1
|
Jung L, Schleicher S, Alsaied Taha F, Takenaka M, Binder S. The MITOCHONDRIAL TRANSCRIPT STABILITY FACTOR 4 (MTSF4) is essential for the accumulation of dicistronic rpl5-cob mRNAs in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:375-386. [PMID: 36468791 DOI: 10.1111/tpj.16053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
The Arabidopsis thaliana genome harbors more than 450 nuclear genes encoding pentatricopeptide repeat (PPR) proteins that operate in the RNA metabolism of mitochondria and/or plastids. To date, the molecular function of many PPR proteins is still unknown. Here we analyzed the nucleus-encoded gene At4g19440 coding for a P-type PPR protein. Knockout of this gene interferes with normal embryo development and seed maturation. Two experimental approaches were applied to overcome lethality and to investigate the outcome of At4g19440 knockout in adult plants. These studies revealed changes in the abundance of several mitochondria-encoded transcripts. In particular, steady-state levels of dicistronic rpl5-cob RNAs were markedly reduced, whereas levels of mature ccmC and rpl2-mttB transcripts were clearly increased. Predictions according to the one repeat to one nucleotide code for PPR proteins indicate binding of the At4g19440 protein to a previously detected small RNA at the 3' termini of the dicistronic rpl5-cob transcripts. This potential interaction indicates a function of this protein in 3' end formation and stabilization of these RNA species, whereas the increase in the levels of the ccmC mRNA along with other mitochondria-encoded RNAs seems to be a secondary effect of At4g19440 knockout. Since the inactivation of At4g19440 influences the stability of several mitochondrial RNAs we call this gene MITOCHONDRIAL TRANSCRIPT STABILITY FACTOR 4 (MTSF4). This factor will be an interesting subject to study opposing effects of a single nucleus-encoded protein on mitochondrial transcript levels.
Collapse
Affiliation(s)
- Lisa Jung
- Institut Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, D-89069, Ulm, Germany
| | - Sarah Schleicher
- Institut Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, D-89069, Ulm, Germany
| | - Fatema Alsaied Taha
- Institut Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, D-89069, Ulm, Germany
| | - Mizuki Takenaka
- Plant Molecular Genetics, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Stefan Binder
- Institut Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, D-89069, Ulm, Germany
| |
Collapse
|
2
|
Schleicher S, Binder S. In Arabidopsis thaliana mitochondria 5' end polymorphisms of nad4L-atp4 and nad3-rps12 transcripts are linked to RNA PROCESSING FACTORs 1 and 8. PLANT MOLECULAR BIOLOGY 2021; 106:335-348. [PMID: 33909186 PMCID: PMC8270843 DOI: 10.1007/s11103-021-01153-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/12/2021] [Indexed: 05/14/2023]
Abstract
RNA PROCESSING FACTORs 1 AND 8 (RPF1 and RPF8), both restorer of fertility like pentatricopeptide repeat proteins, are required for processing of dicistronic nad4L-atp4 and nad3-rps12 transcripts in Arabidopsis mitochondria. In mitochondria of Arabidopsis thaliana (Arabidopsis), the 5' termini of many RNAs are generated on the post-transcriptional level. This process is still poorly understood in terms of both the underlying mechanism as well as proteins required. Our studies now link the generation of polymorphic 5' extremities of the dicistronic nad3-rps12 and nad4L-atp4 transcripts to the function of the P-type pentatricopeptide repeat proteins RNA PROCESSING FACTORs 8 (RPF8) and 1 (RPF1). RPF8 is required to generate the nad3-rps12 -141 5' end in ecotype Van-0 whereas the RPF8 allele in Col has no function in the generation of any 5' terminus of this transcript. This observation strongly suggests the involvement of an additional factor in the generation of the -229 5' end of nad3-rps12 transcripts in Col. RPF1, previously found to be necessary for the generation of the -228 5' end of the major 1538 nucleotide-long nad4 mRNAs, is also important for the formation of nad4L-atp4 transcripts with a 5' end at position -318 in Col. Many Arabidopsis ecotypes contain inactive RPF1 alleles resulting in the accumulation of various low abundant nad4L-atp4 RNAs which might represent precursor and/or degradation products. Some of these ecotypes accumulate major, but slightly smaller RNA species. The introduction of RPF1 into these lines not only establishes the formation of the major nad4L-atp4 dicistronic mRNA with the -318 5' terminus, the presence of this gene also suppresses the accumulation of most alternative nad4L-atp4 RNAs. Beside RPF1, several other factors contribute to nad4L-atp4 transcript formation.
Collapse
Affiliation(s)
- Sarah Schleicher
- Institut Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany
| | - Stefan Binder
- Institut Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany.
| |
Collapse
|
3
|
Garcia LE, Edera AA, Palmer JD, Sato H, Sanchez-Puerta MV. Horizontal gene transfers dominate the functional mitochondrial gene space of a holoparasitic plant. THE NEW PHYTOLOGIST 2021; 229:1701-1714. [PMID: 32929737 DOI: 10.1111/nph.16926] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
Although horizontal gene transfer (HGT) is common in angiosperm mitochondrial DNAs (mtDNAs), few cases of functional foreign genes have been identified. The one outstanding candidate for large-scale functional HGT is the holoparasite Lophophytum mirabile, whose mtDNA has lost most native genes but contains intact foreign homologs acquired from legume host plants. To investigate the extent to which this situation results from functional replacement of native by foreign genes, functional mitochondrial gene transfer to the nucleus, and/or loss of mitochondrial biochemical function in the context of extreme parasitism, we examined the Lophophytum mitochondrial and nuclear transcriptomes by deep paired-end RNA sequencing. Most foreign mitochondrial genes in Lophophytum are highly transcribed, accurately spliced, and efficiently RNA edited. By contrast, we found no evidence for functional gene transfer to the nucleus or loss of mitochondrial functions in Lophophytum. Many functional replacements occurred via the physical replacement of native genes by foreign genes. Some of these events probably occurred as the final act of HGT itself. Lophophytum mtDNA has experienced an unprecedented level of functional replacement of native genes by foreign copies. This raises important questions concerning population-genetic and molecular regimes that underlie such a high level of foreign gene takeover.
