1
|
Ong ZX, Kannan B, Phillips ARJ, Becker DL. Investigation of Staphylococcus aureus Biofilm-Associated Toxin as a Potential Squamous Cell Carcinoma Therapeutic. Microorganisms 2024; 12:293. [PMID: 38399697 PMCID: PMC10891956 DOI: 10.3390/microorganisms12020293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Cancer therapies developed using bacteria and their components have been around since the 19th century. Compared to traditional cancer treatments, the use of bacteria-derived compounds as cancer therapeutics could offer a higher degree of specificity, with minimal off-target effects. Here, we explored the use of soluble bacteria-derived toxins as a potential squamous cell carcinoma (SCC) therapeutic. We optimized a protocol to generate Staphylococcus aureus biofilm-conditioned media (BCM), where soluble bacterial products enriched in the development of biofilms were isolated from a bacterial culture and applied to SCC cell lines. Bioactive components of S. aureus ATCC 29213 (SA29213) BCM display selective toxicity towards cancerous human skin SCC-12 at low doses, while non-cancerous human keratinocyte HaCaT and fibroblast BJ-5ta are minimally affected. SA29213 BCM treatment causes DNA damage to SCC-12 and initiates Caspase 3-dependent-regulated cell death. The use of the novel SA29213 bursa aurealis transposon mutant library led to the identification of S. aureus alpha hemolysin as the main bioactive compound responsible for the observed SCC-12-specific toxicity. The antibody neutralisation of Hla eradicates the cytotoxicity of SA29213 BCM towards SCC-12. Hla displays high SCC-12-specific toxicity, which is exerted primarily through Hla-ADAM10 interaction, Hla oligomerisation, and pore formation. The high target specificity and potential to cause cell death in a controlled manner highlight SA29213 Hla as a good candidate as an alternative SCC therapeutic.
Collapse
Affiliation(s)
- Zi Xin Ong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Skin Research Institute Singapore, Singapore 308232, Singapore
- Nanyang Institute of Technology in Health and Medicine, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore 639798, Singapore
| | - Bavani Kannan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | | | - David L. Becker
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Skin Research Institute Singapore, Singapore 308232, Singapore
- National Skin Centre, Singapore 308205, Singapore
| |
Collapse
|
2
|
Ghanem N, Kanagami N, Matsui T, Takeda K, Kaneko J, Shiraishi Y, Choe CA, Uchikubo‐Kamo T, Shirouzu M, Hashimoto T, Ogawa T, Matsuura T, Huang P, Yokoyama T, Tanaka Y. Chimeric mutants of staphylococcal hemolysin, which act as both one‐component and two‐component hemolysin, created by grafting the stem domain. FEBS J 2022; 289:3505-3520. [DOI: 10.1111/febs.16354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/03/2021] [Accepted: 01/12/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Nouran Ghanem
- Graduate School of Life Sciences Tohoku University Sendai Japan
- Laboratory for Protein Functional and Structural Biology RIKEN Center for Biosystems Dynamics Research Yokohama Japan
| | - Natsuki Kanagami
- Graduate School of Life Sciences Tohoku University Sendai Japan
| | - Takashi Matsui
- Graduate School of Life Sciences Tohoku University Sendai Japan
- School of Science Kitasato University Sagamihara Japan
| | - Kein Takeda
- Department of Microbial Biotechnology Graduate School of Agricultural Science Tohoku University Sendai Japan
| | - Jun Kaneko
- Department of Microbial Biotechnology Graduate School of Agricultural Science Tohoku University Sendai Japan
| | - Yasuyuki Shiraishi
- Pre‐Clinical Research Center Institute of Development, Aging and Cancer Tohoku University Sendai Japan
| | | | - Tomomi Uchikubo‐Kamo
- Laboratory for Protein Functional and Structural Biology RIKEN Center for Biosystems Dynamics Research Yokohama Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology RIKEN Center for Biosystems Dynamics Research Yokohama Japan
| | | | - Tomohisa Ogawa
- Graduate School of Life Sciences Tohoku University Sendai Japan
- Department of Microbial Biotechnology Graduate School of Agricultural Science Tohoku University Sendai Japan
| | - Tomoaki Matsuura
- Department of Biotechnology Graduate School of Engineering Osaka University Suita Japan
| | - Po‐Ssu Huang
- Department of Bioengineering Stanford University CA USA
| | - Takeshi Yokoyama
- Graduate School of Life Sciences Tohoku University Sendai Japan
- Laboratory for Protein Functional and Structural Biology RIKEN Center for Biosystems Dynamics Research Yokohama Japan
| | - Yoshikazu Tanaka
- Graduate School of Life Sciences Tohoku University Sendai Japan
| |
Collapse
|
3
|
Desikan R, Behera A, Maiti PK, Ayappa KG. Using multiscale molecular dynamics simulations to obtain insights into pore forming toxin mechanisms. Methods Enzymol 2021; 649:461-502. [PMID: 33712196 DOI: 10.1016/bs.mie.2021.01.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pore forming toxins (PFTs) are virulent proteins released by several species, including many strains of bacteria, to attack and kill host cells. In this article, we focus on the utility of molecular dynamics (MD) simulations and the molecular insights gleaned from these techniques on the pore forming pathways of PFTs. In addition to all-atom simulations which are widely used, coarse-grained MARTINI models and structure-based models have also been used to study PFTs. Here, the emphasis is on methods and techniques involved while setting up, monitoring, and evaluating properties from MD simulations of PFTs in a membrane environment. We draw from several case studies to illustrate how MD simulations have provided molecular insights into protein-protein and protein-lipid interactions, lipid dynamics, conformational transitions and structures of both the oligomeric intermediates and assembled pore structures.
