1
|
Gil-Henn H, Girault JA, Lev S. PYK2, a hub of signaling networks in breast cancer progression. Trends Cell Biol 2024; 34:312-326. [PMID: 37586982 DOI: 10.1016/j.tcb.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
Breast cancer (BC) involves complex signaling networks characterized by extensive cross-communication and feedback loops between and within multiple signaling cascades. Many of these signaling pathways are driven by genetic alterations of oncogene and/or tumor-suppressor genes and are influenced by various environmental cues. We describe unique roles of the non-receptor tyrosine kinase (NRTK) PYK2 in signaling integration and feedback looping in BC. PYK2 functions as a signaling hub in various cascades, and its involvement in positive and negative feedback loops enhances signaling robustness, modulates signaling dynamics, and contributes to BC growth, epithelial-to-mesenchymal transition (EMT), stemness, migration, invasion, and metastasis. We also discuss the potential of PYK2 as a therapeutic target in various BC subtypes.
Collapse
Affiliation(s)
- Hava Gil-Henn
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Jean-Antoine Girault
- Institut du Fer à Moulin, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche en Santé (UMRS) 1270, Sorbonne Université, 75005 Paris, France
| | - Sima Lev
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
2
|
Han Y, Liu L, Zang B, Liang R, Zhao X, Liu B. Advances in natural products and antibody drugs for SLE: new therapeutic ideas. Front Pharmacol 2023; 14:1235440. [PMID: 37492083 PMCID: PMC10363611 DOI: 10.3389/fphar.2023.1235440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023] Open
Abstract
Systemic Lupus Erythematosus (SLE) is a chronic autoimmune systemic disease with a wide range of clinical symptoms, complex development processes, and uncertain prognosis. The clinical treatment of SLE is mainly based on hormones and immunosuppressants. Research on novel therapy strategies for SLE has flourished in recent years, especially the emergence of new targeted drugs and natural products that can modulate related symptoms. This review discusses the current experience including B-cell targeted drugs (belimumab, tabalumab, blisibimod, atacicept, rituximab, ofatumumab, ocrelizumab, obexelimab, and epratuzumab), T-cell targeted drugs (abatacept, dapirolizumab, and inhibitor of syk and CaMKIV), cytokines targeted drugs (anifrolumab and sifalimumab), and natural products (curcumin, oleuropein, punicalagin, sulforaphane, icariin, apigenin, and resveratrol). The aim of this paper is to combine the existing in vitro and in vivo models and clinical research results to summarize the efficacy and mechanism of natural drugs and targeted drugs in SLE for the reference and consideration of researchers.
Collapse
Affiliation(s)
| | | | | | | | | | - Bin Liu
- Department of Rheumatology, The Affiliated Hospital of Qingdao University, Shandong, China
| |
Collapse
|
3
|
Guo Y, Sun CK, Tang L, Tan MS. Microglia PTK2B/Pyk2 in the Pathogenesis of Alzheimer's Disease. Curr Alzheimer Res 2023; 20:692-704. [PMID: 38321895 DOI: 10.2174/0115672050299004240129051655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
Alzheimer's disease (AD) is a highly hereditary disease with complex genetic susceptibility factors. Extensive genome-wide association studies have established a distinct susceptibility link between the protein tyrosine kinase 2β (PTK2B) gene and late-onset Alzheimer's disease (LOAD), but the specific pathogenic mechanisms remain incompletely understood. PTK2B is known to be expressed in neurons, and recent research has revealed its more important significance in microglia. Elucidating the role of PTK2B high expression in microglia in AD's progression is crucial for uncovering novel pathogenic mechanisms of the disease. Our review of existing studies suggests a close relationship between PTK2B/proline-rich tyrosine kinase 2 (Pyk2) and tau pathology, and this process might be β-amyloid (Aβ) dependence. Pyk2 is hypothesized as a pivotal target linking Aβ and tau pathologies. Concurrently, Aβ-activated Pyk2 participates in the regulation of microglial activation and its proinflammatory functions. Consequently, it is reasonable to presume that Pyk2 in microglia contributes to amyloid-induced tau pathology in AD via a neuroinflammatory pathway. Furthermore, many things remain unclear, such as identifying the specific pathways that lead to the release of downstream inflammatory factors due to Pyk2 phosphorylation and whether all types of inflammatory factors can activate neuronal kinase pathways. Additionally, further in vivo experiments are essential to validate this hypothesized pathway. Considering PTK2B/Pyk2's potential role in AD pathogenesis, targeting this pathway may offer innovative and promising therapeutic approaches for AD.
Collapse
Affiliation(s)
- Yun Guo
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Cheng-Kun Sun
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, China
| | - Lian Tang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Meng-Shan Tan
- School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Qingdao, China
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Department of Neurology, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
4
|
Lee D, Hong JH. Activated PyK2 and Its Associated Molecules Transduce Cellular Signaling from the Cancerous Milieu for Cancer Metastasis. Int J Mol Sci 2022; 23:ijms232415475. [PMID: 36555115 PMCID: PMC9779422 DOI: 10.3390/ijms232415475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
PyK2 is a member of the proline-rich tyrosine kinase and focal adhesion kinase families and is ubiquitously expressed. PyK2 is mainly activated by stimuli, such as activated Src kinases and intracellular acidic pH. The mechanism of PyK2 activation in cancer cells has been addressed extensively. The up-regulation of PyK2 through overexpression and enhanced phosphorylation is a key feature of tumorigenesis and cancer migration. In this review, we summarized the cancer milieu, including acidification and cancer-associated molecules, such as chemical reagents, interactive proteins, chemokine-related molecules, calcium channels/transporters, and oxidative molecules that affect the fate of PyK2. The inhibition of PyK2 leads to a beneficial strategy to attenuate cancer cell development, including metastasis. Thus, we highlighted the effect of PyK2 on various cancer cell types and the distribution of molecules that affect PyK2 activation. In particular, we underlined the relationship between PyK2 and cancer metastasis and its potential to treat cancer cells.
Collapse
|
5
|
Momin AA, Mendes T, Barthe P, Faure C, Hong S, Yu P, Kadaré G, Jaremko M, Girault JA, Jaremko Ł, Arold ST. PYK2 senses calcium through a disordered dimerization and calmodulin-binding element. Commun Biol 2022; 5:800. [PMID: 35945264 PMCID: PMC9363500 DOI: 10.1038/s42003-022-03760-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/22/2022] [Indexed: 11/25/2022] Open
Abstract
Multidomain kinases use many ways to integrate and process diverse stimuli. Here, we investigated the mechanism by which the protein tyrosine kinase 2-beta (PYK2) functions as a sensor and effector of cellular calcium influx. We show that the linker between the PYK2 kinase and FAT domains (KFL) encompasses an unusual calmodulin (CaM) binding element. PYK2 KFL is disordered and engages CaM through an ensemble of transient binding events. Calcium increases the association by promoting structural changes in CaM that expose auxiliary interaction opportunities. KFL also forms fuzzy dimers, and dimerization is enhanced by CaM binding. As a monomer, however, KFL associates with the PYK2 FERM-kinase fragment. Thus, we identify a mechanism whereby calcium influx can promote PYK2 self-association, and hence kinase-activating trans-autophosphorylation. Collectively, our findings describe a flexible protein module that expands the paradigms for CaM binding and self-association, and their use for controlling kinase activity. Protein tyrosine kinase 2-beta is shown to function as a sensor and effector of cellular calcium influx through self-association.
Collapse
Affiliation(s)
- Afaque A Momin
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.,Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Tiago Mendes
- Inserm UMR-S 1270, Sorbonne Université, Faculty of Sciences and Engineering, Institut du Fer à Moulin, 75005, Paris, France
| | - Philippe Barthe
- Centre de Biologie Structurale (CBS), University Montpellier, INSERM U1054, CNRS UMR 5048, 34090, Montpellier, France
| | - Camille Faure
- Inserm UMR-S 1270, Sorbonne Université, Faculty of Sciences and Engineering, Institut du Fer à Moulin, 75005, Paris, France
| | - SeungBeom Hong
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.,Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Piao Yu
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.,Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Gress Kadaré
- Inserm UMR-S 1270, Sorbonne Université, Faculty of Sciences and Engineering, Institut du Fer à Moulin, 75005, Paris, France
| | - Mariusz Jaremko
- Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jean-Antoine Girault
- Inserm UMR-S 1270, Sorbonne Université, Faculty of Sciences and Engineering, Institut du Fer à Moulin, 75005, Paris, France
| | - Łukasz Jaremko
- Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Stefan T Arold
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia. .,Bioscience Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia. .,Centre de Biologie Structurale (CBS), University Montpellier, INSERM U1054, CNRS UMR 5048, 34090, Montpellier, France.
| |
Collapse
|
6
|
Wu X, Wang J, Liang Q, Tong R, Huang J, Yang X, Xu Y, Wang W, Sun M, Shi J. Recent progress on FAK inhibitors with dual targeting capabilities for cancer treatment. Biomed Pharmacother 2022; 151:113116. [PMID: 35598365 DOI: 10.1016/j.biopha.2022.113116] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 02/08/2023] Open
Abstract
Focal adhesion kinase (FAK, also known as PTK2) is a tyrosine kinase that regulates integrin and growth factor signaling pathways and is involved in the migration, proliferation and survival of cancer cells. FAK is a promising target for cancer treatment. Many small molecule FAK inhibitors have been identified and proven in both preclinical and clinical studies to be effective inhibitors of tumor growth and metastasis. There are many signaling pathways, such as those involving FAK, Src, AKT, MAPK, PI3K, and EGFR/HER-2, that provide survival signals in cancer cells. Dual inhibitors that simultaneously block FAK and another factor can significantly improve efficacy and overcome some of the shortcomings of single-target inhibitors, including drug resistance. In this review, the antitumor mechanisms and research status of dual inhibitors of FAK and other targets, such as Pyk2, IGF-IR, ALK, VEGFR-3, JAK2, EGFR, S6K1, and HDAC2, are summarized, providing new ideas for the development of effective FAK dual-target preparations.
Collapse
Affiliation(s)
- Xianbo Wu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 610041, China
| | - Jie Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550002, China
| | - Qi Liang
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Jianli Huang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550002, China
| | - Xinwei Yang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 610041, China
| | - Yihua Xu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Wenjing Wang
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Minghan Sun
- Central of Reproductive Medicine, Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.
| |
Collapse
|
7
|
Abstract
Osteocytes, former osteoblasts encapsulated by mineralized bone matrix, are far from being passive and metabolically inactive bone cells. Instead, osteocytes are multifunctional and dynamic cells capable of integrating hormonal and mechanical signals and transmitting them to effector cells in bone and in distant tissues. Osteocytes are a major source of molecules that regulate bone homeostasis by integrating both mechanical cues and hormonal signals that coordinate the differentiation and function of osteoclasts and osteoblasts. Osteocyte function is altered in both rare and common bone diseases, suggesting that osteocyte dysfunction is directly involved in the pathophysiology of several disorders affecting the skeleton. Advances in osteocyte biology initiated the development of novel therapeutics interfering with osteocyte-secreted molecules. Moreover, osteocytes are targets and key distributors of biological signals mediating the beneficial effects of several bone therapeutics used in the clinic. Here we review the most recent discoveries in osteocyte biology demonstrating that osteocytes regulate bone homeostasis and bone marrow fat via paracrine signaling, influence body composition and energy metabolism via endocrine signaling, and contribute to the damaging effects of diabetes mellitus and hematologic and metastatic cancers in the skeleton.
