1
|
Rimel JK, Taatjes DJ. The essential and multifunctional TFIIH complex. Protein Sci 2018; 27:1018-1037. [PMID: 29664212 PMCID: PMC5980561 DOI: 10.1002/pro.3424] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 12/19/2022]
Abstract
TFIIH is a 10‐subunit complex that regulates RNA polymerase II (pol II) transcription but also serves other important biological roles. Although much remains unknown about TFIIH function in eukaryotic cells, much progress has been made even in just the past few years, due in part to technological advances (e.g. cryoEM and single molecule methods) and the development of chemical inhibitors of TFIIH enzymes. This review focuses on the major cellular roles for TFIIH, with an emphasis on TFIIH function as a regulator of pol II transcription. We describe the structure of TFIIH and its roles in pol II initiation, promoter‐proximal pausing, elongation, and termination. We also discuss cellular roles for TFIIH beyond transcription (e.g. DNA repair, cell cycle regulation) and summarize small molecule inhibitors of TFIIH and diseases associated with defects in TFIIH structure and function.
Collapse
Affiliation(s)
- Jenna K Rimel
- Department of Chemistry & Biochemistry, University of Colorado, Boulder, Colorado, 80303
| | - Dylan J Taatjes
- Department of Chemistry & Biochemistry, University of Colorado, Boulder, Colorado, 80303
| |
Collapse
|
2
|
Aggarwal M, Brosh RM. Functional analyses of human DNA repair proteins important for aging and genomic stability using yeast genetics. DNA Repair (Amst) 2012; 11:335-48. [PMID: 22349084 DOI: 10.1016/j.dnarep.2012.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 01/24/2012] [Indexed: 12/18/2022]
Abstract
Model systems have been extremely useful for studying various theories of aging. Studies of yeast have been particularly helpful to explore the molecular mechanisms and pathways that affect aging at the cellular level in the simple eukaryote. Although genetic analysis has been useful to interrogate the aging process, there has been both interest and debate over how functionally conserved the mechanisms of aging are between yeast and higher eukaryotes, especially mammalian cells. One area of interest has been the importance of genomic stability for age-related processes, and the potential conservation of proteins and pathways between yeast and human. Translational genetics have been employed to examine the functional roles of mammalian proteins using yeast as a pliable model system. In the current review recent advancements made in this area are discussed, highlighting work which shows that the cellular functions of human proteins in DNA repair and maintenance of genomic stability can be elucidated by genetic rescue experiments performed in yeast.
Collapse
Affiliation(s)
- Monika Aggarwal
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, MD 21224, United States
| | | |
Collapse
|
3
|
Hashimoto S, Egly JM. Trichothiodystrophy view from the molecular basis of DNA repair/transcription factor TFIIH. Hum Mol Genet 2009; 18:R224-30. [PMID: 19808800 DOI: 10.1093/hmg/ddp390] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Trichothiodystrophy (TTD) is a rare autosomal recessive disorder characterized by brittle hair and also associated with various systemic symptoms. Approximately half of TTD patients exhibit photosensitivity, resulting from the defect in the nucleotide excision repair. Photosensitive TTD is due to mutations in three genes encoding XPB, XPD and p8/TTDA subunits of the DNA repair/transcription factor TFIIH. Mutations in these subunits disturb either the catalytic and/or the regulatory activity of the two XPB, XPD helicase/ATPases and consequently are defective in both, DNA repair and transcription. Moreover, mutations in any of these three TFIIH subunits also disturb the overall architecture of the TFIIH complex and its ability to transactivate certain nuclear receptor-responsive genes, explaining in part, some of the TTD phenotypes.