Collapse
Affiliation(s)
- Rajat Desikan
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | - Amit Behera
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | - Prabal K Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bengaluru, India
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India; Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
4
|
Tran VG, Venkatasubramaniam A, Adhikari RP, Krishnan S, Wang X, Le VTM, Le HN, Vu TTT, Schneider-Smith E, Aman MJ, Diep BA. Efficacy of Active Immunization With Attenuated α-Hemolysin and Panton-Valentine Leukocidin in a Rabbit Model of Staphylococcus aureus Necrotizing Pneumonia. J Infect Dis 2020; 221:267-275. [PMID: 31504652 DOI: 10.1093/infdis/jiz437] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Staphylococcus aureus is a common pathogen causing infections in humans with various degrees of severity, with pneumonia being one of the most severe infections. In as much as staphylococcal pneumonia is a disease driven in large part by α-hemolysin (Hla) and Panton-Valentine leukocidin (PVL), we evaluated whether active immunization with attenuated forms of Hla (HlaH35L/H48L) alone, PVL components (LukS-PVT28F/K97A/S209A and LukF-PVK102A) alone, or combination of all 3 toxoids could prevent lethal challenge in a rabbit model of necrotizing pneumonia caused by the USA300 community-associated methicillin-resistant S. aureus (MRSA). Rabbits vaccinated with Hla toxoid alone or PVL components alone were only partially protected against lethal pneumonia, whereas those vaccinated with all 3 toxoids had 100% protection against lethality. Vaccine-mediated protection correlated with induction of polyclonal antibody response that neutralized not only α-hemolysin and PVL, but also other related toxins, produced by USA300 and other epidemic MRSA clones.
Collapse
Affiliation(s)
- Vuvi G Tran
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco
| | | | | | | | - Xing Wang
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco
| | - Vien T M Le
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco
| | - Hoan N Le
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco
| | - Trang T T Vu
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco
| | - Erika Schneider-Smith
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco
| | - M Javad Aman
- Integrated Biotherapeutics, Inc, Rockville, Maryland
| | - Binh An Diep
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco
| |
Collapse
|
5
|
Desikan R, Maiti PK, Ayappa KG. Predicting interfacial hot-spot residues that stabilize protein-protein interfaces in oligomeric membrane-toxin pores through hydrogen bonds and salt bridges. J Biomol Struct Dyn 2020; 39:20-34. [DOI: 10.1080/07391102.2020.1711806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rajat Desikan
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Prabal K. Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India
| | - K. Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
6
|
Adhikari RP, Thompson CD, Aman MJ, Lee JC. Protective efficacy of a novel alpha hemolysin subunit vaccine (AT62) against Staphylococcus aureus skin and soft tissue infections. Vaccine 2016; 34:6402-6407. [PMID: 27847174 DOI: 10.1016/j.vaccine.2016.09.061] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 08/23/2016] [Accepted: 09/29/2016] [Indexed: 01/17/2023]
Abstract
Alpha hemolysin (Hla) is a pore-forming toxin produced by most Staphylococcus aureus isolates. Hla is reported to play a key role in the pathogenesis of staphylococcal infections, such as skin and soft tissue infection, pneumonia, and lethal peritonitis. This study makes use of a novel recombinant subunit vaccine candidate (AT62) that was rationally designed based on the Hla heptameric crystal structure. AT62 comprises a critical structural domain at the N terminus of Hla, and it has no inherent toxic properties. We evaluated the efficacy of AT62 in protection against surgical wound infection and skin and soft tissue infection. Mice were vaccinated on days 0, 14, and 28 with 20μg AT62 or bovine serum albumin (BSA) mixed with Sigma adjuvant system®. Mice immunized with AT62 produced a robust antibody response against native Hla. In the surgical wound infection model, mice immunized with AT62 and challenged with a USA300 S. aureus strain showed a significantly reduced bacterial burden in the infected tissue compared to animals given BSA. Similarly, mice passively immunized with rabbit IgG to AT62 showed reduced wound infection and tissue damage. Subcutaneous abscess formation was not prevented by immunization with AT62. However, in a skin necrosis infection model, immunization with the AT62 vaccine resulted in smaller lesions and reduced mouse weight loss compared to controls. Although AT62 immunization reduced tissue necrosis, it did not reduce the bacterial burdens in the lesions compared to controls. Our data indicate that AT62 may be a valuable component of a multivalent vaccine against S. aureus.
Collapse
MESH Headings
- Animals
- Antibodies, Bacterial/blood
- Bacterial Load
- Bacterial Toxins/immunology
- Disease Models, Animal
- Female
- Hemolysin Proteins/immunology
- Immunization, Passive
- Immunoglobulin G/blood
- Mice, Inbred BALB C
- Soft Tissue Infections/prevention & control
- Staphylococcal Infections/prevention & control
- Staphylococcal Vaccines/administration & dosage
- Staphylococcal Vaccines/genetics
- Staphylococcal Vaccines/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Wound Infection/prevention & control
Collapse
Affiliation(s)
| | - Christopher D Thompson
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - M Javad Aman
- Integrated Biotherapeutics, Inc., Gaithersburg, MD, USA
| | - Jean C Lee
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Global translation variations in host cells upon attack of lytic and sublytic Staphylococcus aureus α-haemolysin1. Biochem J 2015; 472:83-95. [DOI: 10.1042/bj20150284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 09/11/2015] [Indexed: 02/07/2023]
Abstract
Staphylococcal alpha-hemolysin (AHL) is a clinically relevant toxin, whose effects on host translation are poorly understood. We characterized genome-wide alterations induced at transcriptional and transational levels by lytic and sublytic AHL, pinpointing the importance of translational control during host-pathogen interaction.
Collapse
|
8
|
An intermolecular electrostatic interaction controls the prepore-to-pore transition in a cholesterol-dependent cytolysin. Proc Natl Acad Sci U S A 2015; 112:2204-9. [PMID: 25646411 DOI: 10.1073/pnas.1423754112] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
β-Barrel pore-forming toxins (βPFTs) form an obligatory oligomeric prepore intermediate before the formation of the β-barrel pore. The molecular components that control the critical prepore-to-pore transition remain unknown for βPFTs. Using the archetype βPFT perfringolysin O, we show that E183 of each monomer within the prepore complex forms an intermolecular electrostatic interaction with K336 of the adjacent monomer on completion of the prepore complex. The signal generated throughout the prepore complex by this interaction irrevocably commits it to the formation of the membrane-inserted giant β-barrel pore. This interaction supplies the free energy to overcome the energy barrier (determined here to be ∼ 19 kcal/mol) to the prepore-to-pore transition by the coordinated disruption of a critical interface within each monomer. These studies provide the first insight to our knowledge into the molecular mechanism that controls the prepore-to-pore transition for a βPFT.