Collapse
Affiliation(s)
- Jesus Delgado-Calle
- 1Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas,2Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Teresita Bellido
- 1Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas,2Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas,3Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| |
Collapse
|
8
|
de Pins B, Mendes T, Giralt A, Girault JA. The Non-receptor Tyrosine Kinase Pyk2 in Brain Function and Neurological and Psychiatric Diseases. Front Synaptic Neurosci 2021; 13:749001. [PMID: 34690733 PMCID: PMC8527176 DOI: 10.3389/fnsyn.2021.749001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/14/2021] [Indexed: 12/28/2022] Open
Abstract
Pyk2 is a non-receptor tyrosine kinase highly enriched in forebrain neurons. Pyk2 is closely related to focal adhesion kinase (FAK), which plays an important role in sensing cell contacts with extracellular matrix and other extracellular signals controlling adhesion and survival. Pyk2 shares some of FAK’s characteristics including recruitment of Src-family kinases after autophosphorylation, scaffolding by interacting with multiple partners, and activation of downstream signaling pathways. Pyk2, however, has the unique property to respond to increases in intracellular free Ca2+, which triggers its autophosphorylation following stimulation of various receptors including glutamate NMDA receptors. Pyk2 is dephosphorylated by the striatal-enriched phosphatase (STEP) that is highly expressed in the same neuronal populations. Pyk2 localization in neurons is dynamic, and altered following stimulation, with post-synaptic and nuclear enrichment. As a signaling protein Pyk2 is involved in multiple pathways resulting in sometimes opposing functions depending on experimental models. Thus Pyk2 has a dual role on neurites and dendritic spines. With Src family kinases Pyk2 participates in postsynaptic regulations including of NMDA receptors and is necessary for specific types of synaptic plasticity and spatial memory tasks. The diverse functions of Pyk2 are also illustrated by its role in pathology. Pyk2 is activated following epileptic seizures or ischemia-reperfusion and may contribute to the consequences of these insults whereas Pyk2 deficit may contribute to the hippocampal phenotype of Huntington’s disease. Pyk2 gene, PTK2B, is associated with the risk for late-onset Alzheimer’s disease. Studies of underlying mechanisms indicate a complex contribution with involvement in amyloid toxicity and tauopathy, combined with possible functional deficits in neurons and contribution in microglia. A role of Pyk2 has also been proposed in stress-induced depression and cocaine addiction. Pyk2 is also important for the mobility of astrocytes and glioblastoma cells. The implication of Pyk2 in various pathological conditions supports its potential interest for therapeutic interventions. This is possible through molecules inhibiting its activity or increasing it through inhibition of STEP or other means, depending on a precise evaluation of the balance between positive and negative consequences of Pyk2 actions.
Collapse
Affiliation(s)
- Benoit de Pins
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| | - Tiago Mendes
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
| | - Jean-Antoine Girault
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| |
Collapse
|
9
|
Zheng J, Suo L, Zhou Y, Jia L, Li J, Kuang Y, Cui D, Zhang X, Wu Q. Pyk2 suppresses contextual fear memory in an autophosphorylation-independent manner. J Mol Cell Biol 2021; 13:808-821. [PMID: 34529077 PMCID: PMC8782590 DOI: 10.1093/jmcb/mjab057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Clustered protocadherins (Pcdhs) are a large family of cadherin-like cell adhesion proteins that are central for neurite self-avoidance and neuronal connectivity in the brain. Their downstream non-receptor tyrosine kinase Pyk2 (proline-rich tyrosine kinase 2, also known as Ptk2b, Cakb, Raftk, Fak2, and Cadtk) is predominantly expressed in the hippocampus. We constructed Pyk2 null mouse lines and found that these mutant mice showed enhancement in contextual fear memory, without any change in auditory-cued and spatial-referenced learning and memory. In addition, by preparing Y402F mutant mice, we observed that Pyk2 suppressed contextual fear memory in an autophosphorylation-independent manner. Moreover, using high-throughput RNA sequencing, we found that immediate early genes, such as Npas4, cFos, Zif268/Egr1, Arc, and Nr4a1, were enhanced in Pyk2 null mice. We further showed that Pyk2 disruption affected pyramidal neuronal complexity and spine dynamics. Thus, we demonstrated that Pyk2 is a novel fear memory suppressor molecule and Pyk2 null mice provide a model for understanding fear-related disorders. These findings have interesting implications regarding dysregulation of the Pcdh‒Pyk2 axis in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jin Zheng
- Center for Comparative Biomedicine, Ministry of Education Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Joint International Research Laboratory of Metabolic and Developmental Sciences, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,WLA Laboratories, Shanghai, China
| | - Lun Suo
- Center for Comparative Biomedicine, Ministry of Education Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Joint International Research Laboratory of Metabolic and Developmental Sciences, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yuxiao Zhou
- Center for Comparative Biomedicine, Ministry of Education Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Joint International Research Laboratory of Metabolic and Developmental Sciences, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,WLA Laboratories, Shanghai, China
| | - Liling Jia
- Center for Comparative Biomedicine, Ministry of Education Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Joint International Research Laboratory of Metabolic and Developmental Sciences, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,WLA Laboratories, Shanghai, China
| | - Jingwei Li
- Center for Comparative Biomedicine, Ministry of Education Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Joint International Research Laboratory of Metabolic and Developmental Sciences, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,WLA Laboratories, Shanghai, China
| | - Yanping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Donghong Cui
- Shanghai Mental Health Center, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xuehong Zhang
- Center for Comparative Biomedicine, Ministry of Education Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Joint International Research Laboratory of Metabolic and Developmental Sciences, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Wu
- Center for Comparative Biomedicine, Ministry of Education Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Joint International Research Laboratory of Metabolic and Developmental Sciences, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,WLA Laboratories, Shanghai, China
| |
Collapse
|
10
|
Chaudhary R, Morris RJ, Steinson E. The multifactorial roles of microglia and macrophages in the maintenance and progression of glioblastoma. J Neuroimmunol 2021; 357:577633. [PMID: 34153803 DOI: 10.1016/j.jneuroim.2021.577633] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/26/2021] [Accepted: 06/11/2021] [Indexed: 01/18/2023]
Abstract
The functional characteristics of glial cells, in particular microglia, have attained considerable importance in several diseases, including glioblastoma, the most hostile and malignant type of intracranial tumor. Microglia performs a highly significant role in the brain's inflammatory response mechanism. They exhibit anti-tumor properties via phagocytosis and the activation of a number of different cytotoxic substances. Some tumor-derived factors, however, transform these microglial cells into immunosuppressive and tumor-supportive, facilitating survival and progression of tumorigenic cells. Glioma-associated microglia and/or macrophages (GAMs) accounts for a large proportion of glioma infiltrating cells. Once within the tumor, GAMs exhibit a distinct phenotype of initiation that subsequently supports the growth and development of tumorigenic cells, angiogenesis and stimulates the infiltration of healthy brain regions. Interventions that suppress or prohibit the induction of GAMs at the tumor site or attenuate their immunological activities accommodating anti-tumor actions are likely to exert positive impact on glioblastoma treatment. In the present paper, we aim to summarize the most recent knowledge of microglia and its physiology, as well as include a very brief description of different molecular factors involved in microglia and glioblastoma interplay. We further address some of the major signaling pathways that regulate the baseline motility of glioblastoma progression. Finally, we discussed a number of therapeutic approaches regarding glioblastoma treatment.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, India.
| | - Rhianna J Morris
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Emma Steinson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
11
|
Lee JW, Lee IH, Iimura T, Kong SW. Two macrophages, osteoclasts and microglia: from development to pleiotropy. Bone Res 2021; 9:11. [PMID: 33568650 PMCID: PMC7875961 DOI: 10.1038/s41413-020-00134-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
Tissue-resident macrophages are highly specialized to their tissue-specific microenvironments, activated by various inflammatory signals and modulated by genetic and environmental factors. Osteoclasts and microglia are distinct tissue-resident cells of the macrophage lineage in bone and brain that are responsible for pathological changes in osteoporosis and Alzheimer’s disease (AD), respectively. Osteoporosis is more frequently observed in individuals with AD compared to the prevalence in general population. Diagnosis of AD is often delayed until underlying pathophysiological changes progress and cause irreversible damages in structure and function of brain. As such earlier diagnosis and intervention of individuals at higher risk would be indispensable to modify clinical courses. Pleiotropy is the phenomenon that a genetic variant affects multiple traits and the genetic correlation between two traits could suggest a shared molecular mechanism. In this review, we discuss that the Pyk2-mediated actin polymerization pathway in osteoclasts and microglia in bone and brain, respectively, is the horizontal pleiotropic mediator of shared risk factors for osteoporosis and AD.
Collapse
Affiliation(s)
- Ji-Won Lee
- Department of Nephrology, Transplant Research Program, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Pharmacology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586, Japan
| | - In-Hee Lee
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Tadahiro Iimura
- Department of Pharmacology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586, Japan
| | - Sek Won Kong
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, 02115, USA. .,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
12
|
Okitsu-Sakurayama S, Higa-Nakamine S, Torihara H, Higashiyama S, Yamamoto H. Roles of Pyk2 in signal transduction after gonadotropin-releasing hormone receptor stimulation. J Cell Physiol 2020; 236:3033-3043. [PMID: 32984962 DOI: 10.1002/jcp.30077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022]
Abstract
The receptor for gonadotropin-releasing hormone (GnRH) is highly expressed in hypothalamic neurons. It has been reported that GnRH treatment of cultured GnRH neurons (GT1-7 cells) activated proline-rich tyrosine kinase 2 (Pyk2), and Pyk2 was involved in the activation of extracellular signal-regulated protein kinase 1 (ERK1) and ERK2 (ERK1/2). In the present study, we first examined the possibility that GnRH treatment might activate epidermal growth factor receptor (EGFR). We found that activation of EGFR after GnRH treatment for 5 min was much less than after EGF or heparin-binding EGF treatment. Next, we examined whether or not Pyk2 bound to growth factor receptor-binding protein 2 (Grb2). We overexpressed FLAG-fused Pyk2 in GT1-7 cells, and immunoprecipitated Pyk2 using an anti-FLAG antibody. The binding of Pyk2 to Grb2 was detected only after GnRH treatment. In contrast, a site-directed mutant of Pyk2 wherein tyrosine 881 was mutated to phenylalanine did not bind to Grb2. Studies with small interfering RNA and inhibitors indicated that the activation of Grb2/Ras/Raf/MEK was a major pathway to ERK1/2 activation after the short-term treatment of GT1-7 cells with GnRH.
