna R, Bloom LB. The Escherichia coli clamp loader can actively pry open the β-sliding clamp. J Biol Chem 2011; 286:42704-42714. [PMID: 21971175 PMCID: PMC3234947 DOI: 10.1074/jbc.m111.268169] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Clamp loaders load ring-shaped sliding clamps onto DNA. Once loaded onto DNA, sliding clamps bind to DNA polymerases to increase the processivity of DNA synthesis. To load clamps onto DNA, an open clamp loader-clamp complex must form. An unresolved question is whether clamp loaders capture clamps that have transiently opened or whether clamp loaders bind closed clamps and actively open clamps. A simple fluorescence-based clamp opening assay was developed to address this question and to determine how ATP binding contributes to clamp opening. A direct comparison of real time binding and opening reactions revealed that the Escherichia coli γ complex binds β first and then opens the clamp. Mutation of conserved "arginine fingers" in the γ complex that interact with bound ATP decreased clamp opening activity showing that arginine fingers make an important contribution to the ATP-induced conformational changes that allow the clamp loader to pry open the clamp.
Collapse
Affiliation(s)
- Christopher O. Paschall
- From the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610-0245 and
| | - Jennifer A. Thompson
- From the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610-0245 and
| | - Melissa R. Marzahn
- From the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610-0245 and
| | - Ankita Chiraniya
- From the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610-0245 and
| | - Jaclyn N. Hayner
- From the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610-0245 and
| | - Mike O'Donnell
- the Howard Hughes Medical Institute and Rockefeller University, New York, New York 10021
| | - Arthur H. Robbins
- From the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610-0245 and
| | - Robert McKenna
- From the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610-0245 and
| | - Linda B. Bloom
- From the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610-0245 and , To whom correspondence should be addressed: 1600 SW Archer Rd., JHMHC R3-234, Dept. of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610-0245. Tel.: 352-392-8708; Fax: 352-392-6511; E-mail:
| |
Collapse
|
14
|
El Houry Mignan S, Witte G, Naue N, Curth U. Characterization of the χψ subcomplex of Pseudomonas aeruginosa DNA polymerase III. BMC Mol Biol 2011; 12:43. [PMID: 21955458 PMCID: PMC3197488 DOI: 10.1186/1471-2199-12-43] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 09/28/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA polymerase III, the main enzyme responsible for bacterial DNA replication, is composed of three sub-assemblies: the polymerase core, the β-sliding clamp, and the clamp loader. During replication, single-stranded DNA-binding protein (SSB) coats and protects single-stranded DNA (ssDNA) and also interacts with the χψ heterodimer, a sub-complex of the clamp loader. Whereas the χ subunits of Escherichia coli and Pseudomonas aeruginosa are about 40% homologous, P. aeruginosa ψ is twice as large as its E. coli counterpart, and contains additional sequences. It was shown that P. aeruginosa χψ together with SSB increases the activity of its cognate clamp loader 25-fold at low salt. The E. coli clamp loader, however, is insensitive to the addition of its cognate χψ under similar conditions. In order to find out distinguishing properties within P. aeruginosa χψ which account for this higher stimulatory effect, we characterized P. aeruginosa χψ by a detailed structural and functional comparison with its E. coli counterpart. RESULTS Using small-angle X-ray scattering, analytical ultracentrifugation, and homology-based modeling, we found the N-terminus of P. aeruginosa ψ to be unstructured. Under high salt conditions, the affinity of the χψ complexes from both organisms to their cognate SSB was similar. Under low salt conditions, P. aeruginosa χψ, contrary to E. coli χψ, binds to ssDNA via the N-terminus of ψ. Whereas it is also able to bind to double-stranded DNA, the affinity is somewhat reduced. CONCLUSIONS The binding to DNA, otherwise never reported for any other ψ protein, enhances the affinity of P. aeruginosa χψ towards the SSB/ssDNA complex and very likely contributes to the higher stimulatory effect of P. aeruginosa χψ on the clamp loader. We also observed DNA-binding activity for P. putida χψ, making this activity most probably a characteristic of the ψ proteins from the Pseudomonadaceae.
Collapse
Affiliation(s)
- Sirine El Houry Mignan
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Gregor Witte
- Department of Biochemistry, Gene Center of the Ludwig-Maximilians-University Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
- Center for Integrated Protein Sciences (CIPSM), Gene Center of the Ludwig-Maximilians-University Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
- Munich Center for Advanced Photonics (MAP), Gene Center of the Ludwig-Maximilians-University Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Natalie Naue
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Ute Curth
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
15
|
Role of high-fidelity Escherichia coli DNA polymerase I in replication bypass of a deoxyadenosine DNA-peptide cross-link. J Bacteriol 2011; 193:3815-21. [PMID: 21622737 DOI: 10.1128/jb.01550-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Reaction of bifunctional electrophiles with DNA in the presence of peptides can result in DNA-peptide cross-links. In particular, the linkage can be formed in the major groove of DNA via the exocyclic amino group of adenine (N⁶-dA). We previously demonstrated that an A family human polymerase, Pol ν, can efficiently and accurately synthesize DNA past N⁶-dA-linked peptides. Based on these results, we hypothesized that another member of that family, Escherichia coli polymerase I (Pol I), may also be able to bypass these large major groove DNA lesions. To test this, oligodeoxynucleotides containing a site-specific N⁶-dA dodecylpeptide cross-link were created and utilized for in vitro DNA replication assays using E. coli DNA polymerases. The results showed that Pol I and Pol II could efficiently and accurately bypass this adduct, while Pol III replicase, Pol IV, and Pol V were strongly inhibited. In addition, cellular studies were conducted using E. coli strains that were either wild type or deficient in all three DNA damage-inducible polymerases, i.e., Pol II, Pol IV, and Pol V. When single-stranded DNA vectors containing a site-specific N⁶-dA dodecylpeptide cross-link were replicated in these strains, the efficiencies of replication were comparable, and in both strains, intracellular bypass of the lesion occurred in an error-free manner. Collectively, these findings demonstrate that despite its constrained active site, Pol I can catalyze DNA synthesis past N⁶-dA-linked peptide cross-links and is likely to play an essential role in cellular bypass of large major groove DNA lesions.
Collapse
|
16
|
Lin SQ, Bi LJ, Zhang XE. A simplified method for reconstituting active E. coli DNA polymerase III. Protein Cell 2011; 2:303-7. [PMID: 21499845 DOI: 10.1007/s13238-011-1032-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 03/20/2011] [Indexed: 11/25/2022] Open
Abstract
Genome duplication in E. coli is carried out by DNA polymerase III, an enzyme complex consisting of ten subunits. Investigations of the biochemical and structural properties of DNA polymerase III require the expression and purification of subunits including α, ge, θ, γ, δ', δ, and β separately followed by in vitro reconstitution of the pol III core and clamp loader. Here we propose a new method for expressing and purifying DNA polymerase III components by utilizing a protein co-expression strategy. Our results show that the subunits of the pol III core and those of the clamp loader can be coexpressed and purified based on inherent interactions between the subunits. The resulting pol III core, clamp loader and sliding clamp can be reconstituted effectively to perform DNA polymerization. Our strategy considerably simplifies the expression and purification of DNA polymerase III and provides a feasible and convenient method for exploring other multi-subunit systems.