Collapse
Affiliation(s)
- Satoru Hashimoto
- Department of Functional Genomics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 16367404 Illkirch Cedex, CU Strasbourg, France
| | | |
Collapse
|
4
|
Heinicke S, Livstone MS, Lu C, Oughtred R, Kang F, Angiuoli SV, White O, Botstein D, Dolinski K. The Princeton Protein Orthology Database (P-POD): a comparative genomics analysis tool for biologists. PLoS One 2007; 2:e766. [PMID: 17712414 PMCID: PMC1942082 DOI: 10.1371/journal.pone.0000766] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 07/18/2007] [Indexed: 02/07/2023] Open
Abstract
Many biological databases that provide comparative genomics information and tools are now available on the internet. While certainly quite useful, to our knowledge none of the existing databases combine results from multiple comparative genomics methods with manually curated information from the literature. Here we describe the Princeton Protein Orthology Database (P-POD, http://ortholog.princeton.edu), a user-friendly database system that allows users to find and visualize the phylogenetic relationships among predicted orthologs (based on the OrthoMCL method) to a query gene from any of eight eukaryotic organisms, and to see the orthologs in a wider evolutionary context (based on the Jaccard clustering method). In addition to the phylogenetic information, the database contains experimental results manually collected from the literature that can be compared to the computational analyses, as well as links to relevant human disease and gene information via the OMIM, model organism, and sequence databases. Our aim is for the P-POD resource to be extremely useful to typical experimental biologists wanting to learn more about the evolutionary context of their favorite genes. P-POD is based on the commonly used Generic Model Organism Database (GMOD) schema and can be downloaded in its entirety for installation on one's own system. Thus, bioinformaticians and software developers may also find P-POD useful because they can use the P-POD database infrastructure when developing their own comparative genomics resources and database tools.
Collapse
Affiliation(s)
- Sven Heinicke
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Michael S. Livstone
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Charles Lu
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Rose Oughtred
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Fan Kang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Samuel V. Angiuoli
- The Institute for Genomic Research, Rockville, Maryland, United States of America
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Owen White
- The Institute for Genomic Research, Rockville, Maryland, United States of America
| | - David Botstein
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Kara Dolinski
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
5
|
Kleppa L, Kanavin ØJ, Klungland A, Strømme P. A novel splice site mutation in the Cockayne syndrome group A gene in two siblings with Cockayne syndrome. Neuroscience 2007; 145:1397-406. [PMID: 17084038 DOI: 10.1016/j.neuroscience.2006.09.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 09/12/2006] [Accepted: 09/12/2006] [Indexed: 01/26/2023]
Abstract
Cockayne syndrome (CS) is mainly caused by mutations in the Cockayne syndrome group A or B (CSA or CSB) genes which are required for a sub-pathway of nucleotide excision repair entitled transcription coupled repair. Approximately 20% of the CS patients have mutations in CSA, which encodes a 44 kDa tryptophane (Trp, W) and aspartic acid (Asp, D) amino acids (WD) repeat protein. Up to now, nine different CSA mutations have been identified. We examined two Somali siblings 9 and 12 years old with clinical features typical of CS including skin photosensitivity, progressive ataxia, spasticity, hearing loss, central and peripheral demyelination and intracranial calcifications. Molecular analysis showed a novel splice acceptor site mutation, a G to A transition in the -1 position of intervening sequence 6 (g.IVS6-1G>A), in the CSA (excision repair cross-complementing 8 (ERCC8)) gene. IVS6-1G>A results in a new 28 amino acid C-terminus and premature termination of the CSA protein (G184DFs28X). A review of the CSA protein and the 10 known CSA mutations is also presented.
Collapse
Affiliation(s)
- L Kleppa
- Centre for Molecular Biology and Neuroscience and Institute of Medical Microbiology, Rikshospitalet-Radiumhospitalet HF, University of Oslo, N-0027 Oslo, Norway.
| | | | | | | |
Collapse
|
6
|
Garfinkel DJ, Bailis AM. Nucleotide Excision Repair, Genome Stability, and Human Disease: New Insight from Model Systems. J Biomed Biotechnol 2002; 2:55-60. [PMID: 12488584 PMCID: PMC153785 DOI: 10.1155/s1110724302201023] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Nucleotide excision repair (NER) is one of several DNA repair pathways that are universal throughout phylogeny. NER has a broad substrate specificity and is capable of removing several classes of lesions to the DNA, including those that accumulate upon exposure to UV radiation. The loss of this activity in NER-defective mutants gives rise to characteristic sensitivities to UV that, in humans, is manifested as a greatly elevated sensitivity to exposure to the sun. Xeroderma pigmentosum (XP), Cockaynes syndrome (CS), and trichothiodystrophy (TTD) are three, rare, recessively inherited human diseases that are linked to these defects. Interestingly, some of the symptoms in afflicted individuals appear to be due to defects in transcription, the result of the dual functionality of several components of the NER apparatus as parts of transcription factor IIH (TFIIH). Studies with several model systems have revealed that the genetic and biochemical features of NER are extraordinarily conserved in eukaryotes. One system that has been studied very closely is the budding yeast Saccharomyces cerevisiae. While many yeast NER mutants display the expected increases in UV sensitivity and defective transcription, other interesting phenotypes have also been observed. Elevated mutation and recombination rates, as well as increased frequencies of genome rearrangement by retrotransposon movement and recombination between short genomic sequences have been documented. The potential relevance of these novel phenotypes to disease in humans is discussed.
