1
|
Godiksen S, Soendergaard C, Friis S, Jensen JK, Bornholdt J, Sales KU, Huang M, Bugge TH, Vogel LK. Detection of active matriptase using a biotinylated chloromethyl ketone peptide. PLoS One 2013; 8:e77146. [PMID: 24204759 PMCID: PMC3799725 DOI: 10.1371/journal.pone.0077146] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/22/2013] [Indexed: 01/20/2023] Open
Abstract
Matriptase is a member of the family of type II transmembrane serine proteases that is essential for development and maintenance of several epithelial tissues. Matriptase is synthesized as a single-chain zymogen precursor that is processed into a two-chain disulfide-linked form dependent on its own catalytic activity leading to the hypothesis that matriptase functions at the pinnacle of several protease induced signal cascades. Matriptase is usually found in either its zymogen form or in a complex with its cognate inhibitor hepatocyte growth factor activator inhibitor 1 (HAI-1), whereas the active non-inhibited form has been difficult to detect. In this study, we have developed an assay to detect enzymatically active non-inhibitor-complexed matriptase by using a biotinylated peptide substrate-based chloromethyl ketone (CMK) inhibitor. Covalently CMK peptide-bound matriptase is detected by streptavidin pull-down and subsequent analysis by Western blotting. This study presents a novel assay for detection of enzymatically active matriptase in living human and murine cells. The assay can be applied to a variety of cell systems and species.
Collapse
Affiliation(s)
- Sine Godiksen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Proteases and Tissue Remodeling Unit, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, United States of America
| | | | - Stine Friis
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- Proteases and Tissue Remodeling Unit, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, United States of America
| | - Jan K. Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Danish-Chinese Centre for Proteases and Cancer
| | - Jette Bornholdt
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Katiuchia Uzzun Sales
- Proteases and Tissue Remodeling Unit, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, United States of America
| | - Mingdong Huang
- Danish-Chinese Centre for Proteases and Cancer
- State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian, China
| | - Thomas H. Bugge
- Proteases and Tissue Remodeling Unit, National Institute of Dental and Craniofacial Research, Bethesda, Maryland, United States of America
| | - Lotte K. Vogel
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
2
|
Piana C, Toegel S, Guell I, Gerbes S, Viernstein H, Wirth M, Gabor F. Growth surface-induced gene and protein expression patterns in Caco-2 cells. Acta Biomater 2008; 4:1819-26. [PMID: 18565808 DOI: 10.1016/j.actbio.2008.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 04/23/2008] [Accepted: 05/09/2008] [Indexed: 11/19/2022]
Abstract
The underlying matrix plays an important role in the adhesion, proliferation and differentiation processes of Caco-2 cells. When culturing these cells for pharmaceutical purposes it is essential to know the influence of different supports on morphological and functional cell parameters. The impact of polystyrene, Matrigel-coated polystyrene, glass and nanostructured Easy-To-Clean (ETC01) slides was investigated over time by real-time quantitative reverse transcription polymerase chain reaction, enzymatic assays and immunofluorescent staining techniques. Compared to polystyrene, ETC01 slides induced cellular activities towards functional differentiation after short cultivation times. Glass significantly accelerated the differentiation process up to day 10 in culture, while Matrigel-coating had no significant benefit. By day 21 postseeding, the phenotype had equalized as indicated by constant brush border enzyme activity and villin mRNA expression masking the initial differences between the supports. The accelerated differentiation on specific matrices could be advantageous as it may enable cultured monolayers to be used earlier, and has to be considered when interpreting and comparing results.
Collapse
Affiliation(s)
- Claudia Piana
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
3
|
Vogel LK, Larsen JE, Hansen M, Truffer R. Conversion of proteins from a non-polarized to an apical secretory pattern in MDCK cells. Biochem Biophys Res Commun 2005; 330:665-72. [PMID: 15809049 DOI: 10.1016/j.bbrc.2005.03.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Indexed: 11/15/2022]
Abstract
Previously it was shown that fusion proteins containing the amino terminus of an apical targeted member of the serpin family fused to the corresponding carboxyl terminus of the non-polarized secreted serpin, antithrombin, are secreted mainly to the apical side of MDCK cells. The present study shows that this is neither due to the transfer of an apical sorting signal from the apically expressed proteins, since a sequence of random amino acids acts the same, nor is it due to the deletion of a conserved signal for correct targeting from the non-polarized secreted protein. Our results suggest that the polarity of secretion is determined by conformational sensitive sorting signals.
