1
|
Batir Y, Bargiello TA, Dowd TL. Structural studies of N-terminal mutants of Connexin 26 and Connexin 32 using (1)H NMR spectroscopy. Arch Biochem Biophys 2016; 608:8-19. [PMID: 27378082 PMCID: PMC5051353 DOI: 10.1016/j.abb.2016.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/25/2022]
Abstract
Alterations in gap junctions underlie the etiologies of syndromic deafness (KID) and Charcot-Marie Tooth disease (CMTX). Functional gap junctions are composed of connexin molecules with N-termini containing a flexible turn around G12, inserting the N-termini into the channel pore allowing voltage gating. The loss of this turn correlates with loss of Connexin 32 (Cx32) function by impaired trafficking to the cell membrane. Using (1)H NMR we show the N-terminus of a syndromic deafness mutation Cx26G12R, producing "leaky channels", contains a turn around G12 which is less structured and more flexible than wild-type. In contrast, the N-terminal structure of the same mutation in Cx32 chimera, Cx32*43E1G12R shows a larger constricted turn and no membrane current expression but forms membrane inserted hemichannels. Their function was rescued by formation of heteromeric channels with wild type subunits. We suggest the inflexible Cx32G12R N-terminus blocks ion conduction in homomeric channels and this channel block is relieved by incorporation of wild type subunits. In contrast, the increased open probability of Cx26G12R hemichannels is likely due to the addition of positive charge in the channel pore changing pore electrostatics and impairing hemichannel regulation by Ca(2+). These results provide mechanistic information on aberrant channel activity observed in disease.
Collapse
Affiliation(s)
- Yuksel Batir
- Department of Chemistry, Brooklyn College, Brooklyn, NY 11210, United States
| | - Thaddeus A Bargiello
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Terry L Dowd
- Department of Chemistry, Brooklyn College, Brooklyn, NY 11210, United States; Ph.D. Program in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, United States.
| |
Collapse
|
2
|
Kalmatsky DB, Batir Y, Bargiello TA, Dowd T. Structural studies of N-terminal mutants of connexin 32 using (1)H NMR spectroscopy. Arch Biochem Biophys 2012; 526:1-8. [PMID: 22705201 PMCID: PMC3938314 DOI: 10.1016/j.abb.2012.05.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/02/2012] [Accepted: 05/22/2012] [Indexed: 12/11/2022]
Abstract
The amino terminus of gap junction proteins, connexins, plays a fundamental role in voltage gating and ion permeation. We have previously shown with (1)H NMR that the structure of the N-terminus of functional connexin molecules contains a flexible turn around G12 (Arch. Biochem. Biophys.490:9,2009) allowing the N-terminus to form a portion of the channel pore near the cytoplasmic entrance. The mutants of nonfunctional connexin molecules G12S and G12Y were found to prevent this turn. Previous functional studies of loci at which Cx32 mutations cause a peripheral neuropathy, Charcot-Marie-Tooth disease, have shown that G12S is not plasma membrane inserted. Presently, we solve the structure of nonfunctional Connexin 32 mutants W3D and Y7D which do not appear to be membrane inserted. Using 2D (1)H NMR, we report that similar to G12S and G12Y, alterations in hydrophobic sidechain interactions disrupt (Y7D) or constrain (W3D) the flexible turn around G12. The alteration in the open turn around residue 12, observed in all nonfunctional mutants G12S, G12Y, W3D and Y7D correlates with loss of function. We propose that loss of the open turn causes the N-terminus to extend out of the channel pore and this misfolding may target mutants for destruction in the endoplasmic reticulum.
Collapse
Affiliation(s)
- D. B. Kalmatsky
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York, 11210
| | - Y. Batir
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York, 11210
| | - T. A. Bargiello
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - T.L. Dowd
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York, 11210
| |
Collapse
|
3
|
Conway EM. Thrombomodulin and its role in inflammation. Semin Immunopathol 2012; 34:107-25. [PMID: 21805323 DOI: 10.1007/s00281-011-0282-8] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/20/2011] [Indexed: 12/30/2022]
Abstract
The goal is to provide an extensive review of the physiologic role of thrombomodulin (TM) in maintaining vascular homeostasis, with a focus on its anti-inflammatory properties. Data were collected from published research. TM is a transmembrane glycoprotein expressed on the surface of all vascular endothelial cells. Expression of TM is tightly regulated to maintain homeostasis and to ensure a rapid and localized hemostatic and inflammatory response to injury. By virtue of its strategic location, its multidomain structure and complex interactions with thrombin, protein C (PC), thrombin activatable fibrinolysis inhibitor (TAFI), complement components, the Lewis Y antigen, and the cytokine HMGB1, TM exhibits a range of physiologically important anti-inflammatory, anti-coagulant, and anti-fibrinolytic properties. TM is an essential cofactor that impacts on multiple biologic processes. Alterations in expression of TM and its partner proteins may be manifest by inflammatory and thrombotic disorders. Administration of soluble forms of TM holds promise as effective therapies for inflammatory diseases, and infections and malignancies that are complicated by disseminated intravascular coagulation.