Collapse
|
9
|
Tweten RK, Hotze EM, Wade KR. The Unique Molecular Choreography of Giant Pore Formation by the Cholesterol-Dependent Cytolysins of Gram-Positive Bacteria. Annu Rev Microbiol 2015; 69:323-40. [PMID: 26488276 PMCID: PMC7875328 DOI: 10.1146/annurev-micro-091014-104233] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The mechanism by which the cholesterol-dependent cytolysins (CDCs) assemble their giant β-barrel pore in cholesterol-rich membranes has been the subject of intense study in the past two decades. A combination of structural, biophysical, and biochemical analyses has revealed deep insights into the series of complex and highly choreographed secondary and tertiary structural transitions that the CDCs undergo to assemble their β-barrel pore in eukaryotic membranes. Our knowledge of the molecular details of these dramatic structural changes in CDCs has transformed our understanding of how giant pore complexes are assembled and has been critical to our understanding of the mechanisms of other important classes of pore-forming toxins and proteins across the kingdoms of life. Finally, there are tantalizing hints that the CDC pore-forming mechanism is more sophisticated than previously imagined and that some CDCs are employed in pore-independent processes.
Collapse
Affiliation(s)
- Rodney K Tweten
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104;
| | - Eileen M Hotze
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104;
| | - Kristin R Wade
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104;
| |
Collapse
|
10
|
Adhikari RP, Karauzum H, Sarwar J, Abaandou L, Mahmoudieh M, Boroun AR, Vu H, Nguyen T, Devi VS, Shulenin S, Warfield KL, Aman MJ. Novel structurally designed vaccine for S. aureus α-hemolysin: protection against bacteremia and pneumonia. PLoS One 2012; 7:e38567. [PMID: 22701668 PMCID: PMC3368876 DOI: 10.1371/journal.pone.0038567] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/07/2012] [Indexed: 02/05/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a human pathogen associated with skin and soft tissue infections (SSTI) and life threatening sepsis and pneumonia. Efforts to develop effective vaccines against S. aureus have been largely unsuccessful, in part due to the variety of virulence factors produced by this organism. S. aureus alpha-hemolysin (Hla) is a pore-forming toxin expressed by most S. aureus strains and reported to play a key role in the pathogenesis of SSTI and pneumonia. Here we report a novel recombinant subunit vaccine candidate for Hla, rationally designed based on the heptameric crystal structure. This vaccine candidate, denoted AT-62aa, was tested in pneumonia and bacteremia infection models using S. aureus strain Newman and the pandemic strain USA300 (LAC). Significant protection from lethal bacteremia/sepsis and pneumonia was observed upon vaccination with AT-62aa along with a Glucopyranosyl Lipid Adjuvant-Stable Emulsion (GLA-SE) that is currently in clinical trials. Passive transfer of rabbit immunoglobulin against AT-62aa (AT62-IgG) protected mice against intraperitoneal and intranasal challenge with USA300 and produced significant reduction in bacterial burden in blood, spleen, kidney, and lungs. Our Hla-based vaccine is the first to be reported to reduce bacterial dissemination and to provide protection in a sepsis model of S. aureus infection. AT62-IgG and sera from vaccinated mice effectively neutralized the toxin in vitro and AT62-IgG inhibited the formation of Hla heptamers, suggesting antibody-mediated neutralization as the primary mechanism of action. This remarkable efficacy makes this Hla-based vaccine a prime candidate for inclusion in future multivalent S. aureus vaccine. Furthermore, identification of protective epitopes within AT-62aa could lead to novel immunotherapy for S. aureus infection.
Collapse
Affiliation(s)
- Rajan P. Adhikari
- Integrated Biotherapeutics Inc., Gaithersburg, Maryland, United States of America
| | - Hatice Karauzum
- Integrated Biotherapeutics Inc., Gaithersburg, Maryland, United States of America
| | - Jawad Sarwar
- Integrated Biotherapeutics Inc., Gaithersburg, Maryland, United States of America
| | - Laura Abaandou
- Integrated Biotherapeutics Inc., Gaithersburg, Maryland, United States of America
| | - Mahta Mahmoudieh
- Integrated Biotherapeutics Inc., Gaithersburg, Maryland, United States of America
| | - Atefeh R. Boroun
- Integrated Biotherapeutics Inc., Gaithersburg, Maryland, United States of America
| | - Hong Vu
- Integrated Biotherapeutics Inc., Gaithersburg, Maryland, United States of America
| | - Tam Nguyen
- Integrated Biotherapeutics Inc., Gaithersburg, Maryland, United States of America
| | - V. Sathya Devi
- Integrated Biotherapeutics Inc., Gaithersburg, Maryland, United States of America
| | - Sergey Shulenin
- Integrated Biotherapeutics Inc., Gaithersburg, Maryland, United States of America
| | - Kelly L. Warfield
- Integrated Biotherapeutics Inc., Gaithersburg, Maryland, United States of America
| | - M. Javad Aman
- Integrated Biotherapeutics Inc., Gaithersburg, Maryland, United States of America
- * E-mail:
| |
Collapse
|
11
|
Crystal structure of the octameric pore of staphylococcal γ-hemolysin reveals the β-barrel pore formation mechanism by two components. Proc Natl Acad Sci U S A 2011; 108:17314-9. [PMID: 21969538 DOI: 10.1073/pnas.1110402108] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Staphylococcal γ-hemolysin is a bicomponent pore-forming toxin composed of LukF and Hlg2. These proteins are expressed as water-soluble monomers and then assemble into the oligomeric pore form on the target cell. Here, we report the crystal structure of the octameric pore form of γ-hemolysin at 2.5 Å resolution, which is the first high-resolution structure of a β-barrel transmembrane protein composed of two proteins reported to date. The octameric assembly consists of four molecules of LukF and Hlg2 located alternately in a circular pattern, which explains the biochemical data accumulated over the past two decades. The structure, in combination with the monomeric forms, demonstrates the elaborate molecular machinery involved in pore formation by two different molecules, in which interprotomer electrostatic interactions using loops connecting β2 and β3 (loop A: Asp43-Lys48 of LukF and Lys37-Lys43 of Hlg2) play pivotal roles as the structural determinants for assembly through unwinding of the N-terminal β-strands (amino-latch) of the adjacent protomer, releasing the transmembrane stem domain folded into a β-sheet in the monomer (prestem), and interaction with the adjacent protomer.