Collapse
Affiliation(s)
- Lotte K Vogel
- Department of Medical Biochemistry and Genetics, University of Copenhagen, Denmark.
| | | | | | | |
Collapse
|
4
|
Rösmann S, Hahn D, Lottaz D, Kruse MN, Stöcker W, Sterchi EE. Activation of human meprin-alpha in a cell culture model of colorectal cancer is triggered by the plasminogen-activating system. J Biol Chem 2002; 277:40650-8. [PMID: 12189145 DOI: 10.1074/jbc.m206203200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activation of latent proenzymes is an important mechanism for the regulation of localized proteolytic activity. Human meprin-alpha, an astacin-like zinc metalloprotease expressed in normal colon epithelial cells, is secreted as a zymogen into the intestinal lumen. Here, meprin is activated after propeptide cleavage by trypsin. In contrast, colorectal cancer cells secrete meprin-alpha in a non-polarized way, leading to accumulation and increased activity of meprin-alpha in the tumor stroma. We have analyzed the activation mechanism of promeprin-alpha in colorectal cancer using a co-culture model of the intestinal mucosa composed of colorectal adenocarcinoma cells (Caco-2) cultivated on filter supports and intestinal fibroblasts grown in the companion dish. We provide evidence that meprin-alpha is activated by plasmin and show that the presence of plasminogen in the basolateral compartment of the co-cultures is sufficient for promeprin-alpha activation. Analysis of the plasminogen-activating system in the co-cultures revealed that plasminogen activators produced and secreted by fibroblasts converted plasminogen to active plasmin, which in turn generated active meprin-alpha. This activation mechanism offers an explanation for the observed meprin-alpha activity in the tumor stroma, a prerequisite for a potential role of this protease in colorectal cancer.
Collapse
Affiliation(s)
- Sandra Rösmann
- Institute of Biochemistry and Molecular Biology, Department of Pediatrics, University of Berne, Bühlstrasse 28, CH-3012 Berne, Switzerland
| | | | | | | | | | | |
Collapse
|
5
|
Vogel LK, Sahkri S, Sjostrom H, Noren O, Spiess M. Secretion of antithrombin is converted from nonpolarized to apical by exchanging its amino terminus for that of apically secreted family members. J Biol Chem 2002; 277:13883-8. [PMID: 11839735 DOI: 10.1074/jbc.m107997200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The three members of the serpin family, corticosteroid binding globulin, alpha1-antitrypsin, and C1 inhibitor are secreted apically from Madin-Darby canine kidney (MDCK) cells, whereas two homologous family members, antithrombin and plasminogen activator inhibitor-1, are secreted in a nonpolarized fashion. cDNAs coding for chimeras composed of complementary portions of an apically targeted serpin and a nonsorted serpin were generated, expressed in MDCK cells, and the ratio between apical and basolateral secretion was analyzed. These experiments identified an amino-terminal sequence of corticosteroid binding globulin (residues 1-19) that is sufficient to direct a chimera with antithrombin mainly to the apical side. A deletion/mutagenesis analysis showed that no individual amino acid is absolutely required for the apical targeting ability of amino acids 1-30 of corticosteroid binding globulin. The corresponding amino-terminal sequences of alpha1-antitrypsin and C1 inhibitor were also sufficient to confer apical sorting. Based on our results we suggest that the apical targeting ability is encoded in the conformation of the protein.