Collapse
Affiliation(s)
- Shiho Okitsu-Sakurayama
- Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | | | - Hidetsugu Torihara
- Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Shigeki Higashiyama
- Division of Cell Growth and Tumor Regulation, Department of Biochemistry and Molecular Genetics, Proteo-Science Center, Ehime University Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Hideyuki Yamamoto
- Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
13
|
Cao F, Cheng MH, Hu LQ, Shen HH, Tao JH, Li XM, Pan HF, Gao J. Natural products action on pathogenic cues in autoimmunity: Efficacy in systemic lupus erythematosus and rheumatoid arthritis as compared to classical treatments. Pharmacol Res 2020; 160:105054. [PMID: 32645358 DOI: 10.1016/j.phrs.2020.105054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/22/2020] [Accepted: 06/28/2020] [Indexed: 01/04/2023]
Abstract
Systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA), which are characterized by self-perpetuating inflammation and tissue/organ damage, resulting from the failure of lymphocyte auto-tolerance, cause morbidity and mortality worldwide. The current drugs or therapies including conventional non-steroidal anti-inflammatory drugs (NSAIDs) and disease-modifying anti-rheumatic drugs (DMARDs), as well as several biologic therapies such as B cell-targeted, T cell-targeted, cytokines-targeted and cytokines receptors-targeted therapy, cannot completely cure SLE and RA, and are always accompanied by unexpected side effects. Therefore, more studies have explored new methods for therapy and found that the herbal medicine as well as its natural products (NPs) exhibited promising therapeutic value through exerting effects of immunomodulation, anti-inflammation, anti-oxidation, and anti-apoptosis, etc. via regulating abnormal responses in kidney, innate and adaptive immune systems, intestine, synoviocytes, as well as bone system including chondrocytes, osteoclasts, joints and paw tissues. In the present review, we will elucidate the current mainstream drugs and therapies for SLE and RA, and summarize the efficacy and mechanisms of NPs in the treatment of SLE and RA based on available findings including in vitro and in vivo animal models, as well as clinical studies, and further analyze the existing challenges, in order to provide comprehensive evidence for improvement of SLE and RA therapy by NPs and to promote management of these two autoimmune diseases.
Collapse
Affiliation(s)
- Fan Cao
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Ming-Han Cheng
- The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Li-Qin Hu
- The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, China
| | - Hui-Hui Shen
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Jin-Hui Tao
- Department of Rheumatology and Immunology, Anhui Provincial Hospital Affiliated to Anhui Medical University, No.17 Lu Jiang Road, Hefei, Anhui, China
| | - Xiao-Mei Li
- Department of Rheumatology and Immunology, Anhui Provincial Hospital Affiliated to Anhui Medical University, No.17 Lu Jiang Road, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; The Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China.
| | - Jian Gao
- The Second Affiliated Hospital and School of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
14
|
Higa‐Nakamine S, Okitsu‐Sakurayama S, Kina S, Yamamoto H. Fyn‐mediated phosphorylation of Pyk2 promotes its activation and dissociation downstream of gonadotropin‐releasing hormone receptor. FEBS J 2020; 287:3551-3564. [DOI: 10.1111/febs.15231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/13/2019] [Accepted: 01/27/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Sayomi Higa‐Nakamine
- Department of Biochemistry Graduate School of Medicine University of the Ryukyus Okinawa Japan
| | - Shiho Okitsu‐Sakurayama
- Department of Biochemistry Graduate School of Medicine University of the Ryukyus Okinawa Japan
| | - Shinichiro Kina
- Department of Oral and Maxillofacial Functional Rehabilitation Graduate School of Medicine University of the Ryukyus Okinawa Japan
| | - Hideyuki Yamamoto
- Department of Biochemistry Graduate School of Medicine University of the Ryukyus Okinawa Japan
| |
Collapse
|
15
|
Moritake H, Saito Y, Sawa D, Sameshima N, Yamada A, Kinoshita M, Kamimura S, Konomoto T, Nunoi H. TAE226, a dual inhibitor of focal adhesion kinase and insulin-like growth factor-I receptor, is effective for Ewing sarcoma. Cancer Med 2019; 8:7809-7821. [PMID: 31692287 PMCID: PMC6912025 DOI: 10.1002/cam4.2647] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/18/2019] [Accepted: 10/10/2019] [Indexed: 12/17/2022] Open
Abstract
The outcomes for relapsed and metastatic Ewing sarcoma (EWS) is extremely poor. Therefore, it is important to identify the tumor‐specific targets in these intractable diseases. High focal adhesion kinase (FAK) transcript expression levels in EWS cell lines are known. TAE226 is a dual inhibitor of FAK and insulin‐like growth factor‐I receptor (IGF‐IR), while PF‐562,271 is a dual inhibitor of FAK and proline‐rich tyrosine kinase 2. We compared the cytotoxicity of TAE226 and PF‐562,271 toward three EWS cell lines. TAE226 strongly inhibited proliferation of three cell lines when compared with PF‐562,271. Furthermore, we investigated the efficacy of TAE226 as well as its mechanism of action against EWS. A stable EWS cell line with FAK and IGF‐IR knocked down was established, and microarray analysis revealed dysregulated expression in various pathways. TAE226 treatment of EWS cell lines induced cell cycle arrest, apoptosis, AKT dephosphorylation, and inhibition of invasion. We demonstrated that TAE226 drastically inhibits the local growth of primary tumors and metastasis in EWS using mouse models. Furthermore, the combination of TAE226 and conventional chemotherapy proved to exert synergistic effects. TAE226 may be a candidate single agent or combined therapy drug to be developed for patients who have relapse and metastatic EWS tumors in future.
Collapse
Affiliation(s)
- Hiroshi Moritake
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yusuke Saito
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Daisuke Sawa
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Naoki Sameshima
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ai Yamada
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Mariko Kinoshita
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Sachiyo Kamimura
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Takao Konomoto
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hiroyuki Nunoi
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
16
|
Guidetti GF, Torti M, Canobbio I. Focal Adhesion Kinases in Platelet Function and Thrombosis. Arterioscler Thromb Vasc Biol 2019; 39:857-868. [DOI: 10.1161/atvbaha.118.311787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The focal adhesion kinase family includes 2 homolog members, FAK and Pyk2 (proline-rich tyrosine kinase 2), primarily known for their roles in nucleated cells as regulators of cytoskeletal dynamics and cell adhesion. FAK and Pyk2 are also expressed in megakaryocytes and platelets and are activated by soluble agonists and on adhesion to the subendothelial matrix. Despite high sequence homology and similar molecular organization, FAK and Pyk2 play different roles in platelet function. Whereas FAK serves mostly as a traditional focal adhesion kinase activated downstream of integrins, Pyk2 coordinates multiple signals from different receptors. FAK, but not Pyk2, is involved in megakaryocyte maturation and platelet production. In circulating platelets, FAK is recruited by integrin αIIbβ3 to regulate hemostasis, whereas it plays minimal roles in thrombosis. By contrast, Pyk2 is implicated in platelet activation and is an important regulator of thrombosis. The direct activation of Pyk2 by calcium ions provides a connection between GPCRs (G-protein coupled receptors) and Src family kinases. In this review, we provide the comprehensive overview of >20 years of investigations on the role and regulation of focal adhesion kinases in blood platelets, highlighting common and distinctive features of FAK and Pyk2 in hemostasis and thrombosis.
Collapse
Affiliation(s)
| | - Mauro Torti
- From the Department of Biology and Biotechnology, University of Pavia, Italy
| | - Ilaria Canobbio
- From the Department of Biology and Biotechnology, University of Pavia, Italy
| |
Collapse
|
17
|
Thomas KS, Owen KA, Conger K, Llewellyn RA, Bouton AH, Casanova JE. Non-redundant functions of FAK and Pyk2 in intestinal epithelial repair. Sci Rep 2019; 9:4497. [PMID: 30872746 PMCID: PMC6418130 DOI: 10.1038/s41598-019-41116-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 02/20/2019] [Indexed: 02/08/2023] Open
Abstract
Adhesion signaling between epithelial cells and the extracellular matrix plays a critical role in maintaining tissue homeostasis and the response to tissue damage. Focal adhesion kinase (FAK) and its close relative Pyk2 are non-receptor tyrosine kinases that mediate adhesion signaling to promote cell proliferation, motility and survival. FAK has also been shown to act as a mechanosensor by modulating cell proliferation in response to changes in tissue compliance. We previously showed that mice lacking FAK in the intestinal epithelium are phenotypically normal under homeostatic conditions but hypersensitive to experimental colitis induced by dextran sulfate sodium (DSS). Here we report that Pyk2-deficient mice are also phenotypically normal under homeostatic conditions and are similarly hypersensitive to DSS-induced colitis. These data indicate that normal intestinal development and homeostatic maintenance can occur in the presence of either FAK or Pyk2, but that both kinases are necessary for epithelial repair following injury. In contrast, mice lacking both FAK and Pyk2 develop spontaneous colitis with 100% penetrance by 4 weeks of age. Normal colonic phenotype and function are restored upon treatment of the double knockout mice with antibiotics, implicating commensal bacteria or bacterial products in the etiology of the spontaneous colitis exhibited by these mice.
Collapse
Affiliation(s)
- Keena S Thomas
- University of Virginia School of Medicine, Department of Microbiology, Immunology and Cancer, Charlottesville, VA, 22908, USA
| | - Katherine A Owen
- University of Virginia School of Medicine, Department of Cell Biology, Charlottesville, VA, 22908, USA.,Ampel Biosolutions, Charlottesville, VA, 22902, USA
| | - Kathryn Conger
- University of Virginia School of Medicine, Department of Cell Biology, Charlottesville, VA, 22908, USA
| | - Ryan A Llewellyn
- University of Virginia School of Medicine, Department of Microbiology, Immunology and Cancer, Charlottesville, VA, 22908, USA.,La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA
| | - Amy H Bouton
- University of Virginia School of Medicine, Department of Microbiology, Immunology and Cancer, Charlottesville, VA, 22908, USA.
| | - James E Casanova
- University of Virginia School of Medicine, Department of Cell Biology, Charlottesville, VA, 22908, USA.
| |
Collapse
|
18
|
Abstract
Proline-rich tyrosine kinase 2 (Pyk2) plays essential roles in tumorigenesis and tumor progression. Pyk2 serves as a non-receptor tyrosine kinase regulating tumor cell survival, proliferation, migration, invasion, metastasis, and chemo-resistance, and is associated with poor prognosis and shortened survival in various cancer types. Thus, Pyk2 has been traditionally regarded as an oncogene and potential therapeutic target for cancers. However, a few studies have also demonstrated that Pyk2 exerts tumor-suppressive effects in some cancers, and anti-cancer treatment of Pyk2 inhibitors may only achieve marginal benefits in these cancers. Therefore, more detailed knowledge of the contradictory functions of Pyk2 is needed. In this review, we summarized the tissue distribution, expression, interactive molecules of Pyk2 in the signaling pathway, and roles of Pyk2 in cancers, and focused on regulation of the interconnectivity between Pyk2 and its downstream targets. The potential use of inhibitors of Pyk2 and its related pathways in cancer therapy is also discussed.