Collapse
|
12
|
Crystal structure of the Vibrio cholerae cytolysin heptamer reveals common features among disparate pore-forming toxins. Proc Natl Acad Sci U S A 2011; 108:7385-90. [PMID: 21502531 DOI: 10.1073/pnas.1017442108] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pore-forming toxins (PFTs) are potent cytolytic agents secreted by pathogenic bacteria that protect microbes against the cell-mediated immune system (by targeting phagocytic cells), disrupt epithelial barriers, and liberate materials necessary to sustain growth and colonization. Produced by gram-positive and gram-negative bacteria alike, PFTs are released as water-soluble monomeric or dimeric species, bind specifically to target membranes, and assemble transmembrane channels leading to cell damage and/or lysis. Structural and biophysical analyses of individual steps in the assembly pathway are essential to fully understanding the dynamic process of channel formation. To work toward this goal, we solved by X-ray diffraction the 2.9-Å structure of the 450-kDa heptameric Vibrio cholerae cytolysin (VCC) toxin purified and crystallized in the presence of detergent. This structure, together with our previously determined 2.3-Å structure of the VCC water-soluble monomer, reveals in detail the architectural changes that occur within the channel region and accessory lectin domains during pore formation including substantial rearrangements of hydrogen-bonding networks in the pore-forming amphipathic loops. Interestingly, a ring of tryptophan residues forms the narrowest constriction in the transmembrane channel reminiscent of the phenylalanine clamp identified in anthrax protective antigen [Krantz BA, et al. (2005) Science 309:777-781]. Our work provides an example of a β-barrel PFT (β-PFT) for which soluble and assembled structures are available at high-resolution, providing a template for investigating intermediate steps in assembly.
Collapse
|
13
|
Vécsey-Semjén B, Kwak YK, Högbom M, Möllby R. Channel-forming abilities of spontaneously occurring alpha-toxin fragments from Staphylococcus aureus. J Membr Biol 2010; 234:171-81. [PMID: 20339841 DOI: 10.1007/s00232-010-9244-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 03/04/2010] [Indexed: 10/19/2022]
Abstract
Pore formation by four spontaneously occurring alpha-toxin fragments from Staphylococcus aureus were investigated on liposome and erythrocyte membranes. All the isolated fragments bound to the different types of membranes and formed transmembrane channels in egg-phosphatidyl glycerol vesicles. Fragments of amino acids (aa) 9-293 (32 kD) and aa 13-293 (31 kD) formed heptamers, similar to the intact toxin, while the aa 72-293 (26 kD) fragment formed heptamers, octamers, and nonamers, as judged by gel electrophoresis of the liposomes. All isolated fragments induced release of chloride ions from large unilamellar vesicles. Channel formation was promoted by acidic pH and negatively charged lipid head groups. Also, the fragments' hemolytic activity was strongly decreased under neutral conditions but could be partially restored by acidification of the medium. We paid special attention to the 26-kD fragment, which, despite the loss of about one-fourth of the N-terminal part of alpha-toxin, did form transmembrane channels in liposomes. In light of the available data on channel formation by alpha-toxin, our results suggest that proteolytic degradation might be better tolerated than previously reported. Channel opening could be inhibited and open channels could be closed by zinc in the medium. Channel closure could be reversed by addition of EDTA. In contrast, digestion at the C terminus led to premature oligomerization and resulted in species with strongly diminished activity and dependent on protonation.
Collapse
Affiliation(s)
- Beatrix Vécsey-Semjén
- House of Science, Alba Nova University Centre, Royal Institute of Technology, 106 91, Stockholm, Sweden.
| | | | | | | |
Collapse
|
14
|
The H35A mutated alpha-toxin interferes with cytotoxicity of staphylococcal alpha-toxin. Infect Immun 2008; 77:977-83. [PMID: 19103771 DOI: 10.1128/iai.00920-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcal alpha-toxin is an important virulence factor for Staphylococcus aureus to cause severe infections. In this study, we explored whether the toxoid of alpha-toxin may be utilized to block the toxicity of wild-type alpha-toxin. We created a series of H35A mutated alpha-toxin expression strains and revealed that the H35A mutation eliminates the activity of alpha-toxin using a human lung epithelial cell line (A549). More importantly, we found that either the pretreatment or simultaneous treatment of the epithelial cells with alpha-toxin-H35A completely disrupted the cytotoxicity of alpha-toxin. Specifically, we demonstrated that alpha-toxin-H35A can effectively interfere with the pore formation and the internalization of alpha-toxin using cytotoxicity and immunofluorescence assays. In addition, we found that the removal of either the 30-amino-acid (aa) or 99-aa C-terminal region of alpha-toxin-H35A reactivated its cytotoxicity, indicating that interactions between the alanine residue at position 35 and these C-terminal regions may be associated with interrupting the toxic activity of alpha-toxin-H35A. Taken together, these results suggest that the alpha-toxin-H35A protein may be developed as a potential alternative therapeutic agent for treating early stages of S. aureus infections.