Collapse
Affiliation(s)
- Lotte K Vogel
- Department of Medical Biochemistry and Genetics, Biochemistry Laboratory C, University of Copenhagen, The Panum Institute, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | | | | | | | | |
Collapse
|
6
|
McCarthy KM, Lam M, Subramanian L, Shakya R, Wu Z, Newton EE, Simister NE. Effects of mutations in potential phosphorylation sites on transcytosis of FcRn. J Cell Sci 2001; 114:1591-8. [PMID: 11282034 DOI: 10.1242/jcs.114.8.1591] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The neonatal Fc receptor, FcRn, transports immunoglobulin G (IgG) across intestinal epithelial cells of suckling rats and mice from the lumenal surface to the serosal surface. In cell culture models FcRn transports IgG bidirectionally, but there are differences in the mechanisms of transport in the two directions. We investigated the effects of mutations in the cytoplasmic domain of FcRn on apical to basolateral and basolateral to apical transport of Fc across rat inner medullary collecting duct (IMCD) cells. Basolateral to apical transport did not depend upon determinants in the cytoplasmic domain. In contrast, an essentially tailless FcRn was markedly impaired in apical to basolateral transport. Using truncation and substitution mutants, we identified serine-313 and serine-319 as phosphorylation sites in the cytoplasmic domain of FcRn expressed in Rat1 fibroblasts. Mutations at Ser-319 did not affect transcytosis across IMCD cells. FcRn-S313A was impaired in apical to basolateral transcytosis to the same extent as tailless FcRn, whereas FcRn-S313D transported at wild-type levels. FcRn-S313A recycled more Fc to the apical medium than the wild-type receptor, suggesting that Ser-313 is required to allow FcRn to be diverted from an apical recycling pathway to a transcytotic pathway.
Collapse
Affiliation(s)
- K M McCarthy
- Rosenstiel Center for Basic Biomedical Sciences, W. M. Keck Institute for Cellular Visualization, and Biology Department, Brandeis University, Waltham, MA 02254-9110, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Corticosteroid binding globulin, a member of the serpin family, was previously shown to be secreted mainly apically from MDCK cells in an N-glycan independent manner [Larsen et al. (1999) FEBS Lett. 451, 19-22]. Apart from N-glycosylation, serpins are not known to carry any other posttranslational modifications, suggesting the presence of a proteinaceous apical sorting signal. In the present study we have expressed four other members of the serpin family: alpha1-antitrypsin, C1 inhibitor, plasminogen activator inhibitor-1 and antithrombin in MDCK cells. Tight monolayers of transfected cells were grown on filters and the amounts of recombinantly expressed serpins in the apical and the basolateral media were determined. alpha1-Antitrypsin and C1 inhibitor were found mainly in the apical medium whereas plasminogen activator inhibitor-1 and antithrombin were found in roughly equal amounts in the apical and basolateral media. Control experiments showed that all four serpins are transported along the exocytotic pathway in an uncomplicated way that does not involve transcytosis or differences in stability on the two sides of the cells. We conclude that some members of the serpin family including corticosteroid binding globulin, alpha1-antitrypsin and C1 inhibitor are secreted mainly apically from MDCK cells whereas plasminogen activator inhibitor-1 and antithrombin are secreted in a non-polarized manner.
Collapse
Affiliation(s)
- L K Vogel
- Department of Medical Biochemistry and Genetics, Biochemistry Laboratory C, University of Copenhagen, The Panum Institute, Blegdamsvej 3, DK-2200 N, Copenhagen, Denmark.
| | | |
Collapse
|
8
|
Abstract
Absorptive cells are the main cells present in the intestinal epithelium. The plasma membrane of these tall columnar cells reflects their high degree of polarization, by dividing into apical and basolateral domains with different compositions. The most characteristic structure of these cells consists of closely packed apical microvilli with the same height, looking like a brush, which is why they were named the brush border. The concentrated pattern of some apical markers observed in a restricted brush border domain shows that mature enterocytes are hyperpolarized epithelial cells: the filamentous brush border glycocalyx is anchored at the top of the microvilli and the annexin XIII is concentrated in the lower three fourths. Many studies have been carried out on the biosynthesis and intracellular pathway of domain markers. The results show clearly that the basolateral markers take a direct pathway from the trans-Golgi network to the basolateral membrane. However, the two apical pathways, one direct and one indirect pathway via the basolateral membrane, are used, depending on the apical protein involved. Efficient protein sorting and addressing are essential to the establishment and maintenance of cell polarity, on which the integrity of the epithelial barrier depends.