Collapse
Affiliation(s)
- Edward M Conway
- Division of Hematology-Oncology, Department of Medicine, Centre for Blood Research (CBR), University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
4
|
Duarte AMS, Wolfs CJAM, van Nuland NAJ, Harrison MA, Findlay JBC, van Mierlo CPM, Hemminga MA. Structure and localization of an essential transmembrane segment of the proton translocation channel of yeast H+-V-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:218-27. [PMID: 16962559 DOI: 10.1016/j.bbamem.2006.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 07/12/2006] [Accepted: 07/28/2006] [Indexed: 11/17/2022]
Abstract
Vacuolar (H+)-ATPase (V-ATPase) is a proton pump present in several compartments of eukaryotic cells to regulate physiological processes. From biochemical studies it is known that the interaction between arginine 735 present in the seventh transmembrane (TM7) segment from subunit a and specific glutamic acid residues in the subunit c assembly plays an essential role in proton translocation. To provide more detailed structural information about this protein domain, a peptide resembling TM7 (denoted peptide MTM7) from Saccharomyces cerevisiae (yeast) V-ATPase was synthesized and dissolved in two membrane-mimicking solvents: DMSO and SDS. For the first time the secondary structure of the putative TM7 segment from subunit a is obtained by the combined use of CD and NMR spectroscopy. SDS micelles reveal an alpha-helical conformation for peptide MTM7 and in DMSO three alpha-helical regions are identified by 2D 1H-NMR. Based on these conformational findings a new structural model is proposed for the putative TM7 in its natural environment. It is composed of 32 amino acid residues that span the membrane in an alpha-helical conformation. It starts at the cytoplasmic side at residue T719 and ends at the luminal side at residue W751. Both the luminal and cytoplasmatic regions of TM7 are stabilized by the neighboring hydrophobic transmembrane segments of subunit a and the subunit c assembly from V-ATPase.
Collapse
Affiliation(s)
- Afonso M S Duarte
- Laboratory of Biophysics, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
5
|
Watt PM, Heinrich TK, Thomas WR. Protein silencing with Phylomers: a new tool for target validation and generating lead biologicals targeting protein interactions. Expert Opin Drug Discov 2006; 1:491-502. [DOI: 10.1517/17460441.1.5.491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Jaakola VP, Rehn M, Moeller M, Alexiev U, Goldman A, Turner GJ. G-protein-coupled receptor domain overexpression in Halobacterium salinarum: long-range transmembrane interactions in heptahelical membrane proteins. Proteins 2006; 60:412-23. [PMID: 15971205 DOI: 10.1002/prot.20498] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The aminergic alpha(2b)-adrenergic receptor (alpha(2b)-AR) third intracellular loop (alpha(2b)-AR 3i) mediates receptor subcellular compartmentalization and signal transduction processes via ligand-dependent interaction with G(i)- and G(o)- proteins. To understand the structural origins of these processes we engineered several lengths of alpha(2b)-AR 3i into the third intracellular loop of the proton pump bacteriorhodopsin (bR) and produced the fusion proteins in quantities suitable for physical studies. The fusion proteins were expressed in the Archaeon Halobacterium salinarum and purified. A highly expressed fusion protein was crystallized from bicelles and diffracted to low resolution on an in-house diffractometer. The bR-alpha(2b)-AR 3i(203-292) protein possessed a photocycle slightly perturbed from that of the wild-type bR. The first half of the fusion protein photocycle, correlated with proton release, is accelerated by a factor of 3, whereas the second half, correlated with proton uptake, is slightly slower than wild-type bR. In addition, there is a large decrease in the pK(a), (from 9.6 to 8.3) of the terminal proton release group in the unphotolyzed state of bR-alpha(2b)-AR 3i as deduced from the pH-dependence of the M-formation. Perturbation of a cytoplasmic loop has thus resulted in the perturbation of proton release at the extracellular surface. The current work indicates that long-range and highly coupled intramolecular interactions exist that are capable of "transducing" structural perturbations (e.g., signals) across the cellular membrane. This gene fusion approach may have general applicability for physical studies of G-protein-coupled receptor domains in the context of the bR structural scaffold.