Collapse
Affiliation(s)
- Laura E Garcia
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, Mendoza, M5502JMA, Argentina
| | - Alejandro A Edera
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Argentina
| | - Jeffrey D Palmer
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Hector Sato
- Facultad de Ciencias Agrarias (UNJu), Cátedra de Botánica General-Herbario JUA, Alberdi 47, Jujuy, CP 4600, Argentina
| | - M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, Chacras de Coria, M5528AHB, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre Jorge Contreras 1300, Mendoza, M5502JMA, Argentina
| |
Collapse
|
4
|
Binder S, Kühn K. Determining mitochondrial transcript termini for the study of transcription start sites and transcript 5' end maturation. Methods Mol Biol 2015; 1305:13-30. [PMID: 25910724 DOI: 10.1007/978-1-4939-2639-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Mitochondrial gene expression in plants is considerably more complex than in animals or fungi. In plants, mitochondrial transcripts are generated from transcription initiation at numerous, poorly conserved promoters located throughout the mitochondrial genome. Most genes have more than one transcription start site. Posttranscriptional RNA 5' end maturation contributes to the diversity of transcripts produced from each mitochondrial gene. Understanding transcriptional mechanisms and transcript maturation requires knowledge on transcription start sites and processing sites. This chapter describes two different, complementary experimental approaches for determining these sites in mitochondrial genomes through mapping of transcript 5' ends. In order to distinguish 5' ends deriving from transcription initiation, both strategies exploit the presence of triphosphates at these specific 5' termini.
Collapse
Affiliation(s)
- Stefan Binder
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, Ulm, 89069, Germany
| | | |
Collapse
|
5
|
Abstract
RNA synthesis and different posttranscriptional processes shape the transcriptome of plant mitochondria. It is believed that mitochondrial transcription in plants is not stringently controlled, and that RNA degradation has a major impact on mitochondrial steady-state transcript levels. Nevertheless, the presence of two RNA polymerases with different gene specificities in mitochondria of dicotyledonous species indicates that transcriptional mechanisms may provide a means to control mitochondrial steady-state RNA pools and gene expression. To experimentally assess transcriptional activities in mitochondria, run-on transcription assays have been developed. These assays measure elongation rates for endogenous transcripts in freshly prepared mitochondrial extracts. The mitochondrial run-on transcription protocol described here has been optimized for the model plant Arabidopsis (Arabidopsis thaliana). It uses mitochondria prepared from soil-grown Arabidopsis plants and employs nonradioactive labeling for the subsequent detection of run-on transcripts.
Collapse
|
6
|
Gualberto JM, Kühn K. DNA-binding proteins in plant mitochondria: Implications for transcription. Mitochondrion 2014; 19 Pt B:323-8. [DOI: 10.1016/j.mito.2014.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 02/05/2014] [Accepted: 02/07/2014] [Indexed: 12/24/2022]
|
7
|
Liere K, Weihe A, Börner T. The transcription machineries of plant mitochondria and chloroplasts: Composition, function, and regulation. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1345-60. [PMID: 21316793 DOI: 10.1016/j.jplph.2011.01.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/07/2011] [Accepted: 01/10/2011] [Indexed: 05/04/2023]
Abstract
Although genomes of mitochondria and plastids are very small compared to those of their bacterial ancestors, the transcription machineries of these organelles are of surprising complexity. With respect to the number of different RNA polymerases per organelle, the extremes are represented on one hand by chloroplasts of eudicots which use one bacterial-type RNA polymerase and two phage-type RNA polymerases to transcribe their genes, and on the other hand by Physcomitrella possessing three mitochondrial RNA polymerases of the phage type. Transcription of genes/operons is often driven by multiple promoters in both organelles. This review describes the principle components of the transcription machineries (RNA polymerases, transcription factors, promoters) and the division of labor between the different RNA polymerases. While regulation of transcription in mitochondria seems to be only of limited importance, the plastid genes of higher plants respond to exogenous and endogenous cues rather individually by altering their transcriptional activities.
Collapse
Affiliation(s)
- Karsten Liere
- Institut für Biologie/Genetik, Humboldt-Universität zu Berlin, Chausseestrasse 117, Berlin, Germany
| | | | | |
Collapse
|
8
|
Bohne AV, Ruf S, Börner T, Bock R. Faithful transcription initiation from a mitochondrial promoter in transgenic plastids. Nucleic Acids Res 2007; 35:7256-66. [PMID: 17959651 PMCID: PMC2175370 DOI: 10.1093/nar/gkm679] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 08/03/2007] [Accepted: 08/19/2007] [Indexed: 12/30/2022] Open
Abstract
The transcriptional machineries of plastids and mitochondria in higher plants exhibit striking similarities. All mitochondrial genes and part of the plastid genes are transcribed by related phage-type RNA polymerases. Furthermore, the majority of mitochondrial promoters and a subset of plastid promoters show a similar structural organization. We show here that the plant mitochondrial atpA promoter is recognized by plastid RNA polymerases in vitro and in vivo. The Arabidopsis phage-type RNA polymerase RpoTp, an enzyme localized exclusively to plastids, was found to recognize the mitochondrial atpA promoter in in vitro assays suggesting the possibility that mitochondrial promoters might function as well in plastids. We have, therefore, generated transplastomic tobacco plants harboring in their chloroplast genome the atpA promoter fused to the coding region of the bacterial nptII gene. The chimeric nptII gene was found to be efficiently transcribed in chloroplasts. Mapping of the 5' ends of the nptII transcripts revealed accurate recognition of the atpA promoter by the chloroplast transcription machinery. We show further that the 5' untranslated region (UTR) of the mitochondrial atpA transcript is capable of mediating translation in chloroplasts. The functional and evolutionary implications of these findings as well as possible applications in chloroplast genome engineering are discussed.