Collapse
Affiliation(s)
- D Massey-Harroche
- Laboratoire de biologie et de biochimie de la nutrition, URA 1820, Faculté des Sciences de Saint Jérôme, Case 342, 13397, Marseille Cedex 20, France.
| |
Collapse
|
9
|
Lian WN, Tsai JW, Yu PM, Wu TW, Yang SC, Chau YP, Lin CH. Targeting of aminopeptidase N to bile canaliculi correlates with secretory activities of the developing canalicular domain. Hepatology 1999; 30:748-60. [PMID: 10462382 DOI: 10.1002/hep.510300302] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
We have used human hepatoma cell lines as an in vitro model to study the development of hepatic bile canaliculi (BC). Well-differentiated hepatoma cells cultured for 72 hours could develop characteristic spheroid structures at sites of cell-cell contact that contained tight junctions and various membrane protein markers, resembling BC found in vivo. Intact cytoskeleton was essential for this differentiation process. In the coculture experiments in which cells of different origins were populated together, BC only formed between hepatic cells and preferentially among well-differentiated cells. Poorly differentiated hepatoma cells never formed BC among themselves, but could be induced to undergo canalicular differentiation by interacting with well-differentiated cells. During BC morphogenesis, integral canalicular membrane proteins were gradually delivered and accumulated at the developing BC. Among them, targeting of aminopeptidase N (APN) seemed to correlate with activation of certain secretory functions. Specifically, only APN-positive BC supported excretion of fluorescein diacetate (FDA) and 70-kd dextran, but had no relationship with secretion of horseradish peroxidase (HRP). Targeting of another BC protein, dipeptidyl peptidase IV (DPPIV), on the other hand, bore no association with any secretory activity examined. In addition, inhibition of enzymatic activity of APN could perturb canalicular differentiation without affecting cell proliferation. Our results suggest that targeting of APN proteins may reflect or even play an important role in the development and functional maturation of the canalicular structures.
Collapse
Affiliation(s)
- W N Lian
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
10
|
Mentzel S, Dijkman HB, van Son JP, Wetzels JF, Assmann KJ. In vivo antibody-mediated modulation of aminopeptidase A in mouse proximal tubular epithelial cells. J Histochem Cytochem 1999; 47:871-80. [PMID: 10375375 DOI: 10.1177/002215549904700704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aminopeptidase A (APA) is one of the many renal hydrolases. In mouse kidney, APA is predominantly expressed on the brush borders and sparsely on the basolateral membranes of proximal tubular epithelial cells. However, when large amounts of monoclonal antibodies (MAbs) against APA were injected into mice, we observed strong binding of the MAbs to the basolateral membranes, whereas the MAbs bound only transiently to the brush borders of the proximal tubular epithelial cells. In parallel, APA itself disappeared from the brush borders by both endocytosis and shedding, whereas it was increasingly expressed on the basolateral sides. Using ultrastructural immunohistology, we found no evidence for transcellular transport of endocytosed APA to the basolateral side of the proximal tubular epithelial cells. The absence of transcellular transport was confirmed by experiments in which we used a low dose of the MAbs. Such a low dose did not result in binding of the MAbs to the brush borders and had no effect on the presence of APA in the brush borders of the proximal tubular epithelial cells. In these experiments we still could observe binding of the MAbs to the basolateral membranes in parallel with the local appearance of APA. In addition, treatment of mice with chlorpromazine, a calmodulin antagonist that interferes with cytoskeletal function, largely inhibited the MAb-induced modulation of APA. Our studies suggest that injection of MAbs to APA specifically interrupts the normal intracellular traffic of this enzyme in proximal tubular epithelial cells. This intracellular transport is dependent on the action of cytoskeletal proteins.