Collapse
Affiliation(s)
- Veli-Pekka Jaakola
- Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
7
|
Watt PM. Screening for peptide drugs from the natural repertoire of biodiverse protein folds. Nat Biotechnol 2006; 24:177-83. [PMID: 16465163 DOI: 10.1038/nbt1190] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although monoclonal antibody (mAb) drugs targeting protein interactions exist, these therapeutics cannot access intracellular proteins involved in disease complexes. Moreover, mAbs are more difficult to deliver and are frequently associated with a prohibitive 'royalty stack.' Outlined here is an alternative approach based on libraries of natural, highly structured peptides that offers new opportunities for identifying effective, specific inhibitors of protein-protein interactions. Libraries of such peptides (referred to hereafter as phylomers) comprise both random and structured peptides encoded by natural genes of diverse bacterial genomes. Because the number of protein subdomain structures found in nature is limited, diverse libraries containing millions of phylomers constitute virtually all of the available classes of protein fold structures, providing a rich source of peptides that interact specifically and with high affinity to human proteins. This approach may help not only in understanding the implications of each interaction identified within the interactome but also in the development of effective drugs targeted to particular protein functions. Although phylomers are active in animal models, the challenge remains to demonstrate efficacy and safety in a clinical setting.
Collapse
Affiliation(s)
- Paul M Watt
- Phylogica Ltd., 105 Roberts Road, Subiaco, Perth, Western Australia 6008.
| |
Collapse
|
8
|
Murakami MT, Arni RK. Thrombomodulin-independent Activation of Protein C and Specificity of Hemostatically Active Snake Venom Serine Proteinases. J Biol Chem 2005; 280:39309-15. [PMID: 16162508 DOI: 10.1074/jbc.m508502200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein C activation initiated by the thrombin-thrombomodulin complex forms the major physiological anticoagulant pathway. Agkistrodon contortrix contortrix protein C activator, a glycosylated single-chain serine proteinase, activates protein C without relying on thrombomodulin. The crystal structures of native and inhibited Agkistrodon contortrix contortrix protein C activator determined at 1.65 and 1.54 A resolutions, respectively, indicate the pivotal roles played by the positively charged belt and the strategic positioning of the three carbohydrate moieties surrounding the catalytic site in protein C recognition, binding, and activation. Structural changes in the benzamidine-inhibited enzyme suggest a probable function in allosteric regulation for the anion-binding site located in the C-terminal extension, which is fully conserved in snake venom serine proteinases, that preferentially binds Cl(1-) instead of SO(4)(2-).
Collapse
Affiliation(s)
- Mário T Murakami
- Biochemistry and Structural Biology Group, Department of Physics, IBILCE/UNESP, São José do Rio Preto, SP 15054-000, Brazil
| | | |
Collapse
|
9
|
Abstract
Bovine rhodopsin is the prototypical G protein coupled receptor (GPCR). It was the first GPCR to be obtained in quantity and studied in detail. It is also the first GPCR for which detailed three dimensional structural information has been obtained. Reviewed here are the experiments leading up to the high resolution structure determination of rhodopsin and the most recent structural information on the activation and stability of this integral membrane protein.