Collapse
Affiliation(s)
- Alexandra-Viola Bohne
- Institute of Biology (Genetics), Humboldt University Berlin, Chausseestrasse 117, D-10115 Berlin and Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Stephanie Ruf
- Institute of Biology (Genetics), Humboldt University Berlin, Chausseestrasse 117, D-10115 Berlin and Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Thomas Börner
- Institute of Biology (Genetics), Humboldt University Berlin, Chausseestrasse 117, D-10115 Berlin and Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Institute of Biology (Genetics), Humboldt University Berlin, Chausseestrasse 117, D-10115 Berlin and Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
9
|
Farré JC, Choury D, Araya A. In organello gene expression and RNA editing studies by electroporation-mediated transformation of isolated plant mitochondria. Methods Enzymol 2007; 424:483-500. [PMID: 17662855 DOI: 10.1016/s0076-6879(07)24022-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Plant mitochondrial gene expression is a complex process involving multiple steps such as transcription, cis- and trans-splicing, RNA trimming, RNA editing, and translation. One of the main hurdles in understanding more about these processes has been the inability to incorporate engineered genes into mitochondria. We recently reported an in organello approach on the basis of the introduction of foreign DNA into isolated plant mitochondria by electroporation. This procedure allows the investigation of transcriptional and posttranscriptional processes, such as splicing and RNA editing, by use of site-directed mutagenesis. Foreign gene expression in organello is strongly dependent on the functional status of mitochondria, thus providing relevant information in conditions closer to the situation found in vivo. The study of mutants that affect RNA splicing and editing provides a novel and powerful method to explain the role of specific sequences involved in these processes. Here we describe a protocol to "transform" isolated plant mitochondria that has allowed us to investigate successfully some aspects of RNA editing.
Collapse
Affiliation(s)
- Jean-Claude Farré
- Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | | | | |
Collapse
|
10
|
Forner J, Weber B, Thuss S, Wildum S, Binder S. Mapping of mitochondrial mRNA termini in Arabidopsis thaliana: t-elements contribute to 5' and 3' end formation. Nucleic Acids Res 2007; 35:3676-92. [PMID: 17488843 PMCID: PMC1920247 DOI: 10.1093/nar/gkm270] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
With CR–RT–PCR as primary approach we mapped the 5′ and 3′ transcript ends of all mitochondrial protein-coding genes in Arabidopsis thaliana. Almost all transcripts analyzed have single major 3′ termini, while multiple 5′ ends were found for several genes. Some of the identified 5′ ends map within promoter motifs suggesting these ends to be derived from transcription initiation while the majority of the 5' termini seems to be generated post-transcriptionally. Assignment of the extremities of 5′ leader RNAs revealed clear evidence for an endonucleolytic generation of the major cox1 and atp9 5′ mRNA ends. tRNA-like structures, so-called t-elements, are associated either with 5′ or with 3′ termini of several mRNAs. These secondary structures most likely act as cis-signals for endonucleolytic cleavages by RNase Z and/or RNase P. Since no conserved sequence motif is evident at post-transcriptionally derived ends, we suggest t-elements, stem–loops and probably complex higher order structures as cis-elements for processing. This analysis provides novel insights into 5′ and 3′ end formation of mRNAs. In addition, the complete transcript map is a substantial and important basis for future studies of gene expression in mitochondria of higher plants.
Collapse
Affiliation(s)
| | | | | | | | - Stefan Binder
- *To whom correspondence should be addressed. +49 731 5022625+49 731 5022626
| |
Collapse
|
11
|
Kühn K, Bohne AV, Liere K, Weihe A, Börner T. Arabidopsis phage-type RNA polymerases: accurate in vitro transcription of organellar genes. THE PLANT CELL 2007; 19:959-71. [PMID: 17400896 PMCID: PMC1867361 DOI: 10.1105/tpc.106.046839] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The T7 bacteriophage RNA polymerase (RNAP) performs all steps of transcription, including promoter recognition, initiation, and elongation as a single-polypeptide enzyme. Arabidopsis thaliana possesses three nuclear-encoded T7 phage-type RNAPs that localize to mitochondria (RpoTm), plastids (RpoTp), or presumably both organelles (RpoTmp). Their specific functions are as yet unresolved. We have established an in vitro transcription system to examine the abilities of the three Arabidopsis phage-type RNAPs to synthesize RNA and to recognize organellar promoters. All three RpoT genes were shown to encode transcriptionally active RNAPs. RpoTmp displayed no significant promoter specificity, whereas RpoTm and RpoTp were able to accurately initiate transcription from overlapping subsets of mitochondrial and plastidial promoters without the aid of protein cofactors. Our study strongly suggests RpoTm to be the enzyme that transcribes most, if not all, mitochondrial genes in Arabidopsis. Intrinsic promoter specificity, a feature that RpoTm and RpoTp share with the T7 RNAP, appears to have been conserved over the long period of evolution of nuclear-encoded mitochondrial and plastidial RNAPs. Selective promoter recognition by the Arabidopsis phage-type RNAPs in vitro implies that auxiliary factors are required for efficient initiation of transcription in vivo.
Collapse
Affiliation(s)
- Kristina Kühn
- Institute of Biology (Genetics), Humboldt University, D-10115, Berlin, Germany
| | | | | | | | | |
Collapse
|
12
|
Placido A, Damiano F, Sciancalepore M, De Benedetto C, Rainaldi G, Gallerani R. Comparison of promoters controlling on the sunflower mitochondrial genome the transcription of two copies of the same native trnK gene reveals some differences in their structure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1207-16. [PMID: 16820139 DOI: 10.1016/j.bbabio.2006.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 04/18/2006] [Accepted: 05/09/2006] [Indexed: 10/24/2022]
Abstract
Two copies of native trnK (UUU) gene are encoded on the sunflower mitochondrial DNA. They lie within two 12-kb direct repeats, presumably generated by a duplication event. During an investigation aimed at detecting DNA regions activating the trnK1 and trnK2 genes, three distinct promoters have been identified. Their locations were deduced using standard procedures (RT-PCR, RNA capping and 5'RACE) usually employed for the detection of transcription initiation sites (TISs). Promoters P3 and P2 control two independent partially overlapping transcription units containing the trnK2 and ccb206 genes, respectively. Promoter P1 has been mapped about 5200 bp upstream of the trnK1 gene which is part of a transcription unit also containing exons c, d and e of the nad2 gene, 5' to the tRNA gene. Most probably this promoter is not alone in controlling this transcription unit because this DNA region could be cotranscribed, at least partially, starting from other two promoters located upstream of the trnC and trnN genes, respectively. These genes have been previously mapped in a 5' region adjacent to the cluster containing nad2 exons c, d and e and the trnK1 gene. The comparative analysis of promoters P3 and P1 suggests that the difference between them could be related to the duplication event generating the second copy of trnK gene. The availability of a high number of new promoters belonging to dicot mitochondrial genomes makes possible to note some of their specific features.
