1
|
Mohamed KA, Kruf S, Büll C. Putting a cap on the glycome: Dissecting human sialyltransferase functions. Carbohydr Res 2024; 544:109242. [PMID: 39167930 DOI: 10.1016/j.carres.2024.109242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Human glycans are capped with sialic acids and these nine-carbon sugars mediate many of the biological functions and interactions of glycans. Structurally diverse sialic acid caps mark human cells as self and they form the ligands for the Siglec immune receptors and other glycan-binding proteins. Sialic acids enable host interactions with the human microbiome and many human pathogens utilize sialic acids to infect host cells. Alterations in sialic acid-carrying glycans, sialoglycans, can be found in every major human disease including inflammatory conditions and cancer. Twenty sialyltransferase family members in the Golgi apparatus of human cells transfer sialic acids to distinct glycans and glycoconjugates. Sialyltransferases catalyze specific reactions to form unique sialoglycans or they have shared functions where multiple family members generate the same sialoglycan product. Moreover, some sialyltransferases compete for the same glycan substrate, but create different sialic acid caps. The redundant and competing functions make it difficult to understand the individual roles of the human sialyltransferases in biology and to reveal the specific contributions to pathobiological processes. Recent insights hint towards the existence of biosynthetic rules formed by the individual functions of sialyltransferases, their interactions, and cues from the local Golgi environment that coordinate sialoglycan biosynthesis. In this review, we discuss the current structural and functional understanding of the human sialyltransferase family and we review recent technological advances that enable the dissection of individual sialyltransferase activities.
Collapse
Affiliation(s)
- Khadra A Mohamed
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands
| | - Stijn Kruf
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands
| | - Christian Büll
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands.
| |
Collapse
|
2
|
Bennett AR, Mair I, Muir A, Smith H, Logunova L, Wolfenden A, Fenn J, Lowe AE, Bradley JE, Else KJ, Thornton DJ. Sex drives colonic mucin sialylation in wild mice. Sci Rep 2024; 14:6954. [PMID: 38521809 PMCID: PMC10960830 DOI: 10.1038/s41598-024-57249-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/15/2024] [Indexed: 03/25/2024] Open
Abstract
Mucin protein glycosylation is important in determining biological properties of mucus gels, which form protective barriers at mucosal surfaces of the body such as the intestine. Ecological factors including: age, sex, and diet can change mucus barrier properties by modulating mucin glycosylation. However, as our understanding stems from controlled laboratory studies in house mice, the combined influence of ecological factors on mucin glycosylation in real-world contexts remains limited. In this study, we used histological staining with 'Alcian Blue, Periodic Acid, Schiff's' and 'High-Iron diamine' to assess the acidic nature of mucins stored within goblet cells of the intestine, in a wild mouse population (Mus musculus). Using statistical models, we identified sex as among the most influential ecological factors determining the acidity of intestinal mucin glycans in wild mice. Our data from wild mice and experiments using laboratory mice suggest estrogen signalling associates with an increase in the relative abundance of sialylated mucins. Thus, estrogen signalling may underpin sex differences observed in the colonic mucus of wild and laboratory mice. These findings highlight the significant influence of ecological parameters on mucosal barrier sites and the complementary role of wild populations in augmenting standard laboratory studies in the advancement of mucus biology.
Collapse
Affiliation(s)
- Alexander R Bennett
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK.
| | - Iris Mair
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Andrew Muir
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Hannah Smith
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Larisa Logunova
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Andrew Wolfenden
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Jonathan Fenn
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Ann E Lowe
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Kathryn J Else
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK.
| | - David J Thornton
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK.
| |
Collapse
|
3
|
Hatanaka R, Hane M, Hayakawa K, Morishita S, Ohno S, Yamaguchi Y, Wu D, Kitajima K, Sato C. Identification of a buried β-strand as a novel disease-related motif in the human polysialyltransferases. J Biol Chem 2024; 300:105564. [PMID: 38103644 PMCID: PMC10828065 DOI: 10.1016/j.jbc.2023.105564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/26/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
The polysialyltransferases ST8SIA2 and ST8SIA4 and their product, polysialic acid (polySia), are known to be related to cancers and mental disorders. ST8SIA2 and ST8SIA4 have conserved amino acid (AA) sequence motifs essential for the synthesis of the polySia structures on the neural cell adhesion molecule. To search for a new motif in the polysialyltransferases, we adopted the in silico Individual Meta Random Forest program that can predict disease-related AA substitutions. The Individual Meta Random Forest program predicted a new eight-amino-acids sequence motif consisting of highly pathogenic AA residues, thus designated as the pathogenic (P) motif. A series of alanine point mutation experiments in the pathogenic motif (P motif) showed that most P motif mutants lost the polysialylation activity without changing the proper enzyme expression levels or localization in the Golgi. In addition, we evaluated the enzyme stability of the P motif mutants using newly established calculations of mutation energy, demonstrating that the subtle change of the conformational energy regulates the activity. In the AlphaFold2 model, we found that the P motif was a buried β-strand underneath the known surface motifs unique to ST8SIA2 and ST8SIA4. Taken together, the P motif is a novel buried β-strand that regulates the full activity of polysialyltransferases from the inside of the molecule.
Collapse
Affiliation(s)
- Rina Hatanaka
- Integrated Glyco-BioMedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan; Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Masaya Hane
- Integrated Glyco-BioMedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan; Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kaito Hayakawa
- Integrated Glyco-BioMedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan; Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Sayo Morishita
- Integrated Glyco-BioMedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan; Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Shiho Ohno
- Division of Structural Biology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yoshiki Yamaguchi
- Division of Structural Biology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Di Wu
- Integrated Glyco-BioMedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan; Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Ken Kitajima
- Integrated Glyco-BioMedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan; Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Chihiro Sato
- Integrated Glyco-BioMedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan; Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
| |
Collapse
|
4
|
Lu B, Liao SM, Liu XH, Liang SJ, Huang J, Lin M, Meng L, Wang QY, Huang RB, Zhou GP. The NMR studies of CMP inhibition of polysialylation. J Enzyme Inhib Med Chem 2023; 38:2248411. [PMID: 37615033 PMCID: PMC10453990 DOI: 10.1080/14756366.2023.2248411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/22/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
The overexpression of polysialic acid (polySia) on neural cell adhesion molecules (NCAM) promotes hypersialylation, and thus benefits cancer cell migration and invasion. It has been proposed that the binding between the polysialyltransferase domain (PSTD) and CMP-Sia needs to be inhibited in order to block the effects of hypersialylation. In this study, CMP was confirmed to be a competitive inhibitor of polysialyltransferases (polySTs) in the presence of CMP-Sia and triSia (oligosialic acid trimer) based on the interactional features between molecules. The further NMR analysis suggested that polysialylation could be partially inhibited when CMP-Sia and polySia co-exist in solution. In addition, an unexpecting finding is that CMP-Sia plays a role in reducing the gathering extent of polySia chains on the PSTD, and may benefit for the inhibition of polysialylation. The findings in this study may provide new insight into the optimal design of the drug and inhibitor for cancer treatment.
Collapse
Affiliation(s)
- Bo Lu
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Si-Ming Liao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xue-Hui Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shi-Jie Liang
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Jun Huang
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Mei Lin
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Li Meng
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Qing-Yan Wang
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Ri-Bo Huang
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
- Rocky Mount Life Sciences Institute, Rocky Mount, NC, USA
| | - Guo-Ping Zhou
- National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
- Rocky Mount Life Sciences Institute, Rocky Mount, NC, USA
| |
Collapse
|
5
|
Harduin-Lepers A. The vertebrate sialylation machinery: structure-function and molecular evolution of GT-29 sialyltransferases. Glycoconj J 2023; 40:473-492. [PMID: 37247156 PMCID: PMC10225777 DOI: 10.1007/s10719-023-10123-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/09/2023] [Accepted: 05/10/2023] [Indexed: 05/30/2023]
Abstract
Every eukaryotic cell is covered with a thick layer of complex carbohydrates with essential roles in their social life. In Deuterostoma, sialic acids present at the outermost positions of glycans of glycoconjugates are known to be key players in cellular interactions including host-pathogen interactions. Their negative charge and hydrophilic properties enable their roles in various normal and pathological states and their expression is altered in many diseases including cancers. Sialylation of glycoproteins and glycolipids is orchestrated by the regulated expression of twenty sialyltransferases in human tissues with distinct enzymatic characteristics and preferences for substrates and linkages formed. However, still very little is known on the functional organization of sialyltransferases in the Golgi apparatus and how the sialylation machinery is finely regulated to provide the ad hoc sialome to the cell. This review summarizes current knowledge on sialyltransferases, their structure-function relationships, molecular evolution, and their implications in human biology.
Collapse
Affiliation(s)
- Anne Harduin-Lepers
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.
| |
Collapse
|
6
|
Villanueva-Cabello TM, Gutiérrez-Valenzuela LD, Salinas-Marín R, López-Guerrero DV, Martínez-Duncker I. Polysialic Acid in the Immune System. Front Immunol 2022; 12:823637. [PMID: 35222358 PMCID: PMC8873093 DOI: 10.3389/fimmu.2021.823637] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/28/2021] [Indexed: 01/01/2023] Open
Abstract
Polysialic acid (polySia) is a highly regulated polymer of sialic acid (Sia) with such potent biophysical characteristics that when expressed drastically influences the interaction properties of cells. Although much of what is known of polySia in mammals has been elucidated from the study of its role in the central nervous system (CNS), polySia is also expressed in other tissues, including the immune system where it presents dynamic changes during differentiation, maturation, and activation of different types of immune cells of the innate and adaptive response, being involved in key regulatory mechanisms. At least six polySia protein carriers (CCR7, ESL-1, NCAM, NRP2, ST8Sia 2, and ST8Sia 4) are expressed in different types of immune cells, but there is still much to be explored in regard not only to the regulatory mechanisms that determine their expression and the structure of polySia chains but also to the identification of the cis- and trans- ligands of polySia that establish signaling networks. This review summarizes the current knowledge on polySia in the immune system, addressing its biosynthesis, its tools for identification and structural characterization, and its functional roles and therapeutic implications.
Collapse
Affiliation(s)
- Tania M. Villanueva-Cabello
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Lya D. Gutiérrez-Valenzuela
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Roberta Salinas-Marín
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | | | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
- *Correspondence: Iván Martínez-Duncker,
| |
Collapse
|
7
|
Mindler K, Ostertag E, Stehle T. The polyfunctional polysialic acid: A structural view. Carbohydr Res 2021; 507:108376. [PMID: 34273862 DOI: 10.1016/j.carres.2021.108376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022]
Abstract
Polysialic acid (polySia), a homopolymer of α2,8-linked sialic acid residues, modifies a small number of proteins and has central functions in vertebrate signalling. Here, we review the regulatory functions of polySia in signalling processes and the immune system of adult humans, as well as functions based on their chemical properties. The main focus will be on the structure-function relationship of polySia with its interaction partners in humans. Recent studies have indicated that the degree of polymerisation is an important parameter that can guide the regulatory effect of polySia in addition to its binding to target proteins. Therefore, the structures of polySia in solution and bound to interaction partners are compared in order to identify the key factors that define binding specificity.