Collapse
Affiliation(s)
- Shi-Qiang Lin
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | |
Collapse
|
17
|
E. coli DNA replication in the absence of free β clamps. EMBO J 2011; 30:1830-40. [PMID: 21441898 DOI: 10.1038/emboj.2011.84] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 02/28/2011] [Indexed: 11/08/2022] Open
Abstract
During DNA replication, repetitive synthesis of discrete Okazaki fragments requires mechanisms that guarantee DNA polymerase, clamp, and primase proteins are present for every cycle. In Escherichia coli, this process proceeds through transfer of the lagging-strand polymerase from the β sliding clamp left at a completed Okazaki fragment to a clamp assembled on a new RNA primer. These lagging-strand clamps are thought to be bound by the replisome from solution and loaded a new for every fragment. Here, we discuss a surprising, alternative lagging-strand synthesis mechanism: efficient replication in the absence of any clamps other than those assembled with the replisome. Using single-molecule experiments, we show that replication complexes pre-assembled on DNA support synthesis of multiple Okazaki fragments in the absence of excess β clamps. The processivity of these replisomes, but not the number of synthesized Okazaki fragments, is dependent on the frequency of RNA-primer synthesis. These results broaden our understanding of lagging-strand synthesis and emphasize the stability of the replisome to continue synthesis without new clamps.
Collapse
|
18
|
Park AY, Jergic S, Politis A, Ruotolo BT, Hirshberg D, Jessop LL, Beck JL, Barsky D, O'Donnell M, Dixon NE, Robinson CV. A single subunit directs the assembly of the Escherichia coli DNA sliding clamp loader. Structure 2010; 18:285-92. [PMID: 20223211 DOI: 10.1016/j.str.2010.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/19/2010] [Accepted: 01/22/2010] [Indexed: 10/19/2022]
Abstract
Multi-protein clamp loader complexes are required to load sliding clamps onto DNA. In Escherichia coli the clamp loader contains three DnaX (tau/gamma) proteins, delta, and delta', which together form an asymmetric pentameric ring that also interacts with psichi. Here we used mass spectrometry to examine the assembly and dynamics of the clamp loader complex. We find that gamma exists exclusively as a stable homotetramer, while tau is in a monomer-dimer-trimer-tetramer equilibrium. delta' plays a direct role in the assembly as a tau/gamma oligomer breaker, thereby facilitating incorporation of lower oligomers. With delta', both delta and psichi stabilize the trimeric form of DnaX, thus completing the assembly. When tau and gamma are present simultaneously, mimicking the situation in vivo, subunit exchange between tau and gamma tetramers occurs rapidly to form heterocomplexes but is retarded when deltadelta' is present. The implications for intracellular assembly of the DNA polymerase III holoenzyme are discussed.
Collapse
Affiliation(s)
- Ah Young Park
- Department of Chemistry, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Anderson SG, Thompson JA, Paschall CO, O'Donnell M, Bloom LB. Temporal correlation of DNA binding, ATP hydrolysis, and clamp release in the clamp loading reaction catalyzed by the Escherichia coli gamma complex. Biochemistry 2009; 48:8516-27. [PMID: 19663416 DOI: 10.1021/bi900912a] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Clamp loaders are multisubunit complexes that use the energy derived from ATP binding and hydrolysis to assemble ring-shaped sliding clamps onto DNA. Sliding clamps in turn tether DNA polymerases to the templates being copied to increase the processivity of DNA synthesis. Here, the rate of clamp release during the clamp loading reaction was measured directly for the first time using a FRET-based assay in which the E. coli gamma complex clamp loader (gamma3deltadelta'chipsi) was labeled with a fluorescent donor, and the beta-clamp was labeled with a nonfluorescent quencher. When a beta.gamma complex is added to DNA, there is a significant time lag before the clamp is released onto DNA. To establish what events take place during this time lag, the timing of clamp release was compared to the timing of DNA binding and ATP hydrolysis by measuring these reactions directly side-by-side in assays. DNA binding is relatively rapid and triggers the hydrolysis of ATP. Both events occur prior to clamp release. Interestingly, the temporal correlation data and simple modeling studies indicate that the clamp loader releases DNA prior to the clamp and that DNA release may be coupled to clamp closing. Clamp release is relatively slow and likely to be the rate-limiting step in the overall clamp loading reaction cycle.
Collapse
Affiliation(s)
- Stephen G Anderson
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610-0245, USA
| | | | | | | | | |
Collapse
|
20
|
Pluciennik A, Burdett V, Lukianova O, O'Donnell M, Modrich P. Involvement of the beta clamp in methyl-directed mismatch repair in vitro. J Biol Chem 2009; 284:32782-91. [PMID: 19783657 PMCID: PMC2781695 DOI: 10.1074/jbc.m109.054528] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have examined function of the bacterial beta replication clamp in the different steps of methyl-directed DNA mismatch repair. The mismatch-, MutS-, and MutL-dependent activation of MutH is unaffected by the presence or orientation of loaded beta clamp on either 3' or 5' heteroduplexes. Similarly, beta is not required for 3' or 5' mismatch-provoked excision when scored in the presence of gamma complex or in the presence of gamma complex and DNA polymerase III core components. However, mismatch repair does not occur in the absence of beta, an effect we attribute to a requirement for the clamp in the repair DNA synthesis step of the reaction. We have confirmed previous findings that beta clamp interacts specifically with MutS and MutL (López de Saro, F. J., Marinus, M. G., Modrich, P., and O'Donnell, M. (2006) J. Biol. Chem. 281, 14340-14349) and show that the mutator phenotype conferred by amino acid substitution within the MutS N-terminal beta-interaction motif is the probable result of instability coupled with reduced activity in multiple steps of the repair reaction. In addition, we have found that the DNA polymerase III alpha catalytic subunit interacts strongly and specifically with both MutS and MutL. Because interactions of polymerase III holoenzyme components with MutS and MutL appear to be of limited import during the initiation and excision steps of mismatch correction, we suggest that their significance might lie in the control of replication fork events in response to the sensing of DNA lesions by the repair system.
Collapse
Affiliation(s)
- Anna Pluciennik
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
21
|
Park MS, O'Donnell M. The clamp loader assembles the beta clamp onto either a 3' or 5' primer terminus: the underlying basis favoring 3' loading. J Biol Chem 2009; 284:31473-83. [PMID: 19759020 DOI: 10.1074/jbc.m109.050310] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clamp loaders assemble sliding clamps onto 3' primed sites for DNA polymerases. Clamp loaders are thought to be specific for a 3' primed site, and unable to bind a 5' site. We demonstrate here that the Escherichia coli gamma complex clamp loader can load the beta clamp onto a 5' primed site, although with at least 20-fold reduced efficiency relative to loading at a 3' primed site. Preferential clamp loading at a 3' site does not appear to be due to DNA binding, as the clamp loader forms an avid complex with beta at a 5' site. Preferential loading at a 3' versus a 5' site occurs at the ATP hydrolysis step, needed to close the ring around DNA. We also address DNA structural features that are recognized for preferential loading at a 3' site. Although the single-stranded template strand extends in opposite directions from 3' and 5' primed sites, thus making it a favorite candidate for distinguishing between 3' and 5' sites, the single-strand polarity at a primed template junction does not determine 3' site selection for clamp loading. Instead, we find that clamp loader recognition of a 3' site lies in the duplex portion of the primed site, not the single-strand portion. We present evidence that the beta clamp facilitates its own loading specificity for a 3' primed site. Implications to eukaryotic clamp loader complexes are proposed.