Collapse
Affiliation(s)
- Ting Shen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China (mainland).,Department of Gastroenterology, Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Qiang Guo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China (mainland).,Department of Gastroenterology, Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| |
Collapse
|
19
|
Naser R, Aldehaiman A, Díaz-Galicia E, Arold ST. Endogenous Control Mechanisms of FAK and PYK2 and Their Relevance to Cancer Development. Cancers (Basel) 2018; 10:E196. [PMID: 29891810 PMCID: PMC6025627 DOI: 10.3390/cancers10060196] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 05/31/2018] [Accepted: 06/06/2018] [Indexed: 02/07/2023] Open
Abstract
Focal adhesion kinase (FAK) and its close paralogue, proline-rich tyrosine kinase 2 (PYK2), are key regulators of aggressive spreading and metastasis of cancer cells. While targeted small-molecule inhibitors of FAK and PYK2 have been found to have promising antitumor activity, their clinical long-term efficacy may be undermined by the strong capacity of cancer cells to evade anti-kinase drugs. In healthy cells, the expression and/or function of FAK and PYK2 is tightly controlled via modulation of gene expression, competing alternatively spliced forms, non-coding RNAs, and proteins that directly or indirectly affect kinase activation or protein stability. The molecular factors involved in this control are frequently deregulated in cancer cells. Here, we review the endogenous mechanisms controlling FAK and PYK2, and with particular focus on how these mechanisms could inspire or improve anticancer therapies.
Collapse
Affiliation(s)
- Rayan Naser
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| | - Abdullah Aldehaiman
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| | - Escarlet Díaz-Galicia
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| | - Stefan T Arold
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
20
|
PTK2B/Pyk2 overexpression improves a mouse model of Alzheimer's disease. Exp Neurol 2018; 307:62-73. [PMID: 29803828 DOI: 10.1016/j.expneurol.2018.05.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/14/2018] [Accepted: 05/23/2018] [Indexed: 12/31/2022]
Abstract
Pyk2 is a Ca2+-activated non-receptor tyrosine kinase enriched in forebrain neurons and involved in synaptic regulation. Human genetic studies associated PTK2B, the gene coding Pyk2, with risk for Alzheimer's disease (AD). We previously showed that Pyk2 is important for hippocampal function, plasticity, and spine structure. However, its potential role in AD is unknown. To address this question we used human brain samples and 5XFAD mice, an amyloid mouse model of AD expressing mutated human amyloid precursor protein and presenilin1. In the hippocampus of 5XFAD mice and in human AD patients' cortex and hippocampus, Pyk2 total levels were normal. However, Pyk2 Tyr-402 phosphorylation levels, reflecting its autophosphorylation-dependent activity, were reduced in 5XFAD mice at 8 months of age but not 3 months. We crossed these mice with Pyk2-/- mice to generate 5XFAD animals devoid of Pyk2. At 8 months the phenotype of 5XFAD x Pyk2-/- double mutant mice was not different from that of 5XFAD. In contrast, overexpression of Pyk2 in the hippocampus of 5XFAD mice, using adeno-associated virus, rescued autophosphorylated Pyk2 levels and improved synaptic markers and performance in several behavioral tasks. Both Pyk2-/- and 5XFAD mice showed an increase of potentially neurotoxic Src cleavage product, which was rescued by Pyk2 overexpression. Manipulating Pyk2 levels had only minor effects on Aβ plaques, which were slightly decreased in hippocampus CA3 region of double mutant mice and increased following overexpression. Our results show that Pyk2 is not essential for the pathogenic effects of human amyloidogenic mutations in the 5XFAD mouse model. However, the slight decrease in plaque number observed in these mice in the absence of Pyk2 and their increase following Pyk2 overexpression suggest a contribution of this kinase in plaque formation. Importantly, a decreased function of Pyk2 was observed in 5XFAD mice, indicated by its decreased autophosphorylation and associated Src alterations. Overcoming this deficit by Pyk2 overexpression improved the behavioral and molecular phenotype of 5XFAD mice. Thus, our results in a mouse model of AD suggest that Pyk2 impairment may play a role in the symptoms of the disease.
Collapse
|
21
|
Proline-Rich Protein Tyrosine Kinase 2 in Inflammation and Cancer. Cancers (Basel) 2018; 10:cancers10050139. [PMID: 29738483 PMCID: PMC5977112 DOI: 10.3390/cancers10050139] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 01/13/2023] Open
Abstract
Focal adhesion kinase (FAK) and its homologous FAK-related proline-rich tyrosine kinase 2 (Pyk2) contain the same domain, exhibit high sequence homology and are defined as a distinct family of non-receptor tyrosine kinases. This group of kinases plays critical roles in cytoskeletal dynamics and cell adhesion by regulating survival and growth signaling. This review summarizes the physiological and pathological functions of Pyk2 in inflammation and cancers. In particular, overexpression of Pyk2 in cancerous tissues is correlated with poor outcomes. Pyk2 stimulates multiple oncogenic signaling pathways, such as Wnt/β-catenin, PI3K/Akt, MAPK/ERK, and TGF-β/EGFR/VEGF, and facilitates carcinogenesis, migration, invasion, epithelial⁻mesenchymal transition and metastasis. Therefore, Pyk2 is a high-value therapeutic target and has clinical significance.
Collapse
|
22
|
Abstract
Glucocorticoids (GC), produced and released by the adrenal glands, regulate numerous physiological processes in a wide range of tissues. Because of their profound immunosuppressive and anti-inflammatory actions, GC are extensively used for the treatment of immune and inflammatory conditions, the management of organ transplantation, and as a component of chemotherapy regimens for cancers. However, both pathologic endogenous elevation and long-term use of exogenous GC are associated with severe adverse effects. In particular, excess GC has devastating effects on the musculoskeletal system. GC increase bone resorption and decrease formation leading to bone loss, microarchitectural deterioration and fracture. GC also induce loss of muscle mass and strength leading to an increased incidence of falls. The combined effects on bone and muscle account for the increased fracture risk with GC. This review summarizes the advance in knowledge in the last two decades about the mechanisms of action of GC in bone and muscle and the attempts to interfere with the damaging actions of GC in these tissues with the goal of developing more effective therapeutic strategies.
Collapse
Affiliation(s)
- Amy Y Sato
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | - Munro Peacock
- Department of Medicine, Division of Endocrinology, Indiana University School of Medicine, Indianapolis, Indiana, 46202
| | - Teresita Bellido
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, 46202.,Department of Medicine, Division of Endocrinology, Indiana University School of Medicine, Indianapolis, Indiana, 46202.,Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, 46202
| |
Collapse
|
23
|
Wang M, Zhou G, Lv J, Zeng P, Guo C, Wang Q. Curcumin modulation of the activation of PYK2 in peripheral blood mononuclear cells from patients with lupus nephritis. Reumatologia 2017; 55:269-275. [PMID: 29491534 PMCID: PMC5825964 DOI: 10.5114/reum.2017.72623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/01/2017] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Proline-rich tyrosine kinase 2 (PYK2) provides important signals during the activation of lymphocytes, which is essential in autoimmune diseases. Systemic lupus erythematosus (SLE) is a representative autoimmune disease, and lupus nephritis (LN) is one of its most severe complications. Although glucocorticoid-binding immuno-suppression is the first-line therapy for patients with LN, the common and severe side effects of such treatment call for new strategies to improve long-term prognosis and life quality for these patients. Curcumin has been used to treat autoimmune disease with good curative effect, but little is known about the effect of curcumin on LN patients. Our aim was to investigate the mechanism of curcumin for management of LN, specifically regarding the PYK2 pathways. MATERIAL AND METHODS Freshly isolated peripheral blood mononuclear cells (PBMCs) from 20 LN patients and 20 healthy individuals were cultured and stimulated with either PMA, PMA+TyrA9 (PYK2 specific inhibitor), or PMA+Curcumin, and with PBS as control. After 48 hours of incubation, cells were harvested and the expression of PYK2, p-PYK2, CD40L, CTLA-4, and PBMCs proliferation were measured. Then the expression and activation of PYK2 was evaluated using Western blot, the expression of costimulatory molecules CD40L and CTLA-4 protein was evaluated using flow cytometry, and PBMC proliferation was assessed using a [3H]-thymidine incorporation assay. RESULTS Curcumin inhibited the expression and activation of PYK2 in PBMCs in patients with LN in vitro. The inhibition rate of curcumin was negatively correlated with the level of serum complement, but positively correlated with 24-h proteinuria. Curcumin also suppressed the expression of costimulatory molecules CD40L and CTLA-4, as well as PBMC proliferation. Interestingly, these effects were not reproduced on PBMC cultures of healthy subjects. CONCLUSIONS The inhibition of PYK2 signalling protein may be one of the mechanisms underlying the action of curcumin in LN treatment.
Collapse
Affiliation(s)
- Meiying Wang
- Department of Rheumatology and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Rheumatology and Immunology, The People’s Hospital of Bao’an District, Shenzhen City, China
| | - Gengmin Zhou
- Department of Rheumatology and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jiyang Lv
- Department of Rheumatology and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Peiying Zeng
- Department of Rheumatology and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Chengshan Guo
- Department of Rheumatology and Immunology, The People’s Hospital of Bao’an District, Shenzhen City, China
| | - Qingwen Wang
- Department of Rheumatology and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
24
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
25
|
Zarà M, Canobbio I, Visconte C, Di Nunzio G, Torti M, Guidetti G. Novel pharmacological inhibitors demonstrate the role of the tyrosine kinase Pyk2 in adhesion and aggregation of human platelets. Thromb Haemost 2017; 116:904-917. [DOI: 10.1160/th16-01-0067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/13/2016] [Indexed: 11/05/2022]
Abstract
SummaryPyk2 is a Ca2+-regulated kinase predominantly expressed in neuronal and in haematopoietic cells. Previous studies on Pyk2-null mice have demonstrated that Pyk2 plays a crucial role in platelet activation and thrombus formation, thus representing a possible target for antithrombotic therapy. Very limited information is available about the role of Pyk2 in human platelets, mainly because of the lack of specific pharmacological inhibitors. In this work, we have tested two novel Pyk2 inhibitors, PF-4594755 and PF-4520440, to validate their specificity and to investigate their ability to modulate platelet activation. Both molecules were able to efficiently block Pyk2 activity in human and mouse platelets stimulated with thrombin or with the Ca2+-ionophore. In wild-type murine platelets, PF-4594755 and PF-4520440 reduced thrombin-induced aggregation to the level observed in Pyk2 knockout platelets, but did not affect aggregation induced by GPVI stimulation. Importantly, neither compounds affected the residual thrombin-induced aggregation of Pyk2-null platelets, thus excluding possible off-target effects. In human platelets, PF-4594755 and PF-4520440 significantly reduced aggregation stimulated by thrombin, but not by the GPVI agonist convulxin. Both inhibitors reduced platelet adhesion on fibrinogen and prevented Akt phosphorylation in adherent cells, indicating that Pyk2 regulates PI3K and cell spreading downstream of integrins in human platelets. Finally, the Pyk2 inhibitors significantly inhibited thrombus formation upon blood perfusion on immobilized collagen under arterial flow rate. These results demonstrate that PF-4594755 and PF-4520440 are specific inhibitors of Pyk2 in intact platelets and allowed to reliably document that this kinase plays a relevant role in human platelet activation.Supplementary Material to this article is available online at www.thrombosis-online.com.