Collapse
Affiliation(s)
- Katja Mindler
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076, Tübingen, Germany
| | - Elena Ostertag
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076, Tübingen, Germany
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
8
|
Unliganded and CMP-Neu5Ac bound structures of human α-2,6-sialyltransferase ST6Gal I at high resolution. J Struct Biol 2020; 212:107628. [DOI: 10.1016/j.jsb.2020.107628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/31/2020] [Accepted: 09/16/2020] [Indexed: 01/12/2023]
|
9
|
Polysialylation and disease. Mol Aspects Med 2020; 79:100892. [PMID: 32863045 DOI: 10.1016/j.mam.2020.100892] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/31/2022]
Abstract
Polysialic acid (polySia, PSA) is a unique constituent of the glycocalyx on the surface of bacterial and vertebrate cells. In vertebrates, its biosynthesis is highly regulated, not only in quantity and quality, but also in time and location, which allows polySia to be involved in various important biological phenomena. Therefore, impairments in the expression and structure of polySia sometimes relate to diseases, such as schizophrenia, bipolar disorder, and cancer. Some bacteria express polySia as a tool for protecting themselves from the host immune system during invasion. PolySia is proven to be a biosafe material; polySia, as well as polySia-recognizing molecules, are key therapeutic agents. This review first comprehensive outlines the occurrence, features, biosynthesis, and functions of polySia and subsequently focuses on the related diseases.
Collapse
|
10
|
Schuster UE, Rossdam C, Röckle I, Schiff M, Hildebrandt H. Cell-autonomous impact of polysialic acid-producing enzyme ST8SIA2 on developmental migration and distribution of cortical interneurons. J Neurochem 2019; 152:333-349. [PMID: 31608978 DOI: 10.1111/jnc.14896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/17/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022]
Abstract
In humans, variations in the polysialic acid-producing enzyme ST8SIA2 and disturbances in the cortical inhibitory system are associated with neurodevelopmental psychiatric disorders such as schizophrenia and autism. In mice, the ST8SIA2-dependent formation of polysialic acid during embryonic development is crucial for the establishment of interneuron populations of the medial prefrontal cortex. However, the spatial pattern and the neurodevelopmental mechanisms of interneuron changes caused by loss of ST8SIA2 function have not been fully characterized. Here, we use immunohistochemical analysis to demonstrate that densities of parvalbumin-positive interneurons are not only reduced in the medial prefrontal cortex, but also in the adjacent motor and somatosensory cortices of St8sia2-deficient male mice. These reductions, however, were confined to the rostral parts of the analyzed region. Mice with conditional knockout of St8sia2 under the interneuron-specific Lhx6 promoter, but not mice with a deletion under the Emx1 promoter that targets cortical excitatory neurons and glia, largely recapitulated the area-specific changes of parvalbumin-positive interneurons in the anterior cortex of St8sia2-/- mice. Live imaging of interneuron migration in slice cultures of the developing cortex revealed a comparable reduction of directional persistence accompanied by increased branching of leading processes in slice cultures obtained from St8sia2-/- embryos or from embryos with interneuron-specific ablation of St8sia2. Together, the data demonstrate a cell-autonomous impact of ST8SIA2 on cortical interneuron migration and the distribution of parvalbumin-positive interneurons in the anterior cortex. This provides a neurodevelopmental mechanism for how dysregulation of ST8SIA2 may lead to disturbed inhibitory balance as observed in schizophrenia and autism.
Collapse
Affiliation(s)
- Ute E Schuster
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Charlotte Rossdam
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Iris Röckle
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Miriam Schiff
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Herbert Hildebrandt
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.,Center for Systems Neuroscience Hannover (ZSN), Hannover, Germany
| |
Collapse
|
11
|
Computational analysis of the structure, glycosylation and CMP binding of human ST3GAL sialyltransferases. Carbohydr Res 2019; 486:107823. [PMID: 31557542 DOI: 10.1016/j.carres.2019.107823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 11/24/2022]
Abstract
Sialyltransferases (STs) are the fundamental enzymes which are related to many biological processes such as cell signalling, cellular recognition, cell-cell and host-pathogen interactions and metastasis of cancer. All STs catalyse the terminal sialic acid addition from CMP donor to the glycan units. ST3GAL family is one of the most important STs and divided into the six subfamily in mouse and humans which are ST3Gal I, ST3Gal II, ST3Gal III, ST3Gal IV, ST3Gal V, and ST3Gal VI. The members of the ST3GAL family transfer sialic acid to the terminal galactose residues of glycochains through an α2,3-linkage. There are many reports on the ST3GAL function in mammals but, there is a paucity of information about structure of human ST3GAL family. Herein, we investigated the structure, glycosylation and CMP binding site of human ST3GAL family using computational methods. We found for the first time N-glycosylation positions in ST3Gal IV and VI, mucin type glycosylation in ST3Gal III and O-GlcNAcylation in ST3Gal V and their relation with sialylmotifs. In addition, we predicted CMP binding positions of human ST3GAL enzyme family on three-dimensional structure using molecular docking and first demonstrated the sialylmotifs relation with the CMP binding positions in ST3Gal III-VI subfamilies.
Collapse
|
12
|
Emerging structural insights into glycosyltransferase-mediated synthesis of glycans. Nat Chem Biol 2019; 15:853-864. [PMID: 31427814 DOI: 10.1038/s41589-019-0350-2] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/17/2019] [Indexed: 12/27/2022]
Abstract
Glycans linked to proteins and lipids play key roles in biology; thus, accurate replication of cellular glycans is crucial for maintaining function following cell division. The fact that glycans are not copied from genomic templates suggests that fidelity is provided by the catalytic templates of glycosyltransferases that accurately add sugars to specific locations on growing oligosaccharides. To form new glycosidic bonds, glycosyltransferases bind acceptor substrates and orient a specific hydroxyl group, frequently one of many, for attack of the donor sugar anomeric carbon. Several recent crystal structures of glycosyltransferases with bound acceptor substrates reveal that these enzymes have common core structures that function as scaffolds upon which variable loops are inserted to confer substrate specificity and correctly orient the nucleophilic hydroxyl group. The varied approaches for acceptor binding site assembly suggest an ongoing evolution of these loop regions provides templates for assembly of the diverse glycan structures observed in biology.
Collapse
|
13
|
Houeix B, Cairns MT. Engineering of CHO cells for the production of vertebrate recombinant sialyltransferases. PeerJ 2019; 7:e5788. [PMID: 30775162 PMCID: PMC6375257 DOI: 10.7717/peerj.5788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/19/2018] [Indexed: 11/24/2022] Open
Abstract
Background Sialyltransferases (SIATs) are a family of enzymes that transfer sialic acid (Sia) to glycan chains on glycoproteins, glycolipids, and oligosaccharides. They play key roles in determining cell–cell and cell-matrix interactions and are important in neuronal development, immune regulation, protein stability and clearance. Most fully characterized SIATs are of mammalian origin and these have been used for in vitro and in vivo modification of glycans. Additional versatility could be achieved by the use of animal SIATs from other species that live in much more variable environments. Our aim was to generate a panel of stable CHO cell lines expressing a range of vertebrate SIATs with different physicochemical and functional properties. Methods The soluble forms of various animal ST6Gal and ST3Gal enzymes were stably expressed from a Gateway-modified secretion vector in CHO cells. The secreted proteins were IMAC-purified from serum-free media. Functionality of the protein was initially assessed by lectin binding to the host CHO cells. Activity of purified proteins was determined by a number of approaches that included a phosphate-linked sialyltransferase assay, HILIC-HPLC identification of sialyllactose products and enzyme-linked lectin assay (ELLA). Results A range of sialyltransferase from mammals, birds and fish were stably expressed in CHO Flp-In cells. The stable cell lines expressing ST6Gal1 modify the glycans on the surface of the CHO cells as detected by fluorescently labelled lectin microscopy. The catalytic domains, as isolated by Ni Sepharose from culture media, have enzymatic activities comparable to commercial enzymes. Sialyllactoses were identified by HILIC-HPLC on incubation of the enzymes from lactose or whey permeate. The enzymes also increased SNA-I labelling of asialofetuin when incubated in a plate format. Conclusion Stable cell lines are available that may provide options for the in vivo sialylation of glycoproteins. Proteins are active and should display a variety of biological and physicochemical properties based on the animal source of the enzyme.
Collapse
Affiliation(s)
- Benoit Houeix
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Galway, Ireland
| | - Michael T Cairns
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Galway, Ireland
| |
Collapse
|
14
|
Novel Zebrafish Mono-α2,8-sialyltransferase (ST8Sia VIII): An Evolutionary Perspective of α2,8-Sialylation. Int J Mol Sci 2019; 20:ijms20030622. [PMID: 30709055 PMCID: PMC6387029 DOI: 10.3390/ijms20030622] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/28/2022] Open
Abstract
The mammalian mono-α2,8-sialyltransferase ST8Sia VI has been shown to catalyze the transfer of a unique sialic acid residues onto core 1 O-glycans leading to the formation of di-sialylated O-glycosylproteins and to a lesser extent to diSia motifs onto glycolipids like GD1a. Previous studies also reported the identification of an orthologue of the ST8SIA6 gene in the zebrafish genome. Trying to get insights into the biosynthesis and function of the oligo-sialylated glycoproteins during zebrafish development, we cloned and studied this fish α2,8-sialyltransferase homologue. In situ hybridization experiments demonstrate that expression of this gene is always detectable during zebrafish development both in the central nervous system and in non-neuronal tissues. Intriguingly, using biochemical approaches and the newly developed in vitro MicroPlate Sialyltransferase Assay (MPSA), we found that the zebrafish recombinant enzyme does not synthetize diSia motifs on glycoproteins or glycolipids as the human homologue does. Using comparative genomics and molecular phylogeny approaches, we show in this work that the human ST8Sia VI orthologue has disappeared in the ray-finned fish and that the homologue described in fish correspond to a new subfamily of α2,8-sialyltransferase named ST8Sia VIII that was not maintained in Chondrichtyes and Sarcopterygii.
Collapse
|
15
|
Abstract
Sialic acid (Sia) is involved in many biological activities and commonly occurs as a monosialyl residue at the nonreducing terminal end of glycoconjugates. The loss of activity of UDP-GlcNAc2-epimerase/ManNAc kinase, which is a key enzyme in Sia biosynthesis, is lethal to the embryo, which clearly indicates the importance of Sia in embryogenesis. Occasionally, oligo/polymeric Sia structures such as disialic acid (diSia), oligosialic acid (oligoSia), and polysialic acid (polySia) occur in glycoconjugates. In particular, polySia, a well-known epitope that commonly occurs in neuroinvasive bacteria and vertebrate brains, is one of the most well-known and biologically/neurologically important glycotopes in vertebrates. The biological effects of polySia, especially on neural cell-adhesion molecules, have been well studied, and in-depth knowledge regarding polySia has been accumulated. In addition, the importance of diSia and oligoSia epitopes has been reported. In this chapter, the recent advances in the study of diSia, oligoSia, and polySia residues in glycoproteins in neurology, and their history, definition, occurrence, analytical methods, biosynthesis, and biological functions evaluated by phenotypes of gene-targeted mice, biochemical features, and related diseases are described.
Collapse
|
16
|
Jones MB. IgG and leukocytes: Targets of immunomodulatory α2,6 sialic acids. Cell Immunol 2018; 333:58-64. [PMID: 29685495 DOI: 10.1016/j.cellimm.2018.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/30/2018] [Indexed: 12/27/2022]
Abstract
ST6Gal1 is a critical sialyltransferase enzyme that controls the addition of α2,6-linked sialic acids to the termini of glycans. Attachment of sialic acids to glycoproteins as a posttranslational modification influences cellular responses, and is a well-known modifier of immune cell behavior. ST6Gal1 activity impacts processes such as: effector functions of immunoglobulin G via Fc sialylation, hematopoietic capacity by hematopoietic stem and progenitor cell surface sialylation, and lymphocyte activation thresholds though CD22 engagement and inhibition of galectins. This review summarizes recent studies that suggest α2,6 sialylation by ST6Gal1 has an immunoregulatory effect on immune reactions.