Collapse
Affiliation(s)
- S Mentzel
- Departments of Pathology, Division of Nephrology, University Hospital Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
11
|
Naim HY, Joberty G, Alfalah M, Jacob R. Temporal association of the N- and O-linked glycosylation events and their implication in the polarized sorting of intestinal brush border sucrase-isomaltase, aminopeptidase N, and dipeptidyl peptidase IV. J Biol Chem 1999; 274:17961-7. [PMID: 10364244 DOI: 10.1074/jbc.274.25.17961] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The temporal association between O-glycosylation and processing of N-linked glycans in the Golgi apparatus as well as the implication of these events in the polarized sorting of three brush border proteins has been the subject of the current investigation. O-Glycosylation of pro-sucrase-isomaltase (pro-SI), aminopeptidase N (ApN), and dipeptidyl peptidase IV (DPPIV) is drastically reduced when processing of the mannose-rich N-linked glycans is blocked by deoxymannojirimycin, an inhibitor of the Golgi-located mannosidase I. By contrast, O-glycosylation is not affected in the presence of swainsonine, an inhibitor of Golgi mannosidase II. The results indicate that removal of the outermost mannose residues by mannosidase I from the mannose-rich N-linked glycans is required before O-glycosylation can ensue. On the other hand, subsequent mannose residues in the core chain impose no sterical constraints on the progression of O-glycosylation. Reduction or modification of N- and O-glycosylation do not affect the transport of pro-SI, ApN, or DPPIV to the cell surface per se. However, the polarized sorting of two of these proteins, pro-SI and DPPIV, to the apical membrane is substantially altered when O-glycans are not completely processed, while the sorting of ApN is not affected. The processing of N-linked glycans, on the other hand, has no influence on sorting of all three proteins. The results indicate that O-linked carbohydrates are at least a part of the sorting mechanism of pro-SI and DPPIV. The sorting of ApN implicates neither O-linked nor N-linked glycans and is driven most likely by carbohydrate-independent mechanisms.
Collapse
Affiliation(s)
- H Y Naim
- Department of Physiological Chemistry, School of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany.
| | | | | | | |
Collapse
|
12
|
Larsen JE, Avvakumov GV, Hammond GL, Vogel LK. N-glycans are not the signal for apical sorting of corticosteroid binding globulin in MDCK cells. FEBS Lett 1999; 451:19-22. [PMID: 10356976 DOI: 10.1016/s0014-5793(99)00526-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
It has been suggested that N-glycans act as a general sorting signal for secretory proteins in MDCK cells [Scheiffele et al. (1995) Nature 378, 96-98]. Human corticosteroid binding globulin contains six consensus sites for N-glycosylation and is known to be secreted to the apical side of MDCK cells. Our results show that wild-type corticosteroid binding globulin is N-glycosylated when it is recombinantly expressed in MDCK cells. Six mutants, each lacking one of the N-glycosylation sites, and a mutant lacking all six N-glycosylation sites were also secreted to the apical side of MDCK cells in a polarized manner. Thus, the N-glycans on corticosteroid binding globulin do not act as an apical sorting signal in MDCK cells.
Collapse
Affiliation(s)
- J E Larsen
- Department of Medical Biochemistry and Genetics, University of Copenhagen, The Panum Institute, Denmark
| | | | | | | |
Collapse
|
13
|
Monlauzeur L, Breuza L, Le Bivic A. Putative O-glycosylation sites and a membrane anchor are necessary for apical delivery of the human neurotrophin receptor in Caco-2 cells. J Biol Chem 1998; 273:30263-70. [PMID: 9804786 DOI: 10.1074/jbc.273.46.30263] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have expressed the human neurotrophin receptor p75 (p75(NTR)) in the intestinal epithelial cell line Caco-2 as a model to study intracellular transport and subcellular sorting signals in intestinal cells. p75(NTR) was localized at the apical membrane of Caco-2 cells and reached this membrane mainly via an indirect pathway. Apical localization, intracellular routing, and basolateral to apical transcytosis were not affected by truncation of the cytoplasmic domain or replacement of the transmembrane domain by a glycosyl phosphatidylinositol anchor. Removal of membrane anchoring resulted in basolateral secretion of the ectodomain of p75(NTR) in Caco-2 cells but in apical secretion in Madin-Darby canine kidney (MDCK) cells. Substitution of potential O-glycosylation sites present in the stalk of p75(NTR) led to intracellular cleavage and secretion of the ectodomain into the basolateral medium both in Caco-2 and MDCK cells. These results suggest that the stalk of p75(NTR) carries an apical sorting information that is recognized efficiently by Caco-2 cells only when attached to the membrane. This apical sorting information is linked to the presence of predicted O-glycosylation sites in that region. These putative O-glycosylation sites also play a role in the regulation of p75(NTR) transport to the cell surface and in the prevention of rapid degradation by cleavage of the stalk domain.