Collapse
|
26
|
Lane D, Matte I, Laplante C, Garde-Granger P, Carignan A, Bessette P, Rancourt C, Piché A. CCL18 from ascites promotes ovarian cancer cell migration through proline-rich tyrosine kinase 2 signaling. Mol Cancer 2016; 15:58. [PMID: 27613122 PMCID: PMC5017134 DOI: 10.1186/s12943-016-0542-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/05/2016] [Indexed: 12/13/2022] Open
Abstract
Background Ovarian cancer (OC) ascites consist in a proinflammatory tumor environment that is characterized by the presence of various cytokines, chemokines and growth factors. The presence of these inflammatory-related factors in ascites is associated with a more aggressive tumor phenotype. CCL18 is a member of CCL chemokines and its expression has been associated with poor prognosis in some cancers. However, its role in OC progression has not been established. Therefore, the aim of the current study was to elucidate the role of ascites CCL18 in OC progression. Methods ELISA and tissue microarrays were used to assess CCL18 in ascites and phospho-Pyk2 expression in cancer tissues respectively. Cell migration was assessed using Boyden chambers. CCL18 and ascites signaling was examined in ovarian cancer cells utilizing siRNA and exogenous gene expression. Results Here, we show that CCL18 levels are markedly increased in advanced serous OC ascites relative to peritoneal effusions from women with benign conditions. Ascites and CCL18 dose-dependently enhanced the migration of OC cell lines CaOV3 and OVCAR3. CCL18 levels in ascites positively correlated with the ability of ascites to promote cell migration. CCL18 blocking antibodies significantly attenuated ascites-induced cell migration. Ascites and CCL18 stimulated the phosphorylation of proline-rich tyrosine kinase 2 (Pyk2) in CaOV3 and OVCAR3 cells. Most importantly, the expression of phosphorylated Pyk2 in serous OC tumors was associated with shorter progression-free survival. Furthermore, enforced expression of Pyk2 promoted tumor cell migration while siRNA-mediated downregulation of Pyk2 attenuated cell migration. Downregulation of Pyk2 markedly inhibited ascites and CCL18-induced cell migration. Conclusions Taken together, our findings establish an important role for CCL18, as a component of ascites, in the migration of tumor cells and identify Pyk2 as prognostic factor and a critical downstream signaling pathway for ascites-induced OC cell migration. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0542-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Denis Lane
- Département de Microbiologie et Infectiologie, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Isabelle Matte
- Département de Microbiologie et Infectiologie, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Claude Laplante
- Département de Pathologie, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, J1H 5N4, Canada
| | - Perrine Garde-Granger
- Département de Pathologie, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, J1H 5N4, Canada
| | - Alex Carignan
- Département de Microbiologie et Infectiologie, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Paul Bessette
- Service d'obstétrique et gynécologie, Département de Chirurgie, Faculté de Médecine, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, J1H 5N4, Canada
| | - Claudine Rancourt
- Département de Microbiologie et Infectiologie, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Alain Piché
- Département de Microbiologie et Infectiologie, Université de Sherbrooke, 3001, 12ième Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada.
| |
Collapse
|
27
|
Huang H, Svoboda RA, Lazenby AJ, Saowapa J, Chaika N, Ding K, Wheelock MJ, Johnson KR. Up-regulation of N-cadherin by Collagen I-activated Discoidin Domain Receptor 1 in Pancreatic Cancer Requires the Adaptor Molecule Shc1. J Biol Chem 2016; 291:23208-23223. [PMID: 27605668 DOI: 10.1074/jbc.m116.740605] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinomas are highly malignant cancers characterized by extensive invasion into surrounding tissues, metastasis to distant organs, and a limited response to therapy. A main feature of pancreatic ductal adenocarcinomas is desmoplasia, which leads to extensive deposition of collagen I. We have demonstrated that collagen I can induce epithelial-mesenchymal transition (EMT) in pancreatic cancer cells. A hallmark of EMT is an increase in the expression of the mesenchymal cadherin N-cadherin. Previously we showed up-regulation of N-cadherin promotes tumor cell invasion and that collagen I-induced EMT is mediated by two collagen receptors, α2β1-integrin and discoidin domain receptor 1 (DDR1). DDR1 is a receptor-tyrosine kinase widely expressed during embryonic development and in many adult tissues and is also highly expressed in many different cancers. In the signaling pathway initiated by collagen, we have shown proline-rich tyrosine kinase 2 (Pyk2) is downstream of DDR1. In this study we found isoform b of DDR1 is responsible for collagen I-induced up-regulation of N-cadherin and tyrosine 513 of DDR1b is necessary. Knocking down Shc1, which binds to tyrosine 513 of DDR1b via its PTB (phosphotyrosine binding) domain, eliminates the up-regulation of N-cadherin. The signaling does not require a functional SH2 domain or the tyrosine residues commonly phosphorylated in Shc1 but is mediated by the interaction between a short segment of the central domain of Shc1 and the proline-rich region of Pyk2. Taken together, these data illustrate DDR1b, but not DDR1a, mediates collagen I-induced N-cadherin up-regulation, and Shc1 is involved in this process by coupling to both DDR1 and Pyk2.
Collapse
Affiliation(s)
- Huocong Huang
- From the Department of Biochemistry and Molecular Biology, College of Medicine
| | | | - Audrey J Lazenby
- Department of Pathology and Microbiology, College of Medicine, and
| | | | - Nina Chaika
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha Nebraska 68198
| | - Ke Ding
- State Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Avenue, Guangzhou 510530, China, and
| | - Margaret J Wheelock
- From the Department of Biochemistry and Molecular Biology, College of Medicine.,Department of Oral Biology, College of Dentistry.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha Nebraska 68198
| | - Keith R Johnson
- From the Department of Biochemistry and Molecular Biology, College of Medicine, .,Department of Oral Biology, College of Dentistry.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha Nebraska 68198.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
28
|
Meng XQ, Dai YY, Jing LD, Bai J, Liu SZ, Zheng KG, Pan J. Subcellular localization of proline-rich tyrosine kinase 2 during oocyte fertilization and early-embryo development in mice. J Reprod Dev 2016; 62:351-8. [PMID: 27086609 PMCID: PMC5004790 DOI: 10.1262/jrd.2016-015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Proline-rich tyrosine kinase 2 (Pyk2), a non-receptor tyrosine kinase, is a member of
the focal adhesion kinase family and is highly expressed in oocytes. Using a combination
of confocal microscopy and RNAi, we localized and studied the function of both Pyk2 and
tyrosine-phosphorylated Pyk2 (p-Pyk2) during mouse oocyte fertilization and early embryo
development. At the onset of fertilization, Pyk2 and p-Pyk2 were detected predominantly in
sperm heads and the oocyte cytoplasm. Upon formation of male and female pronuclei, Pyk2
and its activated form leave the cytoplasm and accumulate in the two pronuclei. We
detected Pyk2 in blastomere nuclei and found both Pyk2 and p-Pyk2 in the pre-blastula
cytoplasm. Pyk2 and its activated form then disappeared from the blastula nuclei and
localized to the perinuclear regions, where blastula cells come into contact with each
other. Pyk2 knockdown via microinjection of siRNA into the zygote did not inhibit early
embryo development. Our results suggest that Pyk2 plays multiple functional roles in mouse
oocyte fertilization as well as throughout early embryo development.
Collapse
Affiliation(s)
- Xiao-Qian Meng
- Key Laboratory of Animal Resistance Research, College of Life Science, Shandong Normal University, Jinan 250014, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Vanarotti MS, Finkelstein DB, Guibao CD, Nourse A, Miller DJ, Zheng JJ. Structural Basis for the Interaction between Pyk2-FAT Domain and Leupaxin LD Repeats. Biochemistry 2016; 55:1332-45. [PMID: 26866573 PMCID: PMC4843776 DOI: 10.1021/acs.biochem.5b01274] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Proline-rich
tyrosine kinase 2 (Pyk2) is a nonreceptor tyrosine
kinase and belongs to the focal adhesion kinase (FAK) family. Like
FAK, the C-terminal focal adhesion-targeting (FAT) domain of Pyk2
binds to paxillin, a scaffold protein in focal adhesions; however,
the interaction between the FAT domain of Pyk2 and paxillin is dynamic
and unstable. Leupaxin is another member in the paxillin family and
was suggested to be the native binding partner of Pyk2; Pyk2 gene
expression is strongly correlated with that of leupaxin in many tissues
including primary breast cancer. Here, we report that leupaxin interacts
with Pyk2-FAT. Leupaxin has four leucine–aspartate (LD) motifs.
The first and third LD motifs of leupaxin preferably target the two
LD-binding sites on the Pyk2-FAT domain, respectively. Moreover, the
full-length leupaxin binds to Pyk2-FAT as a stable one-to-one complex.
Together, we propose that there is an underlying selectivity between
leupaxin and paxillin for Pyk2, which may influence the differing
behavior of the two proteins at focal adhesion sites.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie J Zheng
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine at UCLA , Los Angeles, California 90095, United States
| |
Collapse
|
30
|
Abstract
Proline-rich tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase (FAK) family of non-receptor tyrosine kinases and plays an important role in diverse cellular events downstream of the integrin-family of receptors, including cell migration, proliferation and survival. Here, we have identified a novel role for Src kinase in priming Pyk2 phosphorylation and subsequent activation upon cell attachment on the integrin-ligand fibronectin. By using complementary methods, we show that Src activity is indispensable for the initial Pyk2 phosphorylation on the Y402 site observed in response to cell attachment. In contrast, the initial fibronectin-induced autophosphorylation of FAK in the homologous Y397 site occurs in a Src-independent manner. We demonstrate that the SH2-domain of Src is required for Src binding to Pyk2 and for Pyk2 phosphorylation at sites Y402 and Y579. Moreover, Y402 phosphorylation is a prerequisite for the subsequent Y579 phosphorylation. While this initial phosphorylation of Pyk2 by Src is independent of Pyk2 kinase activity, subsequent autophosphorylation of Pyk2 in trans is required for full Pyk2 phosphorylation and activation. Collectively, our studies reveal a novel function of Src in priming Pyk2 (but not FAK) phosphorylation and subsequent activation downstream of integrins, and shed light on the signaling events that regulate the function of Pyk2.
