1
|
The IL-1 family of cytokines and receptors in rheumatic diseases. Nat Rev Rheumatol 2019; 15:612-632. [DOI: 10.1038/s41584-019-0277-8] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2019] [Indexed: 02/07/2023]
|
2
|
Interleukin-1 Receptor Antagonist Polymorphism and Birth Timing: Pathway Analysis Among African American Women. Nurs Res 2017; 66:95-104. [PMID: 28252571 DOI: 10.1097/nnr.0000000000000200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Timing of birth is a major determinant of newborn health. African American women are at increased risk for early birth, particularly via the inflammatory pathway. Variants of the IL1RN gene, which encode the interleukin-1 receptor antagonist (IL-1Ra) protein, are implicated in early birth. The biological pathways linking these variables remain unclear. Evidence also suggests that inflammatory pathways differ by race; however, studies among African American women are lacking. OBJECTIVES We assessed whether an IL1RN variant was associated with timing of birth among African American women and whether this relationship was mediated by lower anti-inflammatory IL-1Ra production or related to a decrease in inhibition of proinflammatory IL-1β production. METHODS A candidate gene study using a prospective cohort design was used. We collected blood samples at 28-32 weeks of gestation among African American women experiencing an uncomplicated pregnancy (N = 89). IL1RN single-nucleotide polymorphism (SNP) rs2637988 was genotyped, and lipopolysaccharide-stimulated IL-1Ra and IL-1β production was quantified. Medical record review determined timing of birth. RESULTS Women with GG genotype gave birth earlier than women with AA/AG genotypes (b* = .21, p = .04). There was no indirect effect of IL1RN SNP rs2637988 allele status on timing of birth through IL-1Ra production, as evidenced by a nonsignificant product of coefficients in mediational analyses (ab = .006, 95% CI [-0.05, 0.13]). Women with GG genotype showed less inhibition of IL-1β production for a unit positive difference in IL-1Ra production than women with AA/AG genotypes (b* = .93, p = .03). Greater IL-1β production at 28-32 weeks of pregnancy was marginally associated with earlier birth (b* = .21, p = .05). DISCUSSION Women with GG genotype may be at risk for earlier birth because of diminished IL-1β inhibition, allowing for initiation of a robust inflammatory response upon even mild immune challenge. Study of inflammatory contributions to early birth among African American women may be key to identifying potential prognostic markers of risk and targeted preventive interventions.
Collapse
|
3
|
Günther S, Sundberg EJ. Molecular Determinants of Agonist and Antagonist Signaling through the IL-36 Receptor. THE JOURNAL OF IMMUNOLOGY 2014; 193:921-30. [DOI: 10.4049/jimmunol.1400538] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Krumm B, Xiang Y, Deng J. Structural biology of the IL-1 superfamily: key cytokines in the regulation of immune and inflammatory responses. Protein Sci 2014; 23:526-38. [PMID: 24677376 DOI: 10.1002/pro.2441] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/07/2014] [Accepted: 02/10/2014] [Indexed: 12/15/2022]
Abstract
Interleukin-1 superfamily of cytokines (IL-1, IL-18, IL-33) play key roles in inflammation and regulating immunity. The mechanisms of agonism and antagonism in the IL-1 superfamily have been pursued by structural biologists for nearly 20 years. New insights into these mechanisms were recently provided by the crystal structures of the ternary complexes of IL-1β and its receptors. We will review here the structural biology related to receptor recognition by IL-1 superfamily cytokines and the regulation of its cytokine activities by antagonists.
Collapse
Affiliation(s)
- Brian Krumm
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, 74078
| | | | | |
Collapse
|
5
|
Whitford PC, Sanbonmatsu KY, Onuchic JN. Biomolecular dynamics: order-disorder transitions and energy landscapes. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2012; 75:076601. [PMID: 22790780 PMCID: PMC3695400 DOI: 10.1088/0034-4885/75/7/076601] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
While the energy landscape theory of protein folding is now a widely accepted view for understanding how relatively weak molecular interactions lead to rapid and cooperative protein folding, such a framework must be extended to describe the large-scale functional motions observed in molecular machines. In this review, we discuss (1) the development of the energy landscape theory of biomolecular folding, (2) recent advances toward establishing a consistent understanding of folding and function and (3) emerging themes in the functional motions of enzymes, biomolecular motors and other biomolecular machines. Recent theoretical, computational and experimental lines of investigation have provided a very dynamic picture of biomolecular motion. In contrast to earlier ideas, where molecular machines were thought to function similarly to macroscopic machines, with rigid components that move along a few degrees of freedom in a deterministic fashion, biomolecular complexes are only marginally stable. Since the stabilizing contribution of each atomic interaction is on the order of the thermal fluctuations in solution, the rigid body description of molecular function must be revisited. An emerging theme is that functional motions encompass order-disorder transitions and structural flexibility provides significant contributions to the free energy. In this review, we describe the biological importance of order-disorder transitions and discuss the statistical-mechanical foundation of theoretical approaches that can characterize such transitions.