Collapse
Affiliation(s)
- L Monlauzeur
- Laboratoire de Génétique et Physiologie du Développement, UMR6545, IBDM, Faculté des Sciences de Luminy, Case 907, Université de la Méditerranée, 13288 Marseille Cedex 09, France
| | | | | |
Collapse
|
14
|
Roush DL, Gottardi CJ, Naim HY, Roth MG, Caplan MJ. Tyrosine-based membrane protein sorting signals are differentially interpreted by polarized Madin-Darby canine kidney and LLC-PK1 epithelial cells. J Biol Chem 1998; 273:26862-9. [PMID: 9756932 DOI: 10.1074/jbc.273.41.26862] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tyrosine-dependent sequence motifs are implicated in sorting membrane proteins to the basolateral domain of Madin-Darby canine kidney (MDCK) cells. We find that these motifs are interpreted differentially in various polarized epithelial cell types. The H, K-ATPase beta subunit, which contains a tyrosine-based motif in its cytoplasmic tail, was expressed in MDCK and LLC-PK1 cells. This protein was restricted to the basolateral membrane in MDCK cells, but was localized to the apical membrane in LLC-PK1 cells. Similarly, HA-Y543, a construct in which a tyrosine-based motif was introduced into the cytoplasmic tail of influenza hemagglutinin, was sorted to the basolateral membrane of MDCK cells and retained at the apical membrane of LLC-PK1 cells. A chimera in which the cytoplasmic tail of the H,K-ATPase beta subunit protein was replaced with the analogous region of the Na,K-ATPase beta subunit polypeptide was localized to both surface domains of MDCK cells. Mutation of tyrosine-20 of the H,K-ATPase beta subunit cytoplasmic sequence to an alanine was sufficient to disrupt basolateral localization of this polypeptide. In contrast, these constructs all remain localized to the apical membrane in LLC-PK1 cells. The FcRII-B2 protein bears a di-leucine motif and is found at the basolateral membrane of both MDCK and LLC-PK1 cells. These results demonstrate that polarized epithelia are able to discriminate between different classes of specifically defined membrane protein sorting signals.
Collapse
Affiliation(s)
- D L Roush
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | |
Collapse
|
15
|
Ihrke G, Martin GV, Shanks MR, Schrader M, Schroer TA, Hubbard AL. Apical plasma membrane proteins and endolyn-78 travel through a subapical compartment in polarized WIF-B hepatocytes. J Cell Biol 1998; 141:115-33. [PMID: 9531552 PMCID: PMC2132730 DOI: 10.1083/jcb.141.1.115] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/1997] [Revised: 02/05/1998] [Indexed: 02/07/2023] Open
Abstract
We studied basolateral-to-apical transcytosis of three classes of apical plasma membrane (PM) proteins in polarized hepatic WIF-B cells and then compared it to the endocytic trafficking of basolaterally recycling membrane proteins. We used antibodies to label the basolateral cohort of proteins at the surface of living cells and then followed their trafficking at 37 degreesC by indirect immunofluorescence. The apical PM proteins aminopeptidase N, 5'nucleotidase, and the polymeric IgA receptor were efficiently transcytosed. Delivery to the apical PM was confirmed by microinjection of secondary antibodies into the bile canalicular-like space and by EM studies. Before acquiring their apical steady-state distribution, the trafficked antibodies accumulated in a subapical compartment, which had a unique tubulovesicular appearance by EM. In contrast, antibodies to the receptors for asialoglycoproteins and mannose-6-phosphate or to the lysosomal membrane protein, lgp120, distributed to endosomes or lysosomes, respectively, without accumulating in the subapical area. However, the route taken by the endosomal/lysosomal protein endolyn-78 partially resembled the transcytotic pathway, since anti-endolyn-78 antibodies were found in a subapical compartment before delivery to lysosomes. Our results suggest that in WIF-B cells, transcytotic molecules pass through a subapical compartment that functions as a second sorting site for a subset of basolaterally endocytosed membrane proteins reaching this compartment.