Collapse
Affiliation(s)
- David J. Garfinkel
- Gene Regulation and Chromosome Biology Laboratory, NCI at Frederick, Frederick, MD 21702, USA
| | - Adam M. Bailis
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
7
|
Abstract
In nucleotide excision repair (NER) in eukaryotes, DNA is incised on both sides of the lesion, resulting in the removal of a fragment approximately 25-30 nucleotides long. This is followed by repair synthesis and ligation. The proteins encoded by the various yeast NER genes have been purified, and the incision reaction reconstituted in vitro. This reaction requires the damage binding factors Rad14, RPA, and the Rad4-Rad23 complex, the transcription factor TFIIH which contains the two DNA helicases Rad3 and Rad25, essential for creating a bubble structure, and the two endonucleases, the Rad1-Rad10 complex and Rad2, which incise the damaged DNA strand on the 5'- and 3'-side of the lesion, respectively. Addition of the Rad7-Rad16 complex to this reconstituted system stimulates the incision reaction many fold. The various NER proteins exist in vivo as part of multiprotein subassemblies which have been named NEFs (nucleotide excision repair factors). Rad14 and Rad1-Rad10 form one subassembly called NEF1, the Rad4-Rad23 complex is named NEF2, Rad2 and TFIIH constitute NEF3, and the Rad7-Rad16 complex is called NEF4. Although much has been learned from yeast about the function of NER genes and proteins in eukaryotes, the underlying mechanisms by which damage is recognized, NEFs are assembled at the damage site, and the DNA is unwound and incised, remain to be elucidated.
Collapse
Affiliation(s)
- S Prakash
- Sealy Center for Molecular Science, University of Texas Medical Branch, 6.103 Medical Research Building, Galveston, TX 77555-1061, USA
| | | |
Collapse
|
8
|
Takayama K, Danks DM, Salazar EP, Cleaver JE, Weber CA. DNA repair characteristics and mutations in the ERCC2 DNA repair and transcription gene in a trichothiodystrophy patient. Hum Mutat 2000; 9:519-25. [PMID: 9195225 DOI: 10.1002/(sici)1098-1004(1997)9:6<519::aid-humu4>3.0.co;2-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Patient TTD183ME is male and has typical trichothiodystrophy characteristics, including brittle hair, ichthyosis, characteristic face with receding chin and protruding ears, sun sensitivity, and mental and growth retardation. The relative amount of NER carried out by a TTD183ME fibroblast cell strain after ultraviolet (UV) exposure was approximately 65% of normal as determined by a method that converts repair patches into quantifiable DNA breaks. UV survival curves show a reduction in survival only at doses greater than 4 J/m2. Nucleotide sequence analysis of the ERCC2 (XPD) DNA repair and transcription gene cDNA revealed both a Leu461-to-Val substitution and a deletion of amino acids 716-730 in one allele and an Ala725-to-Pro substitution in the other allele. The first allele has also been reported in one xeroderma pigmentosum group D patient and two other trichothiodystrophy patients, while the second allele has not been previously reported. Comparisons suggest that the mutation of Ala725 to Pro correlates with TTD with intermediate UV sensitivity.