Collapse
Affiliation(s)
- Paul C Whitford
- Center for Theoretical Biological Physics, Department of Physics, Rice University, 6100 Main, Houston, TX 77005-1827, USA
| | | | | |
Collapse
|
6
|
Denes A, Pinteaux E, Rothwell NJ, Allan SM. Interleukin-1 and stroke: biomarker, harbinger of damage, and therapeutic target. Cerebrovasc Dis 2011; 32:517-27. [PMID: 22104408 DOI: 10.1159/000332205] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 08/26/2011] [Indexed: 12/15/2022] Open
Abstract
Inflammation is established as a contributor to cerebrovascular disease. Risk factors for stroke include many conditions associated with chronic or acute inflammation, and inflammatory changes in the brain after cerebrovascular events contribute to outcome in experimental studies, with growing evidence from clinical research. The brain is extremely susceptible to inflammatory challenge, but resident glia, endothelial cells and neurones can all mount a pronounced inflammatory response to infection or injury. Recent discoveries highlight the importance of peripherally-derived immune cells and inflammatory molecules in various central nervous system disorders, including stroke. The inflammatory cytokine, interleukin-1 (IL-1), plays a pivotal role in both local and systemic inflammation, and is a key driver of peripheral and central immune responses to infection or injury. Inhibition of IL-1 has beneficial effects in a variety of experimental paradigms of acute brain injury and is a promising clinical target in stroke. We propose that blockade of IL-1 could be therapeutically useful in several diseases which are risk factors for stroke, and there is already considerable pre-clinical and clinical evidence that inhibition of IL-1 by IL-1 receptor antagonist may be valuable in the management of acute stroke.
Collapse
Affiliation(s)
- Adam Denes
- Faculty of Life Sciences, University of Manchester, Manchester, UK.
| | | | | | | |
Collapse
|
7
|
Structural insights into the assembly and activation of IL-1β with its receptors. Nat Immunol 2010; 11:905-11. [PMID: 20802483 DOI: 10.1038/ni.1925] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 07/29/2010] [Indexed: 12/13/2022]
Abstract
Interleukin 1β (IL-1β) is a key orchestrator of inflammation and host defense that exerts its effects through IL-1 receptor type I (IL-1RI) and IL-1 receptor accessory protein (IL-1RAcP). How IL-1RAcP is recruited by IL-1β-IL-1RI to form the signaling-competent complex remains elusive. Here we present the crystal structure of IL-1β bound to IL-1 receptor type II (IL-1RII) and IL-1RAcP. IL-1β-IL-1RII generated a composite binding surface to recruit IL-1RAcP. Biochemical analysis demonstrated that IL-1β-IL-1RI and IL-1β-IL-1RII interacted similarly with IL-1RAcP. It also showed the importance of two loops of IL-1 receptor antagonist (IL-1Ra) in determining its antagonism. Our results provide a structural basis for assembly and activation of the IL-1 receptor and offer a general cytokine-receptor architecture that governs the IL-1 family of cytokines.