Collapse
Affiliation(s)
- Antonio Placido
- Dipartimento di Biochimica e Biologia Molecolare, Università di Bari, via Orabona 4, 70126 Bari, Italy
| | | | | | | | | | | |
Collapse
|
13
|
Placido A, Damiano F, Losacco M, Rainaldi G, De Benedetto C, Gallerani R. Variable structures of promoters regulating transcription of cp-like tRNA genes and of some native genes on the sunflower mitochondrial genome. Gene 2006; 371:93-101. [PMID: 16520008 DOI: 10.1016/j.gene.2005.11.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 11/02/2005] [Accepted: 11/17/2005] [Indexed: 11/16/2022]
Abstract
Promoter regions regulating the transcription of all cp-like tRNA genes encoded by the sunflower chondriome have been identified. Some of these genes are part of clusters where the first gene is a typical mitochondrial isoform. Promoters regulating the transcription of single cp-like tRNA genes have a variable structure whereas those regulating the transcription of native genes or clusters with typical mitochondrial genes in the first position conform to a similar common structure. The variability of promoter regions described in this paper could be the result of modifications of regions having, at the moment of the cpDNA insertion event, only minimal structural features as promoters.
Collapse
Affiliation(s)
- Antonio Placido
- Dipartimento di Biochimica e Biologia Molecolare, Università di Bari, via Orabona 4, 70126 Bari, Italy
| | | | | | | | | | | |
Collapse
|
14
|
Kühn K, Weihe A, Börner T. Multiple promoters are a common feature of mitochondrial genes in Arabidopsis. Nucleic Acids Res 2005; 33:337-46. [PMID: 15653634 PMCID: PMC546163 DOI: 10.1093/nar/gki179] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial genes in the plant Arabidopsis thaliana are transcribed by two phage-type RNA polymerases encoded in the nucleus. Little is known about cis-elements that are recognized by these enzymes and mediate the transcription of the Arabidopsis mitochondrial genome. Here, 30 transcription initiation sites of 12 mitochondrial genes and gene clusters have been determined using 5′-RACE and ribonuclease protection analysis of primary transcripts labelled in vitro by guanylyltransferase. A total of 9 out of 12 genes were found to possess multiple promoters, revealing for the first time that multiple promoters are a common feature of mitochondrial genes in a dicotyledonous plant. No differences in promoter utilization were observed between leaves and flowers, suggesting that promoter multiplicity reflects a relaxed promoter specificity rather than a regulatory role of promoter selection. Nearly half the identified transcription initiation sites displayed immediately upstream a CRTA core sequence, which was mostly seen within the previously described CRTAAGAGA promoter motif or a novel CGTATATAA promoter element. About as many promoters possessed an ATTA or RGTA core. Our data indicate that the majority of mitochondrial promoters in Arabidopsis deviate significantly from the nonanucleotide consensus derived earlier for dicot mitochondrial promoters.
Collapse
Affiliation(s)
| | | | - Thomas Börner
- To whom correspondence should be addressed. Tel: +49 30 20938140; Fax: +49 30 20938141;
| |
Collapse
|
15
|
Takenaka M, Brennicke A. In vitro RNA editing in pea mitochondria requires NTP or dNTP, suggesting involvement of an RNA helicase. J Biol Chem 2003; 278:47526-33. [PMID: 12970369 DOI: 10.1074/jbc.m305341200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To analyze the biochemical parameters of RNA editing in plant mitochondria and to eventually characterize the enzymes involved we developed a novel in vitro system. The high sensitivity of the mismatch-specific thymine glycosylase is exploited to facilitate reliable quantitative evaluation of the in vitro RNA editing products. A pea mitochondrial lysate correctly processes a C to U editing site in the cognate atp9 template. Reaction conditions were determined for a number of parameters, which allow first conclusions on the proteins involved. The apparent tolerance against specific Zn2+ chelators argues against the involvement of a cytidine deaminase enzyme, the theoretically most straightforward catalysator of the deamination reaction. Participation of a transaminase was investigated by testing potential amino group receptors, but none of these increased the RNA editing reaction. Most notable is the requirement of the RNA editing activity for NTPs. Any NTP or dNTP can substitute for ATP to the optimal concentration of 15 mm. This observation suggests the participation of an RNA helicase in the predicted RNA editing protein complex of plant mitochondria.
Collapse
|
16
|
Hoffmann M, Binder S. Functional importance of nucleotide identities within the pea atp9 mitochondrial promoter sequence. J Mol Biol 2002; 320:943-50. [PMID: 12126616 DOI: 10.1016/s0022-2836(02)00552-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sequences ranging from nucleotide positions -14 to +4 relative to the transcription start site constitute an in vitro functional pea atp9 promoter. A comparison of respective sequence segments surrounding 11 unambiguously identified transcription initiation sites of various dicotyledoneous plant species revealed the highest level of evolutionary fidelity of nucleotide identities within the conserved nonanucleotide motif (CNM), suggesting their importance for promoter function. Using a mitochondrial in vitro transcription system, a detailed analysis by site-directed mutagenesis now reveals that the alteration of nucleotides -6 to -2 and +1 within the CNM indeed reduces promoter activity by more than 80%. Changes of nucleotide identities at the less conserved positions -12 to -9 within the AT-rich region reduced the initiation efficiency by about 70%. The alteration of the highly conserved position -7 has little influence on promoter function, indicating that evolutionary conservation does not always correlate with the functional importance of certain nucleotides. Mutagenesis of nucleotides at positions +3 or +4 reveals a minimal requirement of at least one purine for wild-type transcription initiation efficiency. The assignment of functionally important nucleotide identities should now facilitate an efficient and reliable prediction of other promoters in mitochondria of dicotyledon plants.