Collapse
|
15
|
Promdonkoy B, Ellar DJ. Structure-function relationships of a membrane pore forming toxin revealed by reversion mutagenesis. Mol Membr Biol 2006; 22:327-37. [PMID: 16154904 DOI: 10.1080/09687860500166192] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Cyt2Aa1 is a haemolytic membrane pore forming toxin produced by Bacillus thuringiensis subsp. kyushuensis. To investigate membrane pore formation by this toxin, second-site revertants of an inactive mutant toxin Cyt2Aa1-I150A were generated by random mutagenesis using error-prone PCR. The decrease in side chain length caused by the replacement of isoleucine by alanine at position 150 in the alphaD-beta4 loop results in the loss of important van der Waals contacts that exist in the native protein between I150 and K199 and L203 on alphaE. 28 independent revertants of I150A were obtained and their relative toxicity can be explained by the position of the residue in the structure and the effect of the mutation on side-chain interactions. Analysis of these revertants revealed that residues on alphaA, alphaB, alphaC, alphaD and the loops between alphaA and alphaB, alphaD and beta5, beta6 and beta7 are important in pore formation. These residues are on the surface of the molecule suggesting that they may participate in membrane binding and toxin oligomerization. Changing the properties of the amino acid side-chains of these residues could affect the conformational changes required to transform the water-soluble toxin into the membrane insertion competent state.
Collapse
Affiliation(s)
- Boonhiang Promdonkoy
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Klong Luang, Pathumthani, Thailand.
| | | |
Collapse
|
16
|
Buchan A, Ornston LN. When coupled to natural transformation in Acinetobacter sp. strain ADP1, PCR mutagenesis is made less random by mismatch repair. Appl Environ Microbiol 2005; 71:7610-2. [PMID: 16269815 PMCID: PMC1287675 DOI: 10.1128/aem.71.11.7610-7612.2005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Random PCR mutagenesis is a powerful tool for structure-function analysis of targeted proteins, especially when coupled with DNA integration through natural transformation followed by selection for loss of function. The technique has been applied successfully to structure-function analysis of transcriptional regulators, enzymes, and transporters in Acinetobacter sp. strain ADP1. However, the mismatch repair system prevents the full spectrum of nucleotide substitutions that may be selected at the level of protein function from being recovered. This barrier may be overcome by introducing PCR-mutagenized genes into strains in which the corresponding genes have been deleted.
Collapse
Affiliation(s)
- Alison Buchan
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
17
|
Jayasinghe L, Miles G, Bayley H. Role of the amino latch of staphylococcal alpha-hemolysin in pore formation: a co-operative interaction between the N terminus and position 217. J Biol Chem 2005; 281:2195-204. [PMID: 16227199 DOI: 10.1074/jbc.m510841200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Staphylococcal alpha-hemolysin (alphaHL) is a beta barrel pore-forming toxin that is secreted by the bacterium as a water-soluble monomeric protein. Upon binding to susceptible cells, alphaHL assembles via an inactive prepore to form a water-filled homoheptameric transmembrane pore. The N terminus of alphaHL, which in the crystal structure of the fully assembled pore forms a latch between adjacent subunits, has been thought to play a vital role in the prepore to pore conversion. For example, the deletion of two N-terminal residues produced a completely inactive protein that was arrested in assembly at the prepore stage. In the present study, we have re-examined assembly with a comprehensive set of truncation mutants. Surprisingly, we found that after truncation of up to 17 amino acids, the ability of alphaHL to form functional pores was diminished, but still substantial. We then discovered that the mutation Ser(217) --> Asn, which was present in our original set of truncations but not in the new ones, promotes complete inactivation upon truncation of the N terminus. Therefore, the N terminus of alphaHL cannot be critical for the prepore to pore transformation as previously thought. Residue 217 is involved in the assembly process and must interact indirectly with the distant N terminus during the last step in pore formation. In addition, we provide evidence that an intact N terminus prevents the premature oligomerization of alphaHL monomers in solution.
Collapse
Affiliation(s)
- Lakmal Jayasinghe
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | | | | |
Collapse
|
18
|
Affiliation(s)
- Rodney K Tweten
- Department of Microbiology and Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, 73104, USA.
| |
Collapse
|
19
|
Heuck AP, Tweten RK, Johnson AE. Beta-barrel pore-forming toxins: intriguing dimorphic proteins. Biochemistry 2001; 40:9065-73. [PMID: 11478872 DOI: 10.1021/bi0155394] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- A P Heuck
- Department of Medical Biochemistry and Genetics, Texas A&M University System Health Science Center, College Station, Texas 77843-1114, USA
| | | | | |
Collapse
|
20
|
Abstract
In view of the recent studies on the CDCs, a reasonable schematic of the stages leading to membrane insertion of the CDCs can be assembled. As shown in Fig. 3, we propose that the CDC first binds to the membrane as a monomer. These monomers then diffuse laterally on the membrane surface to encounter other monomers or incomplete oligomeric complexes. Presumably, once the requisite oligomer size is reached, the prepore complex is converted into the pore complex and a large membrane channel is formed. During the conversion of the prepore complex to the pore complex, we predict that the TMHs of the subunits in the prepore complex insert into the bilayer in a concerted fashion to form the large transmembrane beta-barrel, although this still remains to be confirmed experimentally. Many intriguing problems concerning the cytolytic mechanism of the CDCs remain unsolved. The nature of the initial interaction of the CDC monomer with the membrane is currently one of the most controversial questions concerning the CDC mechanism. Is cholesterol involved in this interaction, as previously assumed, or do specific receptors exist for these toxins that remain to be discovered? Also, the trigger for membrane insertion and the regions of these toxins that facilitate the [figure: see text] interaction of the monomers during prepore complex formation are unknown. In addition, the temporal sequence of the multiple structural changes that accompany the conversion of the soluble CDC monomer into a membrane-inserted oligomer have yet to be defined or characterized kinetically.