Collapse
Affiliation(s)
- Mark B Jones
- Case Western Reserve University, School of Medicine, Department of Pathology, Cleveland, OH 44106, United States.
| |
Collapse
|
17
|
Moremen KW, Ramiah A, Stuart M, Steel J, Meng L, Forouhar F, Moniz HA, Gahlay G, Gao Z, Chapla D, Wang S, Yang JY, Prabahkar PK, Johnson R, dela Rosa M, Geisler C, Nairn AV, Wu SC, Tong L, Gilbert HJ, LaBaer J, Jarvis DL. Expression system for structural and functional studies of human glycosylation enzymes. Nat Chem Biol 2018; 14:156-162. [PMID: 29251719 PMCID: PMC5774587 DOI: 10.1038/nchembio.2539] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/08/2017] [Indexed: 12/14/2022]
Abstract
Vertebrate glycoproteins and glycolipids are synthesized in complex biosynthetic pathways localized predominantly within membrane compartments of the secretory pathway. The enzymes that catalyze these reactions are exquisitely specific, yet few have been extensively characterized because of challenges associated with their recombinant expression as functional products. We used a modular approach to create an expression vector library encoding all known human glycosyltransferases, glycoside hydrolases, and sulfotransferases, as well as other glycan-modifying enzymes. We then expressed the enzymes as secreted catalytic domain fusion proteins in mammalian and insect cell hosts, purified and characterized a subset of the enzymes, and determined the structure of one enzyme, the sialyltransferase ST6GalNAcII. Many enzymes were produced at high yields and at similar levels in both hosts, but individual protein expression levels varied widely. This expression vector library will be a transformative resource for recombinant enzyme production, broadly enabling structure-function studies and expanding applications of these enzymes in glycochemistry and glycobiology.
Collapse
Affiliation(s)
- Kelley W. Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | | | - Melissa Stuart
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| | - Jason Steel
- Biodesign Institute, Arizona State University, Tempe, AZ 85287
| | - Lu Meng
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | - Farhad Forouhar
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, New York 10027
| | - Heather A. Moniz
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | - Gagandeep Gahlay
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| | - Zhongwei Gao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | | | - Shuo Wang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | | | - Roy Johnson
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | - Mitche dela Rosa
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | - Christoph Geisler
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| | - Alison V. Nairn
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | - Sheng-Cheng Wu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | - Liang Tong
- Department of Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, New York 10027
| | - Harry J. Gilbert
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
| | - Joshua LaBaer
- Biodesign Institute, Arizona State University, Tempe, AZ 85287
| | - Donald L. Jarvis
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| |
Collapse
|
18
|
X-ray crystallographic structure of a bacterial polysialyltransferase provides insight into the biosynthesis of capsular polysialic acid. Sci Rep 2017; 7:5842. [PMID: 28724897 PMCID: PMC5517516 DOI: 10.1038/s41598-017-05627-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/31/2017] [Indexed: 12/21/2022] Open
Abstract
Polysialic acid (polySia) is a homopolymeric saccharide that is associated with some neuroinvasive pathogens and is found on selective cell types in their eukaryotic host. The presence of a polySia capsule on these bacterial pathogens helps with resistance to phagocytosis, cationic microbial peptides and bactericidal antibody production. The biosynthesis of bacterial polySia is catalysed by a single polysialyltransferase (PST) transferring sialic acid from a nucleotide-activated donor to a lipid-linked acceptor oligosaccharide. Here we present the X-ray structure of the bacterial PST from Mannheimia haemolytica serotype A2, thereby defining the architecture of this class of enzymes representing the GT38 family. The structure reveals a prominent electropositive groove between the two Rossmann-like domains forming the GT-B fold that is suitable for binding of polySia chain products. Complex structures of PST with a sugar donor analogue and an acceptor mimetic combined with kinetic studies of PST active site mutants provide insight into the principles of substrate binding and catalysis. Our results are the basis for a molecular understanding of polySia biosynthesis in bacteria and might assist the production of polysialylated therapeutic reagents and the development of novel antibiotics.
Collapse
|
19
|
Noel M, Gilormini P, Cogez V, Yamakawa N, Vicogne D, Lion C, Biot C, Guérardel Y, Harduin‐Lepers A. Probing the CMP-Sialic Acid Donor Specificity of Two Human β-d-Galactoside Sialyltransferases (ST3Gal I and ST6Gal I) Selectively Acting on O- and N-Glycosylproteins. Chembiochem 2017; 18:1251-1259. [PMID: 28395125 PMCID: PMC5499661 DOI: 10.1002/cbic.201700024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Indexed: 12/29/2022]
Abstract
Sialylation of glycoproteins and glycolipids is catalyzed by sialyltransferases in the Golgi of mammalian cells, whereby sialic acid residues are added at the nonreducing ends of oligosaccharides. Because sialylated glycans play critical roles in a number of human physio-pathological processes, the past two decades have witnessed the development of modified sialic acid derivatives for a better understanding of sialic acid biology and for the development of new therapeutic targets. However, nothing is known about how individual mammalian sialyltransferases tolerate and behave towards these unnatural CMP-sialic acid donors. In this study, we devised several approaches to investigate the donor specificity of the human β-d-galactoside sialyltransferases ST6Gal I and ST3Gal I by using two CMP-sialic acids: CMP-Neu5Ac, and CMP-Neu5N-(4pentynoyl)neuraminic acid (CMP-SiaNAl), an unnatural CMP-sialic acid donor with an extended and functionalized N-acyl moiety.
Collapse
Affiliation(s)
- Maxence Noel
- Université de LilleCNRSUMR 8576UGSFUnité de Glycobiologie Structurale et Fonctionnelle59000LilleFrance
| | - Pierre‐André Gilormini
- Université de LilleCNRSUMR 8576UGSFUnité de Glycobiologie Structurale et Fonctionnelle59000LilleFrance
| | - Virginie Cogez
- Université de LilleCNRSUMR 8576UGSFUnité de Glycobiologie Structurale et Fonctionnelle59000LilleFrance
| | - Nao Yamakawa
- Université de LilleCNRSUMR 8576UGSFUnité de Glycobiologie Structurale et Fonctionnelle59000LilleFrance
| | - Dorothée Vicogne
- Université de LilleCNRSUMR 8576UGSFUnité de Glycobiologie Structurale et Fonctionnelle59000LilleFrance
| | - Cédric Lion
- Université de LilleCNRSUMR 8576UGSFUnité de Glycobiologie Structurale et Fonctionnelle59000LilleFrance
| | - Christophe Biot
- Université de LilleCNRSUMR 8576UGSFUnité de Glycobiologie Structurale et Fonctionnelle59000LilleFrance
| | - Yann Guérardel
- Université de LilleCNRSUMR 8576UGSFUnité de Glycobiologie Structurale et Fonctionnelle59000LilleFrance
| | - Anne Harduin‐Lepers
- Université de LilleCNRSUMR 8576UGSFUnité de Glycobiologie Structurale et Fonctionnelle59000LilleFrance
| |
Collapse
|
20
|
Bhide GP, Colley KJ. Sialylation of N-glycans: mechanism, cellular compartmentalization and function. Histochem Cell Biol 2017; 147:149-174. [PMID: 27975143 PMCID: PMC7088086 DOI: 10.1007/s00418-016-1520-x] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 12/18/2022]
Abstract
Sialylated N-glycans play essential roles in the immune system, pathogen recognition and cancer. This review approaches the sialylation of N-glycans from three perspectives. The first section focuses on the sialyltransferases that add sialic acid to N-glycans. Included in the discussion is a description of these enzymes' glycan acceptors, conserved domain organization and sequences, molecular structure and catalytic mechanism. In addition, we discuss the protein interactions underlying the polysialylation of a select group of adhesion and signaling molecules. In the second section, the biosynthesis of sialic acid, CMP-sialic acid and sialylated N-glycans is discussed, with a special emphasis on the compartmentalization of these processes in the mammalian cell. The sequences and mechanisms maintaining the sialyltransferases and other glycosylation enzymes in the Golgi are also reviewed. In the final section, we have chosen to discuss processes in which sialylated glycans, both N- and O-linked, play a role. The first part of this section focuses on sialic acid-binding proteins including viral hemagglutinins, Siglecs and selectins. In the second half of this section, we comment on the role of sialylated N-glycans in cancer, including the roles of β1-integrin and Fas receptor N-glycan sialylation in cancer cell survival and drug resistance, and the role of these sialylated proteins and polysialic acid in cancer metastasis.
Collapse
Affiliation(s)
- Gaurang P Bhide
- Department of Biochemistry and Molecular Genetics, College of Medicine, The University of Illinois at Chicago, 900 S. Ashland Avenue, MC669, Chicago, IL, 60607, USA
| | - Karen J Colley
- Department of Biochemistry and Molecular Genetics, College of Medicine, The University of Illinois at Chicago, 900 S. Ashland Avenue, MC669, Chicago, IL, 60607, USA.