Collapse
Affiliation(s)
- Michaela Hoffmann
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069, Ulm, Germany
| | | |
Collapse
|
17
|
Damiano F, Ceci LR, Siculella L, Gallerani R. Transcription of two sunflower (Helianthus annuus L.) mitochondrial tRNA genes having different genetic origins. Gene 2002; 286:25-32. [PMID: 11943457 DOI: 10.1016/s0378-1119(01)00801-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The divergent transcription of two tRNA genes encoded in sunflower mitochondrial DNA, proposed as genes of different genetic origin, has been studied in detail. The transcription initiation site (TIS) for both transcript precursors has been identified by hybridization with in vitro (32)P-capped total RNAs and primer extension. The location of two TISs and the analysis of distribution of sequence elements (motifs) usually present in higher plant mitochondrial promoters led to the identification of two short regions (about 30-40 bp) which can be proposed as the promoters for the transcription of two genes. This conclusion is supported by the observation that within the short intergenic region included between the 5' termini of two genes (1924 bp) the distribution of those specific motifs is unique around the TISs, although not identical for the two promoters. Based on specific experimental results the trnE promoter shows a higher efficiency in comparison with that of the trnH promoter. This result is in good agreement with its structure which strictly conforms to those described for mitochondrial genes of dicot plants. Instead the other promoter shows some divergences which could be responsible for its lower efficiency. The context in which trnH lies in the sunflower mitochondrial genome and other features described in the paper may suggest that, despite the high similarity with the chloroplast counterpart, the trnH gene could have a native origin.
Collapse
Affiliation(s)
- Fabrizio Damiano
- Dipartimento di Biochimica e Biologia Molecolare, Università di Bari, via Orabona 4, 70126 Bari, Italy
| | | | | | | |
Collapse
|
18
|
Kuhn J, Binder S. RT-PCR analysis of 5' to 3'-end-ligated mRNAs identifies the extremities of cox2 transcripts in pea mitochondria. Nucleic Acids Res 2002; 30:439-46. [PMID: 11788705 PMCID: PMC99824 DOI: 10.1093/nar/30.2.439] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2001] [Revised: 11/09/2001] [Accepted: 11/09/2001] [Indexed: 11/12/2022] Open
Abstract
Gene expression in plant mitochondria is still inadequately analyzed. To learn more about transcription and RNA processing in plant mitochondria, the 5'- and 3'-RNA extremities and the promoters of the cytochrome oxidase gene (cox2) were analyzed in pea. Both 5' and 3' ends of cox2 transcripts were examined by RT-PCR across the ligation site of circularized mitochondrial RNA as template. This approach identified 5' ends a few nucleotides shorter than three major 5' ends mapped by primer extension analysis. Presumably, only monophosphate 5' ends derived from processing can be ligated. In vitro transcription assays using a homologous mitochondrial protein extract from pea strongly suggest the major 5' ends to derive from transcription initiation. The cDNA analysis of the head-to-tail ligated cox2 mRNA identified 3' ends within a thymidine stretch approximately 300 nt downstream of the reading frame in a sequence segment that was not present in the previous investigation of this gene. Nuclease S1 protection experiments confirmed this newly identified 3' terminus and corroborated the validity of this technique in mRNA end analysis. The general use of the circularized RNA (CR)-RT-PCR approach for the simultaneous analysis of the 5' and 3' extremities of mRNA molecules is discussed.
Collapse
MESH Headings
- Base Sequence
- Conserved Sequence
- Cyclization
- Electron Transport Complex IV/genetics
- Genes, Plant/genetics
- Molecular Sequence Data
- Nuclease Protection Assays
- Nucleic Acid Conformation
- Open Reading Frames/genetics
- Pisum sativum/genetics
- Plant Proteins/genetics
- Promoter Regions, Genetic/genetics
- RNA/chemistry
- RNA/genetics
- RNA/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Mitochondrial
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Reproducibility of Results
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, RNA/methods
- Single-Strand Specific DNA and RNA Endonucleases/metabolism
- Templates, Genetic
- Thymidine/genetics
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Josef Kuhn
- Molekulare Botanik, Universität Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany
| | | |
Collapse
|
19
|
Farré JC, Araya A. Gene expression in isolated plant mitochondria: high fidelity of transcription, splicing and editing of a transgene product in electroporated organelles. Nucleic Acids Res 2001; 29:2484-91. [PMID: 11410655 PMCID: PMC55745 DOI: 10.1093/nar/29.12.2484] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial gene expression was studied using an electrotransformation protocol to introduce foreign DNA into purified wheat mitochondria. Optimal conditions for DNA uptake and transient gene expression were determined. We show here that a DNA plasmid containing either a cognate or a non-cognate gene under the control of a plant mitochondrial promoter is incorporated into the organelle and faithfully recognized by the transcription machinery. Transcripts generated by a plasmid bearing the intron-containing cox II gene were correctly spliced. Moreover, the transcripts were edited at the expected target C residues. The expression and maturation process of the transgene is dependent on the integrity of functional elements such as the promotor or the presence of structural domains necessary for splicing. The mitochondrial transformation described in this report is an important tool to study the multiple steps involved in plant mitochondrial gene expression at conditions closer to those found in vivo.