Collapse
Affiliation(s)
- Mee Sook Park
- Howard Hughes Medical Institute, Rockefeller University, New York, New York 10065, USA
| | | |
Collapse
|
22
|
Thompson JA, Paschall CO, O'Donnell M, Bloom LB. A slow ATP-induced conformational change limits the rate of DNA binding but not the rate of beta clamp binding by the escherichia coli gamma complex clamp loader. J Biol Chem 2009; 284:32147-57. [PMID: 19759003 DOI: 10.1074/jbc.m109.045997] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, the gamma complex clamp loader loads the beta-sliding clamp onto DNA. The beta clamp tethers DNA polymerase III to DNA and enhances the efficiency of replication by increasing the processivity of DNA synthesis. In the presence of ATP, gamma complex binds beta and DNA to form a ternary complex. Binding to primed template DNA triggers gamma complex to hydrolyze ATP and release the clamp onto DNA. Here, we investigated the kinetics of forming a ternary complex by measuring rates of gamma complex binding beta and DNA. A fluorescence intensity-based beta binding assay was developed in which the fluorescence of pyrene covalently attached to beta increases when bound by gamma complex. Using this assay, an association rate constant of 2.3 x 10(7) m(-1) s(-1) for gamma complex binding beta was determined. The rate of beta binding was the same in experiments in which gamma complex was preincubated with ATP before adding beta or added directly to beta and ATP. In contrast, when gamma complex is preincubated with ATP, DNA binding is faster than when gamma complex is added to DNA and ATP at the same time. Slow DNA binding in the absence of ATP preincubation is the result of a rate-limiting ATP-induced conformational change. Our results strongly suggest that the ATP-induced conformational changes that promote beta binding and DNA binding differ. The slow ATP-induced conformational change that precedes DNA binding may provide a kinetic preference for gamma complex to bind beta before DNA during the clamp loading reaction cycle.
Collapse
Affiliation(s)
- Jennifer A Thompson
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610-0245, USA
| | | | | | | |
Collapse
|
23
|
Single-molecule analysis reveals that the lagging strand increases replisome processivity but slows replication fork progression. Proc Natl Acad Sci U S A 2009; 106:13236-41. [PMID: 19666586 DOI: 10.1073/pnas.0906157106] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single-molecule techniques are developed to examine mechanistic features of individual E. coli replisomes during synthesis of long DNA molecules. We find that single replisomes exhibit constant rates of fork movement, but the rates of different replisomes vary over a surprisingly wide range. Interestingly, lagging strand synthesis decreases the rate of the leading strand, suggesting that lagging strand operations exert a drag on replication fork progression. The opposite is true for processivity. The lagging strand significantly increases the processivity of the replisome, possibly reflecting the increased grip to DNA provided by 2 DNA polymerases anchored to sliding clamps on both the leading and lagging strands.
Collapse
|
24
|
Coordinating DNA polymerase traffic during high and low fidelity synthesis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:1167-79. [PMID: 19540941 DOI: 10.1016/j.bbapap.2009.06.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Revised: 06/02/2009] [Accepted: 06/02/2009] [Indexed: 02/08/2023]
Abstract
With the discovery that organisms possess multiple DNA polymerases (Pols) displaying different fidelities, processivities, and activities came the realization that mechanisms must exist to manage the actions of these diverse enzymes to prevent gratuitous mutations. Although many of the Pols encoded by most organisms are largely accurate, and participate in DNA replication and DNA repair, a sizeable fraction display a reduced fidelity, and act to catalyze potentially error-prone translesion DNA synthesis (TLS) past lesions that persist in the DNA. Striking the proper balance between use of these different enzymes during DNA replication, DNA repair, and TLS is essential for ensuring accurate duplication of the cell's genome. This review highlights mechanisms that organisms utilize to manage the actions of their different Pols. A particular emphasis is placed on discussion of current models for how different Pols switch places with each other at the replication fork during high fidelity replication and potentially error-pone TLS.
Collapse
|
25
|
Bloom LB. Loading clamps for DNA replication and repair. DNA Repair (Amst) 2009; 8:570-8. [PMID: 19213612 DOI: 10.1016/j.dnarep.2008.12.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 12/19/2008] [Indexed: 01/25/2023]
Abstract
Sliding clamps and clamp loaders were initially identified as DNA polymerase processivity factors. Sliding clamps are ring-shaped protein complexes that encircle and slide along duplex DNA, and clamp loaders are enzymes that load these clamps onto DNA. When bound to a sliding clamp, DNA polymerases remain tightly associated with the template being copied, but are able to translocate along DNA at rates limited by rates of nucleotide incorporation. Many different enzymes required for DNA replication and repair use sliding clamps. Clamps not only increase the processivity of these enzymes, but may also serve as an attachment point to coordinate the activities of enzymes required for a given process. Clamp loaders are members of the AAA+ family of ATPases and use energy from ATP binding and hydrolysis to catalyze the mechanical reaction of loading clamps onto DNA. Many structural and functional features of clamps and clamp loaders are conserved across all domains of life. Here, the mechanism of clamp loading is reviewed by comparing features of prokaryotic and eukaryotic clamps and clamp loaders.
Collapse
Affiliation(s)
- Linda B Bloom
- Department of Biochemistry & Molecular Biology, University of Florida, Gainesville, FL 32610-0245, United States.
| |
Collapse
|
26
|
Minko IG, Yamanaka K, Kozekov ID, Kozekova A, Indiani C, O'Donnell ME, Jiang Q, Goodman MF, Rizzo CJ, Lloyd RS. Replication bypass of the acrolein-mediated deoxyguanine DNA-peptide cross-links by DNA polymerases of the DinB family. Chem Res Toxicol 2008; 21:1983-90. [PMID: 18788757 DOI: 10.1021/tx800174a] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
DNA-protein cross-links (adducts) are formed in cellular DNA under a variety of conditions, particularly following exposure to an alpha,beta-unsaturated aldehyde, acrolein. DNA-protein cross-links are subject to repair or damage-tolerance processes. These adducts serve as substrates for proteolytic degradation, yielding DNA-peptide lesions that have been shown to be actively repaired by the nucleotide excision repair complex. Alternatively, DNA-peptide cross-links can be subjected to replication bypass. We present new evidence about the capabilities of DNA polymerases to synthesize DNA past such cross-links. DNAs were constructed with site-specific cross-links, in which either a tetrapeptide or a dodecylpeptide was covalently attached at the N (2) position of guanine via an acrolein adduct, and replication bypass assays were carried out with members of the DinB family of polymerases, human polymerase (pol) kappa, Escherichia coli pol IV, and various E. coli polymerases that do not belong to the DinB family. Pol kappa was able to catalyze both the incorporation and the extension steps with an efficiency that was qualitatively indistinguishable from control (undamaged) substrates. Fidelity was comparable on all of these substrates, suggesting that pol kappa would have a role in the low mutation frequency associated with replication of these adducts in mammalian cells. When the E. coli orthologue of pol kappa, damage-inducible DNA polymerase, pol IV, was analyzed on the same substrates, pause sites were detected opposite and three nucleotides beyond the site of the lesion, with incorporation opposite the lesion being accurate. In contrast, neither E. coli replicative polymerase, pol III, nor E. coli damage-inducible polymerases, pol II and pol V, could efficiently incorporate a nucleotide opposite the DNA-peptide cross-links. Consistent with a role for pol IV in tolerance of these lesions, the replication efficiency of DNAs containing DNA-peptide cross-links was greatly reduced in pol IV-deficient cells. Collectively, these data indicate an important role for the DinB family of polymerases in tolerance mechanisms of N (2)-guanine-linked DNA-peptide cross-links.