Collapse
|
31
|
Paone C, Rodrigues N, Ittner E, Santos C, Buntru A, Hauck CR. The Tyrosine Kinase Pyk2 Contributes to Complement-Mediated Phagocytosis in Murine Macrophages. J Innate Immun 2016; 8:437-51. [PMID: 26848986 PMCID: PMC6738876 DOI: 10.1159/000442944] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/01/2015] [Accepted: 12/01/2015] [Indexed: 01/30/2023] Open
Abstract
Proline-rich tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase (FAK) family and is mainly expressed in neuronal and hematopoietic cells. As FAK family members are involved in signaling connections downstream of integrins, we studied the role of Pyk2 in complement-receptor 3 (CR3, also known as Mac-1, integrin αMβ2, CD11b/CD18)-mediated phagocytosis, a key process in innate immunity. Using 3 independent approaches, we observed that Pyk2 contributes to CR3-dependent phagocytosis by RAW 264.7 macrophages, but is dispensable for Fcγ receptor (FcγR)-mediated uptake. Reduction of Pyk2 expression levels via siRNA, the pharmacological inhibition of Pyk2 kinase activity as well as macrophage treatment with a cell permeable TAT fusion protein containing the C-terminus of Pyk2 (TAT-PRNK) significantly impaired CR3-mediated phagocytosis without affecting FcγR-mediated uptake. In addition, Pyk2 was strongly recruited to complement opsonized Escherichia coli and the pharmacological inhibition of Pyk2 significantly decreased uptake of the bacteria. Finally, CRISPR/Cas-mediated disruption of the pyk2 gene in RAW 264.7 macrophages confirmed the role of this protein tyrosine kinase in CR3-mediated phagocytosis. Together, our data demonstrate that Pyk2 selectively contributes to the coordination of phagocytosis-promoting signals downstream of CR3, but is dispensable for FcγR-mediated phagocytosis.
Collapse
Affiliation(s)
- Christoph Paone
- Lehrstuhl für Zellbiologie, Konstanz, Germany
- Konstanz Research School, Chemical Biology, Universität Konstanz, Konstanz, Germany
| | | | - Ella Ittner
- Lehrstuhl für Zellbiologie, Konstanz, Germany
| | | | - Alexander Buntru
- Lehrstuhl für Zellbiologie, Konstanz, Germany
- Konstanz Research School, Chemical Biology, Universität Konstanz, Konstanz, Germany
| | - Christof R. Hauck
- Lehrstuhl für Zellbiologie, Konstanz, Germany
- Konstanz Research School, Chemical Biology, Universität Konstanz, Konstanz, Germany
| |
Collapse
|
32
|
|
33
|
Giralt A, Coura R, Girault JA. Pyk2 is essential for astrocytes mobility following brain lesion. Glia 2015; 64:620-34. [DOI: 10.1002/glia.22952] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/23/2015] [Accepted: 11/18/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Albert Giralt
- Inserm UMR-S839; Paris 75005 France
- Université Pierre et Marie Curie (UPMC, Paris 6), Sorbonne Universités; Paris 75005 France
- Institut du Fer à Moulin; Paris 75005 France
| | - Renata Coura
- Inserm UMR-S839; Paris 75005 France
- Université Pierre et Marie Curie (UPMC, Paris 6), Sorbonne Universités; Paris 75005 France
- Institut du Fer à Moulin; Paris 75005 France
| | - Jean-Antoine Girault
- Inserm UMR-S839; Paris 75005 France
- Université Pierre et Marie Curie (UPMC, Paris 6), Sorbonne Universités; Paris 75005 France
- Institut du Fer à Moulin; Paris 75005 France
| |
Collapse
|
34
|
Dios-Esponera A, Isern de Val S, Sevilla-Movilla S, García-Verdugo R, García-Bernal D, Arellano-Sánchez N, Cabañas C, Teixidó J. Positive and negative regulation by SLP-76/ADAP and Pyk2 of chemokine-stimulated T-lymphocyte adhesion mediated by integrin α4β1. Mol Biol Cell 2015. [PMID: 26202465 PMCID: PMC4569313 DOI: 10.1091/mbc.e14-07-1246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Stimulation by chemokines of integrin α4β1-dependent T-lymphocyte adhesion is a crucial step for lymphocyte trafficking. The adaptor Vav1 is required for chemokine-activated T-cell adhesion mediated by α4β1. Conceivably, proteins associating with Vav1 could potentially modulate this adhesion. Correlating with activation by the chemokine CXCL12 of T-lymphocyte attachment to α4β1 ligands, a transient stimulation in the association of Vav1 with SLP-76, Pyk2, and ADAP was observed. Using T-cells depleted for SLP-76, ADAP, or Pyk2, or expressing Pyk2 kinase-inactive forms, we show that SLP-76 and ADAP stimulate chemokine-activated, α4β1-mediated adhesion, whereas Pyk2 opposes T-cell attachment. While CXCL12-promoted generation of high-affinity α4β1 is independent of SLP-76, ADAP, and Pyk2, the strength of α4β1-VCAM-1 interaction and cell spreading on VCAM-1 are targets of regulation by these three proteins. GTPase assays, expression of activated or dominant-negative Rac1, or combined ADAP and Pyk2 silencing indicated that Rac1 activation by CXCL12 is a common mediator response in SLP-76-, ADAP-, and Pyk2-regulated cell adhesion involving α4β1. Our data strongly suggest that chemokine-stimulated associations between Vav1, SLP-76, and ADAP facilitate Rac1 activation and α4β1-mediated adhesion, whereas Pyk2 opposes this adhesion by limiting Rac1 activation.
Collapse
Affiliation(s)
- Ana Dios-Esponera
- Centro de Investigaciones Biológicas (CSIC), Department of Cellular and Molecular Medicine, 28040 Madrid, Spain
| | - Soledad Isern de Val
- Centro de Investigaciones Biológicas (CSIC), Department of Cellular and Molecular Medicine, 28040 Madrid, Spain
| | - Silvia Sevilla-Movilla
- Centro de Investigaciones Biológicas (CSIC), Department of Cellular and Molecular Medicine, 28040 Madrid, Spain
| | - Rosa García-Verdugo
- Centro de Investigaciones Biológicas (CSIC), Department of Cellular and Molecular Medicine, 28040 Madrid, Spain
| | - David García-Bernal
- Centro de Investigaciones Biológicas (CSIC), Department of Cellular and Molecular Medicine, 28040 Madrid, Spain
| | - Nohemí Arellano-Sánchez
- Centro de Investigaciones Biológicas (CSIC), Department of Cellular and Molecular Medicine, 28040 Madrid, Spain
| | - Carlos Cabañas
- Centro de Biología Molecular (CSIC), Department of Cell Biology and Immunology, Cantoblanco, 28049 Madrid, Spain
| | - Joaquin Teixidó
- Centro de Investigaciones Biológicas (CSIC), Department of Cellular and Molecular Medicine, 28040 Madrid, Spain
| |
Collapse
|
35
|
Mills RD, Mita M, Walsh MP. A role for the Ca2+-dependent tyrosine kinase Pyk2 in tonic depolarization-induced vascular smooth muscle contraction. J Muscle Res Cell Motil 2015; 36:479-89. [DOI: 10.1007/s10974-015-9416-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/27/2015] [Indexed: 10/24/2022]
|
36
|
Chapman NM, Houtman JCD. Functions of the FAK family kinases in T cells: beyond actin cytoskeletal rearrangement. Immunol Res 2015; 59:23-34. [PMID: 24816556 DOI: 10.1007/s12026-014-8527-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
T cells control the focus and extent of adaptive immunity in infectious and pathological diseases. The activation of T cells occurs when the T cell antigen receptor (TCR) and costimulatory and/or adhesion receptors are engaged by their ligands. This process drives signaling that promotes cytoskeletal rearrangement and transcription factor activation, both of which regulate the quality and magnitude of the T cell response. However, it is not fully understood how different receptor-induced signals combine to alter T cell activation. The related non-receptor tyrosine kinases focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (Pyk2) are phosphorylated downstream of the TCR and several costimulatory and adhesion receptors. FAK family proteins integrate receptor-mediated signals that influence actin cytoskeletal rearrangement and effector T cell responses. In this review, we summarize the receptor-specific roles that FAK and Pyk2 control to influence T cell development and activation.
Collapse
Affiliation(s)
- Nicole M Chapman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | | |
Collapse
|
37
|
Vanarotti MS, Miller DJ, Guibao CD, Nourse A, Zheng JJ. Structural and mechanistic insights into the interaction between Pyk2 and paxillin LD motifs. J Mol Biol 2014; 426:3985-4001. [PMID: 25174335 DOI: 10.1016/j.jmb.2014.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/15/2014] [Accepted: 08/19/2014] [Indexed: 11/20/2022]
Abstract
Proline-rich tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase (FAK) subfamily of cytoplasmic tyrosine kinases. The C-terminal Pyk2-focal adhesion targeting (FAT) domain binds to paxillin, an adhesion molecule. Paxillin has five leucine-aspartate (LD) motifs (LD1-LD5). Here, we show that the second LD motif of paxillin, LD2, interacts with Pyk2-FAT, similar to the known Pyk2-FAT/LD4 interaction. Both LD motifs can target two ligand binding sites on Pyk2-FAT. Interestingly, they also share similar binding affinity for Pyk2-FAT with preferential association to one site relative to the other. Nevertheless, the LD2-LD4 region of paxillin (paxillin(133-290)) binds to Pyk2-FAT as a 1:1 complex. However, our data suggest that the Pyk2-FAT and paxillin complex is dynamic and it appears to be a mixture of two distinct conformations of paxillin that almost equally compete for Pyk2-FAT binding. These studies provide insight into the underlying selectivity of paxillin for Pyk2 and FAK that may influence the differing behavior of these two closely related kinases in focal adhesion sites.
Collapse
Affiliation(s)
- Murugendra S Vanarotti
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Darcie J Miller
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Cristina D Guibao
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Amanda Nourse
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jie J Zheng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
38
|
Adaptors for disorders of the brain? The cancer signaling proteins NEDD9, CASS4, and PTK2B in Alzheimer's disease. Oncoscience 2014; 1:486-503. [PMID: 25594051 PMCID: PMC4278314 DOI: 10.18632/oncoscience.64] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/23/2014] [Indexed: 12/19/2022] Open
Abstract
No treatment strategies effectively limit the progression of Alzheimer's disease (AD), a common and debilitating neurodegenerative disorder. The absence of viable treatment options reflects the fact that the pathophysiology and genotypic causes of the disease are not well understood. The advent of genome-wide association studies (GWAS) has made it possible to broadly investigate genotypic alterations driving phenotypic occurrences. Recent studies have associated single nucleotide polymorphisms (SNPs) in two paralogous scaffolding proteins, NEDD9 and CASS4, and the kinase PTK2B, with susceptibility to late-onset AD (LOAD). Intriguingly, NEDD9, CASS4, and PTK2B have been much studied as interacting partners regulating oncogenesis and metastasis, and all three are known to be active in the brain during development and in cancer. However, to date, the majority of studies of these proteins have emphasized their roles in the directly cancer relevant processes of migration and survival signaling. We here discuss evidence for roles of NEDD9, CASS4 and PTK2B in additional processes, including hypoxia, vascular changes, inflammation, microtubule stabilization and calcium signaling, as potentially relevant to the pathogenesis of LOAD. Reciprocally, these functions can better inform our understanding of the action of NEDD9, CASS4 and PTK2B in cancer.