Collapse
Affiliation(s)
- Arlene D Albert
- Department of Molecular and Cell Biology, U-125 University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269-3125, USA
| | | |
Collapse
|
10
|
Yeagle PL, Albert AD. Use of nuclear magnetic resonance to study the three-dimensional structure of rhodopsin. Methods Enzymol 2002; 343:223-31. [PMID: 11665569 DOI: 10.1016/s0076-6879(02)43138-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Philip L Yeagle
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | | |
Collapse
|
11
|
Katragadda M, Alderfer JL, Yeagle PL. Assembly of a polytopic membrane protein structure from the solution structures of overlapping peptide fragments of bacteriorhodopsin. Biophys J 2001; 81:1029-36. [PMID: 11463644 PMCID: PMC1301572 DOI: 10.1016/s0006-3495(01)75760-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Three-dimensional structures of only a handful of membrane proteins have been solved, in contrast to the thousands of structures of water-soluble proteins. Difficulties in crystallization have inhibited the determination of the three-dimensional structure of membrane proteins by x-ray crystallography and have spotlighted the critical need for alternative approaches to membrane protein structure. A new approach to the three-dimensional structure of membrane proteins has been developed and tested on the integral membrane protein, bacteriorhodopsin, the crystal structure of which had previously been determined. An overlapping series of 13 peptides, spanning the entire sequence of bacteriorhodopsin, was synthesized, and the structures of these peptides were determined by NMR in dimethylsulfoxide solution. These structures were assembled into a three-dimensional construct by superimposing the overlapping sequences at the ends of each peptide. Onto this construct were written all the distance and angle constraints obtained from the individual solution structures along with a limited number of experimental inter-helical distance constraints, and the construct was subjected to simulated annealing. A three-dimensional structure, determined exclusively by the experimental constraints, emerged that was similar to the crystal structure of this protein. This result suggests an alternative approach to the acquisition of structural information for membrane proteins consisting of helical bundles.
Collapse
Affiliation(s)
- M Katragadda
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | |
Collapse
|
12
|
Katragadda M, Chopra A, Bennett M, Alderfer JL, Yeagle PL, Albert AD. Structures of the transmembrane helices of the G-protein coupled receptor, rhodopsin. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2001; 58:79-89. [PMID: 11454172 DOI: 10.1034/j.1399-3011.2001.00904.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An hypothesis is tested that individual peptides corresponding to the transmembrane helices of the membrane protein, rhodopsin, would form helices in solution similar to those in the native protein. Peptides containing the sequences of helices 1, 4 and 5 of rhodopsin were synthesized. Two peptides, with overlapping sequences at their termini, were synthesized to cover each of the helices. The peptides from helix 1 and helix 4 were helical throughout most of their length. The N- and C-termini of all the peptides were disordered and proline caused opening of the helical structure in both helix 1 and helix 4. The peptides from helix 5 were helical in the middle segment of each peptide, with larger disordered regions in the N- and C-termini than for helices 1 and 4. These observations show that there is a strong helical propensity in the amino acid sequences corresponding to the transmembrane domain of this G-protein coupled receptor. In the case of the peptides from helix 4, it was possible to superimpose the structures of the overlapping sequences to produce a construct covering the whole of the sequence of helix 4 of rhodopsin. As similar superposition for the peptides from helix 1 also produced a construct, but somewhat less successfully because of the disordering in the region of sequence overlap. This latter problem was more severe for helix 5 and therefore a single peptide was synthesized for the entire sequence of this helix, and its structure determined. It proved to be helical throughout. Comparison of all these structures with the recent crystal structure of rhodopsin revealed that the peptide structures mimicked the structures seen in the whole protein. Thus similar studies of peptides may provide useful information on the secondary structure of other transmembrane proteins built around helical bundles.
Collapse
Affiliation(s)
- M Katragadda
- Department of Biophysics, Roswell Park Cancer Institute, Buffalo, USA
| | | | | | | | | | | |
Collapse
|
13
|
Albert AD, Yeagle PL. Domain approach to three-dimensional structure of rhodopsin using high-resolution nuclear magnetic resonance. Methods Enzymol 2000; 315:107-15. [PMID: 10736697 DOI: 10.1016/s0076-6879(00)15838-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- A D Albert
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269-3125, USA
| | | |
Collapse
|
14
|
Fuentes-Prior P, Iwanaga Y, Huber R, Pagila R, Rumennik G, Seto M, Morser J, Light DR, Bode W. Structural basis for the anticoagulant activity of the thrombin-thrombomodulin complex. Nature 2000; 404:518-25. [PMID: 10761923 DOI: 10.1038/35006683] [Citation(s) in RCA: 238] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The serine proteinase alpha-thrombin causes blood clotting through proteolytic cleavage of fibrinogen and protease-activated receptors and amplifies its own generation by activating the essential clotting factors V and VIII. Thrombomodulin, a transmembrane thrombin receptor with six contiguous epidermal growth factor-like domains (TME1-6), profoundly alters the substrate specificity of thrombin from pro- to anticoagulant by activating protein C. Activated protein C then deactivates the coagulation cascade by degrading activated factors V and VIII. The thrombin-thrombomodulin complex inhibits fibrinolysis by activating the procarboxypeptidase thrombin-activatable fibrinolysis inhibitor. Here we present the 2.3 A crystal structure of human alpha-thrombin bound to the smallest thrombomodulin fragment required for full protein-C co-factor activity, TME456. The Y-shaped thrombomodulin fragment binds to thrombin's anion-binding exosite-I, preventing binding of procoagulant substrates. Thrombomodulin binding does not seem to induce marked allosteric structural rearrangements at the thrombin active site. Rather, docking of a protein C model to thrombin-TME456 indicates that TME45 may bind substrates in such a manner that their zymogen-activation cleavage sites are presented optimally to the unaltered thrombin active site.