Collapse
Affiliation(s)
- G Ihrke
- Department of Cell Biology and Anatomy, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
16
|
Vogel U, Sandvig K, van Deurs B. Expression of caveolin-1 and polarized formation of invaginated caveolae in Caco-2 and MDCK II cells. J Cell Sci 1998; 111 ( Pt 6):825-32. [PMID: 9472010 DOI: 10.1242/jcs.111.6.825] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have studied caveolin-1 expression and the frequency and distribution of typical invaginated caveolae as they are identified by electron microscopy in the polarized epithelial cell lines MDCK II and Caco-2. In wild-type MDCK II cells caveolin expression is high and more than 400 caveolae/mm filter were observed at the basolateral membrane. No caveolae were found at the apical surface. By contrast, wild-type Caco-2 cells do not express caveolin-1 and have extremely few, if any caveolae. Caco-2 cells were stably transfected with the gene for caveolin-1 in order to investigate if the formation of caveolae is polarized also in these cells. We have isolated Caco-2 clones expressing different levels of caveolin-1, where the level of expression varies from 10–100% of the endogenous level in MDCK II cells. Caveolin-1 expression in Caco-2 cells gives rise to a marked immunofluorescense labeling mainly at the lateral plasma membrane. By electron microscopy an increase from less than 4 caveolae/mm filter in wild-type Caco-2 cells to 21–76 caveolae/mm filter in Caco-2 clones transfected with caveolin-1 was revealed and these caveolae were exclusively localized to the basolateral membrane. Thus expression of heterologous caveolin-1 in Caco-2 cells leads to polarized formation of caveolae, but there is a lack of correlation between the amount of caveolin expressed in the cells and the number of caveolae, suggesting that factors in addition to caveolin are required for generation of caveolae.
Collapse
Affiliation(s)
- U Vogel
- Structural Cell Biology Unit, Department of Medical Anatomy, The Panum Institute, DK-2200 Copenhagen N, Denmark
| | | | | |
Collapse
|
17
|
Hansen GH, Delmas B, Besnardeau L, Vogel LK, Laude H, Sjöström H, Norén O. The coronavirus transmissible gastroenteritis virus causes infection after receptor-mediated endocytosis and acid-dependent fusion with an intracellular compartment. J Virol 1998; 72:527-34. [PMID: 9420255 PMCID: PMC109404 DOI: 10.1128/jvi.72.1.527-534.1998] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/1997] [Accepted: 09/18/1997] [Indexed: 02/05/2023] Open
Abstract
Aminopeptidase N is a species-specific receptor for transmissible gastroenteritis virus (TGEV), which infects piglets, and for the 229E virus, which infects humans. It is not known whether these coronaviruses are endocytosed before fusion with a membrane of the target cell, causing a productive infection, or whether they fuse directly with the plasma membrane. We have studied the interaction between TGEV and a cell line (MDCK) stably expressing recombinant pig aminopeptidase N (pAPN). By electron microscopy and flow cytometry, TGEV was found to be associated with the plasma membrane after adsorption to the pAPN-MDCK cells. TGEV was also observed in endocytic pits and apical vesicles after 3 to 10 min of incubation at 38 degrees C. The number of pits and apical vesicles was increased by the TGEV incubation, indicating an increase in endocytosis. After 10 min of incubation, a distinct TGEV-pAPN-containing population of large intracellular vesicles, morphologically compatible with endosomes, was found. A higher density of pAPN receptors was observed in the pits beneath the virus particles than in the surrounding plasma membrane, indicating that TGEV recruits pAPN receptors before endocytosis. Ammonium chloride and bafilomycin A1 markedly inhibited the TGEV infection as judged from virus production and protein biosynthesis analyses but did so only when added early in the course of the infection, i.e., about 1 h after the start of endocytosis. Together our results point to an acid intracellular compartment as the site of fusion for TGEV.