| |
Collapse
|
21
|
Lee JS, Yoo Y, Lim BC, Kim KJ, Song J, Choi M, Chae JH. GM3 synthase deficiency due to ST3GAL5 variants in two Korean female siblings: Masquerading as Rett syndrome-like phenotype. Am J Med Genet A 2016; 170:2200-5. [PMID: 27232954 DOI: 10.1002/ajmg.a.37773] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/15/2016] [Indexed: 01/22/2023]
Abstract
There have been a few reports of GM3 synthase deficiency since the disease of the ganglioside biosynthetic pathway was first reported in 2004. It is characterized by infantile-onset epilepsy with severe intellectual disability, blindness, cutaneous dyspigmentation, and choreoathetosis. Here we report the cases of two Korean female siblings with ST3GAL5 variants, who presented with a Rett-like phenotype. They had delayed speech, hand stereotypies with a loss of purposeful hand movements, and choreoathetosis, but no clinical seizures. One of them had microcephaly, while the other had small head circumference less than 10th centile. There were no abnormal laboratory findings with the exception of a high lactate level. MECP2/CDKL5/FOXG1 genetic tests with an array comparative genomic hybridization revealed no molecular defects. Through whole-exome sequencing of the proband, we found compound heterozygous ST3GAL5 variants (p.Gly201Arg and p.Cys195Ser), both of which were novel. The siblings were the same compound heterozygotes and their unaffected parents were heterozygous carriers of each variant. Liquid chromatography-mass spectrometry analysis confirmed a low level of GM3 and its downstream metabolites, indicating GM3 synthase deficiency. These cases expanded the clinical and genetic spectrum of the ultra-rare disease, GM3 synthase deficiency with ST3GAL5 variants. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jin Sook Lee
- Department of Pediatrics, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Incheon, Korea
| | - Yongjin Yoo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Byung Chan Lim
- Department of Pediatrics, Seoul National University College of Medicine, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea
| | - Ki Joong Kim
- Department of Pediatrics, Seoul National University College of Medicine, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea
| | - Junghan Song
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Gyeonggi-do, Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Hee Chae
- Department of Pediatrics, Seoul National University College of Medicine, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul, Korea
| |
Collapse
|
22
|
Chong YK, Sandanaraj E, Koh LWH, Thangaveloo M, Tan MSY, Koh GRH, Toh TB, Lim GGY, Holbrook JD, Kon OL, Nadarajah M, Ng I, Ng WH, Tan NS, Lim KL, Tang C, Ang BT. ST3GAL1-Associated Transcriptomic Program in Glioblastoma Tumor Growth, Invasion, and Prognosis. J Natl Cancer Inst 2015; 108:djv326. [PMID: 26547933 PMCID: PMC4755447 DOI: 10.1093/jnci/djv326] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/08/2015] [Indexed: 02/06/2023] Open
Abstract
Background: Cell surface sialylation is associated with tumor cell invasiveness in many cancers. Glioblastoma is the most malignant primary brain tumor and is highly infiltrative. ST3GAL1 sialyltransferase gene is amplified in a subclass of glioblastomas, and its role in tumor cell self-renewal remains unexplored. Methods: Self-renewal of patient glioma cells was evaluated using clonogenic, viability, and invasiveness assays. ST3GAL1 was identified from differentially expressed genes in Peanut Agglutinin–stained cells and validated in REMBRANDT (n = 390) and Gravendeel (n = 276) clinical databases. Gene set enrichment analysis revealed upstream processes. TGFβ signaling on ST3GAL1 transcription was assessed using chromatin immunoprecipitation. Transcriptome analysis of ST3GAL1 knockdown cells was done to identify downstream pathways. A constitutively active FoxM1 mutant lacking critical anaphase-promoting complex/cyclosome ([APC/C]-Cdh1) binding sites was used to evaluate ST3Gal1-mediated regulation of FoxM1 protein. Finally, the prognostic role of ST3Gal1 was determined using an orthotopic xenograft model (3 mice groups comprising nontargeting and 2 clones of ST3GAL1 knockdown in NNI-11 [8 per group] and NNI-21 [6 per group]), and the correlation with patient clinical information. All statistical tests on patients’ data were two-sided; other P values below are one-sided. Results: High ST3GAL1 expression defines an invasive subfraction with self-renewal capacity; its loss of function prolongs survival in a mouse model established from mesenchymal NNI-11 (P < .001; groups of 8 in 3 arms: nontargeting, C1, and C2 clones of ST3GAL1 knockdown). ST3GAL1 transcriptomic program stratifies patient survival (hazard ratio [HR] = 2.47, 95% confidence interval [CI] = 1.72 to 3.55, REMBRANDT P = 1.92x10-8; HR = 2.89, 95% CI = 1.94 to 4.30, Gravendeel P = 1.05x10-11), independent of age and histology, and associates with higher tumor grade and T2 volume (P = 1.46x10-4). TGFβ signaling, elevated in mesenchymal patients, correlates with high ST3GAL1 (REMBRANDT gliomacor = 0.31, P = 2.29x10-10; Gravendeel gliomacor = 0.50, P = 3.63x10-20). The transcriptomic program upon ST3GAL1 knockdown enriches for mitotic cell cycle processes. FoxM1 was identified as a statistically significantly modulated gene (P = 2.25x10-5) and mediates ST3Gal1 signaling via the (APC/C)-Cdh1 complex. Conclusions: The ST3GAL1-associated transcriptomic program portends poor prognosis in glioma patients and enriches for higher tumor grades of the mesenchymal molecular classification. We show that ST3Gal1-regulated self-renewal traits are crucial to the sustenance of glioblastoma multiforme growth.
Collapse
Affiliation(s)
- Yuk Kien Chong
- Department of Research (YKC, ES, LWHK, MT, MSYT, GRHK, TBT, GGYL, KLL, CT), Department of Neuroradiology (MN), and Department of Neurosurgery (IN, WHN, BTA), National Neuroscience Institute, Singapore; Department of Physiology (YKC, KLL, BTA) and Department of Biochemistry (OLK), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences (ES, JDH, BTA) and Institute of Molecular and Cell Biology (NST), Agency for Science, Technology and Research (A*STAR), Singapore; School of Biological Sciences, Nanyang Technological University, Singapore (ES, LWHK, MSYT, NST); Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore (OLK, CT); Duke-National University of Singapore Graduate Medical School, Singapore (IN, WHN, KLL, CT, BTA)
| | - Edwin Sandanaraj
- Department of Research (YKC, ES, LWHK, MT, MSYT, GRHK, TBT, GGYL, KLL, CT), Department of Neuroradiology (MN), and Department of Neurosurgery (IN, WHN, BTA), National Neuroscience Institute, Singapore; Department of Physiology (YKC, KLL, BTA) and Department of Biochemistry (OLK), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences (ES, JDH, BTA) and Institute of Molecular and Cell Biology (NST), Agency for Science, Technology and Research (A*STAR), Singapore; School of Biological Sciences, Nanyang Technological University, Singapore (ES, LWHK, MSYT, NST); Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore (OLK, CT); Duke-National University of Singapore Graduate Medical School, Singapore (IN, WHN, KLL, CT, BTA)
| | - Lynnette W H Koh
- Department of Research (YKC, ES, LWHK, MT, MSYT, GRHK, TBT, GGYL, KLL, CT), Department of Neuroradiology (MN), and Department of Neurosurgery (IN, WHN, BTA), National Neuroscience Institute, Singapore; Department of Physiology (YKC, KLL, BTA) and Department of Biochemistry (OLK), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences (ES, JDH, BTA) and Institute of Molecular and Cell Biology (NST), Agency for Science, Technology and Research (A*STAR), Singapore; School of Biological Sciences, Nanyang Technological University, Singapore (ES, LWHK, MSYT, NST); Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore (OLK, CT); Duke-National University of Singapore Graduate Medical School, Singapore (IN, WHN, KLL, CT, BTA)
| | - Moogaambikai Thangaveloo
- Department of Research (YKC, ES, LWHK, MT, MSYT, GRHK, TBT, GGYL, KLL, CT), Department of Neuroradiology (MN), and Department of Neurosurgery (IN, WHN, BTA), National Neuroscience Institute, Singapore; Department of Physiology (YKC, KLL, BTA) and Department of Biochemistry (OLK), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences (ES, JDH, BTA) and Institute of Molecular and Cell Biology (NST), Agency for Science, Technology and Research (A*STAR), Singapore; School of Biological Sciences, Nanyang Technological University, Singapore (ES, LWHK, MSYT, NST); Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore (OLK, CT); Duke-National University of Singapore Graduate Medical School, Singapore (IN, WHN, KLL, CT, BTA)
| | - Melanie S Y Tan
- Department of Research (YKC, ES, LWHK, MT, MSYT, GRHK, TBT, GGYL, KLL, CT), Department of Neuroradiology (MN), and Department of Neurosurgery (IN, WHN, BTA), National Neuroscience Institute, Singapore; Department of Physiology (YKC, KLL, BTA) and Department of Biochemistry (OLK), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences (ES, JDH, BTA) and Institute of Molecular and Cell Biology (NST), Agency for Science, Technology and Research (A*STAR), Singapore; School of Biological Sciences, Nanyang Technological University, Singapore (ES, LWHK, MSYT, NST); Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore (OLK, CT); Duke-National University of Singapore Graduate Medical School, Singapore (IN, WHN, KLL, CT, BTA)
| | - Geraldene R H Koh
- Department of Research (YKC, ES, LWHK, MT, MSYT, GRHK, TBT, GGYL, KLL, CT), Department of Neuroradiology (MN), and Department of Neurosurgery (IN, WHN, BTA), National Neuroscience Institute, Singapore; Department of Physiology (YKC, KLL, BTA) and Department of Biochemistry (OLK), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences (ES, JDH, BTA) and Institute of Molecular and Cell Biology (NST), Agency for Science, Technology and Research (A*STAR), Singapore; School of Biological Sciences, Nanyang Technological University, Singapore (ES, LWHK, MSYT, NST); Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore (OLK, CT); Duke-National University of Singapore Graduate Medical School, Singapore (IN, WHN, KLL, CT, BTA)
| | - Tan Boon Toh
- Department of Research (YKC, ES, LWHK, MT, MSYT, GRHK, TBT, GGYL, KLL, CT), Department of Neuroradiology (MN), and Department of Neurosurgery (IN, WHN, BTA), National Neuroscience Institute, Singapore; Department of Physiology (YKC, KLL, BTA) and Department of Biochemistry (OLK), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences (ES, JDH, BTA) and Institute of Molecular and Cell Biology (NST), Agency for Science, Technology and Research (A*STAR), Singapore; School of Biological Sciences, Nanyang Technological University, Singapore (ES, LWHK, MSYT, NST); Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore (OLK, CT); Duke-National University of Singapore Graduate Medical School, Singapore (IN, WHN, KLL, CT, BTA)
| | - Grace G Y Lim
- Department of Research (YKC, ES, LWHK, MT, MSYT, GRHK, TBT, GGYL, KLL, CT), Department of Neuroradiology (MN), and Department of Neurosurgery (IN, WHN, BTA), National Neuroscience Institute, Singapore; Department of Physiology (YKC, KLL, BTA) and Department of Biochemistry (OLK), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences (ES, JDH, BTA) and Institute of Molecular and Cell Biology (NST), Agency for Science, Technology and Research (A*STAR), Singapore; School of Biological Sciences, Nanyang Technological University, Singapore (ES, LWHK, MSYT, NST); Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore (OLK, CT); Duke-National University of Singapore Graduate Medical School, Singapore (IN, WHN, KLL, CT, BTA)
| | - Joanna D Holbrook
- Department of Research (YKC, ES, LWHK, MT, MSYT, GRHK, TBT, GGYL, KLL, CT), Department of Neuroradiology (MN), and Department of Neurosurgery (IN, WHN, BTA), National Neuroscience Institute, Singapore; Department of Physiology (YKC, KLL, BTA) and Department of Biochemistry (OLK), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences (ES, JDH, BTA) and Institute of Molecular and Cell Biology (NST), Agency for Science, Technology and Research (A*STAR), Singapore; School of Biological Sciences, Nanyang Technological University, Singapore (ES, LWHK, MSYT, NST); Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore (OLK, CT); Duke-National University of Singapore Graduate Medical School, Singapore (IN, WHN, KLL, CT, BTA)