Collapse
Affiliation(s)
- Irina G Minko
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Shereda RD, Kozlov AG, Lohman TM, Cox MM, Keck JL. SSB as an organizer/mobilizer of genome maintenance complexes. Crit Rev Biochem Mol Biol 2008; 43:289-318. [PMID: 18937104 PMCID: PMC2583361 DOI: 10.1080/10409230802341296] [Citation(s) in RCA: 426] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
When duplex DNA is altered in almost any way (replicated, recombined, or repaired), single strands of DNA are usually intermediates, and single-stranded DNA binding (SSB) proteins are present. These proteins have often been described as inert, protective DNA coatings. Continuing research is demonstrating a far more complex role of SSB that includes the organization and/or mobilization of all aspects of DNA metabolism. Escherichia coli SSB is now known to interact with at least 14 other proteins that include key components of the elaborate systems involved in every aspect of DNA metabolism. Most, if not all, of these interactions are mediated by the amphipathic C-terminus of SSB. In this review, we summarize the extent of the eubacterial SSB interaction network, describe the energetics of interactions with SSB, and highlight the roles of SSB in the process of recombination. Similar themes to those highlighted in this review are evident in all biological systems.
Collapse
Affiliation(s)
- Robert D Shereda
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | | | | | |
Collapse
|
28
|
Duderstadt KE, Berger JM. AAA+ ATPases in the initiation of DNA replication. Crit Rev Biochem Mol Biol 2008; 43:163-87. [PMID: 18568846 DOI: 10.1080/10409230802058296] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
All cellular organisms and many viruses rely on large, multi-subunit molecular machines, termed replisomes, to ensure that genetic material is accurately duplicated for transmission from one generation to the next. Replisome assembly is facilitated by dedicated initiator proteins, which serve to both recognize replication origins and recruit requisite replisomal components to the DNA in a cell-cycle coordinated manner. Exactly how imitators accomplish this task, and the extent to which initiator mechanisms are conserved among different organisms have remained outstanding issues. Recent structural and biochemical findings have revealed that all cellular initiators, as well as the initiators of certain classes of double-stranded DNA viruses, possess a common adenine nucleotide-binding fold belonging to the ATPases Associated with various cellular Activities (AAA+) family. This review focuses on how the AAA+ domain has been recruited and adapted to control the initiation of DNA replication, and how the use of this ATPase module underlies a common set of initiator assembly states and functions. How biochemical and structural properties correlate with initiator activity, and how species-specific modifications give rise to unique initiator functions, are also discussed.
Collapse
Affiliation(s)
- Karl E Duderstadt
- Department Molecular and Cell Biology and Biophysics Graduate Group, California Institute for Quantitative Biology, University of California, Berkeley, California 94720-3220, USA.
| | | |
Collapse
|
29
|
Langston LD, O'Donnell M. DNA polymerase delta is highly processive with proliferating cell nuclear antigen and undergoes collision release upon completing DNA. J Biol Chem 2008; 283:29522-31. [PMID: 18635534 DOI: 10.1074/jbc.m804488200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In most cells, 100-1000 Okazaki fragments are produced for each replicative DNA polymerase present in the cell. For fast-growing cells, this necessitates rapid recycling of DNA polymerase on the lagging strand. Bacteria produce long Okazaki fragments (1-2 kb) and utilize a highly processive DNA polymerase III (pol III), which is held to DNA by a circular sliding clamp. In contrast, Okazaki fragments in eukaryotes are quite short, 100-250 bp, and thus the eukaryotic lagging strand polymerase does not require a high degree of processivity. The lagging strand polymerase in eukaryotes, polymerase delta (pol delta), functions with the proliferating cell nuclear antigen (PCNA) sliding clamp. In this report, Saccharomyces cerevisiae pol delta is examined on model substrates to gain insight into the mechanism of lagging strand replication in eukaryotes. Surprisingly, we find pol delta is highly processive with PCNA, over at least 5 kb, on Replication Protein A (RPA)-coated primed single strand DNA. The high processivity of pol delta observed in this report contrasts with its role in synthesis of short lagging strand fragments, which require it to rapidly dissociate from DNA at the end of each Okazaki fragment. We find that this dilemma is solved by a "collision release" process in which pol delta ejects from PCNA upon extending a DNA template to completion and running into the downstream duplex. The released pol delta transfers to a new primed site, provided the new site contains a PCNA clamp. Additional results indicate that the collision release mechanism is intrinsic to the pol3/pol31 subunits of the pol delta heterotrimer.
Collapse
Affiliation(s)
- Lance D Langston
- Howard Hughes Medical Institute, Rockefeller University, New York, New York 10065, USA
| | | |
Collapse
|
30
|
Chen S, Coman MM, Sakato M, O'Donnell M, Hingorani MM. Conserved residues in the delta subunit help the E. coli clamp loader, gamma complex, target primer-template DNA for clamp assembly. Nucleic Acids Res 2008; 36:3274-86. [PMID: 18424802 PMCID: PMC2425476 DOI: 10.1093/nar/gkn157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Escherichia coli clamp loader, γ complex (γ3δδ′λψ), catalyzes ATP-driven assembly of β clamps onto primer-template DNA (p/tDNA), enabling processive replication. The mechanism by which γ complex targets p/tDNA for clamp assembly is not resolved. According to previous studies, charged/polar amino acids inside the clamp loader chamber interact with the double-stranded (ds) portion of p/tDNA. We find that dsDNA, not ssDNA, can trigger a burst of ATP hydrolysis by γ complex and clamp assembly, but only at far higher concentrations than p/tDNA. Thus, contact between γ complex and dsDNA is necessary and sufficient, but not optimal, for the reaction, and additional contacts with p/tDNA likely facilitate its selection as the optimal substrate for clamp assembly. We investigated whether a conserved sequence—HRVW279QNRR—in δ subunit contributes to such interactions, since Tryptophan-279 specifically cross-links to the primer-template junction. Mutation of δ-W279 weakens γ complex binding to p/tDNA, hampering its ability to load clamps and promote proccessive DNA replication, and additional mutations in the sequence (δ-R277, δ-R283) worsen the interaction. These data reveal a novel location in the C-terminal domain of the E. coli clamp loader that contributes to DNA binding and helps define p/tDNA as the preferred substrate for the reaction.
Collapse
Affiliation(s)
- Siying Chen
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, CT 06459 and The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
31
|
Role of accessory DNA polymerases in DNA replication in Escherichia coli: analysis of the dnaX36 mutator mutant. J Bacteriol 2007; 190:1730-42. [PMID: 18156258 DOI: 10.1128/jb.01463-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dnaX36(TS) mutant of Escherichia coli confers a distinct mutator phenotype characterized by enhancement of transversion base substitutions and certain (-1) frameshift mutations. Here, we have further investigated the possible mechanism(s) underlying this mutator effect, focusing in particular on the role of the various E. coli DNA polymerases. The dnaX gene encodes the tau subunit of DNA polymerase III (Pol III) holoenzyme, the enzyme responsible for replication of the bacterial chromosome. The dnaX36 defect resides in the C-terminal domain V of tau, essential for interaction of tau with the alpha (polymerase) subunit, suggesting that the mutator phenotype is caused by an impaired or altered alpha-tau interaction. We previously proposed that the mutator activity results from aberrant processing of terminal mismatches created by Pol III insertion errors. The present results, including lack of interaction of dnaX36 with mutM, mutY, and recA defects, support our assumption that dnaX36-mediated mutations originate as errors of replication rather than DNA damage-related events. Second, an important role is described for DNA Pol II and Pol IV in preventing and producing, respectively, the mutations. In the system used, a high fraction of the mutations is dependent on the action of Pol IV in a (dinB) gene dosage-dependent manner. However, an even larger but opposing role is deduced for Pol II, revealing Pol II to be a major editor of Pol III mediated replication errors. Overall, the results provide insight into the interplay of the various DNA polymerases, and of tau subunit, in securing a high fidelity of replication.