Collapse
Affiliation(s)
- K Takayama
- Biological and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, California 94551-0808, USA
| | | | | | | | | |
Collapse
|
9
|
Greene AL, Snipe JR, Gordenin DA, Resnick MA. Functional analysis of human FEN1 in Saccharomyces cerevisiae and its role in genome stability. Hum Mol Genet 1999; 8:2263-73. [PMID: 10545607 DOI: 10.1093/hmg/8.12.2263] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The flap endonuclease, FEN1, is an evolutionarily conserved component of DNA replication from archaebacteria to humans. Based on in vitro results, it processes Okazaki fragments during replication and is involved in base excision repair. FEN1 removes the last primer ribonucleotide on the lagging strand and it cleaves a 5' flap that may result from strand displacement during replication or during base excision repair. Its biological importance has been revealed largely through studies in the yeast Saccharomyces cerevisiae where deletion of the homologous gene RAD27 results in genome instability and mutagen sensitivity. While the in vivo function of Rad27 has been well characterized through genetic and biochemical approaches, little is understood about the in vivo functions of human FEN1. Guided by our recent results with yeast RAD27, we explored the function of human FEN1 in yeast. We found that the human FEN1 protein complements a yeast rad27 null mutant for a variety of defects including mutagen sensitivity, genetic instability and the synthetic lethal interactions of a rad27 rad51 and a rad27 pol3-01 mutant. Furthermore, a mutant form of FEN1 lacking nuclease function exhibits dominant-negative effects on cell growth and genome instability similar to those seen with the homologous yeast rad27 mutation. This genetic impact is stronger when the human and yeast PCNA-binding domains are exchanged. These data indicate that the human FEN1 and yeast Rad27 proteins act on the same substrate in vivo. Our study defines a sensitive yeast system for the identification and characterization of mutations in FEN1.
Collapse
Affiliation(s)
- A L Greene
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, PO Box 12233, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
10
|
Johnson RE, Prakash S, Prakash L. Requirement of DNA polymerase activity of yeast Rad30 protein for its biological function. J Biol Chem 1999; 274:15975-7. [PMID: 10347143 DOI: 10.1074/jbc.274.23.15975] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RAD30 gene of Saccharomyces cerevisiae encodes a DNA polymerase, Poleta. The Rad30 protein shares homology with the yeast Rev1 and the Escherichia coli DinB and UmuC proteins. Although these proteins contain several highly conserved motifs, only Rad30 has been shown to possess a DNA polymerase activity. To determine whether the DNA polymerase activity of Rad30 was essential for its biological function, we made a mutation in the highly conserved SIDE sequence in Rad30, in which the aspartate and glutamate residues have each been changed to alanine. The mutant Rad30 protein lacks the DNA polymerase activity, and the mutant gene does not complement the rad30Delta mutation. These findings indicate that DNA polymerase activity is indispensable for the biological function of RAD30.
Collapse
Affiliation(s)
- R E Johnson
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston, Texas 77555-1061, USA
| | | | | |
Collapse
|
11
|
Frit P, Bergmann E, Egly JM. Transcription factor IIH: a key player in the cellular response to DNA damage. Biochimie 1999; 81:27-38. [PMID: 10214907 DOI: 10.1016/s0300-9084(99)80035-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
TFIIH (transcription factor IIH) is a multiprotein complex consisting of nine subunits initially characterized as a basal transcription factor required for initiation of protein-coding RNA synthesis. TFIIH was the first transcription factor shown to harbor several enzymatic activities, likely indicative of functional complexity. This intricacy was further emphasized with the cloning of the genes encoding the different subunits which disclosed direct connections between transcription, DNA repair and cell cycle regulation. In this review, we emphasize those functions of TFIIH involved in DNA repair, as well as their relationship to TFIIH's roles in transcription, cell cycle control and apoptosis. These connections may prove to be essential for the cellular response to DNA damage.
Collapse
Affiliation(s)
- P Frit
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université Louis-Pasteur, Strasbourg, Illkirch, France
| | | | | |
Collapse
|
12
|
Abstract
Proteins with seven conserved "helicase domains" play essential roles in all aspects of nucleic acid metabolism. Deriving energy from ATP hydrolysis, helicases alter the structure of DNA, RNA, or DNA:RNA duplexes, remodeling chromatin and modulating access to the DNA template by the transcriptional machinery. This review focuses on the diverse functions of these proteins in the process of RNA polymerase II transcription in eukaryotes. Known or putative helicases are required for general transcription initiation and for transcription-coupled DNA repair, and may play important roles in elongation, termination, and transcript stability. Recent evidence suggests that helicase-domain-containing proteins are also involved in complexes that facilitate the activity of groups of seemingly unrelated genes.