| | - Oi Lian Kon
- Department of Research (YKC, ES, LWHK, MT, MSYT, GRHK, TBT, GGYL, KLL, CT), Department of Neuroradiology (MN), and Department of Neurosurgery (IN, WHN, BTA), National Neuroscience Institute, Singapore; Department of Physiology (YKC, KLL, BTA) and Department of Biochemistry (OLK), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences (ES, JDH, BTA) and Institute of Molecular and Cell Biology (NST), Agency for Science, Technology and Research (A*STAR), Singapore; School of Biological Sciences, Nanyang Technological University, Singapore (ES, LWHK, MSYT, NST); Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore (OLK, CT); Duke-National University of Singapore Graduate Medical School, Singapore (IN, WHN, KLL, CT, BTA)
| | - Mahendran Nadarajah
- Department of Research (YKC, ES, LWHK, MT, MSYT, GRHK, TBT, GGYL, KLL, CT), Department of Neuroradiology (MN), and Department of Neurosurgery (IN, WHN, BTA), National Neuroscience Institute, Singapore; Department of Physiology (YKC, KLL, BTA) and Department of Biochemistry (OLK), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences (ES, JDH, BTA) and Institute of Molecular and Cell Biology (NST), Agency for Science, Technology and Research (A*STAR), Singapore; School of Biological Sciences, Nanyang Technological University, Singapore (ES, LWHK, MSYT, NST); Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore (OLK, CT); Duke-National University of Singapore Graduate Medical School, Singapore (IN, WHN, KLL, CT, BTA)
| | - Ivan Ng
- Department of Research (YKC, ES, LWHK, MT, MSYT, GRHK, TBT, GGYL, KLL, CT), Department of Neuroradiology (MN), and Department of Neurosurgery (IN, WHN, BTA), National Neuroscience Institute, Singapore; Department of Physiology (YKC, KLL, BTA) and Department of Biochemistry (OLK), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences (ES, JDH, BTA) and Institute of Molecular and Cell Biology (NST), Agency for Science, Technology and Research (A*STAR), Singapore; School of Biological Sciences, Nanyang Technological University, Singapore (ES, LWHK, MSYT, NST); Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore (OLK, CT); Duke-National University of Singapore Graduate Medical School, Singapore (IN, WHN, KLL, CT, BTA)
| | - Wai Hoe Ng
- Department of Research (YKC, ES, LWHK, MT, MSYT, GRHK, TBT, GGYL, KLL, CT), Department of Neuroradiology (MN), and Department of Neurosurgery (IN, WHN, BTA), National Neuroscience Institute, Singapore; Department of Physiology (YKC, KLL, BTA) and Department of Biochemistry (OLK), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences (ES, JDH, BTA) and Institute of Molecular and Cell Biology (NST), Agency for Science, Technology and Research (A*STAR), Singapore; School of Biological Sciences, Nanyang Technological University, Singapore (ES, LWHK, MSYT, NST); Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore (OLK, CT); Duke-National University of Singapore Graduate Medical School, Singapore (IN, WHN, KLL, CT, BTA)
| | - Nguan Soon Tan
- Department of Research (YKC, ES, LWHK, MT, MSYT, GRHK, TBT, GGYL, KLL, CT), Department of Neuroradiology (MN), and Department of Neurosurgery (IN, WHN, BTA), National Neuroscience Institute, Singapore; Department of Physiology (YKC, KLL, BTA) and Department of Biochemistry (OLK), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences (ES, JDH, BTA) and Institute of Molecular and Cell Biology (NST), Agency for Science, Technology and Research (A*STAR), Singapore; School of Biological Sciences, Nanyang Technological University, Singapore (ES, LWHK, MSYT, NST); Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore (OLK, CT); Duke-National University of Singapore Graduate Medical School, Singapore (IN, WHN, KLL, CT, BTA)
| | - Kah Leong Lim
- Department of Research (YKC, ES, LWHK, MT, MSYT, GRHK, TBT, GGYL, KLL, CT), Department of Neuroradiology (MN), and Department of Neurosurgery (IN, WHN, BTA), National Neuroscience Institute, Singapore; Department of Physiology (YKC, KLL, BTA) and Department of Biochemistry (OLK), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences (ES, JDH, BTA) and Institute of Molecular and Cell Biology (NST), Agency for Science, Technology and Research (A*STAR), Singapore; School of Biological Sciences, Nanyang Technological University, Singapore (ES, LWHK, MSYT, NST); Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore (OLK, CT); Duke-National University of Singapore Graduate Medical School, Singapore (IN, WHN, KLL, CT, BTA)
| | - Carol Tang
- Department of Research (YKC, ES, LWHK, MT, MSYT, GRHK, TBT, GGYL, KLL, CT), Department of Neuroradiology (MN), and Department of Neurosurgery (IN, WHN, BTA), National Neuroscience Institute, Singapore; Department of Physiology (YKC, KLL, BTA) and Department of Biochemistry (OLK), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences (ES, JDH, BTA) and Institute of Molecular and Cell Biology (NST), Agency for Science, Technology and Research (A*STAR), Singapore; School of Biological Sciences, Nanyang Technological University, Singapore (ES, LWHK, MSYT, NST); Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore (OLK, CT); Duke-National University of Singapore Graduate Medical School, Singapore (IN, WHN, KLL, CT, BTA).
| | - Beng Ti Ang
- Department of Research (YKC, ES, LWHK, MT, MSYT, GRHK, TBT, GGYL, KLL, CT), Department of Neuroradiology (MN), and Department of Neurosurgery (IN, WHN, BTA), National Neuroscience Institute, Singapore; Department of Physiology (YKC, KLL, BTA) and Department of Biochemistry (OLK), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute for Clinical Sciences (ES, JDH, BTA) and Institute of Molecular and Cell Biology (NST), Agency for Science, Technology and Research (A*STAR), Singapore; School of Biological Sciences, Nanyang Technological University, Singapore (ES, LWHK, MSYT, NST); Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore (OLK, CT); Duke-National University of Singapore Graduate Medical School, Singapore (IN, WHN, KLL, CT, BTA).
| |
Collapse
|
23
|
Kajiura H, Hamaguchi Y, Mizushima H, Misaki R, Fujiyama K. Sialylation potentials of the silkworm, Bombyx mori; B. mori possesses an active α2,6-sialyltransferase. Glycobiology 2015; 25:1441-53. [PMID: 26306633 DOI: 10.1093/glycob/cwv060] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 08/03/2015] [Indexed: 01/08/2023] Open
Abstract
N-Glycosylation is an important post-translational modification in most secreted and membrane-bound proteins in eukaryotic cells. However, the insect N-glycosylation pathway and the potentials contributing to the N-glycan synthesis are still unclear because most of the studies on these subjects have focused on mammals and plants. Here, we identified Bombyx mori sialyltransferase (BmST), which is a Golgi-localized glycosyltransferase and which can modify N-glycans. BmST was ubiquitously expressed in different organs and in various stages of development and localized at the Golgi. Biochemical analysis using Sf9-expressed BmST revealed that BmST encoded α2,6-sialyltransferase and transferred N-acetylneuraminic acid (NeuAc) to the nonreducing terminus of Galβ1-R, but exhibited the highest activity toward GalNAcβ1,4-GlcNAc-R. Unlike human α2,6-sialyltransferase, BmST required the post-translational modification, especially N-glycosylation, for its full activity. N-Glycoprotein analysis of B. mori fifth instar larvae revealed that high-mannose-type structure was predominant and GlcNAc-linked and fucosylated structures were observed but endogenous galactosyl-, N-acetylgalactosaminyl- and sialyl-N-glycoproteins were undetectable under the standard analytical approach. These results indicate that B. mori genome encodes an α2,6-sialyltransferase, but further investigations of the sialylation potentials are necessary.
Collapse
Affiliation(s)
- Hiroyuki Kajiura
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | - Yuichi Hamaguchi
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | - Hiroki Mizushima
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | - Ryo Misaki
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| |
Collapse
|
24
|
Volkers G, Worrall LJ, Kwan DH, Yu CC, Baumann L, Lameignere E, Wasney GA, Scott NE, Wakarchuk W, Foster LJ, Withers SG, Strynadka NCJ. Structure of human ST8SiaIII sialyltransferase provides insight into cell-surface polysialylation. Nat Struct Mol Biol 2015; 22:627-35. [DOI: 10.1038/nsmb.3060] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 06/19/2015] [Indexed: 11/09/2022]
|
25
|
Czabany T, Schmölzer K, Luley-Goedl C, Ribitsch D, Nidetzky B. All-in-one assay for β-d-galactoside sialyltransferases: Quantification of productive turnover, error hydrolysis, and site selectivity. Anal Biochem 2015; 483:47-53. [PMID: 25957124 DOI: 10.1016/j.ab.2015.04.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/24/2015] [Accepted: 04/28/2015] [Indexed: 10/23/2022]
Abstract
Sialyltransferases are important enzymes of glycobiology and the related biotechnologies. The development of sialyltransferases calls for access to quick, inexpensive, and robust analytical tools. We have established an assay for simultaneous characterization of sialyltransferase activity, error hydrolysis, and site selectivity. The described assay does not require expensive substrates, is very sensitive (limit of detection=0.3 μU), and is easy to perform. It is based on sialylation of nitrophenyl galactosides; the products thereof are separated and quantified by ion pair reversed phase high-performance liquid chromatography with ultraviolet detection.
Collapse
Affiliation(s)
- Tibor Czabany
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, 8010 Graz, Austria
| | | | | | - Doris Ribitsch
- Austrian Centre of Industrial Biotechnology, 8010 Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, 8010 Graz, Austria; Austrian Centre of Industrial Biotechnology, 8010 Graz, Austria.
| |
Collapse
|
26
|
Petit D, Teppa E, Mir AM, Vicogne D, Thisse C, Thisse B, Filloux C, Harduin-Lepers A. Integrative view of α2,3-sialyltransferases (ST3Gal) molecular and functional evolution in deuterostomes: significance of lineage-specific losses. Mol Biol Evol 2014; 32:906-27. [PMID: 25534026 PMCID: PMC4379398 DOI: 10.1093/molbev/msu395] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Sialyltransferases are responsible for the synthesis of a diverse range of sialoglycoconjugates predicted to be pivotal to deuterostomes’ evolution. In this work, we reconstructed the evolutionary history of the metazoan α2,3-sialyltransferases family (ST3Gal), a subset of sialyltransferases encompassing six subfamilies (ST3Gal I–ST3Gal VI) functionally characterized in mammals. Exploration of genomic and expressed sequence tag databases and search of conserved sialylmotifs led to the identification of a large data set of st3gal-related gene sequences. Molecular phylogeny and large scale sequence similarity network analysis identified four new vertebrate subfamilies called ST3Gal III-r, ST3Gal VII, ST3Gal VIII, and ST3Gal IX. To address the issue of the origin and evolutionary relationships of the st3gal-related genes, we performed comparative syntenic mapping of st3gal gene loci combined to ancestral genome reconstruction. The ten vertebrate ST3Gal subfamilies originated from genome duplication events at the base of vertebrates and are organized in three distinct and ancient groups of genes predating the early deuterostomes. Inferring st3gal gene family history identified also several lineage-specific gene losses, the significance of which was explored in a functional context. Toward this aim, spatiotemporal distribution of st3gal genes was analyzed in zebrafish and bovine tissues. In addition, molecular evolutionary analyses using specificity determining position and coevolved amino acid predictions led to the identification of amino acid residues with potential implication in functional divergence of vertebrate ST3Gal. We propose a detailed scenario of the evolutionary relationships of st3gal genes coupled to a conceptual framework of the evolution of ST3Gal functions.