Collapse
|
32
|
McInerney P, Johnson A, Katz F, O'Donnell M. Characterization of a triple DNA polymerase replisome. Mol Cell 2007; 27:527-38. [PMID: 17707226 DOI: 10.1016/j.molcel.2007.06.019] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 05/15/2007] [Accepted: 06/12/2007] [Indexed: 11/20/2022]
Abstract
The replicase of all cells is thought to utilize two DNA polymerases for coordinated synthesis of leading and lagging strands. The DNA polymerases are held to DNA by circular sliding clamps. We demonstrate here that the E. coli DNA polymerase III holoenzyme assembles into a particle that contains three DNA polymerases. The three polymerases appear capable of simultaneous activity. Furthermore, the trimeric replicase is fully functional at a replication fork with helicase, primase, and sliding clamps; it produces slightly shorter Okazaki fragments than replisomes containing two DNA polymerases. We propose that two polymerases can function on the lagging strand and that the third DNA polymerase can act as a reserve enzyme to overcome certain types of obstacles to the replication fork.
Collapse
Affiliation(s)
- Peter McInerney
- Laboratory of DNA Replication, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
33
|
Maul RW, Ponticelli SKS, Duzen JM, Sutton MD. Differential binding of Escherichia coli DNA polymerases to the beta-sliding clamp. Mol Microbiol 2007; 65:811-27. [PMID: 17635192 DOI: 10.1111/j.1365-2958.2007.05828.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Escherichia coli strains expressing the mutant beta159-sliding clamp protein (containing both a G66E and a G174A substitution) are temperature sensitive for growth and display altered DNA polymerase (pol) usage. We selected for suppressors of the dnaN159 allele able to grow at 42 degrees C, and identified four intragenic suppressor alleles. One of these alleles (dnaN780) contained only the G66E substitution, while a second (dnaN781) contained only the G174A substitution. Genetic characterization of isogenic E. coli strains expressing these alleles indicated that certain phenotypes were dependent upon only the G174A substitution, while others required both the G66E and G174A substitutions. In order to understand the individual contributions of the G66E and the G174A substitution to the dnaN159 phenotypes, we utilized biochemical approaches to characterize the purified mutant beta159 (G66E and G174A), beta780 (G66E) and beta781 (G174A) clamp proteins. The G66E substitution conferred a more pronounced effect on pol IV replication than it did pol II or pol III, while the G174A substitution conferred a greater effect on pol III and pol IV than it did pol II. Taken together, these findings indicate that pol II, pol III and pol IV interact with distinct, albeit overlapping surfaces of the beta clamp.
Collapse
Affiliation(s)
- Robert W Maul
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
34
|
McInerney P, O'Donnell M. Replisome fate upon encountering a leading strand block and clearance from DNA by recombination proteins. J Biol Chem 2007; 282:25903-16. [PMID: 17609212 DOI: 10.1074/jbc.m703777200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Replication forks that collapse upon encountering a leading strand lesion are reactivated by a recombinative repair process called replication restart. Using rolling circle DNA substrates to model replication forks, we examine the fate of the helicase and both DNA polymerases when the leading strand polymerase is blocked. We find that the helicase continues over 0.5 kb but less than 3 kb and that the lagging strand DNA polymerase remains active despite its connection to a stalled leading strand enzyme. Furthermore, the blocked leading strand polymerase remains stably bound to the replication fork, implying that it must be dismantled from DNA in order for replication restart to initiate. Genetic studies have identified at least four gene products required for replication restart, RecF, RecO, RecR, and RecA. We find here that these proteins displace a stalled polymerase at a DNA template lesion. Implications of these results for replication fork collapse and recovery are discussed.
Collapse
Affiliation(s)
- Peter McInerney
- Howard Hughes Medical Institute, Laboratory of DNA Replication, Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
35
|
Su XC, Jergic S, Keniry MA, Dixon NE, Otting G. Solution structure of Domains IVa and V of the tau subunit of Escherichia coli DNA polymerase III and interaction with the alpha subunit. Nucleic Acids Res 2007; 35:2825-32. [PMID: 17452361 PMCID: PMC1888800 DOI: 10.1093/nar/gkm080] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The solution structure of the C-terminal Domain V of the τ subunit of E. coli DNA polymerase III was determined by nuclear magnetic resonance (NMR) spectroscopy. The fold is unique to τ subunits. Amino acid sequence conservation is pronounced for hydrophobic residues that form the structural core of the protein, indicating that the fold is representative for τ subunits from a wide range of different bacteria. The interaction between the polymerase subunits τ and α was studied by NMR experiments where α was incubated with full-length C-terminal domain (τC16), and domains shortened at the C-terminus by 11 and 18 residues, respectively. The only interacting residues were found in the C-terminal 30-residue segment of τ, most of which is structurally disordered in free τC16. Since the N- and C-termini of the structured core of τC16 are located close to each other, this limits the possible distance between α and the pentameric δτ2γδ′ clamp–loader complex and, hence, between the two α subunits involved in leading- and lagging-strand DNA synthesis. Analysis of an N-terminally extended construct (τC22) showed that τC14 presents the only part of Domains IVa and V of τ which comprises a globular fold in the absence of other interaction partners.
Collapse
Affiliation(s)
| | | | | | | | - Gottfried Otting
- *To whom correspondence should be addressed. +61-2-61256507+61-2-61250750
| |
Collapse
|
36
|
Anderson SG, Williams CR, O'donnell M, Bloom LB. A function for the psi subunit in loading the Escherichia coli DNA polymerase sliding clamp. J Biol Chem 2007; 282:7035-45. [PMID: 17210572 DOI: 10.1074/jbc.m610136200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Crystal structures of an Escherichia coli clamp loader have provided insight into the mechanism by which this molecular machine assembles ring-shaped sliding clamps onto DNA. The contributions made to the clamp loading reaction by two subunits, chi and psi, which are not present in the crystal structures, were determined by measuring the activities of three forms of the clamp loader, gamma(3)deltadelta', gamma(3)deltadelta'psi, and gamma(3)deltadelta'psichi. The psi subunit is important for stabilizing an ATP-induced conformational state with high affinity for DNA, whereas the chi subunit does not contribute directly to clamp loading in our assays lacking single-stranded DNA-binding protein. The psi subunit also increases the affinity of the clamp loader for the clamp in assays in which ATPgammaS is substituted for ATP. Interestingly, the affinity of the gamma(3)deltadelta' complex for beta is no greater in the presence than in the absence of ATPgammaS. A role for psi in stabilizing or promoting ATP- and ATPgammaS-induced conformational changes may explain why large conformational differences were not seen in gamma(3)deltadelta' structures with and without bound ATPgammaS. The beta clamp partially compensates for the activity of psi when this subunit is not present and possibly serves as a scaffold on which the clamp loader adopts the appropriate conformation for DNA binding and clamp loading. Results from our work and others suggest that the psi subunit may introduce a temporal order to the clamp loading reaction in which clamp binding precedes DNA binding.