Collapse
Affiliation(s)
- A Eisen
- Department of Biology, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
13
|
|
14
|
Kadkhodayan S, Salazar EP, Ramsey MJ, Takayama K, Zdzienicka MZ, Tucker JD, Weber CA. Molecular analysis of ERCC2 mutations in the repair deficient hamster mutants UVL-1 and V-H1. Mutat Res 1997; 385:47-57. [PMID: 9372848 DOI: 10.1016/s0921-8777(97)00030-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The cDNA sequence of the Chinese hamster ERCC2 nucleotide excision repair and transcription gene from the UVL-1 Chinese hamster ovary (CHO) mutant cell line and the V-H1 Chinese hamster V79 mutant line was analyzed. ERCC2 encodes a presumed ATP-dependent DNA helicase and is single copy in CHO lines due to the structural hemizygosity of chromosome 9. Both UVL-1 and V-H1 have intermediate levels of (6-4) photoproduct repair but are as highly UV sensitive as the group 2 mutants that have no detectable repair. Deficiency in cyclobutane dimer removal has also been shown for V-H1. In UVL-1, a single base substitution resulting in an Arg75-->Trp substitution in helicase domain Ia was identified. The equivalent amino acid position is also Arg in the human, mouse, Xiphophorus maculatus, Saccharomyces cerevisiae, and Schizosaccharomyces pombe homologs. In V-H1, a single base substitution resulting in a Thr46-->Ile substitution in helicase domain I (the ATP-binding domain) was identified in both alleles. The equivalent amino acid position is also Thr in the five homologs. Analysis of three V-H1 partial revertants revealed that they still have the original V-H1 mutation in both alleles, indicating that these are second site reversion events. Site-specific mutagenesis was used to introduce the Thr46-->Ile, Arg75-->Trp, and Lys48-->Arg (helicase domain I) mutations into a hamster ERCC2 expression plasmid. These plasmids each failed to confer UV resistance to group 2 mutant cells, further demonstrating that the changes identified are the causative mutations in V-H1 and UVL-1. Correlations between specific mutations, biochemical activities, and repair phenotype are discussed.
Collapse
Affiliation(s)
- S Kadkhodayan
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, CA 94551, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Taylor EM, Broughton BC, Botta E, Stefanini M, Sarasin A, Jaspers NG, Fawcett H, Harcourt SA, Arlett CF, Lehmann AR. Xeroderma pigmentosum and trichothiodystrophy are associated with different mutations in the XPD (ERCC2) repair/transcription gene. Proc Natl Acad Sci U S A 1997; 94:8658-63. [PMID: 9238033 PMCID: PMC23065 DOI: 10.1073/pnas.94.16.8658] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The xeroderma pigmentosum group D (XPD) protein has a dual function, both in nucleotide excision repair of DNA damage and in basal transcription. Mutations in the XPD gene can result in three distinct clinical phenotypes, XP, trichothiodystrophy (TTD), and XP with Cockayne syndrome. To determine if the clinical phenotypes of XP and TTD can be attributed to the sites of the mutations, we have identified the mutations in a large group of TTD and XP-D patients. Most sites of mutations differed between XP and TTD, but there are three sites at which the same mutation is found in XP and TTD patients. Since the corresponding patients were all compound heterozygotes with different mutations in the two alleles, the alleles were tested separately in a yeast complementation assay. The mutations which are found in both XP and TTD patients behaved as null alleles, suggesting that the disease phenotype was determined by the other allele. If we eliminate the null mutations, the remaining mutagenic pattern is consistent with the site of the mutation determining the phenotype.