Collapse
|
39
|
Zhang Z, Zhang Y, Mou Z, Chu S, Chen X, He W, Guo X, Yuan Y, Takahashi M, Chen N. Tyrosine 402 phosphorylation of Pyk2 is involved in ionomycin-induced neurotransmitter release. PLoS One 2014; 9:e94574. [PMID: 24718602 PMCID: PMC3981813 DOI: 10.1371/journal.pone.0094574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 03/17/2014] [Indexed: 11/28/2022] Open
Abstract
Protein tyrosine kinases, which are highly expressed in the central nervous system, are implicated in many neural processes. However, the relationship between protein tyrosine kinases and neurotransmitter release remains unknown. In this study, we found that ionomycin, a Ca2+ ionophore, concurrently induced asynchronous neurotransmitter release and phosphorylation of a non-receptor protein tyrosine kinase, proline-rich tyrosine kinase 2 (Pyk2), in clonal rat pheochromocytoma PC12 cells and cerebellar granule cells, whereas introduction of Pyk2 siRNA dramatically suppressed ionomycin-induced neurotransmitter release. Further study indicated that Tyr-402 (Y402) in Pyk2, instead of other tyrosine sites, underwent rapid phosphorylation after ionomycin induction in 1 min to 2 min. We demonstrated that the mutant of Pyk2 Y402 could abolish ionomycin-induced dopamine (DA) release by transfecting cells with recombinant Pyk2 and its mutants (Y402F, Y579F, Y580F, and Y881F). In addition, Src inhibition could prolong phosphorylation of Pyk2 Y402 and increase DA release. These findings suggested that Pyk2 was involved in ionomycin-induced neurotransmitter release through phosphorylation of Y402.
Collapse
Affiliation(s)
- Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, and neuroscience center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Yun Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, and neuroscience center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Zheng Mou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, and neuroscience center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, and neuroscience center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiaoyu Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, and neuroscience center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Wenbin He
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, and neuroscience center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Basic Medical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, People’s Republic of China
| | - Xiaofeng Guo
- Basic Medical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, People’s Republic of China
| | - Yuhe Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, and neuroscience center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Masami Takahashi
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
- * E-mail: (NC); (MT)
| | - Naihong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, and neuroscience center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- * E-mail: (NC); (MT)
| |
Collapse
|
40
|
Wang T, Oppawsky C, Duan Y, Tittor J, Oesterhelt D, Facciotti MT. Stable closure of the cytoplasmic half-channel is required for efficient proton transport at physiological membrane potentials in the bacteriorhodopsin catalytic cycle. Biochemistry 2014; 53:2380-90. [PMID: 24660845 PMCID: PMC4004217 DOI: 10.1021/bi4013808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The bacteriorhodopsin (BR) Asp96Gly/Phe171Cys/Phe219Leu
triple
mutant has been shown to translocate protons 66% as efficiently as
the wild-type protein. Light-dependent ATP synthesis in haloarchaeal
cells expressing the triple mutant is 85% that of the wild-type BR
expressing cells. Therefore, the functional activity of BR seems to
be largely preserved in the triple mutant despite the observations
that its ground-state structure resembles that of the wild-type M
state (i.e., the so-called cytoplasmically open state) and that the
mutant shows no significant structural changes during its photocycle,
in sharp contrast to what occurs in the wild-type protein in which
a large structural opening and closing occurs on the cytoplasmic side.
To resolve the contradiction between the apparent functional robustness
of the triple mutant and the presumed importance of the opening and
closing that occurs in the wild-type protein, we conducted additional
experiments to compare the behavior of wild-type and mutant proteins
under different operational loads. Specifically, we characterized
the ability of the two proteins to generate light-driven proton currents
against a range of membrane potentials. The wild-type protein showed
maximal conductance between −150 and −50 mV, whereas
the mutant showed maximal conductance at membrane potentials >+50
mV. Molecular dynamics (MD) simulations of the triple mutant were
also conducted to characterize structural changes in the protein and
in solvent accessibility that might help to functionally contextualize
the current–voltage data. These simulations revealed that the
cytoplasmic half-channel of the triple mutant is constitutively open
and dynamically exchanges water with the bulk. Collectively, the data
and simulations help to explain why this mutant BR does not mediate
photosynthetic growth of haloarchaeal cells, and they suggest that
the structural closing observed in the wild-type protein likely plays
a key role in minimizing substrate back flow in the face of electrochemical
driving forces present at physiological membrane potentials.
Collapse
Affiliation(s)
- Ting Wang
- Department of Biomedical Engineering and Genome Center, 451 East Health Science Drive, University of California , Davis, California 95616-8816, United States
| | | | | | | | | | | |
Collapse
|
41
|
Golubovskaya VM. Targeting FAK in human cancer: from finding to first clinical trials. Front Biosci (Landmark Ed) 2014; 19:687-706. [PMID: 24389213 DOI: 10.2741/4236] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It is twenty years since Focal Adhesion Kinase (FAK) was found to be overexpressed in many types of human cancer. FAK plays an important role in adhesion, spreading, motility, invasion, metastasis, survival, angiogenesis, and recently has been found to play an important role as well in epithelial to mesenchymal transition (EMT), cancer stem cells and tumor microenvironment. FAK has kinase-dependent and kinase independent scaffolding, cytoplasmic and nuclear functions. Several years ago FAK was proposed as a potential therapeutic target; the first clinical trials were just reported, and they supported further studies of FAK as a promising therapeutic target. This review discusses the main functions of FAK in cancer, and specifically focuses on recent novel findings on the role of FAK in cancer stem cells, microenvironment, epithelial-to-mesenchymal transition, invasion, metastasis, and also highlight new approaches of targeting FAK and critically discuss challenges that lie ahead for its targeted therapeutics. The review provides a summary of translational approaches of FAK-targeted and combination therapies and outline perspectives and future directions of FAK research.
Collapse
|
42
|
Mierke CT. The role of focal adhesion kinase in the regulation of cellular mechanical properties. Phys Biol 2013; 10:065005. [PMID: 24304934 DOI: 10.1088/1478-3975/10/6/065005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The regulation of mechanical properties is necessary for cell invasion into connective tissue or intra- and extravasation through the endothelium of blood or lymph vessels. Cell invasion is important for the regulation of many healthy processes such as immune response reactions and wound healing. In addition, cell invasion plays a role in disease-related processes such as tumor metastasis and autoimmune responses. Until now the role of focal adhesion kinase (FAK) in regulating mechanical properties of cells and its impact on cell invasion efficiency is still not well known. Thus, this review focuses on mechanical properties regulated by FAK in comparison to the mechano-regulating protein vinculin. Moreover, it points out the connection between cancer cell invasion and metastasis and FAK by showing that FAK regulates cellular mechanical properties required for cellular motility. Furthermore, it sheds light on the indirect interaction of FAK with vinculin by binding to paxillin, which then impairs the binding of paxillin to vinculin. In addition, this review emphasizes whether FAK fulfills regulatory functions similar to vinculin. In particular, it discusses the differences and the similarities between FAK and vinculin in regulating the biomechanical properties of cells. Finally, this paper highlights that both focal adhesion proteins, vinculin and FAK, synergize their functions to regulate the mechanical properties of cells such as stiffness and contractile forces. Subsequently, these mechanical properties determine cellular invasiveness into tissues and provide a source sink for future drug developments to inhibit excessive cell invasion and hence, metastases formation.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Institute of Experimental Physics I, Biological Physics Division, University of Leipzig, Linnéstr. 5, D-04103 Leipzig, Germany
| |
Collapse
|
43
|
Kang Y, Hu W, Ivan C, Dalton HJ, Miyake T, Pecot CV, Zand B, Liu T, Huang J, Jennings NB, Rupaimoole R, Taylor M, Pradeep S, Wu SY, Lu C, Wen Y, Huang J, Liu J, Sood AK. Role of focal adhesion kinase in regulating YB-1-mediated paclitaxel resistance in ovarian cancer. J Natl Cancer Inst 2013; 105:1485-95. [PMID: 24062525 DOI: 10.1093/jnci/djt210] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND We previously found focal adhesion kinase (FAK) inhibition sensitizes ovarian cancer to taxanes; however, the mechanisms are not well understood. METHODS We characterized the biologic response of taxane-resistant and taxane-sensitive ovarian cancer models to a novel FAK inhibitor (VS-6063). We used reverse-phase protein arrays (RPPA) to identify novel downstream targets in taxane-resistant cell lines. Furthermore, we correlated clinical and pathological data with nuclear and cytoplasmic expression of FAK and YB-1 in 105 ovarian cancer samples. Statistical tests were two-sided, and P values were calculated with Student t test or Fisher exact test. RESULTS We found that VS-6063 inhibited FAK phosphorylation at the Tyr397 site in a time- and dose-dependent manner. The combination of VS-6063 and paclitaxel markedly decreased proliferation and increased apoptosis, which resulted in 92.7% to 97.9% reductions in tumor weight. RPPA data showed that VS-6063 reduced levels of AKT and YB-1 in taxane-resistant cell lines. FAK inhibition enhanced chemosensitivity in taxane-resistant cells by decreasing YB-1 phosphorylation and subsequently CD44 in an AKT-dependent manner. In human ovarian cancer samples, nuclear FAK expression was associated with increased nuclear YB-1 expression (χ²) = 37.7; P < .001). Coexpression of nuclear FAK and YB-1 was associated with statistically significantly worse median overall survival (24.9 vs 67.3 months; hazard ratio = 2.64; 95% confidence interval = 1.38 to 5.05; P = .006). CONCLUSIONS We have identified a novel pathway whereby FAK inhibition with VS-6063 overcomes YB-1-mediated paclitaxel resistance by an AKT-dependent pathway. These findings have implications for clinical trials aimed at targeting FAK.