Collapse
MESH Headings
- Base Sequence
- DNA, Mitochondrial/genetics
- DNA, Plant/genetics
- DNA, Recombinant/genetics
- Deoxyribonuclease I/metabolism
- Electron Transport Complex IV/genetics
- Electroporation/methods
- Gene Expression Regulation, Plant
- Genes, Reporter/genetics
- Introns/genetics
- Kinetics
- Magnoliopsida/cytology
- Magnoliopsida/embryology
- Magnoliopsida/genetics
- Mitochondria/genetics
- Nucleic Acid Conformation
- Plasmids/genetics
- Promoter Regions, Genetic/genetics
- RNA Editing/genetics
- RNA Splicing/genetics
- RNA Stability/genetics
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Transcription, Genetic/genetics
- Transformation, Genetic
- Transgenes/genetics
Collapse
Affiliation(s)
- J C Farré
- Laboratoire de Réplication et Expression des Gènes Eucaryotes et Rétroviraux, UMR 5097, Centre National de la Recherche Scientifique and Université Victor Segalen-Bordeaux 2, 146 rue Leo Saignat, 33076 Bordeaux Cedex, France
| | | |
Collapse
|
20
|
Ikeda TM, Gray MW. Characterization of a DNA-binding protein implicated in transcription in wheat mitochondria. Mol Cell Biol 1999; 19:8113-22. [PMID: 10567537 PMCID: PMC84896 DOI: 10.1128/mcb.19.12.8113] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the transcriptional apparatus in wheat mitochondria, mitochondrial extracts were subjected to column chromatography and protein fractions were analyzed by in vitro transcription and mobility shift assays. Fractions eluting from DEAE-Sephacel between 0.2 and 0.3 M KCl displayed DNA-binding activity and supported specific transcription initiated from a wheat cox2 promoter. The active DEAE-Sephacel pool was further resolved by chromatography on phosphocellulose. Fractions that exhibited DNA-binding activity and that stimulated both specific and nonspecific transcription in vitro were highly enriched in a 63-kDa protein (p63). From peptide sequence obtained from purified p63, a cDNA encoding the protein was assembled. The predicted amino acid sequence (612 amino acid residues, 69 kDa) contains a basic N-terminal targeting sequence expected to direct transport of the protein into mitochondria. The p63 sequence also features an acidic domain characteristic of transcriptional activation factors, as well as sequence blocks displaying limited similarity to positionally equivalent regions in sigma factors from eubacteria related to mitochondria. Recombinant p63 possesses DNA-binding activity, exhibiting an affinity for the core cox2 promoter element and upstream regions in gel shift assays and having the ability to enhance specific transcription in vitro. Transcripts encoding p63 are expressed at an early stage in the germination of isolated wheat embryos, in a temporal pattern parallelling that of newly synthesized precursors of cox2, a mitochondrial gene. Taken together, these data suggest a role for p63 in transcription in wheat mitochondria.
Collapse
Affiliation(s)
- T M Ikeda
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | |
Collapse
|
21
|
Gagliardi D, Kuhn J, Spadinger U, Brennicke A, Leaver CJ, Binder S. An RNA helicase (AtSUV3) is present in Arabidopsis thaliana mitochondria. FEBS Lett 1999; 458:337-42. [PMID: 10570936 DOI: 10.1016/s0014-5793(99)01168-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The proteins involved in mitochondrial mRNA processing and degradation in higher plants have yet to be identified. As a first step towards this aim, we report here the characterisation of a nuclear-encoded DExH box RNA helicase (AtSUV3) localised in Arabidopsis thaliana mitochondria. The AtSUV3 mRNA is assembled from the 16 exons of a weakly expressed unique gene and the predicted protein has a calculated molecular weight of 63.6 kDa. Subcellular fractionation of transgenic plants expressing AtSUV3/GUS fusion proteins localises this protein in mitochondria. The N-terminal domain of AtSUV3 containing the motifs characteristic of DExH box RNA helicases exhibits a low endogenous ATPase activity in vitro which can be stimulated by the presence of mitochondrial RNA, confirming that AtSUV3 is an RNA helicase.
Collapse
Affiliation(s)
- D Gagliardi
- Department of Plant Sciences, University of Oxford, UK
| | | | | | | | | | | |
Collapse
|
22
|
Fey J, Vermel M, Grienenberger J, Maréchal-Drouard L, Gualberto JM. Characterization of a plant mitochondrial active chromosome. FEBS Lett 1999; 458:124-8. [PMID: 10481049 DOI: 10.1016/s0014-5793(99)01140-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A method is presented for the partial purification of a plant mitochondrial active chromosome (MAC). This method is based on the presence of the mitochondrial chromosome in the insoluble mitochondrial fraction which allows for its rapid purification from the bulk of detergent-solubilized proteins by ultra-centrifugation. The resuspended MAC carrying DNA and RNA-binding proteins retains DNA synthesis and transcription activities comparable to the ones found in isolated mitochondria. In comparison, tRNA-nucleotidyl terminal transferase taken as an example of RNA modifying activities remains in the soluble fraction. MAC purification is proposed as a rapid and efficient first step in the purification of DNA-binding proteins involved in DNA replication and transcription.
Collapse
Affiliation(s)
- J Fey
- Institut de Biologie Moléculaire des Plantes du CNRS, UPRA0406, Université Louis Pasteur, Strasbourg, France
| | | | | | | | | |
Collapse
|
23
|
Abstract
The nuclear genome of the model plant Arabidopsis thaliana contains a small gene family consisting of three genes encoding RNA polymerases of the single-subunit bacteriophage type. There is evidence that similar gene families also exist in other plants. Two of these RNA polymerases are putative mitochondrial enzymes, whereas the third one may represent the nuclear-encoded RNA polymerase (NEP) active in plastids. In addition, plastid genes are transcribed from another, entirely different multisubunit eubacterial-type RNA polymerase, the core subunits of which are encoded by plastid genes [plastid-encoded RNA polymerase (PEP)]. This core enzyme is complemented by one of several nuclear-encoded sigma-like factors. The development of photosynthetically active chloroplasts requires both PEP and NEP. Most NEP promoters show certain similarities to mitochondrial promoters in that they include the sequence motif 5'-YRTA-3' near the transcription initiation site. PEP promoters are similar to bacterial promoters of the -10/-35 sigma 70 type.
Collapse
Affiliation(s)
- W R Hess
- Institute of Biology, Humboldt University, Berlin, Germany
| | | |
Collapse
|
24
|
Dombrowski S, Hoffmann M, Guha C, Binder S. Continuous primary sequence requirements in the 18-nucleotide promoter of dicot plant mitochondria. J Biol Chem 1999; 274:10094-9. [PMID: 10187790 DOI: 10.1074/jbc.274.15.10094] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nucleotide requirements of mitochondrial promoters of dicot plants were studied in detail in a pea in vitro transcription system. Deletions in the 5' regions of three different transcription initiation sites from pea, soybean, and Oenothera identified a crucial AT-rich sequence element (AT-Box) comprising nucleotide positions -14 to -9 relative to the first transcribed nucleotide. Transversion of the AT-Box sequence to comple- mentary nucleotide identities results in an almost complete loss of promoter activity, suggesting that primary structure rather than a simple accumulation of adenines and thymidines in this region is essential for promoter activity. This promoter segment thus appears to be involved in sequence specific binding of a respective protein factor(s) rather than merely loosening and melting the DNA helix during or for an initiation event. Manipulation of nucleotide identities in the 3' portion of the pea atp9 promoter and the respective 3'-flanking region revealed that essential sequences extend to positions +3/+4 beyond this transcription start site. Efficient transcription initiation at an 18-base pair promoter sequence ranging from nucleotide positions -14 to +4 integrated into different sequence contexts shows this element to be sufficient for autonomous promoter function independent of surrounding sequences.