Collapse
|
8
|
The immunostimulatory effect of IL-1βin vivois blocked by antisense peptides complementary to the loop sequence 163-171. FEBS Lett 2009; 583:792-6. [DOI: 10.1016/j.febslet.2009.01.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 01/20/2009] [Indexed: 11/19/2022]
|
9
|
Cavazza A, Marini M, Spagnoli GC, Roda LG. Positive and negative modulation of peptidases by pro-inflammatory cytokines. Peptides 2008; 29:1974-81. [PMID: 18647631 DOI: 10.1016/j.peptides.2008.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 06/20/2008] [Accepted: 06/20/2008] [Indexed: 10/21/2022]
Abstract
The capacity of pro-inflammatory cytokines to modulate proteolysis was analyzed by liquid chromatography using human fibroblasts as cell model and enzyme source, and the immunodominant epitope gp100(280-288) (YLEPGPVTA) as substrate. The measurements made after fibroblast pre-incubation with either IL-1, TNF, or IL-6 plus its soluble receptors have been compared with those made with un-stimulated fibroblasts. The results obtained suggest an uneven association of cytokine treatment with substrate degradation, and with a prevailingly positive - but also negative - association with release of smaller peptides and free amino acids. Data obtained by separately measuring these two groups of by-products indicate that, after IL-1 cell pre-treatment, the velocity of formation of both groups of by-products increased, resulting in a net increase of substrate degradation. After TNF and IL-6 pre-treatment, the increase of one group was compensated by a decrease of the other group; specifically, the compensation was only partial for TNF, and overall substrate hydrolysis increased. In the case of IL-6, the increase of free amino acids was almost exactly compensated by a reduction of peptidic by-products, resulting in a negligible increase of substrate hydrolysis. In addition, the existence of reaction time-related modifications in the apparent velocity of substrate degradation and formation of by-products, allows hypothesizing different effects of cytokines on the enzymes degrading the substrate with different time constants. Taken together, these data can be interpreted as indicating different, positive and negative, effects of the three cytokines on the individual enzymes expressed by fibroblasts and capable of degrading peptidic substrates.
Collapse
Affiliation(s)
- Antonella Cavazza
- Dipartimento di Chimica Generale e Inorganica, Chimica Analitica, Chimica Fisica, Università degli Studi di Parma, Parma, Italy
| | | | | | | |
Collapse
|
10
|
Abstract
Despite having remarkably similar three-dimensional structures and stabilities, IL-1beta promotes signaling, whereas IL-1Ra inhibits it. Their energy landscapes are similar and have coevolved to facilitate competitive binding to the IL-1 receptor. Nevertheless, we find that IL-1Ra folds faster than IL-1beta. A structural alignment of the proteins shows differences mainly in two loops, a beta-bulge of IL-1beta and a loop in IL-1Ra that interacts with residue K145 and connects beta-strands 11 and 12. Bioassays indicate that inserting the beta-bulge from IL-1beta confers partial signaling capability onto a K145D mutant of IL-1Ra. Based on the alignment, mutational assays and our computational folding results, we hypothesize that functional regions are not central to the beta-trefoil motif and cause slow folding. The IL-1beta beta-bulge facilitates activity and replacing it by the IL-1Ra beta-turn results in a hybrid protein that folds faster than IL-1beta. Inserting the beta11-beta12 connecting-loop, which aids inhibition, into either IL-1beta or the hybrid protein slows folding. Thus, regions that aid function (either through activity or inhibition) can be inferred from folding traps via structural differences. Mapping functional properties onto the numerous folds determined in structural genomics efforts is an area of intense interest. Our studies provide a systematic approach to mapping the functional genomics of a fold family.
Collapse
|
11
|
Yoon DY, Dinarello CA. Differential effects of anti-IL-1R accessory protein antibodies on IL-1alpha or IL-1beta-induced production of PGE(2) and IL-6 from 3T3-L1 cells. BMB Rep 2007; 40:562-70. [PMID: 17669273 DOI: 10.5483/bmbrep.2007.40.4.562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Soluble or cell-bound IL-1 receptor accessory protein (IL-1RAcP) does not bind IL-1 but rather forms a complex with IL-1 and IL-1 receptor type I (IL-1RI) resulting in signal transduction. Synthetic peptides to various regions in the Ig-like domains of IL-1RAcP were used to produce antibodies and these antibodies were affinity-purified using the respective antigens. An anti-peptide-4 antibody which targets domain III inhibited 70% of IL-1beta-induced productions of IL-6 and PGE(2) from 3T3-L1 cells. Anti-peptide-2 or 3 also inhibited IL-1-induced IL-6 production by 30%. However, anti-peptide-1 which is directed against domain I had no effect. The antibody was more effective against IL-1beta compared to IL-1alpha. IL-1-induced IL-6 production was augmented by coincubation with PGE(2). The COX inhibitor ibuprofen blocked IL-1-induced IL-6 and PGE(2) production. These results confirm that IL-1RAcP is essential for IL-1 signaling and that increased production of IL-6 by IL-1 needs the co-induction of PGE(2). However, the effect of PGE(2) is independent of expressions of IL-1RI and IL-1RAcP. Our data suggest that domain III of IL-1RAcP may be involved in the formation or stabilization of the IL-1RI/IL-1 complex by binding to epitopes on domain III of the IL-1RI created following IL-1 binding to the IL-1RI.