Collapse
Affiliation(s)
- Daniel Petit
- INRA, UMR 1061, Unité Génétique Moléculaire Animale, F-87060 Limoges Cedex, France Université de Limoges, UMR 1061, Unité Génétique Moléculaire Animale, 123 avenue Albert Thomas, F-87060 Limoges Cedex, France
| | - Elin Teppa
- Bioinformatics Unit, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Anne-Marie Mir
- Laboratoire de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université Lille Nord de France, Lille1, Villeneuve d'Ascq, France
| | - Dorothée Vicogne
- Laboratoire de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université Lille Nord de France, Lille1, Villeneuve d'Ascq, France
| | - Christine Thisse
- Department of Cell Biology, School of Medicine, University of Virginia
| | - Bernard Thisse
- Department of Cell Biology, School of Medicine, University of Virginia
| | - Cyril Filloux
- INRA, UMR 1061, Unité Génétique Moléculaire Animale, F-87060 Limoges Cedex, France Université de Limoges, UMR 1061, Unité Génétique Moléculaire Animale, 123 avenue Albert Thomas, F-87060 Limoges Cedex, France
| | - Anne Harduin-Lepers
- Laboratoire de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université Lille Nord de France, Lille1, Villeneuve d'Ascq, France
| |
Collapse
|
27
|
Schnaar RL, Gerardy-Schahn R, Hildebrandt H. Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. Physiol Rev 2014; 94:461-518. [PMID: 24692354 DOI: 10.1152/physrev.00033.2013] [Citation(s) in RCA: 525] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Every cell in nature carries a rich surface coat of glycans, its glycocalyx, which constitutes the cell's interface with its environment. In eukaryotes, the glycocalyx is composed of glycolipids, glycoproteins, and proteoglycans, the compositions of which vary among different tissues and cell types. Many of the linear and branched glycans on cell surface glycoproteins and glycolipids of vertebrates are terminated with sialic acids, nine-carbon sugars with a carboxylic acid, a glycerol side-chain, and an N-acyl group that, along with their display at the outmost end of cell surface glycans, provide for varied molecular interactions. Among their functions, sialic acids regulate cell-cell interactions, modulate the activities of their glycoprotein and glycolipid scaffolds as well as other cell surface molecules, and are receptors for pathogens and toxins. In the brain, two families of sialoglycans are of particular interest: gangliosides and polysialic acid. Gangliosides, sialylated glycosphingolipids, are the most abundant sialoglycans of nerve cells. Mouse genetic studies and human disorders of ganglioside metabolism implicate gangliosides in axon-myelin interactions, axon stability, axon regeneration, and the modulation of nerve cell excitability. Polysialic acid is a unique homopolymer that reaches >90 sialic acid residues attached to select glycoproteins, especially the neural cell adhesion molecule in the brain. Molecular, cellular, and genetic studies implicate polysialic acid in the control of cell-cell and cell-matrix interactions, intermolecular interactions at cell surfaces, and interactions with other molecules in the cellular environment. Polysialic acid is essential for appropriate brain development, and polymorphisms in the human genes responsible for polysialic acid biosynthesis are associated with psychiatric disorders including schizophrenia, autism, and bipolar disorder. Polysialic acid also appears to play a role in adult brain plasticity, including regeneration. Together, vertebrate brain sialoglycans are key regulatory components that contribute to proper development, maintenance, and health of the nervous system.
Collapse
|
28
|
Meng L, Forouhar F, Thieker D, Gao Z, Ramiah A, Moniz H, Xiang Y, Seetharaman J, Milaninia S, Su M, Bridger R, Veillon L, Azadi P, Kornhaber G, Wells L, Montelione GT, Woods RJ, Tong L, Moremen KW. Enzymatic basis for N-glycan sialylation: structure of rat α2,6-sialyltransferase (ST6GAL1) reveals conserved and unique features for glycan sialylation. J Biol Chem 2013; 288:34680-98. [PMID: 24155237 DOI: 10.1074/jbc.m113.519041] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Glycan structures on glycoproteins and glycolipids play critical roles in biological recognition, targeting, and modulation of functions in animal systems. Many classes of glycan structures are capped with terminal sialic acid residues, which contribute to biological functions by either forming or masking glycan recognition sites on the cell surface or secreted glycoconjugates. Sialylated glycans are synthesized in mammals by a single conserved family of sialyltransferases that have diverse linkage and acceptor specificities. We examined the enzymatic basis for glycan sialylation in animal systems by determining the crystal structures of rat ST6GAL1, an enzyme that creates terminal α2,6-sialic acid linkages on complex-type N-glycans, at 2.4 Å resolution. Crystals were obtained from enzyme preparations generated in mammalian cells. The resulting structure revealed an overall protein fold broadly resembling the previously determined structure of pig ST3GAL1, including a CMP-sialic acid-binding site assembled from conserved sialylmotif sequence elements. Significant differences in structure and disulfide bonding patterns were found outside the sialylmotif sequences, including differences in residues predicted to interact with the glycan acceptor. Computational substrate docking and molecular dynamics simulations were performed to predict and evaluate the CMP-sialic acid donor and glycan acceptor interactions, and the results were compared with kinetic analysis of active site mutants. Comparisons of the structure with pig ST3GAL1 and a bacterial sialyltransferase revealed a similar positioning of donor, acceptor, and catalytic residues that provide a common structural framework for catalysis by the mammalian and bacterial sialyltransferases.
Collapse
Affiliation(s)
- Lu Meng
- From the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Boccuto L, Aoki K, Flanagan-Steet H, Chen CF, Fan X, Bartel F, Petukh M, Pittman A, Saul R, Chaubey A, Alexov E, Tiemeyer M, Steet R, Schwartz CE. A mutation in a ganglioside biosynthetic enzyme, ST3GAL5, results in salt & pepper syndrome, a neurocutaneous disorder with altered glycolipid and glycoprotein glycosylation. Hum Mol Genet 2013; 23:418-33. [PMID: 24026681 DOI: 10.1093/hmg/ddt434] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
'Salt & Pepper' syndrome is an autosomal recessive condition characterized by severe intellectual disability, epilepsy, scoliosis, choreoathetosis, dysmorphic facial features and altered dermal pigmentation. High-density SNP array analysis performed on siblings first described with this syndrome detected four shared regions of loss of heterozygosity (LOH). Whole-exome sequencing narrowed the candidate region to chromosome 2p11.2. Sanger sequencing confirmed a homozygous c.994G>A transition (p.E332K) in the ST3GAL5 gene, which encodes for a sialyltransferase also known as GM3 synthase. A different homozygous mutation of this gene has been previously associated with infantile-onset epilepsy syndromes in two other cohorts. The ST3GAL5 enzyme synthesizes ganglioside GM3, a glycosophingolipid enriched in neural tissue, by adding sialic acid to lactosylceramide. Unlike disorders of glycosphingolipid (GSL) degradation, very little is known regarding the molecular and pathophysiologic consequences of altered GSL biosynthesis. Glycolipid analysis confirmed a complete lack of GM3 ganglioside in patient fibroblasts, while microarray analysis of glycosyltransferase mRNAs detected modestly increased expression of ST3GAL5 and greater changes in transcripts encoding enzymes that lie downstream of ST3GAL5 and in other GSL biosynthetic pathways. Comprehensive glycomic analysis of N-linked, O-linked and GSL glycans revealed collateral alterations in response to loss of complex gangliosides in patient fibroblasts and in zebrafish embryos injected with antisense morpholinos that targeted zebrafish st3gal5 expression. Morphant zebrafish embryos also exhibited increased apoptotic cell death in multiple brain regions, emphasizing the importance of GSL expression in normal neural development and function.
Collapse
|
30
|
Mühlenhoff M, Rollenhagen M, Werneburg S, Gerardy-Schahn R, Hildebrandt H. Polysialic Acid: Versatile Modification of NCAM, SynCAM 1 and Neuropilin-2. Neurochem Res 2013; 38:1134-43. [DOI: 10.1007/s11064-013-0979-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/11/2013] [Accepted: 01/17/2013] [Indexed: 12/27/2022]
|
31
|
|
32
|
El Maï N, Donadio-Andréi S, Iss C, Calabro V, Ronin C. Engineering a human-like glycosylation to produce therapeutic glycoproteins based on 6-linked sialylation in CHO cells. Methods Mol Biol 2013; 988:19-29. [PMID: 23475711 DOI: 10.1007/978-1-62703-327-5_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
When recombinant glycoproteins for therapeutic use are to be produced on an industrial scale, there is a crucial need for technologies that can engineer fast-growing stable cells secreting the protein drug at a high rate and with a defined and safe glycosylation profile. Current cell lines approved for drug production are essentially from rodent origin. Their glycosylation machinery often adds undesired carbohydrate determinants which may alter protein folding, induce immunogenicity, and reduce circulatory life span of the drug. Notably, sialic acid as N-acetylneuraminic acid is not efficiently added in most mammalian cells and the 6-linkage is missing in rodent cells. Engineering cells with the various enzymatic activities required for sialic acid transfer has not yet succeeded in providing a human-like pattern of glycoforms to protein drugs. To date, there is a need for engineering animal cells and get highly sialylated products that resemble as closely as possible to human proteins. We have designed ST6Gal minigenes to optimize the ST6GalI sialyltransferase activity and used them to engineer ST6(+)CHO cells. When stably transfected in cells expressing a protein of interest or not, these constructs have proven to equip cell clones with efficient transfer activity of 6-linked sialic acid. In this chapter, we describe a methodology for generating healthy stable adherent clones with hypersialylation activity and high secretion rate.
Collapse
|
33
|
A practical approach to reconstruct evolutionary history of animal sialyltransferases and gain insights into the sequence-function relationships of Golgi-glycosyltransferases. Methods Mol Biol 2013; 1022:73-97. [PMID: 23765655 DOI: 10.1007/978-1-62703-465-4_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In higher vertebrates, sialyltransferases catalyze the transfer of sialic acid residues, either Neu5Ac or Neu5Gc or KDN from an activated sugar donor, which is mainly CMP-Neu5Ac in human tissues, to the hydroxyl group of another saccharide acceptor. In the human genome, 20 unique genes have been described that encode enzymes with remarkable specificity with regards to their acceptor substrates and the glycosidic linkage formed. A systematic search of sialyltransferase-related sequences in genome and EST databases and the use of bioinformatic tools enabled us to investigate the evolutionary history of animal sialyltransferases and propose original models of divergent evolution of animal sialyltransferases. In this chapter, we extend our phylogenetic studies to the comparative analysis of the environment of sialyltransferase gene loci (synteny and paralogy studies), the variations of tissue expression of these genes and the analysis of amino-acid position evolution after gene duplications, in order to assess their sequence-function relationships and the molecular basis underlying their functional divergence.
Collapse
|
34
|
Edvardson S, Baumann AM, Mühlenhoff M, Stephan O, Kuss AW, Shaag A, He L, Zenvirt S, Tanzi R, Gerardy-Schahn R, Elpeleg O. West syndrome caused byST3Gal-IIIdeficiency. Epilepsia 2012; 54:e24-7. [DOI: 10.1111/epi.12050] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Sialic acid metabolism and sialyltransferases: natural functions and applications. Appl Microbiol Biotechnol 2012; 94:887-905. [PMID: 22526796 DOI: 10.1007/s00253-012-4040-1] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/16/2012] [Accepted: 03/16/2012] [Indexed: 12/17/2022]
Abstract
Sialic acids are a family of negatively charged monosaccharides which are commonly presented as the terminal residues in glycans of the glycoconjugates on eukaryotic cell surface or as components of capsular polysaccharides or lipooligosaccharides of some pathogenic bacteria. Due to their important biological and pathological functions, the biosynthesis, activation, transfer, breaking down, and recycle of sialic acids are attracting increasing attention. The understanding of the sialic acid metabolism in eukaryotes and bacteria leads to the development of metabolic engineering approaches for elucidating the important functions of sialic acid in mammalian systems and for large-scale production of sialosides using engineered bacterial cells. As the key enzymes in biosynthesis of sialylated structures, sialyltransferases have been continuously identified from various sources and characterized. Protein crystal structures of seven sialyltransferases have been reported. Wild-type sialyltransferases and their mutants have been applied with or without other sialoside biosynthetic enzymes for producing complex sialic acid-containing oligosaccharides and glycoconjugates. This mini-review focuses on current understanding and applications of sialic acid metabolism and sialyltransferases.