Collapse
Affiliation(s)
- E M Taylor
- Medical Research Council Cell Mutation Unit, Sussex University, Falmer, Brighton BN1 9RR, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lee SK, Yu SL, Garcia MX, Alexander H, Alexander S. Differential developmental expression of the rep B and rep D xeroderma pigmentosum related DNA helicase genes from Dictyostelium discoideum. Nucleic Acids Res 1997; 25:2365-74. [PMID: 9171087 PMCID: PMC146774 DOI: 10.1093/nar/25.12.2365] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
DNA helicases are essential to many cellular processes including recombination, replication and transcription, and some helicases function in multiple processes. The helicases encoded by the Xeroderma pigmentosum (XP) B and D genes function in both nucleotide excision repair and transcription initiation. Mutations that affect the repair function of these proteins result in XP while mutations affecting transcription result in neurological and developmental abnormalities, although the underlying molecular and cellular basis for these phenotypes is not well understood. To better understand the developmental roles of these genes, we have now identified and characterized the rep B and rep D genes from the cellular slime mold Dictyostelium discoideum . Both genes encode DNA helicases of the SF2 superfamily of helicases. The rep D gene contains no introns and the rep B gene contains only one intron, which makes their genomic structures dramatically different from the corresponding genes in mammals and fish. However the predicted Dictyostelium proteins share high homology with the human XPB and XPD proteins. The single copy of the rep B and D genes map to chromosomes 3 and 1, respectively. The expression of rep B and D (and the previously isolated rep E) genes during multicellular development was examined, and it was determined that each rep gene has a unique pattern of expression, consistent with the idea that they have specific roles in development. The pattern and extent of expression of these genes was not affected by the growth history of the cells, implying that the expression of these genes is tightly regulated by the developmental program. The expression of the rep genes is a very early step in development and may well represent a key event in the initiation of development in this organism.
Collapse
Affiliation(s)
- S K Lee
- Division of Biological Sciences, 403 Tucker Hall, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | |
Collapse
|
17
|
Gong X, Kaushal S, Ceccarelli E, Bogdanova N, Neville C, Nguyen T, Clark H, Khatib ZA, Valentine M, Look AT, Rosenthal N. Developmental regulation of Zbu1, a DNA-binding member of the SWI2/SNF2 family. Dev Biol 1997; 183:166-82. [PMID: 9126292 DOI: 10.1006/dbio.1996.8486] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The SWI2/SNF2 gene family has been implicated in a wide variety of processes, involving regulation of DNA structure and chromatin configuration, mitotic chromosome segregation, and DNA repair. Here we report the characterization of the Zbu1 gene, also known as HIP116, located on human chromosome band 3q25, which encodes a DNA-binding member of this superfamily. Zbu1 was isolated in this study by its affinity for a site in the myosin light chain 1/3 enhancer. The protein has single-stranded DNA-dependent ATPase activity, includes seven helicase motifs, and a RING finger motif that is shared exclusively by the RAD5, spRAD8, and RAD16 family members. During mouse embryogenesis, Zbu1 transcripts are detected relatively late in fetal development and increase in neonatal stages, whereas the protein accumulates asynchronously in heart, skeletal muscle, and brain. In adult human tissues, alternatively spliced Zbu1 transcripts are ubiquitous with highest expression in these tissues. Gene expression is also dramatically induced in human tumor lines and in Li-Fraumeni fibroblast cultures, suggesting that it is aberrantly regulated in malignant cells. The developmental profile of Zbu1 gene expression and the association of the protein with a tissue-specific transcriptional regulatory element distinguish it from other members of the SWI2/SNF2 family and suggest novel roles for the Zbu1 gene product.
Collapse
Affiliation(s)
- X Gong
- Cardiovascular Research Center, Massachusetts General Hospital-East, Charlestown 02129, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Several pathways of DNA repair are essential for maintaining genomic integrity in mammalian cells. Mismatch repair is the final line of defense against polymerase errors during normal cellular replication. Base excision repair removes endogenous DNA damage resulting from normal cellular metabolism. Nucleotide excision repair removes bulky, transcription blocking, lesions resulting from endogenous and environmental insults to the DNA. The role of DNA repair in mammalian development is not well understood. Nevertheless, clues to the essential nature of these processes are evident in the human DNA repair syndromes, in the nature of the interactions between DNA repair and other proteins, and in the phenotypes of genetically engineered, knockout mice lacking functional repair genes. Questions remain: what is the relative importance of endogenous vs. environmental DNA damage and is repair itself critical for normal development or are transcription-repair interactions more crucial?