Collapse
Affiliation(s)
- Do-Young Yoon
- Laboratory of Cell and Immunobiochemistry, Department of Bioscience and Biotechnology, Konkuk University, Hwayang Dong 1, Seoul 143-801, Korea
| | | |
Collapse
|
12
|
Martin SAM, Zou J, Houlihan DF, Secombes CJ. Directional responses following recombinant cytokine stimulation of rainbow trout (Oncorhynchus mykiss) RTS-11 macrophage cells as revealed by transcriptome profiling. BMC Genomics 2007; 8:150. [PMID: 17555569 PMCID: PMC1920521 DOI: 10.1186/1471-2164-8-150] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 06/07/2007] [Indexed: 12/11/2022] Open
Abstract
Background The early stages of the immune response are regulated by key cytokines including both interleukin 1β (IL-1β) and interferon-γ (IFN-γ) which stimulate panels of responsive genes via conserved signal transduction pathways. To further our understanding of the transcriptional response to these cytokines in lower vertebrates we have utilized microarray analysis to characterize the transcriptional response to recombinant rainbow trout IL-1β and IFN-γ in the trout macrophage cell line RTS-11. Results RNA was extracted from stimulated or control cells following 6 h incubation and used to hybridize to a salmonid cDNA microarray containing 16,006 different genes. Analysis of the arrays revealed mRNA transcripts that were differentially expressed as a result of exposure to the recombinant proteins, with some responses common for both cytokines. In general the recombinant IL-1β elicited a response where genes involved in the acute phase response were up-regulated, whilst the recombinant IFN-γ induced strong up-regulation of genes involved in the MHC class I antigen presentation pathway. Key genes were chosen that were differentially regulated and analysed by real time PCR at additional time points, up to 48 h following stimulation. This allowed a deeper insight into the kinetics of the response to the cytokines in this cell line. Conclusion We demonstrated that in fish both rIL-1β and rIFN-γ stimulated discrete panels of mRNA transcripts which indicted the cells were being directed towards different cellular functions, with IL-β inducing genes involved in the inflammatory response, whereas IFN-γ induced genes associated with antigen presentation.
Collapse
Affiliation(s)
- Samuel AM Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK
| | - Jun Zou
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK
| | - Dominic F Houlihan
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK
| |
Collapse
|
13
|
Borgmann S, Endisch G, Hacker UT, Song BS, Fricke H. Proinflammatory genotype of interleukin-1 and interleukin-1 receptor antagonist is associated with ESRD in proteinase 3-ANCA vasculitis patients. Am J Kidney Dis 2003; 41:933-42. [PMID: 12722027 DOI: 10.1016/s0272-6386(03)00190-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Small-vessel vasculitides are associated with antineutrophil cytoplasmic antibodies (ANCAs). Cytoplasmic ANCAs are targeted mainly against proteinase 3 (PR3), whereas myeloperoxidase (MPO) is the major antigen of perinuclear ANCAs. These relapsing vasculitides show heterogeneous clinical pictures, and disease severity may vary broadly from mild local organ manifestation to acute organ failure (eg, renal failure). We tested whether two cytokine polymorphisms in the interleukin-1beta (IL-1beta) and IL-1 receptor antagonist (IL-1ra) genes, known to determine cytokine secretion, are associated with clinical manifestations and outcome of ANCA-associated vasculitides. METHODS Polymerase chain reaction and restriction fragment length polymorphism analyses were performed to determine polymorphisms in the IL-1beta and IL-1ra genes in 79 patients with PR3-ANCA, 30 patients with MPO-ANCA vasculitis, and 196 healthy controls. RESULTS The frequency of the so-called proinflammatory genotype, characterized by high secretion of IL-1beta and low secretion of its antagonist IL-1ra, was increased significantly in patients with PR3-ANCA with end-stage renal disease. CONCLUSION Patients with a renal manifestation of PR3-ANCA vasculitis have an increased risk for developing end-stage renal disease when carrying the proinflammatory IL-1beta/IL-1ra genotype. Anti-inflammatory therapy specifically antagonizing the proinflammatory effect of IL-1beta may be a promising treatment for patients with Wegener's granulomatosis with renal manifestations.