Collapse
Affiliation(s)
- Stephen G Anderson
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610-0245, USA
| | | | | | | |
Collapse
|
37
|
Abstract
Sliding clamps and clamp loaders are processivity factors required for efficient DNA replication. Sliding clamps are ring-shaped complexes that tether DNA polymerases to DNA to increase the processivity of synthesis. Clamp loaders assemble these ring-shaped clamps onto DNA in an ATP-dependent reaction. The overall process of clamp loading is dynamic in that protein-protein and protein-DNA interactions must actively change in a coordinated fashion to complete the mechanical clamp-loading reaction cycle. The clamp loader must initially have a high affinity for both the clamp and DNA to bring these macromolecules together, but then must release the clamp on DNA for synthesis to begin. Evidence is presented for a mechanism in which the clamp-loading reaction comprises a series of binding reactions to ATP, the clamp, DNA, and ADP, each of which promotes some change in the conformation of the clamp loader that alters interactions with the next component of the pathway. These changes in interactions must be rapid enough to allow the clamp loader to keep pace with replication fork movement. This review focuses on the measurement of dynamic and transient interactions required to assemble the Escherichia coli sliding clamp on DNA.
Collapse
Affiliation(s)
- Linda B Bloom
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610-0245, USA.
| |
Collapse
|
38
|
Affiliation(s)
- Mike O'Donnell
- Laboratory of DNA Replication, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021, USA.
| |
Collapse
|
39
|
Jarvis TC, Beaudry AA, Bullard JM, Ochsner U, Dallmann HG, McHenry CS. Discovery and characterization of the cryptic psi subunit of the pseudomonad DNA replicase. J Biol Chem 2005; 280:40465-73. [PMID: 16210315 DOI: 10.1074/jbc.m508310200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously reconstituted a minimal DNA replicase from Pseudomonas aeruginosa consisting of alpha and epsilon (polymerase and editing nuclease), beta (processivity factor), and the essential tau, delta, and delta' components of the clamp loader complex (Jarvis, T., Beaudry, A., Bullard, J., Janjic, N., and McHenry, C. (2005) J. Biol. Chem. 280, 7890-7900). In Escherichia coli DNA polymerase III holoenzyme, chi and Psi are tightly associated clamp loader accessory subunits. The addition of E. coli chiPsi to the minimal P. aeruginosa replicase stimulated its activity, suggesting the existence of chi and Psi counterparts in P. aeruginosa. The P. aeruginosa chi subunit was recognizable from sequence similarity, but Psi was not. Here we report purification of an endogenous replication complex from P. aeruginosa. Identification of the components led to the discovery of the cryptic Psi subunit, encoded by holD. P. aeruginosa chi and Psi were co-expressed and purified as a 1:1 complex. P. aeruginosa chiPsi increased the specific activity of tau(3)deltadelta' 25-fold and enabled the holoenzyme to function under physiological salt conditions. A synergistic effect between chiPsi and single-stranded DNA binding protein was observed. Sequence similarity to P. aeruginosa Psi allowed us to identify Psi subunits from several other Pseudomonads and to predict probable translational start sites for this protein family. This represents the first identification of a highly divergent branch of the Psi family and confirms the existence of Psi in several organisms in which Psi was not identifiable based on sequence similarity alone.
Collapse
|
40
|
Indiani C, McInerney P, Georgescu R, Goodman MF, O'Donnell M. A Sliding-Clamp Toolbelt Binds High- and Low-Fidelity DNA Polymerases Simultaneously. Mol Cell 2005; 19:805-15. [PMID: 16168375 DOI: 10.1016/j.molcel.2005.08.011] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 07/13/2005] [Accepted: 08/11/2005] [Indexed: 12/01/2022]
Abstract
This report demonstrates that the beta sliding clamp of E. coli binds two different DNA polymerases at the same time. One is the high-fidelity Pol III chromosomal replicase and the other is Pol IV, a low-fidelity lesion bypass Y family polymerase. Further, polymerase switching on the primed template junction is regulated in a fashion that limits the action of the low-fidelity Pol IV. Under conditions that cause Pol III to stall on DNA, Pol IV takes control of the primed template. After the stall is relieved, Pol III rapidly regains control of the primed template junction from Pol IV and retains it while it is moving, becoming resistant to further Pol IV takeover events. These polymerase dynamics within the beta toolbelt complex restrict the action of the error-prone Pol IV to only the area on DNA where it is required.
Collapse
Affiliation(s)
- Chiara Indiani
- Laboratory of DNA Replication, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
41
|
Bruck I, Georgescu RE, O'Donnell M. Conserved interactions in the Staphylococcus aureus DNA PolC chromosome replication machine. J Biol Chem 2005; 280:18152-62. [PMID: 15647255 DOI: 10.1074/jbc.m413595200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PolC holoenzyme replicase of the Gram-positive Staphylococcus aureus pathogen has been reconstituted from pure subunits. We compared individual S. aureus replicase subunits with subunits from the Gram-negative Escherichia coli polymerase III holoenzyme for activity and interchangeability. The central organizing subunit, tau, is smaller than its Gram-negative homolog, yet retains the ability to bind single-stranded DNA and contains DNA-stimulated ATPase activity comparable with E. coli tau. S. aureus tau also stimulates PolC, although they do not form as stabile a complex as E. coli polymerase III.tau. We demonstrate that the extreme C-terminal residues of PolC bind to and function with beta clamps from different bacteria. Hence, this polymerase-clamp interaction is highly conserved. Additionally, the S. aureus delta wrench of the clamp loader binds to E. coli beta. The S. aureus clamp loader is even capable of loading E. coli and Streptococcus pyogenes beta clamps onto DNA. Interestingly, S. aureus PolC lacks functionality with heterologous beta clamps when they are loaded onto DNA by the S. aureus clamp loader, suggesting that the S. aureus clamp loader may have difficulty ejecting from heterologous clamps. Nevertheless, these overall findings underscore the conservation in structure and function of Gram-positive and Gram-negative replicases despite >1 billion years of evolutionary distance between them.
Collapse
Affiliation(s)
- Irina Bruck
- Howard Hughes Medical Institute and Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
42
|
Jarvis TC, Beaudry AA, Bullard JM, Janjic N, McHenry CS. Reconstitution of a minimal DNA replicase from Pseudomonas aeruginosa and stimulation by non-cognate auxiliary factors. J Biol Chem 2004; 280:7890-900. [PMID: 15611049 DOI: 10.1074/jbc.m412263200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase III holoenzyme is responsible for chromosomal replication in bacteria. The components and functions of Escherichia coli DNA polymerase III holoenzyme have been studied extensively. Here, we report the reconstitution of replicase activity by essential components of DNA polymerase holoenzyme from the pathogen Pseudomonas aeruginosa. We have expressed and purified the processivity factor (beta), single-stranded DNA-binding protein, a complex containing the polymerase (alpha) and exonuclease (epsilon) subunits, and the essential components of the DnaX complex (tau(3)deltadelta'). Efficient primer elongation requires the presence of alphaepsilon, beta, and tau(3)deltadelta'. Pseudomonas aeruginosa alphaepsilon can substitute completely for E. coli polymerase III in E. coli holoenzyme reconstitution assays. Pseudomonas beta and tau(3)deltadelta' exhibit a 10-fold lower activity relative to their E. coli counterparts in E. coli holoenzyme reconstitution assays. Although the Pseudomonas counterpart to the E. coli psi subunit was not apparent in sequence similarity searches, addition of purified E. coli chi and psi (components of the DnaX complex) increases the apparent specific activity of the Pseudomonas tau(3)deltadelta' complex approximately 10-fold and enables the reconstituted enzyme to function better under physiological salt conditions.