Collapse
|
15
|
Albert AD, Yeagle PL. Structural aspects of the G-protein receptor, rhodopsin. VITAMINS AND HORMONES 2000; 58:27-51. [PMID: 10668394 DOI: 10.1016/s0083-6729(00)58020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- A D Albert
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269, USA
| | | |
Collapse
|
16
|
Light DR, Glaser CB, Betts M, Blasko E, Campbell E, Clarke JH, McCaman M, McLean K, Nagashima M, Parkinson JF, Rumennik G, Young T, Morser J. The interaction of thrombomodulin with Ca2+. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 262:522-33. [PMID: 10336638 DOI: 10.1046/j.1432-1327.1999.00398.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Thrombomodulin (TM) is a cofactor for protein C activation by thrombin and each residue of a consensus Ca2+ site in the sixth epidermal growth factor domain (EGF6) is essential for this cofactor activity [Nagashima, M., Lundh, E., Leonard, J.C., Morser, J. & Parkinson, J.F. (1993) J. Biol. Chem. 268, 2888-2892]. Three soluble analogs of the extracellular domain of TM, solulin (Glu4-Pro490), TME1-6 (Cys227-Cys462) and TMEi4-6 (Val345-Cys462) were prepared for equilibrium dialysis experiments by exhaustive dialysis against Ca2+-depleted buffer. However, all three analogs still contained one tightly bound Ca2+ (Kd approximately 2 microm), which could only be removed by EDTA. Epitope mapping with Ca2+-dependent monoclonal antibodies to EGF6 provided further localization of this tight Ca2+ site. Equilibrium dialysis of the soluble TM analogs in [45Ca2+] between 10 and 200 microm revealed a second Ca2+ site (Kd = 30 +/- 10 microm) in both solulin and TME1-6, but not in TMEi4-6. Ca2+ binding to this second site was unaffected by bound thrombin and we attribute it to the consensus Ca2+ site in EGF3. A 75-fold decrease in the binding affinity of thrombin to TM was observed with immobilized solulin treated with EDTA to remove the high affinity Ca2+ by measuring kassoc and kdiss rates in a BIAcoretrade mark instrument. Ca2+-dependent conformational transitions detected by CD spectroscopy in the far UV indicate a more ordered structure upon Ca2+ binding. Bound Ca2+ stabilized soluble TM against protease digestion at a trypsin-like protease-sensitive site between Arg456 and His457 in EGF6 compared with protease treatment in EDTA. Finally, TM containing EGF domains 4-6, but lacking the interdomain loop between EGF3 and 4 (TME4-6), has an identical Ca2+ dependence for the activation of protein C as found for TMEi4-6, indicating this interdomain loop is not involved in Ca2+ binding.