Collapse
Affiliation(s)
- Stefan Borgmann
- Department of Medical Microbiology, University of Tübingen, Tübingen, Germany.
| | | | | | | | | |
Collapse
|
14
|
Loscher CE, Mills KHG, Lynch MA. Interleukin-1 receptor antagonist exerts agonist activity in the hippocampus independent of the interleukin-1 type I receptor. J Neuroimmunol 2003; 137:117-24. [PMID: 12667655 DOI: 10.1016/s0165-5728(03)00072-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Interleukin-1 receptor antagonist (IL-1ra) selectively and competitively inhibits the actions of IL-1 at its receptors and has not been reported to have agonist activity. This study demonstrates that stimulation of synaptosomes with IL-1ra in vitro, mimicked the effects of IL-1 beta by decreasing glutamate release and increasing JNK phosphorylation. These effects of IL-1ra, but not IL-1 beta, were maintained in IL-1 type I receptor (IL-1RI) defective mice. IL-1 beta blocked these IL-1ra-induced effects suggesting that it may also act independently of IL-1RI in some circumstances. Furthermore, IL-1ra mimicked the inhibitory effect of IL-1 beta on long-term potentiation (LTP) in the hippocampus. These data, taken together with our findings that IL-1ra binds to hippocampal synaptosomes in the absence of IL-1RI, provide evidence that IL-1ra exerts agonist activity in the hippocampus independent of IL-1RI.
Collapse
Affiliation(s)
- Christine E Loscher
- Immune Regulation Research Group, Department of Biochemistry, Trinity College, Dublin 2, Ireland
| | | | | |
Collapse
|
15
|
Radons J, Gabler S, Wesche H, Korherr C, Hofmeister R, Falk W. Identification of essential regions in the cytoplasmic tail of interleukin-1 receptor accessory protein critical for interleukin-1 signaling. J Biol Chem 2002; 277:16456-63. [PMID: 11880380 DOI: 10.1074/jbc.m201000200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin (IL)-1 plays an important role in inflammation and regulation of immune responses. The activated IL-1 receptor complex, which consists of the IL-1 receptor type I and the IL-1 receptor accessory protein (IL-1RAcP), generates multiple cellular responses including NF-kappaB activation, IL-2 secretion, and IL-2 promoter activation. Reconstitution experiments in EL4D6/76 cells lacking IL-1RAcP expression and IL-1 responsiveness were used to analyze structure-function relationships of the IL-1RAcP cytoplasmic tail. Mutating a potential tyrosine kinase phosphorylation motif and various conserved amino acid (aa) residues had no effect on IL-1 responsiveness. Truncation analyses revealed that box 3 of the TIR domain was required for NF-kappaB activation, IL-2 production, and c-Jun N-terminal kinase (JNK) activation, whereas IL-2 promoter activation was only partially inhibited. Surprisingly, deletion of aa 527-534 resulted in almost complete loss of all IL-1 responsiveness. Replacement of these aa with alanyl residues did not reconstitute NF-kappaB activation, IL-2 production, or JNK activation but partly restored IL-2 promoter activation. Immunoprecipitation data revealed a strong correlation between MyD88 binding with NF-kappaB activation and IL-2 production but not with IL-2 promoter activation. Taken together, our data indicate that box 3 of IL-1RAcP is critical for IL-1-dependent NF-kappaB activation and stabilization of IL-2 mRNA via JNK, whereas aa 527-534 largely contribute to IL-2 promoter activation.
Collapse
Affiliation(s)
- Jurgen Radons
- Klinik und Poliklinik für Innere Medizin I, Universität Regensburg, D-93042 Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Nicklin MJH, Barton JL, Nguyen M, FitzGerald MG, Duff GW, Kornman K. A sequence-based map of the nine genes of the human interleukin-1 cluster. Genomics 2002; 79:718-25. [PMID: 11991722 DOI: 10.1006/geno.2002.6751] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Six novel genes encoding proteins with the interleukin (IL)-1 fold have been identified recently. The classical family members are involved in inflammatory signaling. Previous work has placed the novel genes close to or within the same cluster as IL1A, IL1B, and IL1RN, which occupy an approximately 400-kb interval on chromosome 2. We have combined the incomplete public database sequence with our own sequence to generate a reference sequence and map that encompass all of the novel genes, allowing determination of the gene structures, precise localization of exons, and determination of distances between conventional SNP and microsatellite markers. Gene order from centromere to telomere is IL1A-IL1B-IL1F7-IL1F9-IL1F6-IL1F8-IL1F5-IL1F10-IL1RN, of which only IL1A, IL1B, and IL1F8 are transcribed towards the centromere. The gene order relates to the evolutionary relationship between the genes. Key features of exon boundaries are conserved. There is no evidence for other IL-1 family members within the cluster.
Collapse
Affiliation(s)
- Martin J H Nicklin
- Division of Genomic Medicine, University of Sheffield, Royal Hallamshire Hospital, Sheffield S10 2JF, UK.