Collapse
Affiliation(s)
- G H Hansen
- Department of Medical Biochemistry and Genetics, The Panum Institute, Copenhagen N, Denmark
| | | | | | | | | | | | | |
Collapse
|
18
|
Norén K, Hansen GH, Clausen H, Norén O, Sjöström H, Vogel LK. Defectively N-glycosylated and non-O-glycosylated aminopeptidase N (CD13) is normally expressed at the cell surface and has full enzymatic activity. Exp Cell Res 1997; 231:112-8. [PMID: 9056417 DOI: 10.1006/excr.1996.3455] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In order to study the effects of the absence of O-glycosylation and modifications of N-glycosylation on a class II membrane protein, pig and human aminopeptidase N (CD13) were stably expressed in the ldl(D) cell line. This cell line carries a UDP-Gal/UDP-GalNAc-epimerase deficiency which blocks the conversion of glucose into galactose derivatives. Thus it is possible in the ldl(D) cell line to selectively block O-glycosylation by the omission of N-acetylgalactoseamine from the culture medium and to alter N-glycosylation by the omission of galactose. In this way selectively altered glycosylated forms of the glycoprotein aminopeptidase N can be synthesized and the effects of altered glycosylation can be studied. It is demonstrated that aminopeptidase N carries "mucin-type" O-glycans and that this is predominantly located in the stalk, which connects the catalytic headgroup to the membrane anchor. Normally glycosylated aminopeptidase N is present in the plasma membrane of the ldl(D) cells. This is also the case for the non-O-glycosylated and defectively N-glycosylated forms. This is in line with the finding that the intracellular transport APN is unaffected by the absence of O-glycosylation or by changes in N-glycosylation as the various glycosylated forms of aminopeptidase N are normally converted from the high-mannose form to the complex glycosylated form. Enzymatic activity is not influenced by the changes in glycosylation.
Collapse
Affiliation(s)
- K Norén
- Biochemistry Laboratory C, Department of Oral Pathology, The Panum Institute, Blegdamsvej 3, Copenhagen N, DK-2200, Denmark
| | | | | | | | | | | |
Collapse
|
19
|
Kundu A, Avalos RT, Sanderson CM, Nayak DP. Transmembrane domain of influenza virus neuraminidase, a type II protein, possesses an apical sorting signal in polarized MDCK cells. J Virol 1996; 70:6508-15. [PMID: 8709291 PMCID: PMC190689 DOI: 10.1128/jvi.70.9.6508-6515.1996] [Citation(s) in RCA: 162] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The influenza virus neuraminidase (NA), a type II transmembrane protein, is directly transported to the apical plasma membrane in polarized MDCK cells. By using deletion mutants and chimeric constructs of influenza virus NA with the human transferrin receptor, a type II basolateral transmembrane protein, we investigated the location of the apical sorting signal of influenza virus NA. When these mutant and chimeric proteins were expressed in stably transfected polarized MDCK cells, the transmembrane domain of NA, and not the cytoplasmic tail, provided a determinant for apical targeting in polarized MDCK cells and this transmembrane signal was sufficient for sorting and transport of the ectodomain of a reporter protein (transferrin receptor) directly to the apical plasma membrane of polarized MDCK cells. In addition, by using differential detergent extraction, we demonstrated that influenza virus NA and the chimeras which were transported to the apical plasma membrane also became insoluble in Triton X-100 but soluble in octylglucoside after extraction from MDCK cells during exocytic transport. These data indicate that the transmembrane domain of NA provides the determinant(s) both for apical transport and for association with Triton X-100-insoluble lipids.
Collapse
Affiliation(s)
- A Kundu
- Jonsson Comprehensive Cancer Center, Department of Microbiology and Immunology, University of California at Los Angeles 90095-1747, USA
| | | | | | | |
Collapse
|