Collapse
Affiliation(s)
- D R Light
- Cardiovascular Research, Berlex Biosciences, Richmond, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Knobe KE, Berntsdotter A, Shen L, Morser J, Dahlbäck B, Villoutreix BO. Probing the activation of protein C by the thrombin-thrombomodulin complex using structural analysis, site-directed mutagenesis, and computer modeling. Proteins 1999; 35:218-34. [PMID: 10223294 DOI: 10.1002/(sici)1097-0134(19990501)35:2<218::aid-prot8>3.0.co;2-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Protein C (PC) is activated to an essential anticoagulant enzyme (activated PC or APC) by thrombin (T) bound to thrombomodulin (TM), a membrane receptor present on the surface of endothelial cells. The understanding of this complex biological system is in part limited due to the lack of integration of experimental and structural data. In the work presented here, we analyze the PC-T-TM pathway in the context of both types of information. First, structural analysis of the serine protease domain of PC suggests that a positively charged cluster of amino acids could be involved in the activation process. To investigate the importance of these basic amino acids, two recombinant PC mutants were constructed using computer-guided site-directed mutagenesis. The double mutant had the K62[217]N/K63[218]D substitution and in the single mutant, K86[241] was changed to S. Both mutants were activated by free thrombin at rates equivalent to that of wild-type PC (wt-PC) and they demonstrated similar calcium-dependent inhibition of their activation. The K86[241]S mutant and wt-PC were activated by thrombin bound to soluble TM at a similar rate. In contrast, the K62[217]N/ K63[218]D mutant was activated by the T-TM complex at a 10-fold lower catalytic efficiency due to a lowering in k(cat) and increase in Km. Molecular models for PC and thrombin bound to a segment of TM were developed. The experimental results and the modeling data both indicate that electrostatic interactions are of crucial importance to orient PC onto the T-TM complex. A key electropositive region centered around loops 37[191] and 60[214] of PC is defined. PC loop 37[191] is located 7-8 A from the TM epidermal growth factor (EGF) 4 while the loop 60[214] is about 10 A away from TM EGF4. Both loops are far from thrombin. A key function of TM could be to create an additional binding site for PC. The Gla domain of PC points toward the membrane and away from thrombin or the EGF modules of TM during the activation process.
Collapse
Affiliation(s)
- K E Knobe
- Lund University, Department of Clinical Chemistry, University Hospital, Malmö, Sweden
| | | | | | | | | | | |
Collapse
|
18
|
Adler M, Thompson SA. The solution structure of heregulin-alpha and a N-terminal mutant with suppressed activity. Biochem Biophys Res Commun 1999; 256:156-61. [PMID: 10066440 DOI: 10.1006/bbrc.1998.9437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
NMR spectroscopy is used to compare the structure of the EGF-like domain of heregulin-alpha and HT1, a mutated form of heregulin-alpha with significantly reduced activity. HT1 is a chimeric protein that has the first seven residues of transforming growth factor-alpha and the sequence of heregulin-alpha from the first cysteine through the next 58 residues. The results demonstrate that both proteins share the same fold, including the triple stranded beta-sheet formed by the N-terminus and the B-loop. Analysis of the chemical shifts indicates that there are perturbations to the side chain packing of the beta-sheet. The observed changes in the chemical shifts show an interesting correspondence to the results from the homologue scan presented in the previous paper. These results indicate that the binding epitope for the native receptor extends across the beta-sheet and includes residues Leu179, Lys181, Leu209, and Lys211.
Collapse
Affiliation(s)
- M Adler
- Department of Pharmaceutical Discovery, Berlex Biosciences, Richmond, California, 94804, USA
| | | |
Collapse
|
19
|
White CE, Hunter MJ, Meininger DP, Garrod S, Komives EA. The fifth epidermal growth factor-like domain of thrombomodulin does not have an epidermal growth factor-like disulfide bonding pattern. Proc Natl Acad Sci U S A 1996; 93:10177-82. [PMID: 8816772 PMCID: PMC38357 DOI: 10.1073/pnas.93.19.10177] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The disulfide bonding pattern of the fourth and fifth epidermal growth factor (EGF)-like domains within the smallest active fragment of thrombomodulin have been determined. In previous work, this fragment was expressed and purified to homogeneity, and its cofactor activity, as measured by Kcat for thrombin activation of protein C, was the same as that for full-length thrombomodulin. CNBr cleavage at the single methionine in the connecting region between the domains and subsequent deglycosylation yielded the individual EGF-like domains. The disulfide bonds were mapped by partial reduction with tris(2-carboxyethyl)phosphine according to the method of Gray [Gray, W. R. (1993) Protein Sci. 2, 1732-1748], which provides unambiguous results. The disulfide bonding pattern of the fourth EGF-like domain was (1-3, 2-4, 5-6), which is the same as that found previously in EGF and in a synthetic version of the fourth EGF-like domain. Surprisingly, the disulfide bonding pattern of the fifth domain was (1-2, 3-4, 5-6), which is unlike that found in EGF or in any other EGF-like domain analyzed so far. This result is in line with an earlier observation that the (1-2, 3-4, 5-6) isomer bound to thrombin more tightly than the EGF-like (1-3, 2-4, 5-6) isomer. The observation that not all EGF-like domains have an EGF-like disulfide bonding pattern reveals an additional element of diversity in the structure of EGF-like domains.
Collapse
Affiliation(s)
- C E White
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla 92093-0601, USA
| | | | | | | | | |
Collapse
|