Collapse
Affiliation(s)
- E T Snow
- Nelson Institute of Environmental Medicine, New York University Medical Center, Tuxedo, NY 10987, USA
| |
Collapse
|
19
|
Lauder S, Bankmann M, Guzder SN, Sung P, Prakash L, Prakash S. Dual requirement for the yeast MMS19 gene in DNA repair and RNA polymerase II transcription. Mol Cell Biol 1996; 16:6783-93. [PMID: 8943333 PMCID: PMC231681 DOI: 10.1128/mcb.16.12.6783] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Genetic and biochemical studies of Saccharomyces cerevisiae have indicated the involvement of a large number of protein factors in nucleotide excision repair (NER) of UV-damaged DNA. However, how MMS19 affects this process has remained unclear. Here, we report on the isolation of the MMS19 gene and the determination of its role in NER and other cellular processes. Genetic and biochemical evidence indicates that besides its function in NER, MMS19 also affects RNA polymerase II (Pol II) transcription. mms19delta cells do not grow at 37 degrees C, and mutant extract exhibits a thermolabile defect in Pol II transcription. Thus, Mms19 protein resembles TFIIH in that it is required for both transcription and DNA repair. However, addition of purified Mms19 protein does not alleviate the transcriptional defect of the mms19delta extract, nor does it stimulate the incision of UV-damaged DNA reconstituted from purified proteins. Interestingly, addition of purified TFIIH corrects the transcriptional defect of the mms19delta extract. Mms19 is, however, not a component of TFIIH or of Pol II holoenzyme. These and other results suggest that Mms19 affects NER and transcription by influencing the activity of TFIIH as an upstream regulatory element. It is proposed that mutations in the human MMS19 counterpart could result in syndromes in which both NER and transcription are affected.
Collapse
Affiliation(s)
- S Lauder
- Sealy Center for Molecular Science, University of Texas Medical Branch, Galveston 77555-1061, USA
| | | | | | | | | | | |
Collapse
|
20
|
Rice RH, Wong VJ, Price VH, Hohl D, Pinkerton KE. Cuticle cell defects in lamellar ichthyosis hair and anomalous hair shaft syndromes visualized after detergent extraction. Anat Rec (Hoboken) 1996; 246:433-40. [PMID: 8955782 DOI: 10.1002/(sici)1097-0185(199612)246:4<433::aid-ar2>3.0.co;2-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND The biochemical bases for fragility in most of the rare brittle hair shaft syndromes are unknown. The hypothesis being investigated in several syndromes is that the hair cuticle cells show defects in cross-linked protein features. Since transglutaminases stabilize protein structures by cross-linking them, hair from autosomal recessive lamellar ichthyosis patients lacking keratinocyte transglutaminase was examined to find whether this enzyme participates in hair shaft stabilization. METHODS Hair shaft samples from patients afflicted with lamellar ichthyosis or several brittle hair syndromes were examined ultrastructurally by transmission electron microscopy after vigorous extraction with detergent and reducing agent to reveal cross-linked protein features. RESULTS In hair cuticle cells from three patients with lamellar ichthyosis the marginal band (A layer) was present but nonuniform and subject to breakage, while in a fourth sample it was missing altogether. The exocuticle appeared less dense than in normal hair, consistent with extensive protein loss during detergent extraction. In cuticle cells from trichothiodystrophy hair, the exocuticle layer was essentially fully extractable in one sample, while in two others (from siblings) the exocuticle appeared less dense and the A layer was absent or greatly reduced in thickness. A sample of proximal trichorrhexis nodosa also displayed defects in cuticle cells, in which the endocuticle layer appeared subject to rupture. The outer cuticle cells in monilethrix hair displayed a thinning of the A layer and less dense exocuticle, while the cortex exhibited regions lacking remnant cell borders. Pili annulati hair displayed large gaps in the cortex, presumably reflecting the air-filled cavities characteristic of this syndrome, and wavy borders of some cuticle cells. CONCLUSIONS Observations with autosomal recessive lamellar ichthyosis hair indicate that keratinocyte transglutaminase has a major role in maturation of the cuticle but appears unnecessary for stabilization of cell borders in the cortex. Defective cross-linking was also evident in cuticle cells of trichothiodystrophy and monilethrix.
Collapse
Affiliation(s)
- R H Rice
- Department of Environmental Toxicology, University of California, Davis 95616-8588, USA
| | | | | | | | | |
Collapse
|