Collapse
|
43
|
Coman MM, Jin M, Ceapa R, Finkelstein J, O'Donnell M, Chait BT, Hingorani MM. Dual functions, clamp opening and primer-template recognition, define a key clamp loader subunit. J Mol Biol 2004; 342:1457-69. [PMID: 15364574 PMCID: PMC2849281 DOI: 10.1016/j.jmb.2004.07.097] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2004] [Revised: 07/27/2004] [Accepted: 07/27/2004] [Indexed: 10/26/2022]
Abstract
Clamp loader proteins catalyze assembly of circular sliding clamps on DNA to enable processive DNA replication. During the reaction, the clamp loader binds primer-template DNA and positions it in the center of a clamp to form a topological link between the two. Clamp loaders are multi-protein complexes, such as the five protein Escherichia coli, Saccharomyces cerevisiae, and human clamp loaders, and the two protein Pyrococcus furiosus and Methanobacterium thermoautotrophicum clamp loaders, and thus far the site(s) responsible for binding and selecting primer-template DNA as the target for clamp assembly remain unknown. To address this issue, we analyzed the interaction between the E.coli gamma complex clamp loader and DNA using UV-induced protein-DNA cross-linking and mass spectrometry. The results show that the delta subunit in the gamma complex makes close contact with the primer-template junction. Tryptophan 279 in the delta C-terminal domain lies near the 3'-OH primer end and may play a key role in primer-template recognition. Previous studies have shown that delta also binds and opens the beta clamp (hydrophobic residues in the N-terminal domain of delta contact beta. The clamp-binding and DNA-binding sites on delta appear positioned for facile entry of primer-template into the center of the clamp and exit of the template strand from the complex. A similar analysis of the S.cerevisiae RFC complex suggests that the dual functionality observed for delta in the gamma complex may be true also for clamp loaders from other organisms.
Collapse
Affiliation(s)
- Maria Magdalena Coman
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, CT 06459, USA
| | - Mi Jin
- Rockefeller University, New York, NY 10021, USA
| | - Razvan Ceapa
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, CT 06459, USA
| | - Jeff Finkelstein
- Rockefeller University, New York, NY 10021, USA
- Howard Hughes Medical Institute, New York, NY 10021 USA
| | - Michael O'Donnell
- Rockefeller University, New York, NY 10021, USA
- Howard Hughes Medical Institute, New York, NY 10021 USA
| | | | - Manju M. Hingorani
- Molecular Biology and Biochemistry Department, Wesleyan University, Middletown, CT 06459, USA
- Corresponding author:
| |
Collapse
|
44
|
Goedken ER, Levitus M, Johnson A, Bustamante C, O'Donnell M, Kuriyan J. Fluorescence measurements on the E.coli DNA polymerase clamp loader: implications for conformational changes during ATP and clamp binding. J Mol Biol 2004; 336:1047-59. [PMID: 15037068 DOI: 10.1016/j.jmb.2003.12.074] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Revised: 12/19/2003] [Accepted: 12/19/2003] [Indexed: 10/26/2022]
Abstract
Sliding clamps are ring-shaped proteins that tether DNA polymerases to their templates during processive DNA replication. The action of ATP-dependent clamp loader complexes is required to open the circular clamps and to load them onto DNA. The crystal structure of the pentameric clamp loader complex from Escherichia coli (the gamma complex), determined in the absence of nucleotides, revealed a highly asymmetric and extended form of the clamp loader. Consideration of this structure suggested that a compact and more symmetrical inactive form may predominate in solution in the absence of crystal packing forces. This model has the N-terminal domains of the delta and delta' subunits of the clamp loader close to each other in the inactive state, with the clamp loader opening in a crab-claw-like fashion upon ATP-binding. We have used fluorescence resonance energy transfer (FRET) to investigate the structural changes in the E.coli clamp loader complex that result from ATP-binding and interactions between the clamp loader and the beta clamp. FRET measurements using fluorophores placed in the N-terminal domains of the delta and delta' subunits indicate that the distances between these subunits in solution are consistent with the previously crystallized extended form of the clamp loader. Furthermore, the addition of nucleotide and clamp to the labeled clamp loader does not appreciably alter these FRET distances. Our results suggest that the changes that occur in the relative positioning of the delta and delta' subunits when ATP binds to and activates the complex are subtle, and that crab-claw-like movements are not a significant component of the clamp loader mechanism.
Collapse
Affiliation(s)
- Eric R Goedken
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
45
|
McInerney P, O'Donnell M. Functional uncoupling of twin polymerases: mechanism of polymerase dissociation from a lagging-strand block. J Biol Chem 2004; 279:21543-51. [PMID: 15014081 DOI: 10.1074/jbc.m401649200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Replication forks are constantly subjected to events that lead to fork stalling, stopping, or collapse. Using a synthetic rolling circle DNA substrate, we demonstrate that a block to the lagging-strand polymerase does not compromise helicase or leading-strand polymerase activity. In fact, lagging-strand synthesis also continues. Thus, the blocked lagging-strand enzyme quickly dissociates from the block site and resumes synthesis on new primed sites. Furthermore, studies in which the lagging polymerase is continuously blocked show that the leading polymerase continues unabated even as it remains attached to the lagging-strand enzyme. Hence, upon encounter of a block to the lagging stand, the polymerases functionally uncouple yet remain physically associated. Further study reveals that naked single-stranded DNA results in disruption of a stalled polymerase from its beta-DNA substrate. Thus, as the replisome advances, the single-stranded DNA loop that accumulates on the lagging-strand template releases the stalled lagging-strand polymerase from beta after SSB protein is depleted. The lagging-strand polymerase is then free to continue Okazaki fragment production.
Collapse
Affiliation(s)
- Peter McInerney
- Laboratory of DNA Replication, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
46
|
López de Saro FJ, Georgescu RE, O'Donnell M. A peptide switch regulates DNA polymerase processivity. Proc Natl Acad Sci U S A 2003; 100:14689-94. [PMID: 14630952 PMCID: PMC299760 DOI: 10.1073/pnas.2435454100] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chromosomal DNA polymerases are tethered to DNA by a circular sliding clamp for high processivity. However, lagging strand synthesis requires the polymerase to rapidly dissociate on finishing each Okazaki fragment. The Escherichia coli replicase contains a subunit (tau) that promotes separation of polymerase from its clamp on finishing DNA segments. This report reveals the mechanism of this process. We find that tau binds the C-terminal residues of the DNA polymerase. Surprisingly, this same C-terminal "tail" of the polymerase interacts with the beta clamp, and tau competes with beta for this sequence. Moreover, tau acts as a DNA sensor. On binding primed DNA, tau releases the polymerase tail, allowing polymerase to bind beta for processive synthesis. But on sensing the DNA is complete (duplex), tau sequesters the polymerase tail from beta, disengaging polymerase from DNA. Therefore, DNA sensing by tau switches the polymerase peptide tail on and off the clamp and coordinates the dynamic turnover of polymerase during lagging strand synthesis.