Collapse
Affiliation(s)
- Yu Kang
- Affiliations of authors: Department of Gynecologic Oncology and Repro ductive Medicine (YK, WH, CI, CVP, HJD, BZ, TL, JH, NBJ, RR, MT, TM, SP, SYW, CL, YW, AKS), Center for RNAi and Non-Coding RNA (CI, AKS), Department of Pathology (JH, JL), and Department of Cancer Biology (AKS), The University of Texas MD Anderson Cancer Center, Houston, TX; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital and Institute of Obstetrics and Gynecology, Shanghai Medical College of Fudan University, Shanghai, China (YK); Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (TL)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
St-Pierre J, Ostergaard HL. A role for the protein tyrosine phosphatase CD45 in macrophage adhesion through the regulation of paxillin degradation. PLoS One 2013; 8:e71531. [PMID: 23936270 PMCID: PMC3729947 DOI: 10.1371/journal.pone.0071531] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/28/2013] [Indexed: 11/18/2022] Open
Abstract
CD45 is a protein tyrosine phosphatase expressed on all cells of hematopoietic origin that is known to regulate Src family kinases. In macrophages, the absence of CD45 has been linked to defects in adhesion, however the molecular mechanisms involved remain poorly defined. In this study, we show that bone marrow derived macrophages from CD45-deficient mice exhibit abnormal cell morphology and defective motility. These defects are accompanied by substantially decreased levels of the cytoskeletal-associated protein paxillin, without affecting the levels of other proteins. Degradation of paxillin in CD45-deficient macrophages is calpain-mediated, as treatment with a calpain inhibitor restores paxillin levels in these cells and enhances cell spreading. Inhibition of the tyrosine kinases proline-rich tyrosine kinase (Pyk2) and focal adhesion kinase (FAK), kinases that are capable of mediating tyrosine phosphorylation of paxillin, also restored paxillin levels, indicating a role for these kinases in the CD45-dependent regulation of paxillin. These data demonstrate that CD45 functions to regulate Pyk2/FAK activity, likely through the activity of Src family kinases, which in turn regulates the levels of paxillin to modulate macrophage adhesion and migration.
Collapse
Affiliation(s)
- Joëlle St-Pierre
- Department of Medical Microbiology and Immunology, and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Hanne L. Ostergaard
- Department of Medical Microbiology and Immunology, and the Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
45
|
Cipolla L, Consonni A, Guidetti G, Canobbio I, Okigaki M, Falasca M, Ciraolo E, Hirsch E, Balduini C, Torti M. The proline-rich tyrosine kinase Pyk2 regulates platelet integrin αIIbβ3 outside-in signaling. J Thromb Haemost 2013; 11:345-56. [PMID: 23216754 DOI: 10.1111/jth.12099] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/15/2012] [Indexed: 01/06/2023]
Abstract
BACKGROUND The proline-rich tyrosine kinase Pyk2 is a focal adhesion kinase expressed in blood platelets, and is activated downstream of G-protein coupled receptors as well as integrin α2β1. OBJECTIVE In this study we have investigated the involvement of Pyk2 in integrin αIIbβ3 outside-in signaling in human and murine platelets. METHODS We analyzed the stimulation of intracellular signaling pathways in platelets from Pyk2 knockout mice adherent to immobilized fibrinogen. RESULTS Pyk2 was rapidly phosphorylated and activated in human and murine platelets adherent to fibrinogen through integrin αIIbβ3. Activation of Pyk2 was Src-dependent, but did not require phospholipase Cγ2 activity. Platelets from Pyk2 knockout mice showed a defective ability to adhere and spread on fibrinogen, in association with a dramatic reduction of phosphatidylinositol 3-kinase (PI3K) activation and Akt phosphorylation. Pharmacological and genetic analysis demonstrated that integrin αIIbβ3 engagement selectively stimulated the β-isoform of PI3K (PI3Kβ), and that, as for Pyk2, PI3Kβ activation required Src family kinases activity, but not phospholipase Cγ2. In fibrinogen-adherent platelets, both Pyk2 and PI3Kβ were necessary for stimulation of the small GTPase Rap1b, a regulator of cell adhesion and spreading. Integrin αIIbβ3 engagement triggered the association of the PI3Kβ regulatory subunit p85 with the adaptor protein c-Cbl, which was mediated by the p85 SH3 domain, and was independent of c-Cbl tyrosine phosphorylation. However, p85-associated c-Cbl was tyrosine phosphorylated by activated Pyk2 in fibrinogen adherent platelets. CONCLUSIONS These results identify a novel pathway of integrin αIIbβ3 outside-in signaling and recognize the tyrosine kinase Pyk2 as a major regulator of platelet adhesion and spreading on fibrinogen.
Collapse
Affiliation(s)
- L Cipolla
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Impaired thrombin-induced platelet activation and thrombus formation in mice lacking the Ca(2+)-dependent tyrosine kinase Pyk2. Blood 2012; 121:648-57. [PMID: 23175689 DOI: 10.1182/blood-2012-06-438762] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the present study, we used a knockout murine model to analyze the contribution of the Ca(2+)-dependent focal adhesion kinase Pyk2 in platelet activation and thrombus formation in vivo. We found that Pyk2-knockout mice had a tail bleeding time that was slightly increased compared with their wild-type littermates. Moreover, in an in vivo model of femoral artery thrombosis, the time to arterial occlusion was significantly prolonged in mice lacking Pyk2. Pyk2-deficient mice were also significantly protected from collagen plus epinephrine-induced pulmonary thromboembolism. Ex vivo aggregation of Pyk2-deficient platelets was normal on stimulation of glycoprotein VI, but was significantly reduced in response to PAR4-activating peptide, low doses of thrombin, or U46619. Defective platelet aggregation was accompanied by impaired inside-out activation of integrin α(IIb)β(3) and fibrinogen binding. Granule secretion was only slightly reduced in the absence of Pyk2, whereas a marked inhibition of thrombin-induced thromboxane A(2) production was observed, which was found to be responsible for the defective aggregation. Moreover, we have demonstrated that Pyk2 is implicated in the signaling pathway for cPLA(2) phosphorylation through p38 MAPK. The results of the present study show the importance of the focal adhesion kinase Pyk2 downstream of G-protein-coupled receptors in supporting platelet aggregation and thrombus formation.
Collapse
|
47
|
Focal adhesion kinase plays a role in osteoblast mechanotransduction in vitro but does not affect load-induced bone formation in vivo. PLoS One 2012; 7:e43291. [PMID: 23028449 PMCID: PMC3448625 DOI: 10.1371/journal.pone.0043291] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 07/23/2012] [Indexed: 11/19/2022] Open
Abstract
A healthy skeleton relies on bone's ability to respond to external mechanical forces. The molecular mechanisms by which bone cells sense and convert mechanical stimuli into biochemical signals, a process known as mechanotransduction, are unclear. Focal adhesions play a critical role in cell survival, migration and sensing physical force. Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase that controls focal adhesion dynamics and can mediate reparative bone formation in vivo and osteoblast mechanotransduction in vitro. Based on these data, we hypothesized that FAK plays a role in load-induced bone formation. To test this hypothesis, we performed in vitro fluid flow experiments and in vivo bone loading studies in FAK−/− clonal lines and conditional FAK knockout mice, respectively. FAK−/− osteoblasts showed an ablated prostaglandin E2 (PGE2) response to fluid flow shear. This effect was reversed with the re-expression of wild-type FAK. Re-expression of FAK containing site-specific mutations at Tyr-397 and Tyr-925 phosphorylation sites did not rescue the phenotype, suggesting that these sites are important in osteoblast mechanotransduction. Interestingly, mice in which FAK was conditionally deleted in osteoblasts and osteocytes did not exhibit altered load-induced periosteal bone formation. Together these data suggest that although FAK is important in mechanically-induced signaling in osteoblasts in vitro, it is not required for an adaptive response in vivo, possibly due to a compensatory mechanism that does not exist in the cell culture system.
Collapse
|
48
|
Ray BJ, Thomas K, Huang CS, Gutknecht MF, Botchwey EA, Bouton AH. Regulation of osteoclast structure and function by FAK family kinases. J Leukoc Biol 2012; 92:1021-8. [PMID: 22941736 DOI: 10.1189/jlb.0512259] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Osteoclasts are highly specialized cells that resorb bone and contribute to bone remodeling. Diseases such as osteoporosis and osteolytic bone metastasis occur when osteoclast-mediated bone resorption takes place in the absence of concurrent bone synthesis. Considerable effort has been placed on identifying molecules that regulate the bone resorption activity of osteoclasts. To this end, we investigated unique and overlapping functions of members of the FAK family (FAK and Pyk2) in osteoclast functions. With the use of a conditional knockout mouse model, in which FAK is selectively targeted for deletion in osteoclast precursors (FAK(Δmyeloid)), we found that loss of FAK resulted in reduced bone resorption by osteoclasts in vitro, coincident with impaired signaling through the CSF-1R. However, bone architecture appeared normal in FAK(Δmyeloid) mice, suggesting that Pyk2 might functionally compensate for reduced FAK levels in vivo. This was supported by data showing that podosome adhesion structures, which are essential for bone degradation, were significantly more impaired in osteoclasts when FAK and Pyk2 were reduced than when either molecule was depleted individually. We conclude that FAK contributes to cytokine signaling and bone resorption in osteoclasts and partially compensates for the absence of Pyk2 to maintain proper adhesion structures in these cells.
Collapse
Affiliation(s)
- Brianne J Ray
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
49
|
Focal adhesion kinases in adhesion structures and disease. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:296450. [PMID: 22888421 PMCID: PMC3409539 DOI: 10.1155/2012/296450] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/25/2012] [Accepted: 05/31/2012] [Indexed: 01/07/2023]
Abstract
Cell adhesion to the extracellular matrix (ECM) is essential for cell migration, proliferation, and embryonic development. Cells can contact the ECM through a wide range of matrix contact structures such as focal adhesions, podosomes, and invadopodia. Although they are different in structural design and basic function, they share common remodeling proteins such as integrins, talin, paxillin, and the tyrosine kinases FAK, Pyk2, and Src. In this paper, we compare and contrast the basic organization and role of focal adhesions, podosomes, and invadopodia in different cells. In addition, we discuss the role of the tyrosine kinases, FAK, Pyk2, and Src, which are critical for the function of the different adhesion structures. Finally, we discuss the essential role of these tyrosine kinases from the perspective of human diseases.
Collapse
|
50
|
Xu J, Kurup P, Bartos JA, Patriarchi T, Hell JW, Lombroso PJ. Striatal-enriched protein-tyrosine phosphatase (STEP) regulates Pyk2 kinase activity. J Biol Chem 2012; 287:20942-56. [PMID: 22544749 DOI: 10.1074/jbc.m112.368654] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proline-rich tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase family and is highly expressed in brain and hematopoietic cells. Pyk2 plays diverse functions in cells, including the regulation of cell adhesion, migration, and cytoskeletal reorganization. In the brain, it is involved in the induction of long term potentiation through regulation of N-methyl-d-aspartate receptor trafficking. This occurs through the phosphorylation and activation of Src family tyrosine kinase members, such as Fyn, that phosphorylate GluN2B at Tyr(1472). Phosphorylation at this site leads to exocytosis of GluN1-GluN2B receptors to synaptic membranes. Pyk2 activity is modulated by phosphorylation at several critical tyrosine sites, including Tyr(402). In this study, we report that Pyk2 is a substrate of striatal-enriched protein-tyrosine phosphatase (STEP). STEP binds to and dephosphorylates Pyk2 at Tyr(402). STEP KO mice showed enhanced phosphorylation of Pyk2 at Tyr(402) and of the Pyk2 substrates paxillin and ASAP1. Functional studies indicated that STEP opposes Pyk2 activation after KCl depolarization of cortical slices and blocks Pyk2 translocation to postsynaptic densities, a key step required for Pyk2 activation and function. This is the first study to identify Pyk2 as a substrate for STEP.
Collapse
Affiliation(s)
- Jian Xu
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|