Collapse
Affiliation(s)
- S Dombrowski
- Allgemeine Botanik, Universität Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany
| | | | | | | |
Collapse
|
25
|
Fey J, Maréchal-Drouard L. Compilation and analysis of plant mitochondrial promoter sequences: An illustration of a divergent evolution between monocot and dicot mitochondria. Biochem Biophys Res Commun 1999; 256:409-14. [PMID: 10079198 DOI: 10.1006/bbrc.1999.0349] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have analyzed 67 sequences surrounding transcription initiation sites identified in higher plant mitochondria. The sequences were classified, independently for monocots and dicots, according to the presence of the CRTA core element found upstream of the first transcribed nucleotide and previously reported as an essential element of plant mitochondrial consensus promoters. This compilation provides new elements concerning the structure of consensus promoters and the relative importance of non-conserved promoters in plant mitochondria. It can be emphasized that promoter regions exhibit several differences between monocot and dicot mitochondria, presumably reflecting a divergent evolution: The sequences classified among consensus promoters as well as the distance between the first transcribed nucleotide and the core element are highly conserved in dicots while more plasticity is observed in monocots. It also appears that the proportion of promoters with neither the conserved promoter sequence nor any conserved motif is far greater in dicots than in monocots.
Collapse
Affiliation(s)
- J Fey
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, 12 rue du Général Zimmer, Strasbourg Cedex, F-67084, France
| | | |
Collapse
|
26
|
Lupold DS, Caoile AG, Stern DB. The maize mitochondrial cox2 gene has five promoters in two genomic regions, including a complex promoter consisting of seven overlapping units. J Biol Chem 1999; 274:3897-903. [PMID: 9920945 DOI: 10.1074/jbc.274.6.3897] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plant mitochondrial genes are often transcribed into complex sets of RNAs, resulting from multiple initiation sites and processing steps. To elucidate the role of initiation in generating the more than 10 cox2 transcripts found in maize mitochondria, we surveyed sequences upstream of cox2 for active promoters. Because the cox2 coding region is immediately downstream of a 0.7-kb recombination repeat, cox2 is under the control of two different sets of potential expression signals. Using an in vitro transcription assay, we localized four promoters upstream of the coding region in the so-called master chromosome, and two promoters upstream of the coding region in the recombinant subgenome. Ribonuclease protection analysis of labeled primary transcripts confirmed that all but one of these promoters is active in vivo. Primer extension was used to identify the promoter sequences and initiation sites, which agree with the consensus established earlier for maize mitochondria. This study identified two unusual promoters, the core sequences of which were composed entirely of adenines and thymines, and one of which was a complex promoter consisting of seven overlapping units. Deletion mutagenesis of the complex promoter suggested that each of its units was recognized independently by RNA polymerase. While each active promoter fit the maize core consensus sequence YRTAT, not all such sequences surveyed supported initiation. We conclude that in vitro transcription is a powerful tool for locating mitochondrial promoters and that, in the case of cox2, promoter multiplicity contributes strongly to transcript complexity.
Collapse
Affiliation(s)
- D S Lupold
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853-1801, USA.
| | | | | |
Collapse
|
27
|
Hatzack F, Dombrowski S, Brennicke A, Binder S. Characterization of DNA-Binding Proteins from Pea Mitochondria. PLANT PHYSIOLOGY 1998; 116:519-528. [PMID: 9490756 PMCID: PMC35109 DOI: 10.1104/pp.116.2.519] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/1997] [Accepted: 10/06/1997] [Indexed: 05/22/2023]
Abstract
We studied transcription initiation in the mitochondria of higher plants, with particular respect to promoter structures. Conserved elements of these promoters have been successfully identified by in vitro transcription systems in different species, whereas the involved protein components are still unknown. Proteins binding to double-stranded oligonucleotides representing different parts of the pea (Pisum sativum) mitochondrial atp9 were analyzed by denaturation-renaturation chromatography and mobility-shift experiments. Two DNA-protein complexes were detected, which appeared to be sequence specific in competition experiments. Purification by hydroxyapatite, phosphocellulose, and reversed-phase high-pressure liquid chromatography separated two polypeptides with apparent molecular masses of 32 and 44 kD. Both proteins bound to conserved structures of the pea atp9 and the heterologous Oenothera berteriana atp1 promoters and to sequences just upstream. Possible functions of these proteins in mitochondrial promoter recognition are discussed.
Collapse
Affiliation(s)
- F Hatzack
- Allgemeine Botanik, Universität Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany
| | | | | | | |
Collapse
|
28
|
Caoile AG, Stern DB. A conserved core element is functionally important for maize mitochondrial promoter activity in vitro. Nucleic Acids Res 1997; 25:4055-60. [PMID: 9321657 PMCID: PMC146992 DOI: 10.1093/nar/25.20.4055] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have previously used a homologous in vitro transcription system to define functional elements of the maize mitochondrial atpA promoter. These elements comprise a central domain extending from -7 to +5, relative to the transcription start site, and an upstream domain of 1-3 bp that is purine rich and centered around positions -11 to -12. Within the central domain lies an essential 5 bp core element. These elements are conserved in many mitochondrial promoters, but their functionality has only been tested for atpA. In this study we have introduced mutations into the corresponding elements of two cox3 promoters and show that while the core element is essential for cox3 promoter activity, upstream element mutations have little or no effect. To define the minimal sequence required for in vitro promoter activity a series of short cloned oligonucleotides corresponding to the atpA promoter was used. While some activity was seen with a 14 bp sequence, full activity required 26 bp, suggesting that elements other than the core and upstream region can influence promoter strength. Another series of clones showed that altered spacing between the upstream and core elements of atpA had a significant effect on promoter activity. These results further define important features of the plant mitochondrial transcriptional machinery.