Collapse
Affiliation(s)
- Francisco J López de Saro
- Howard Hughes Medical Institute and Laboratory of DNA Replication, The Rockefeller University, 1230 York Avenue, New York, NY 10021-6399, USA
| | | | | |
Collapse
|
47
|
Snyder AK, Williams CR, Johnson A, O'Donnell M, Bloom LB. Mechanism of loading the Escherichia coli DNA polymerase III sliding clamp: II. Uncoupling the beta and DNA binding activities of the gamma complex. J Biol Chem 2003; 279:4386-93. [PMID: 14610068 DOI: 10.1074/jbc.m310430200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sliding clamps tether DNA polymerases to DNA to increase the processivity of synthesis. The Escherichia coli gamma complex loads the beta sliding clamp onto DNA in an ATP-dependent reaction in which ATP binding and hydrolysis modulate the affinity of the gamma complex for beta and DNA. This is the second of two reports (Williams, C. R., Snyder, A. K., Kuzmic, P., O'Donnell, M., and Bloom, L. B. (2004) J. Biol. Chem. 279, 4376-4385) addressing the question of how ATP binding and hydrolysis regulate specific interactions with DNA and beta. Mutations were made to an Arg residue in a conserved SRC motif in the delta' and gamma subunits that interacts with the ATP site of the neighboring gamma subunit. Mutation of the delta' subunit reduced the ATP-dependent beta binding activity, whereas mutation of the gamma subunits reduced the DNA binding activity of the gamma complex. The gamma complex containing the delta' mutation gave a pre-steady-state burst of ATP hydrolysis, but at a reduced rate and amplitude relative to the wild-type gamma complex. A pre-steady-state burst of ATP hydrolysis was not observed for the complex containing the gamma mutations, consistent with the reduced DNA binding activity of this complex. The differential effects of these mutations suggest that ATP binding at the gamma1 site may be coupled to conformational changes that largely modulate interactions with beta, whereas ATP binding at the gamma2 and/or gamma3 site may be coupled to conformational changes that have a major role in interactions with DNA. Additionally, these results show that the "arginine fingers" play a structural role in facilitating the formation of a conformation that has high affinity for beta and DNA.
Collapse
Affiliation(s)
- Anita K Snyder
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610-0245, USA
| | | | | | | | | |
Collapse
|
48
|
Williams CR, Snyder AK, Kuzmic P, O'Donnell M, Bloom LB. Mechanism of loading the Escherichia coli DNA polymerase III sliding clamp: I. Two distinct activities for individual ATP sites in the gamma complex. J Biol Chem 2003; 279:4376-85. [PMID: 14610067 DOI: 10.1074/jbc.m310429200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli DNA polymerase III gamma complex loads the beta clamp onto DNA, and the clamp tethers the core polymerase to DNA to increase the processivity of synthesis. ATP binding and hydrolysis promote conformational changes within the gamma complex that modulate its affinity for the clamp and DNA, allowing it to accomplish the mechanical task of assembling clamps on DNA. This is the first of two reports (Snyder, A. K., Williams, C. R., Johnson, A., O'Donnell, M., and Bloom, L. B. (2004) J. Biol. Chem. 279, 4386-4393) addressing the question of how ATP binding and hydrolysis modulate specific interactions with DNA and beta. Pre-steady-state rates of ATP hydrolysis were slower when reactions were initiated by addition of ATP than when the gamma complex was equilibrated with ATP and were limited by the rate of an intramolecular reaction, possibly ATP-induced conformational changes. Kinetic modeling of assays in which the gamma complex was incubated with ATP for different periods of time prior to adding DNA to trigger hydrolysis suggests a mechanism in which a relatively slow conformational change step (kforward = 6.5 s(-1)) produces a species of the gamma complex that is activated for DNA (and beta) binding. In the absence of beta, 2 of the 3 molecules of ATP are hydrolyzed rapidly prior to releasing DNA, and the 3rd molecule is hydrolyzed slowly. In the presence of beta, all 3 molecules of ATP are hydrolyzed rapidly. These results suggest that hydrolysis of 2 molecules of ATP may be coupled to conformational changes that reduce interactions with DNA, whereas hydrolysis of the 3rd is coupled to changes that result in release of beta.
Collapse
Affiliation(s)
- Christopher R Williams
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610-0245, USA
| | | | | | | | | |
Collapse
|
49
|
Haroniti A, Till R, Smith MCM, Soultanas P. Clamp-loader-helicase interaction in Bacillus. Leucine 381 is critical for pentamerization and helicase binding of the Bacillus tau protein. Biochemistry 2003; 42:10955-64. [PMID: 12974630 PMCID: PMC3034353 DOI: 10.1021/bi034955g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, we revealed the architecture of the clamp-loader-helicase (tau-DnaB) complex in Bacillus by atomic force microscopy imaging and constructed a structural model, whereby a pentameric clamp-loader interacts with the hexameric helicase. Crucial to this model is the assumption that the clamp-loader forms a pentamer in the absence of other components of the clamp-loader complex such as deltadelta'. Here, we show that the Bacillus subtilis tau protein, even in the absence of deltadelta', interacts as a pentamer with the hexameric DnaB and that the L381 of tau is critical for the integrity of the tau oligomer and interaction with DnaB. The effects of the L381A mutation were confirmed by gel filtration, ultracentrifugation, circular dichroism, cross-linking studies, and genetic replacement of the dnaX gene with a mutant L381A dnaX gene in vivo. The L381A protein is able to support growth in vivo only when expressed in high quantities. Finally, despite the fact that a mutation at P465 has been reported to result in a thermosensitive gene in vivo, a P465L mutant protein interacts with DnaB in vitro suggesting that this defect is not a result of a defective tau-DnaB interaction.
Collapse
Affiliation(s)
| | | | | | - P. Soultanas
- Corresponding author. Tel.: (+44)-(0)-115-9513525. Fax: (+44)-(0)-115-9513564.
| |
Collapse
|
50
|
Finkelstein J, Antony E, Hingorani MM, O'Donnell M. Overproduction and analysis of eukaryotic multiprotein complexes in Escherichia coli using a dual-vector strategy. Anal Biochem 2003; 319:78-87. [PMID: 12842110 DOI: 10.1016/s0003-2697(03)00273-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Biochemical studies of eukaryotic proteins are often constrained by low availability of these typically large, multicomponent protein complexes in pure form. Escherichia coli is a commonly used host for large-scale protein production; however, its utility for eukaryotic protein production is limited because of problems associated with transcription, translation, and proper folding of proteins. Here we describe the development and testing of pLANT, a vector that addresses many of these problems simultaneously. The pLANT vector contains a T7 promoter-controlled expression unit, a p15A origin of replication, and genes for rare transfer RNAs and kanamycin resistance. Thus, the pLANT vector can be used in combination with the pET vector to coexpress multiple proteins in E. coli. Using this approach, we have successfully produced high-milligram quantities of two different Saccharomyces cerevisiae complexes in E. coli: the heterodimeric Msh2-Msh6 mismatch repair protein (248kDa) and the five-subunit replication factor C clamp loader (250 kDa). Quantitative analyses indicate that these proteins are fully active, affirming the utility of pLANT+pET-based production of eukaryotic proteins in E. coli for in vitro studies of their structure and function.
Collapse
Affiliation(s)
- Jeff Finkelstein
- Rockefeller University and Howard Hughes Medical Institute, New York, NY 10021, USA
| | | | | | | |
Collapse
|