Collapse
Affiliation(s)
- R K Tweten
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA
| | | | | |
Collapse
|
21
|
Valeva A, Schnabel R, Walev I, Boukhallouk F, Bhakdi S, Palmer M. Membrane insertion of the heptameric staphylococcal alpha-toxin pore. A domino-like structural transition that is allosterically modulated by the target cell membrane. J Biol Chem 2001; 276:14835-41. [PMID: 11279048 DOI: 10.1074/jbc.m100301200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Staphylococcal alpha-toxin forms heptameric pores on eukaryotic cells. After binding to the cell membrane in its monomeric form, the toxin first assembles into a heptameric pre-pore. Subsequently, the pre-pore transforms into the final pore by membrane insertion of an amphipathic beta-barrel, which comprises the "central loop" domains of all heptamer subunits. The process of membrane insertion was analyzed here using a set of functionally altered toxin mutants. The results show that insertion may be initiated within an individual protomer when its NH2 terminus activates its central loop. The activated state is then shared with the central loops of the residual heptamer subunits, which results in cooperative membrane penetration. This cooperation of the central loops commences while these are still remote from the lipid bilayer. Nevertheless, it is subject to modulation by the target membrane, which therefore acts across a distance much like an allosteric effector. However, while allosteric transitions usually are reversible, membrane insertion of alpha-toxin is an irreversible event, and we show here that it can proceed to completion in a domino-like fashion when triggered by as little as a single foreign atom within the entire heptamer.
Collapse
Affiliation(s)
- A Valeva
- Institute of Medical Microbiology and Hygiene, University of Mainz, Obere Zahlbacher Strasse 67, D55101 Mainz, Germany.
| | | | | | | | | | | |
Collapse
|
22
|
Raja SM, Rawat SS, Chattopadhyay A, Lala AK. Localization and environment of tryptophans in soluble and membrane-bound states of a pore-forming toxin from Staphylococcus aureus. Biophys J 1999; 76:1469-79. [PMID: 10049328 PMCID: PMC1300124 DOI: 10.1016/s0006-3495(99)77307-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The location and environment of tryptophans in the soluble and membrane-bound forms of Staphylococcus aureus alpha-toxin were monitored using intrinsic tryptophan fluorescence. Fluorescence quenching of the toxin monomer in solution indicated varying degrees of tryptophan burial within the protein interior. N-Bromosuccinimide readily abolished 80% of the fluorescence in solution. The residual fluorescence of the modified toxin showed a blue-shifted emission maximum, a longer fluorescence lifetime as compared to the unmodified and membrane-bound alpha-toxin, and a 5- to 6-nm red edge excitation shift, all indicating a restricted tryptophan environment and deeply buried tryptophans. In the membrane-bound form, the fluorescence of alpha-toxin was quenched by iodide, indicating a conformational change leading to exposure of some tryptophans. A shorter average lifetime of tryptophans in the membrane-bound alpha-toxin as compared to the native toxin supported the conclusions based on iodide quenching of the membrane-bound toxin. Fluorescence quenching of membrane-bound alpha-toxin using brominated and spin-labeled fatty acids showed no quenching of fluorescence using brominated lipids. However, significant quenching was observed using 5- and 12-doxyl stearic acids. An average depth calculation using the parallax method indicated that the doxyl-quenchable tryptophans are located at an average depth of 10 A from the center of the bilayer close to the membrane interface. This was found to be in striking agreement with the recently described structure of the membrane-bound form of alpha-toxin.
Collapse
Affiliation(s)
- S M Raja
- Biomembrane Laboratory, Department of Chemistry, Indian Institute of Technology, Bombay, Powai, Mumbai 400 076, India
| | | | | | | |
Collapse
|
23
|
Gouaux E, Hobaugh M, Song L. alpha-Hemolysin, gamma-hemolysin, and leukocidin from Staphylococcus aureus: distant in sequence but similar in structure. Protein Sci 1997; 6:2631-5. [PMID: 9416613 PMCID: PMC2143621 DOI: 10.1002/pro.5560061216] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
alpha-Hemolysin from Staphylococcus aureus assembles from a water-soluble, monomeric species to a membrane-bound heptamer on the surface of target cells, creating water-filled channels that lead to cell death and lysis. Staphylococcus aureus also produces the gamma-hemolysin and leukocidin toxins, which function as two component toxins in the disruption and lysis of erythrocytes and leukocytes. Analysis of the aligned sequences of alpha-hemolysin, gamma-hemolysin, and leukocidin in the context of the alpha-hemolysin heptamer structure supports the conclusion that even though the level of sequence identity between alpha-hemolysin and the gamma-hemolysin and leukocidin toxins is in the so-called twilight zone, the three-dimensional structures of the protomers are probably conserved. By analogy with alpha-hemolysin, gamma-hemolysin and leukocidin may also form oligomeric, transmembrane channels in which an antiparallel beta-barrel constitutes the primary membrane-embedded domain.
Collapse
Affiliation(s)
- E Gouaux
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA.
| | | | | |
Collapse
|
24
|
Braha O, Walker B, Cheley S, Kasianowicz JJ, Song L, Gouaux JE, Bayley H. Designed protein pores as components for biosensors. CHEMISTRY & BIOLOGY 1997; 4:497-505. [PMID: 9263637 DOI: 10.1016/s1074-5521(97)90321-5] [Citation(s) in RCA: 256] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND There is a pressing need for new sensors that can detect a variety of analytes, ranging from simple ions to complex compounds and even microorganisms. The devices should offer sensitivity, speed, reversibility and selectivity. Given these criteria, protein pores, remodeled so that their transmembrane conductances are modulated by the association of specific analytes, are excellent prospects as components of biosensors. RESULTS Structure-based design and a separation method that employs targeted chemical modification have been used to obtain a heteromeric form of the bacterial pore-forming protein staphylococcal alpha-hemolysin, in which one of the seven subunits contains a binding site for a divalent metal ion, M(II), which serves as a prototypic analyte. The single-channel current of the heteromer in planar bilayers is modulated by nanomolar Zn(II). Other M(II)s modulate the current and produce characteristic signatures. In addition, heteromers containing more than one mutant subunit exhibit distinct responses to M(II)s Hence, a large collection of responsive pores can be generated through subunit diversity and combinatorial assembly. CONCLUSIONS Engineered pores have several advantages as potential sensor elements: sensitivity is in the nanomolar range; analyte binding is rapid (diffusion limited in some cases) and reversible; strictly selective binding is not required because single-channel recordings are rich in information; and for a particular analyte, the dissociation rate constant, the extent of channel block and the voltage-dependence of these parameters are distinguishing, while the frequency of partial channel block reflects the analyte concentration. A single sensor element might, therefore, be used to quantitate more than one analyte at once. The approach described here can be generalized for additional analytes.