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
The cytokines IL-1 and IL-18 are key molecules in both the innate and the adaptive immune response. Recently, important insights have been gained into the regulation of their functions. Moreover, it has become apparent that they are members of a larger family of related receptors, some of which can also be shown to contribute to host defense.
Collapse
Affiliation(s)
- John E Sims
- Immunex Corporation, 51 University Street, Seattle, WA 98101, USA.
| |
Collapse
|
18
|
Kim GJ, Cheon YH, Park MS, Park HS, Kim HS. Generation of protein lineages with new sequence spaces by functional salvage screen. PROTEIN ENGINEERING 2001; 14:647-54. [PMID: 11707610 DOI: 10.1093/protein/14.9.647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A variety of different methods to generate diverse proteins, including random mutagenesis and recombination, are currently available and most of them accumulate the mutations on the target gene of a protein, whose sequence space remains unchanged. On the other hand, a pool of diverse genes, which is generated by random insertions, deletions and exchange of the homologous domains with different lengths in the target gene, would present the protein lineages resulting in new fitness landscapes. Here we report a method to generate a pool of protein variants with different sequence spaces by employing green fluorescent protein (GFP) as a model protein. This process, designated functional salvage screen (FSS), comprises the following procedures: a defective GFP template expressing no fluorescence is first constructed by genetically disrupting a predetermined region(s) of the protein and a library of GFP variants is generated from the defective template by incorporating the randomly fragmented genomic DNA from Escherichia coli into the defined region(s) of the target gene, followed by screening of the functionally salvaged, fluorescence-emitting GFPs. Two approaches, sequence-directed and PCR-coupled methods, were attempted to generate the library of GFP variants with new sequences derived from the genomic segments of E.coli. The functionally salvaged GFPs were selected and analyzed in terms of the sequence space and functional properties. The results demonstrate that the functional salvage process not only can be a simple and effective method to create protein lineages with new sequence spaces, but also can be useful in elucidating the involvement of a specific region(s) or domain(s) in the structure and function of protein.
Collapse
Affiliation(s)
- G J Kim
- Department of Molecular Science and Technology, Ajou University, San5, Woncheon-dong, Paldal-gu, Suwon, 442-749, Korea
| | | | | | | | | |
Collapse
|
19
|
Debets R, Timans JC, Homey B, Zurawski S, Sana TR, Lo S, Wagner J, Edwards G, Clifford T, Menon S, Bazan JF, Kastelein RA. Two novel IL-1 family members, IL-1 delta and IL-1 epsilon, function as an antagonist and agonist of NF-kappa B activation through the orphan IL-1 receptor-related protein 2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:1440-6. [PMID: 11466363 DOI: 10.4049/jimmunol.167.3.1440] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-1 is of utmost importance in the host response to immunological challenges. We identified and functionally characterized two novel IL-1 ligands termed IL-1delta and IL-1epsilon. Northern blot analyses show that these IL-1s are highly abundant in embryonic tissue and tissues containing epithelial cells (i.e., skin, lung, and stomach). In extension, quantitative real-time PCR revealed that of human skin-derived cells, only keratinocytes but not fibroblasts, endothelial cells, or melanocytes express IL-1delta and epsilon. Levels of keratinocyte IL-1delta are approximately 10-fold higher than those of IL-1epsilon. In vitro stimulation of keratinocytes with IL-1beta/TNF-alpha significantly up-regulates the expression of IL-1epsilon mRNA, and to a lesser extent of IL-1delta mRNA. In NF-kappaB-luciferase reporter assays, we demonstrated that IL-1delta and epsilon proteins do not initiate a functional response via classical IL-1R pairs, which confer responsiveness to IL-1alpha and beta or IL-18. However, IL-1epsilon activates NF-kappaB through the orphan IL-1R-related protein 2 (IL-1Rrp2), whereas IL-1delta, which shows striking homology to IL-1 receptor antagonist, specifically and potently inhibits this IL-1epsilon response. In lesional psoriasis skin, characterized by chronic cutaneous inflammation, the mRNA expression of both IL-1 ligands as well as IL-1Rrp2 are increased relative to normal healthy skin. In total, IL-1delta and epsilon and IL-1Rrp2 may constitute an independent signaling system, analogous to IL-1alphabeta/receptor agonist and IL-1R1, that is present in epithelial barriers of our body and takes part in local inflammatory responses.