Collapse
|
36
|
Zapater JL, Colley KJ. Sequences prior to conserved catalytic motifs of polysialyltransferase ST8Sia IV are required for substrate recognition. J Biol Chem 2011; 287:6441-53. [PMID: 22184126 DOI: 10.1074/jbc.m111.322024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polysialic acid on the neural cell adhesion molecule (NCAM) modulates cell-cell adhesion and signaling, is required for proper brain development, and plays roles in neuronal regeneration and the growth and invasiveness of tumor cells. Evidence indicates that NCAM polysialylation is highly protein-specific, requiring an initial polysialyltransferase-NCAM protein-protein interaction. Previous work suggested that a polybasic region located prior to the conserved polysialyltransferase catalytic motifs may be involved in NCAM recognition, but not overall enzyme activity (Foley, D. A., Swartzentruber, K. G., and Colley, K. J. (2009) J. Biol. Chem. 284, 15505-15516). Here, we employ a competition assay to evaluate the role of this region in substrate recognition. We find that truncated, catalytically inactive ST8SiaIV/PST proteins that include the polybasic region, but not those that lack this region, compete with endogenous ST8SiaIV/PST and reduce NCAM polysialylation in SW2 small cell lung carcinoma cells. Replacing two polybasic region residues, Arg(82) and Arg(93), eliminates the ability of a full-length, catalytically inactive enzyme (PST H331K) to compete with SW2 cell ST8SiaIV/PST and block NCAM polysialylation. Replacing these residues singly or together in ST8SiaIV/PST substantially reduces or eliminates NCAM polysialylation, respectively. In contrast, replacing Arg(82), but not Arg(93), substantially reduces the ability of ST8SiaIV/PST to polysialylate neuropilin-2 and SynCAM 1, suggesting that Arg(82) plays a general role in substrate recognition, whereas Arg(93) specifically functions in NCAM recognition. Taken together, our results indicate that the ST8SiaIV/PST polybasic region plays a critical role in substrate recognition and suggest that different combinations of basic residues may mediate the recognition of distinct substrates.
Collapse
Affiliation(s)
- Joseph L Zapater
- Department of Biochemistry and Molecular Genetics, University of Illinois, College of Medicine, Chicago, Illinois 60607, USA
| | | |
Collapse
|
37
|
Hirano Y, Suzuki T, Matsumoto T, Ishihara Y, Takaki Y, Kono M, Dohmae N, Tsuji S. Disulphide linkage in mouse ST6Gal-I: determination of linkage positions and mutant analysis. J Biochem 2011; 151:197-203. [PMID: 22039275 DOI: 10.1093/jb/mvr133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
All cloned sialyltransferases from vertebrates are classified into four subfamilies and are characterized as having type II transmembrane topology. The catalytic domain has highly conserved motifs known as sialylmotifs. Besides sialylmotifs, each family has several unique conserved cysteine (Cys) residues mainly in the catalytic domain. The number and loci of conserved amino acids, however, differ with each subfamily, suggesting that the conserved Cys-residues and/or disulphide linkages they make may contribute to linkage specificity. Using Matrix Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF)-mass spectrometry, the present study performed disulphide linkage analysis on soluble mouse ST6Gal-I, which has six Cys-residues. Results confirmed that there were no free Cys-residues, and all six residues contributed to disulphide linkage formation, C(139)-C(403), C(181)-C(332) and C(350)-C(361). Study of single amino acid-substituted mutants revealed that the disulphide linkage C(181)-C(332) was necessary for molecular expression of the enzyme, and that the disulphide linkage C(350)-C(361) was necessary for enzyme activity. The remaining disulphide linkage C(139)-C(403) was not necessary for enzyme expression or for activity, including substrate specificity. Crystallographic study of pig ST3Gal I has recently been reported. Interestingly, the loci of disulphide linkages in ST6Gal-I differ from those in ST3Gal I, suggesting that the linkage specificity of sialyltransferase may results from significant structural differences, including the loci of disulphide linkages.
Collapse
Affiliation(s)
- Yuichi Hirano
- Institute of Glycoscience, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Jimenez del Val I, Nagy JM, Kontoravdi C. A dynamic mathematical model for monoclonal antibody N-linked glycosylation and nucleotide sugar donor transport within a maturing Golgi apparatus. Biotechnol Prog 2011; 27:1730-43. [PMID: 21956887 DOI: 10.1002/btpr.688] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 07/25/2011] [Indexed: 01/01/2023]
Abstract
Monoclonal antibodies (mAbs) are one of the most important products of the biopharmaceutical industry. Their therapeutic efficacy depends on the post-translational process of glycosylation, which is influenced by manufacturing process conditions. Herein, we present a dynamic mathematical model for mAb glycosylation that considers cisternal maturation by approximating the Golgi apparatus to a plug flow reactor and by including recycling of Golgi-resident proteins (glycosylation enzymes and transport proteins [TPs]). The glycosylation reaction rate expressions were derived based on the reported kinetic mechanisms for each enzyme, and transport of nucleotide sugar donors [NSDs] from the cytosol to the Golgi lumen was modeled to serve as a link between glycosylation and cellular metabolism. Optimization-based methodologies were developed for estimating unknown enzyme and TP concentration profile parameters. The resulting model is capable of reproducing glycosylation profiles of commercial mAbs. It can further reproduce the effect gene silencing of the FucT glycosylation enzyme and cytosolic NSD depletion have on the mAb oligosaccharide profile. All novel elements of our model are based on biological evidence and generate more accurate results than previous reports. We therefore believe that the improvements contribute to a more detailed representation of the N-linked glycosylation process. The overall results show the potential of our model toward evaluating cell engineering strategies that yield desired glycosylation profiles. Additionally, when coupled to cellular metabolism, this model could be used to assess the effect of process conditions on glycosylation and aid in the design, control, and optimization of biopharmaceutical manufacturing processes.
Collapse
Affiliation(s)
- Ioscani Jimenez del Val
- Dept. of Chemical Engineering and Chemical Technology, Imperial College London, South Kensington Campus, London, UK
| | | | | |
Collapse
|
39
|
Audry M, Jeanneau C, Imberty A, Harduin-Lepers A, Delannoy P, Breton C. Current trends in the structure-activity relationships of sialyltransferases. Glycobiology 2010; 21:716-26. [PMID: 21098518 DOI: 10.1093/glycob/cwq189] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sialyltransferases (STs) represent an important group of enzymes that transfer N-acetylneuraminic acid (Neu5Ac) from cytidine monophosphate-Neu5Ac to various acceptor substrates. In higher animals, sialylated oligosaccharide structures play crucial roles in many biological processes but also in diseases, notably in microbial infection and cancer. Cell surface sialic acids have also been found in a few microorganisms, mainly pathogenic bacteria, and their presence is often associated with virulence. STs are distributed into five different families in the CAZy database (http://www.cazy.org/). On the basis of crystallographic data available for three ST families and fold recognition analysis for the two other families, STs can be grouped into two structural superfamilies that represent variations of the canonical glycosyltransferase (GT-A and GT-B) folds. These two superfamilies differ in the nature of their active site residues, notably the catalytic base (a histidine or an aspartate residue). The observed structural and functional differences strongly suggest that these two structural superfamilies have evolved independently.
Collapse
Affiliation(s)
- Magali Audry
- CERMAV-CNRS, Grenoble University, Grenoble, France
| | | | | | | | | | | |
Collapse
|
40
|
Wu ZL, Ethen CM, Prather B, Machacek M, Jiang W. Universal phosphatase-coupled glycosyltransferase assay. Glycobiology 2010; 21:727-33. [PMID: 21081508 DOI: 10.1093/glycob/cwq187] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A nonradioactive glycosyltransferase assay is described here. This method takes advantage of specific phosphatases that can be added into glycosyltransferase reactions to quantitatively release inorganic phosphate from the leaving groups of glycosyltransferase reactions. The released phosphate group is then detected using colorimetric malachite-based reagents. Because the amount of phosphate released is directly proportional to the sugar molecule transferred in a glycosyltransferase reaction, this method can be used to obtain accurate kinetic parameters of the glycosyltransferase. The assay can be performed in multiwell plates and quantitated by a plate reader, thus making it amenable to high-throughput screening. It has been successfully applied to all glycosyltransferases available to us, including glucosyltransferases, N-acetylglucosaminyltransferases, N-acetylgalactosyltransferases, galactosyltransferases, fucosyltransferases and sialyltransferases. As examples, we first assayed Clostridium difficile toxin B, a protein O-glucosyltransferase that specifically monoglucosylates and inactivates Rho family small GTPases; we then showed that human KTELC1, a homolog of Rumi from Drosophila, was able to hydrolyze UDP-Glc; and finally, we measured the kinetic parameters of human sialyltransferase ST6GAL1.
Collapse
|
41
|
Yamamoto T. Marine bacterial sialyltransferases. Mar Drugs 2010; 8:2781-94. [PMID: 21139844 PMCID: PMC2996176 DOI: 10.3390/md8112781] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 10/25/2010] [Accepted: 11/02/2010] [Indexed: 01/04/2023] Open
Abstract
Sialyltransferases transfer N-acetylneuraminic acid (Neu5Ac) from the common donor substrate of these enzymes, cytidine 5′-monophospho-N-acetylneuraminic acid (CMP-Neu5Ac), to acceptor substrates. The enzymatic reaction products including sialyl-glycoproteins, sialyl-glycolipids and sialyl-oligosaccharides are important molecules in various biological and physiological processes, such as cell-cell recognition, cancer metastasis, and virus infection. Thus, sialyltransferases are thought to be important enzymes in the field of glycobiology. To date, many sialyltransferases and the genes encoding them have been obtained from various sources including mammalian, bacterial and viral sources. During the course of our research, we have detected over 20 bacteria that produce sialyltransferases. Many of the bacteria we isolated from marine environments are classified in the genus Photobacterium or the closely related genus Vibrio. The paper reviews the sialyltransferases obtained mainly from marine bacteria.
Collapse
Affiliation(s)
- Takeshi Yamamoto
- Glycotechnology Business Unit, Japan Tobacco Inc., 700 Higashibara, Iwata, Shizuoka 438-0802, Japan.
| |
Collapse
|
42
|
Sugiarto G, Lau K, Yu H, Vuong S, Thon V, Li Y, Huang S, Chen X. Cloning and characterization of a viral α2-3-sialyltransferase (vST3Gal-I) for the synthesis of sialyl Lewisx. Glycobiology 2010; 21:387-96. [PMID: 20978012 DOI: 10.1093/glycob/cwq172] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Sialyl Lewis(x) (SLe(x), Siaα2-3Galβ1-4(Fucα1-3)GlcNAcβOR) is an important sialic acid-containing carbohydrate epitope involved in many biological processes such as inflammation and cancer metastasis. In the biosynthetic process of SLe(x), α2-3-sialyltransferase-catalyzed sialylation generally proceeds prior to α1-3-fucosyltransferase-catalyzed fucosylation. For the chemoenzymatic synthesis of SLe(x) containing different sialic acid forms, however, it would be more efficient if diverse sialic acid forms are transferred in the last step to the fucosylated substrate Lewis(x) (Le(x)). An α2-3-sialyltransferase obtained from myxoma virus-infected European rabbit kidney RK13 cells (viral α2-3-sialyltransferase (vST3Gal-I)) was reported to be able to tolerate fucosylated substrate Le(x). Nevertheless, the substrate specificity of the enzyme was only determined using partially purified protein from extracts of cells infected with myxoma virus. Herein we demonstrate that a previously reported multifunctional bacterial enzyme Pasteurella multocida sialyltransferase 1 (PmST1) can also use Le(x) as an acceptor substrate, although at a much lower efficiency compared to nonfucosylated acceptor. In addition, N-terminal 30-amino-acid truncated vST3Gal-I has been successfully cloned and expressed in Escherichia coli Origami™ B(DE3) cells as a fusion protein with an N-terminal maltose binding protein (MBP) and a C-terminal His(6)-tag (MBP-Δ30vST3Gal-I-His(6)). The viral protein has been purified to homogeneity and characterized biochemically. The enzyme is active in a broad pH range varying from 5.0 to 9.0. It does not require a divalent metal for its α2-3-sialyltransferase activity. It has been used in one-pot multienzyme sialylation of Le(x) for the synthesis of SLe(x) containing different sialic acid forms with good yields.