Collapse
Affiliation(s)
- O Braha
- Department of Medical Biochemistry and Genetics, Texas A&M Health Science Center, College Station 77843-1114, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Valeva A, Pongs J, Bhakdi S, Palmer M. Staphylococcal alpha-toxin: the role of the N-terminus in formation of the heptameric pore -- a fluorescence study. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1325:281-6. [PMID: 9168153 DOI: 10.1016/s0005-2736(96)00266-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Staphylococcus aureus alpha-toxin forms heptameric pores on eukaryotic cell membranes. Assembly of the heptamer precedes formation of the transmembrane pore. The latter event depends on a conformational change that drives a centrally located stretch of 15 amino acid residues into the lipid bilayer. A second region of the molecule that has been implicated in the pre-pore to pore transition is the far N-terminus. Here, we used fluorescently labeled single cysteine replacement mutants to analyze the functional role of the far N-terminus of alpha-toxin. Pyrene attached to mutants S3C, I5C and 17C forms excimers within the toxin pore complex. This indicates that the distance of adjacent N-termini is less than 10-12 Angstrom. By labeling with the polarity-sensitive fluorophore acrylodan, pore formation is shown to cause distinct environmental changes in the N-terminus. Removal of membrane lipids from the labeled heptamers has no effect upon the acrylodan spectrum, indicating lack of direct contact of the N-terminus with the target membrane. The environmental alterations to the N-terminus are thus due to altered protein structure only. Both acrylodan emission shifts and pyrene excimers were shown to be absent in toxin heptamers that were arrested at the pre-pore stage. Therefore, while not being directly involved in membrane penetration, the N-termini of the alpha-toxin heptamer subunits move into immediate mutual proximity concomitantly with transmembrane pore formation.
Collapse
Affiliation(s)
- A Valeva
- Institute of Medical Microbiology, University of Mainz, Germany
| | | | | | | |
Collapse
|
26
|
Lesieur C, Vécsey-Semjén B, Abrami L, Fivaz M, Gisou van der Goot F. Membrane insertion: The strategies of toxins (review). Mol Membr Biol 1997; 14:45-64. [PMID: 9253764 DOI: 10.3109/09687689709068435] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Protein toxins are soluble molecules secreted by pathogenic bacteria which act at the plasma membrane or in the cytoplasm of target cells. They must therefore interact with a membrane at some point, either to modify its permeability properties or to reach the cytoplasm. As a consequence, toxins have the built-in capacity to adopt two generally incompatible states: water-soluble and transmembrane. Irrespective of their origin or function, the membrane interacting domain of most protein toxins seems to have adopted one out of two structural strategies to be able to undergo this metamorphosis. In the first group of toxins the membrane interacting domain has the structural characteristics of most known membrane proteins, i.e. it contains hydrophobic and amphipathic alpha-helices long enough to span a membrane. To render this 'membrane protein' water-soluble during the initial part of its life the hydrophobic helices are sheltered from the solvent by a barrel of amphipathic helices. In the second group of toxins the opposite strategy is adopted. The toxin is an intrinsically soluble protein and is composed mainly of beta-structure. These toxins manage to become membrane proteins by oligomerizing in order to combine amphipathic beta-sheet to generate sufficient hydrophobicity for membrane insertion to occur. Toxins from this latter group are thought to perforate the lipid bilayer as a beta-barrel such as has been described for bacterial porins, and has recently been shown for staphylococcal alpha-toxin. The two groups of toxins will be described in detail through the presentation of examples. Particular attention will be given to the beta-structure toxins, since four new structures have been solved over the past year: the staphyloccocal alpha-toxin channel, the anthrax protective antigen protoxin, the anthrax protective antigen-soluble heptamer and the CytB protoxin. Structural similarities with mammalian proteins implicated in the immune response and apoptosis will be discussed. Peptide toxins will not be covered in this review.
Collapse
Affiliation(s)
- C Lesieur
- Département de Biochimie, Faculté des Sciences, Genève, Switzerland
| | | | | | | | | |
Collapse
|
27
|
Russo MJ, Bayley H, Toner M. Reversible permeabilization of plasma membranes with an engineered switchable pore. Nat Biotechnol 1997; 15:278-82. [PMID: 9062930 DOI: 10.1038/nbt0397-278] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
By using an engineered, self-assembling, proteinaceous, 2-nm pore equipped with a metal-actuated switch, a technique to reversibly permeabilize the plasma membrane to small molecules (approximately 1000 Da) has been developed. We have demonstrated the dose-dependent permeabilization of fibroblasts by pores designed to be blocked and unblocked by the addition and removal of microM concentrations of Zn2+. Further, we have shown that the activity of the switch allows permeabilized cells to maintain viability and ultrastructural integrity following the unconstrained flux of small molecules. This ability to control the transmembrane influx and efflux of molecules and thereby vary the intracellular environment yet maintain cell viability will impact an array of biological and medical problems.