Collapse
Affiliation(s)
- R Debets
- DNAX Research Institute of Molecular and Cellular Biology, 901 California Avenue, Palo Alto, CA 94304, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Beckman MJ, Rejman JJ, Gosink K, Giles SS, Schuler LA, Czuprynski CJ. cDNA cloning and gene expression of the type 1 bovine interleukin-1 receptor. Vet Immunol Immunopathol 1999; 71:245-55. [PMID: 10587304 DOI: 10.1016/s0165-2427(99)00101-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Regulation of interleukin-1 (IL-1) mediated biological responses is complicated by the multiple ligands and receptors of the IL-1 family. Most studies of IL-1 receptors have used human or rodent cells. Here, we report that the coding region of the bovine type 1 interleukin-1 receptor (type 1 IL-1R) cDNA extends 1719 bp in length. Northern analysis of specific bovine cell and tissue RNA demonstrated a 4.5 kb transcript. Overall, the bovine type 1 IL-1R coding region exhibits approximately 81 and 76% similarity with the human type 1 IL-1R at the nucleotide and amino acid level, respectively, and somewhat less similarity with the mouse and rat sequences. Type 1 IL-1R transcripts were confirmed by RT-PCR in several bovine cell types, including peripheral blood mononuclear cells (PBMCs), neutrophils (PMNs), and fibroblast, peritoneal macrophage, and arterial endothelial cell lines. It is expected that molecular clones for the bovine type 1 and 2 IL-1 receptors will provide us with the tools needed to decipher species-and cell-specific regulation of IL-1 action in the bovine.
Collapse
Affiliation(s)
- M J Beckman
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 53706, USA
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
The human interleukin-1beta (IL-1beta) domain in position 163-171, comprising the amino acids VQGEESNDK, has been synthesized as a nine-amino-acid-long peptide and used in vivo as a nontoxic HCl salt. The IL-1beta nonapeptide reproduces the immunostimulatory and adjuvant effects of the whole mature IL-1beta, but does not possess any of the IL-1beta inflammatory, vasoactive, tumor-promoting, and systemically toxic effects, nor it can synergize with tumor necrosis factor alpha or other molecules in inducing toxicity and shock. The IL-1beta fragment is active as adjuvant either when administered together with the antigen or if inoculated separately; it can be physically linked to the antigen or used as a discrete peptide. Moreover, the DNA sequence encoding the IL-1beta domain has been included in an experimental DNA vaccine with positive results. Thus, immunostimulatory sequences can be identified within a pleiotropic cytokine like IL-1 and used in the rational design of novel vaccination strategies.
Collapse
|
22
|
Abstract
IL-1 (IL-1 alpha or IL-1 beta) is the prototypic "multifunctional" cytokine. Unlike the lymphocyte and colony stimulating growth factors, IL-1 affects nearly every cell type, and often in concert with other cytokines or small mediator molecules. Although some lymphocyte and colony stimulating growth factors may be therapeutically useful, IL-1 is a highly inflammatory cytokine and the margin between clinical benefit and unacceptable toxicity in humans is exceedingly narrow. In contrast, agents that reduce the production and/or activity of IL-1 are likely to have an impact on clinical medicine. In support of this concept, there is growing evidence that the production and activity of IL-1, particularly IL-1 beta, are tightly regulated events as if nature has placed specific "road blocks" to reduce the response to IL-1 during disease. In addition to controlling gene expression, synthesis and secretion, this regulation extends to surface receptors, soluble receptors and a receptor antagonist. Investigators have studied how production of the different members of the IL-1 family is controlled, the various biological activities of IL-1, the distinct and various functions of the IL-1 receptor (IL-1R) family and the complexity of intracellular signaling. Mice deficient in IL-1 beta, IL-1 beta converting enzyme (ICE) and IL-1R type I have also been studied. Humans have been injected with IL-1 (either IL-1 alpha or IL-1 beta) for enhancing bone marrow recovery and for cancer treatment. The IL-1 specific receptor antagonist (IL-1Ra) has also been tested in clinical trials.