Collapse
Affiliation(s)
- Go Sugiarto
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Petit D, Mir AM, Petit JM, Thisse C, Delannoy P, Oriol R, Thisse B, Harduin-Lepers A. Molecular phylogeny and functional genomics of beta-galactoside alpha2,6-sialyltransferases that explain ubiquitous expression of st6gal1 gene in amniotes. J Biol Chem 2010; 285:38399-414. [PMID: 20855889 DOI: 10.1074/jbc.m110.163931] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sialyltransferases are key enzymes in the biosynthesis of sialoglycoconjugates that catalyze the transfer of sialic residue from its activated form to an oligosaccharidic acceptor. β-Galactoside α2,6-sialyltransferases ST6Gal I and ST6Gal II are the two unique members of the ST6Gal family described in higher vertebrates. The availability of genome sequences enabled the identification of more distantly related invertebrates' st6gal gene sequences and allowed us to propose a scenario of their evolution. Using a phylogenomic approach, we present further evidence of an accelerated evolution of the st6gal1 genes both in their genomic regulatory sequences and in their coding sequence in reptiles, birds, and mammals known as amniotes, whereas st6gal2 genes conserve an ancestral profile of expression throughout vertebrate evolution.
Collapse
Affiliation(s)
- Daniel Petit
- Unité de Génétique Moléculaire Animale, Université de Limoges Faculté des Sciences et Techniques, INRA UMR 1061, 123 Avenue Albert Thomas, 87060 Limoges, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Hansen SF, Bettler E, Rinnan A, Engelsen SB, Breton C. Exploring genomes for glycosyltransferases. MOLECULAR BIOSYSTEMS 2010; 6:1773-81. [PMID: 20556308 DOI: 10.1039/c000238k] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glycosyltransferases are one of the largest and most diverse enzyme groups in Nature. They catalyse the synthesis of glycosidic linkages by the transfer of a sugar residue from a donor to an acceptor substrate. These enzymes have been classified into families on the basis of amino acid sequence similarity that are kept updated in the Carbohydrate Active enZyme database (CAZy, ). The repertoire of glycosyltransferases in genomes is believed to determine the diversity of cellular glycan structures, and current estimates suggest that for most genomes about 1% of the coding regions are glycosyltransferases. However, plants tend to have far more glycosyltransferase genes than any other organism sequenced to date, and this can be explained by the highly complex polysaccharide network that form the cell wall and also by the numerous glycosylated secondary metabolites. In recent years, various bioinformatics strategies have been used to search bacterial and plant genomes for new glycosyltransferase genes. These are based on the use of remote homology detection methods that act at the 1D, 2D, and 3D level. The combined use of methods such as profile Hidden Markov Model (HMM) and fold recognition appears to be appropriate for this class of enzyme. Chemometric tools are also particularly well suited for obtaining an overview of multivariate data and revealing hidden latent information when dealing with large and highly complex datasets.
Collapse
|
45
|
Hildebrandt H, Mühlenhoff M, Gerardy-Schahn R. Polysialylation of NCAM. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:95-109. [DOI: 10.1007/978-1-4419-1170-4_6] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
46
|
Damerow S, Lamerz AC, Haselhorst T, Führing J, Zarnovican P, von Itzstein M, Routier FH. Leishmania UDP-sugar pyrophosphorylase: the missing link in galactose salvage? J Biol Chem 2009; 285:878-87. [PMID: 19906649 DOI: 10.1074/jbc.m109.067223] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Leishmania parasite glycocalyx is rich in galactose-containing glycoconjugates that are synthesized by specific glycosyltransferases that use UDP-galactose as a glycosyl donor. UDP-galactose biosynthesis is thought to be predominantly a de novo process involving epimerization of the abundant nucleotide sugar UDP-glucose by the UDP-glucose 4-epimerase, although galactose salvage from the environment has been demonstrated for Leishmania major. Here, we present the characterization of an L. major UDP-sugar pyrophosphorylase able to reversibly activate galactose 1-phosphate into UDP-galactose thus proving the existence of the Isselbacher salvage pathway in this parasite. The ordered bisubstrate mechanism and high affinity of the enzyme for UTP seem to favor the synthesis of nucleotide sugar rather than their pyrophosphorolysis. Although L. major UDP-sugar pyrophosphorylase preferentially activates galactose 1-phosphate and glucose 1-phosphate, the enzyme is able to act on a variety of hexose 1-phosphates as well as pentose 1-phosphates but not hexosamine 1-phosphates and hence presents a broad in vitro specificity. The newly identified enzyme exhibits a low but significant homology with UDP-glucose pyrophosphorylases and conserved in particular is the pyrophosphorylase consensus sequence and residues involved in nucleotide and phosphate binding. Saturation transfer difference NMR spectroscopy experiments confirm the importance of these moieties for substrate binding. The described leishmanial enzyme is closely related to plant UDP-sugar pyrophosphorylases and presents a similar substrate specificity suggesting their common origin.
Collapse
Affiliation(s)
- Sebastian Damerow
- Department of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Rao FV, Rich JR, Rakić B, Buddai S, Schwartz MF, Johnson K, Bowe C, Wakarchuk WW, Defrees S, Withers SG, Strynadka NCJ. Structural insight into mammalian sialyltransferases. Nat Struct Mol Biol 2009; 16:1186-8. [PMID: 19820709 DOI: 10.1038/nsmb.1685] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 09/01/2009] [Indexed: 11/09/2022]
Abstract
Mammalian cell surfaces are modified by complex arrays of glycoproteins, glycolipids and polysaccharides, many of which terminate in sialic acid and have central roles in essential processes including cell recognition, adhesion and immunogenicity. Sialylation of glycoconjugates is performed by a set of sequence-related enzymes known as sialyltransferases (STs). Here we present the crystal structure of a mammalian ST, porcine ST3Gal-I, providing a structural basis for understanding the mechanism and specificity of these enzymes and for the design of selective inhibitors.
Collapse
Affiliation(s)
- Francesco V Rao
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Laporte B, Gonzalez-Hilarion S, Maftah A, Petit JM. The second bovine beta-galactoside-alpha2,6-sialyltransferase (ST6Gal II): genomic organization and stimulation of its in vitro expression by IL-6 in bovine mammary epithelial cells. Glycobiology 2009; 19:1082-93. [PMID: 19617256 DOI: 10.1093/glycob/cwp094] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have cloned a cDNA sequence encoding the second bovine beta-galactoside-alpha2,6-sialyltransferase whose sequence shares more than 75% of identity with hST6Gal II cDNA coding sequence. The bovine gene, located on BTA 11, spans over 50 kbp with five exons (E1-E5) containing the 1488 bp open reading frame and a 5'-untranslated exon (E0). The gene expression pattern reveals a specific tissue distribution (brain, lungs, spleen, salivary, and mammary glands) compared to ST6Gal I which is ubiquitously expressed. We identified for bovine ST6Gal II three kinds of transcripts which differ by their 5'-untranslated regions. Among them, two transcripts are brain specific whereas the third one is found in all of the tissues expressing the gene. Two pFlag-bST6Gal II vector constructions were separately transfected in COS-1 cells in order to express either membrane-bound or soluble active forms of ST6Gal II. Enzymatic assays with these two forms indicated that the enzyme used the LacdiNAc structure (GalNAcbeta1,4GlcNAc) as a better acceptor substrate than the Type II (Galbeta1-4GlcNAc) disaccharide. Moreover, the enzyme's efficiency is improved when the acceptor substrate is provided as a free oligosaccharide rather than as a protein-bound oligosaccharide. In order to investigate the potential role of ST6Gal II during the acute phase of inflammation, we used primary cultures of bovine mammary epithelial cells which were stimulated with pro-inflammatory cytokines. It appears that the ST6Gal II gene was upregulated in cells stimulated by IL-6. This result suggested that alpha2,6-sialylation mediated by this gene could contribute to organism's response to infections.
Collapse
Affiliation(s)
- Benoit Laporte
- UMR1061, Unité de Génétique Moléculaire Animale, Université de Limoges, INRA, IFR N degrees 145 GEIST, France
| | | | | | | |
Collapse
|
49
|
Foley DA, Swartzentruber KG, Colley KJ. Identification of sequences in the polysialyltransferases ST8Sia II and ST8Sia IV that are required for the protein-specific polysialylation of the neural cell adhesion molecule, NCAM. J Biol Chem 2009; 284:15505-16. [PMID: 19336400 PMCID: PMC2708847 DOI: 10.1074/jbc.m809696200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 03/27/2009] [Indexed: 11/06/2022] Open
Abstract
The polysialyltransferases ST8Sia II and ST8Sia IV polysialylate the glycans of a small subset of mammalian proteins. Their most abundant substrate is the neural cell adhesion molecule (NCAM). An acidic surface patch and a novel alpha-helix in the first fibronectin type III repeat of NCAM are required for the polysialylation of N-glycans on the adjacent immunoglobulin domain. Inspection of ST8Sia IV sequences revealed two conserved polybasic regions that might interact with the NCAM acidic patch or the growing polysialic acid chain. One is the previously identified polysialyltransferase domain (Nakata, D., Zhang, L., and Troy, F. A. (2006) Glycoconj. J. 23, 423-436). The second is a 35-amino acid polybasic region that contains seven basic residues and is equidistant from the large sialyl motif in both polysialyltransferases. We replaced these basic residues to evaluate their role in enzyme autopolysialylation and NCAM-specific polysialylation. We found that replacement of Arg(276)/Arg(277) or Arg(265) in the polysialyltransferase domain of ST8Sia IV decreased both NCAM polysialylation and autopolysialylation in parallel, suggesting that these residues are important for catalytic activity. In contrast, replacing Arg(82)/Arg(93) in ST8Sia IV with alanine substantially decreased NCAM-specific polysialylation while only partially impacting autopolysialylation, suggesting that these residues may be particularly important for NCAM polysialylation. Two conserved negatively charged residues, Glu(92) and Asp(94), surround Arg(93). Replacement of these residues with alanine largely inactivated ST8Sia IV, whereas reversing these residues enhanced enzyme autopolysialylation but significantly reduced NCAM polysialylation. In sum, we have identified selected amino acids in this conserved polysialyltransferase polybasic region that are critical for the protein-specific polysialylation of NCAM.
Collapse
Affiliation(s)
- Deirdre A. Foley
- From the Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, Chicago, Illinois 60607
| | - Kristin G. Swartzentruber
- From the Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, Chicago, Illinois 60607
| | - Karen J. Colley
- From the Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, College of Medicine, Chicago, Illinois 60607
| |
Collapse
|
50
|
Hashimoto K, Tokimatsu T, Kawano S, Yoshizawa AC, Okuda S, Goto S, Kanehisa M. Comprehensive analysis of glycosyltransferases in eukaryotic genomes for structural and functional characterization of glycans. Carbohydr Res 2009; 344:881-7. [DOI: 10.1016/j.carres.2009.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 02/24/2009] [Accepted: 03/03/2009] [Indexed: 11/25/2022]
|