Collapse
Affiliation(s)
- M J Russo
- Center for Engineering in Medicine, Massachusetts General Hospital, Boston 02114, USA
| | | | | |
Collapse
|
28
|
Vécsey-Semjén B, Lesieur C, Möllby R, van der Goot FG. Conformational changes due to membrane binding and channel formation by staphylococcal alpha-toxin. J Biol Chem 1997; 272:5709-17. [PMID: 9038182 DOI: 10.1074/jbc.272.9.5709] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Conformational changes occurring upon membrane binding and subsequent insertion of staphylococcal alpha-toxin were studied using complementary spectroscopic techniques. Experimental conditions were established where binding could be uncoupled from membrane insertion but insertion and channel formation seemed to be concomitant. Binding led to changes in tertiary structure as witnessed by an increase in tryptophan fluorescence, a red shift of the tryptophan maximum emission wavelength, and a change in the near UV CD spectrum. In contrast to what was observed for the soluble form of the toxin, 78% of the tryptophan residues in the membrane-bound form were accessible to the hydrophilic quencher KI. At this stage, the tryptophan residues were not in the immediate vicinity of the lipid bilayer. Upon membrane insertion, a second conformational change occurred resulting in a dramatic drop of the near UV CD signal but an increase of the far UV signal. Tryptophan residues were no longer accessible to KI but could be quenched by brominated lipids. In the light of the available data on channel formation by alpha-toxin, our results suggest that the tryptophan residues might be dipping into the membrane in order to anchor the extramembranous part of the channel to the lipid bilayer.
Collapse
Affiliation(s)
- B Vécsey-Semjén
- Département de Biochimie, Université de Genève, 30 quai E. Ansermet, 1211 Genève, Switzerland
| | | | | | | |
Collapse
|
29
|
Panchal RG, Cusack E, Cheley S, Bayley H. Tumor protease-activated, pore-forming toxins from a combinatorial library. Nat Biotechnol 1996; 14:852-6. [PMID: 9631009 DOI: 10.1038/nbt0796-852] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We describe a library of two-chain molecular complementation mutants of staphylococcal alpha-hemolysin that features a combinatorial cassette encoding thousands of protease recognition sites in the central pore-forming domain. The cassette is flanked by a peptide extension that inactivates the protein. We screened the library to identify alpha-hemolysins that are highly susceptible to activation by cathepsin B, a protease that is secreted by certain metastatic tumor cells. Toxins obtained by this procedure should be useful for the permeabilization of malignant cells thereby leading directly to cell death or permitting destruction of the cells with drugs that are normally membrane impermeant.
Collapse
Affiliation(s)
- R G Panchal
- Worcester Foundation for Biomedical Research, Shrewsbury, MA 01545, USA
| | | | | | | |
Collapse
|
30
|
Vécsey-Semjén B, Möllby R, van der Goot FG. Partial C-terminal unfolding is required for channel formation by staphylococcal alpha-toxin. J Biol Chem 1996; 271:8655-60. [PMID: 8621496 DOI: 10.1074/jbc.271.15.8655] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The pore-forming alpha-toxin from Staphylococcus aureus is secreted as a soluble monomeric protein. In order to form a transmembrane channel, the protein has to undergo oligomerization and membrane insertion. Previous studies have shown that channel formation is favored by acidic pH. We have analyzed the effect of pH on the kinetics of channel formation as well as on the conformation of the toxin. Using a variety of spectroscopic probes for protein structure, we have shown that alpha-toxin unfolded upon acidification and that the unfolding process occurred in at least three steps. The various steps could be selectively affected by modifying the salt concentration or the temperature. This unfolding was, however, only partial as the secondary structure remained native-like as witnessed by far UV CD measurements. The first unfolding step, corresponding to a region of the C-terminal half of the toxin, is of particular importance as it coincided with the exposure of hydrophobic patches on the surface of the protein as well as with the onset of channel formation. Our observations strongly suggest that transition of the C-terminal half of alpha-toxin to a molten globule-like state is required for channel formation.
Collapse
Affiliation(s)
- B Vécsey-Semjén
- Département de Biochimie, Université de Genève, 30 quai E. Ansermet, 1211 Genève, Switzerland
| | | | | |
Collapse
|
31
|
Walker B, Bayley H. Key residues for membrane binding, oligomerization, and pore forming activity of staphylococcal alpha-hemolysin identified by cysteine scanning mutagenesis and targeted chemical modification. J Biol Chem 1995; 270:23065-71. [PMID: 7559447 DOI: 10.1074/jbc.270.39.23065] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The alpha-hemolysin (alpha HL) polypeptide is secreted by Staphylococcus aureus as a water-soluble monomer that assembles into lipid bilayers to form cylindrical heptameric pores 1-2 nm in effective internal diameter. We have individually replaced each charged residue (79 of 293 amino acids) and four neutral residues in alpha HL with cysteine, which is not found in the wild-type protein. The properties of these mutants have been examined before and after modification with the 450-Da dianionic sulfhydryl reagent 4-acetamido-4'-((iodoacetyl)amino)stilbene-2,2'-disulfonate (IASD). This modification was highly informative as 28 of 83 modified polypeptides showed substantially reduced pore forming activity on rabbit erythrocytes (rRBC), while only five of the unmodified cysteine mutants were markedly affected. Through detailed examination of the phenotypes of the mutant and modified hemolysins, we have pinpointed residues and regions in the alpha HL polypeptide chain that are important for binding to rRBC, oligomer formation and pore activity. Residues in both the N-terminal (Arg-66 and Glu-70) and C-terminal (Arg-200, Asp-254, Asp-255, and Asp-276) thirds of the protein are implicated in binding to cells. The His-35 replacement mutant modified with IASD was the only polypeptide in this study that failed to form SDS-resistant oligomers on rRBC. Altered hemolysins that formed oligomers but failed to lyse rRBC represented the most common defect. These alterations were clustered in the central glycine-rich loop, which has previously been implicated as a component of the lumen of the membrane-spanning channel, and in the regions flanking the loop. Alterations in mutant and modified hemolysins with the same defect were also scattered between the N terminus and His-48, in keeping with previous suggestions that an N-terminal segment and the central loop cooperate in the final step of pore assembly.
Collapse
Affiliation(s)
- B Walker
- Worcester Foundation for Biomedical Research, Shrewsbury, Massachusetts 01545, USA
| | | |
Collapse
|