Collapse
Affiliation(s)
- A G Caoile
- Boyce Thompson Institute for Plant Research, Cornell University, Tower Road, Ithaca, NY 14853-1801, USA
| | | |
Collapse
|
29
|
Dombrowski S, Brennicke A, Binder S. 3'-Inverted repeats in plant mitochondrial mRNAs are processing signals rather than transcription terminators. EMBO J 1997; 16:5069-76. [PMID: 9305648 PMCID: PMC1170141 DOI: 10.1093/emboj/16.16.5069] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A number of mRNAs in plant mitochondria contain inverted repeats at their 3'-termini. These have been discussed as potential transcription terminators or, alternatively, as post-transcriptional processing and stability signals of longer precursor RNAs. In vitro transcription in a pea mitochondrial lysate now shows that transcription proceeds almost unimpeded through these inverted repeat structures. To investigate their potential function in mRNA processing, we developed an in vitro processing system from pea mitochondria. This in vitro system correctly processes synthetic precursor mRNAs containing the pea atp9 double stem-loop structure, yielding the same 3'-termini observed in vivo. Analysis of the in vitro-generated products and of the processivity of the reaction suggests exonucleolytic degradation up to the stem-loop. The inverted repeat structures found at the 3'-termini of mRNAs in plant mitochondria are thus recognized as processing and most likely also stabilizing signals in transcript maturation, but do not terminate transcription.
Collapse
MESH Headings
- Arabidopsis Proteins
- Base Sequence
- Mitochondria/genetics
- Mitochondrial Proton-Translocating ATPases
- Molecular Sequence Data
- Nucleic Acid Conformation
- Pisum sativum
- Plant Proteins
- Promoter Regions, Genetic/genetics
- Proteolipids/genetics
- Proton-Translocating ATPases/genetics
- RNA/chemistry
- RNA/genetics
- RNA/metabolism
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional/genetics
- RNA, Antisense/genetics
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Mitochondrial
- RNA, Plant/chemistry
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Repetitive Sequences, Nucleic Acid/genetics
- Transcription, Genetic/genetics
Collapse
|
30
|
Binder S, Marchfelder A, Brennicke A. Regulation of gene expression in plant mitochondria. PLANT MOLECULAR BIOLOGY 1996; 32:303-314. [PMID: 8980484 DOI: 10.1007/bf00039387] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Many genes is plant mitochondria have been analyzed in the past 15 years and regulatory processes controlling gene expression can now be investigated. In vitro systems capable of initiating transcription faithfully at promoter sites have been developed for both monocot and dicot plants and will allow the identification of the interacting nucleic acid elements and proteins which specify and guide transcriptional activities. Mitochondrial activity, although required in all plant tissues, is capable of adapting to specific requirements by regulated gene expression. Investigation of the factors governing the quality and quantity of distinct RNAs will define the extent of interorganelle regulatory interference in mitochondrial gene expression.
Collapse
Affiliation(s)
- S Binder
- Allgemeine Botanik, Universität Ulm, Germany
| | | | | |
Collapse
|
31
|
Giese A, Thalheim C, Brennicke A, Binder S. Correlation of nonanucleotide motifs with transcript initiation of 18S rRNA genes in mitochondria of pea, potato and Arabidopsis. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:429-36. [PMID: 8879244 DOI: 10.1007/bf02173008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Transcription initiation sites for the mitochondrial 18S rRNA genes in the dicot plants Arabidopsis thaliana, potato and pea were identified by a combination of in vitro capping, primer extension and S-1 analyses. These promoters contain a nonanucleotide motif and an AT-rich sequence similar to many mRNA and tRNA promoters in dicot mitochondria. In Arabidopsis and potato, active promoters are located within 120 nucleotides upstream of the 18S rRNA genes, as in Oenothera. The nucleotide sequence in the corresponding region in pea mitochondria is well conserved, but is not used as promoter in this plant. Instead a novel promoter sequence is used that lies several hundred nucleotides upstream. These results show that rRNAs can be transcribed from the same promoter types as mRNAs and tRNAs in plant mitochondria. However, the sequence features presently attributed to plant mitochondrial promoters-the conserved nonanucleotide and the upstream AT-rich box-do not allow to deduce the presence of an active promoter from genomic sequence data alone.
Collapse
Affiliation(s)
- A Giese
- Allgemeine Botanik, Universität Ulm, Ulm, Germany
| | | | | | | |
Collapse
|
32
|
|
33
|
Dietrich A, Small I, Cosset A, Weil JH, Maréchal-Drouard L. Editing and import: strategies for providing plant mitochondria with a complete set of functional transfer RNAs. Biochimie 1996; 78:518-29. [PMID: 8915541 DOI: 10.1016/0300-9084(96)84758-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The recombinations and mutations that plant mitochondrial DNA has undergone during evolution have led to the inactivation or complete loss of a number of the 'native' transfer RNA genes deriving from the genome of the ancestral endosymbiont. Following sequence divergence in their genes, some native mitochondrial tRNAs are 'rescued' by editing, a post-transcriptional process which changes the RNA primary sequence. According to in vitro studies with the native mitochondrial tRNA(Phe) from potato and tRNA(His) from larch, editing is required for efficient processing. Some of the native tRNA genes which have been inactivated or lost have been replaced by tRNA genes present in plastid DNA sequences acquired by the mitochondrial genome during evolution, which raises the problem of the transcriptional regulation of tRNA genes in plant mitochondria. Finally, tRNAs for which no gene is present in the mitochondrial genome are imported from the cytosol. This process is highly specific for certain tRNAs, and it has been suggested that the cognate aminoacyl-tRNA synthetases may be responsible for this specificity. Indeed, a mutation which blocks recognition of the cytosolic Arabidopsis thaliana tRNA(Ala) by the corresponding alanyl-tRNA synthetase also prevents mitochondrial import of this tRNA in transgenic plants. Conversely, no significant mitochondrial co-import of the normally cytosol-specific tRNA(Asp) was detected in transgenic plants expressing the yeast cytosolic aspartyl-tRNA synthetase fused to a mitochondrial targeting sequence, suggesting that, although necessary, recognition by a cognate aminoacyl-tRNA synthetase might not be sufficient to allow tRNA import into plant mitochondria.
Collapse
Affiliation(s)
- A Dietrich
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis-Pasteur, Strasbourg, France
| | | | | | | | | |
Collapse
|