Collapse
Affiliation(s)
- C A Dinarello
- Department of Medicine, University of Colorado Health Science Center, Denver 80262, USA
| |
Collapse
|
23
|
Schneider H, Pitossi F, Balschun D, Wagner A, del Rey A, Besedovsky HO. A neuromodulatory role of interleukin-1beta in the hippocampus. Proc Natl Acad Sci U S A 1998; 95:7778-83. [PMID: 9636227 PMCID: PMC22755 DOI: 10.1073/pnas.95.13.7778] [Citation(s) in RCA: 372] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/1997] [Indexed: 02/07/2023] Open
Abstract
It is widely accepted that interleukin-1beta (IL-1beta), a cytokine produced not only by immune cells but also by glial cells and certain neurons influences brain functions during infectious and inflammatory processes. It is still unclear, however, whether IL-1 production is triggered under nonpathological conditions during activation of a discrete neuronal population and whether this production has functional implications. Here, we show in vivo and in vitro that IL-1beta gene expression is substantially increased during long-term potentiation of synaptic transmission, a process considered to underlie certain forms of learning and memory. The increase in gene expression was long lasting, specific to potentiation, and could be prevented by blockade of potentiation with the N-methyl-D-aspartate (NMDA) receptor antagonist, (+/-)-2-amino-5-phosphonopentanoic acid (AP-5). Furthermore, blockade of IL-1 receptors by the specific interleukin-1 receptor antagonist (IL-1ra) resulted in a reversible impairment of long-term potentiation maintenance without affecting its induction. These results show for the first time that the production of biologically significant amounts of IL-1beta in the brain can be induced by a sustained increase in the activity of a discrete population of neurons and suggest a physiological involvement of this cytokine in synaptic plasticity.
Collapse
Affiliation(s)
- H Schneider
- Institute of Physiology, Division of Immunophysiology, Philipps University Marburg, Deutschhausstrasse 2, 35037 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
The interleukin-1 receptor antagonist (IL-1Ra) is a member of the IL-1 family that binds to IL-1 receptors but does not induce any intracellular response. Two structural variants of IL-1Ra have previously been described: a 17-kDa form that is secreted from monocytes, macrophages, neutrophils, and other cells (sIL-1Ra) and an 18-kDa form that remains in the cytoplasm of keratinocytes and other epithelial cells, monocytes, and fibroblasts (icIL-1Ra). An additional 16-kDa intracellular isoform of IL-1Ra has recently been described in neutrophils, monocytes, and hepatic cells. Both of the major isoforms of IL-1Ra are transcribed from the same gene through the use of alternative first exons. The two promoters regulating transcription of the secreted and intracellular forms have been cloned, and some of the functional cis-acting DNA regions have been characterized. The production of IL-1Ra is stimulated by many substances including adherent IgG, other cytokines, and bacterial or viral components. The tissue distribution of IL-1Ra in mice indicates that sIL-1Ra is found predominantly in peripheral blood cells, lungs, spleen, and liver, while icIL-1Ra is found in large amounts in skin. Studies in transgenic and knockout mice indicate that IL-1Ra is important in host defense against endotoxin-induced injury. IL-1Ra is produced by hepatic cells with the characteristics of an acute phase protein. Endogenous IL-1Ra is produced in numerous experimental animal models of disease as well as in human autoimmune and chronic inflammatory diseases. The use of neutralizing anti-IL-1Ra antibodies has demonstrated that endogenous IL-1Ra is an important natural antiinflammatory protein in arthritis, colitis, and granulomatous pulmonary disease. Treatment of human diseases with recombinant human IL-1Ra showed an absence of benefit in sepsis syndrome. However, patients with rheumatoid arthritis treated with IL-1Ra for six months exhibited improvements in clinical parameters and in radiographic evidence of joint damage.
Collapse
Affiliation(s)
- W P Arend
- Department of Medicine, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | |
Collapse
|
25
|
Korherr C, Hofmeister R, Wesche H, Falk W. A critical role for interleukin-1 receptor accessory protein in interleukin-1 signaling. Eur J Immunol 1997; 27:262-7. [PMID: 9022028 DOI: 10.1002/eji.1830270139] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Interleukin-1 (IL-1) is a central molecule in inflammation and immune responses whose pleiotropic activities are mediated by the type I IL-1 receptor (IL-1RI). The IL-1RI alone on the cell surface is silent after binding of the ligand. We show that the recently identified IL-1RI accessory protein (IL-1RAcP) converts the silent into a fully functional IL-1RI complex. Although transfection of IL-1RAcP into IL-1RAcP-deficient EL4D6/76 cells did not alter the binding kinetics or dissociation constants of the 125I-labeled IL-1alpha/IL-1RI complex, a very early event, internalization of the activated receptor complex, and a late event, IL-1-stimulated IL-2 production, were successfully restored. Therefore, recruitment of IL-1RAcP is a critical early step in the signaling cascade mediated by the IL-1RI activation complex.
Collapse
Affiliation(s)
- C Korherr
- Department of Internal Medicine I, University of Regensburg, Germany
| | | | | | | |
Collapse
|