1
|
Ohgi K, Kajiya H, Okamoto F, Nagaoka Y, Onitsuka T, Nagai A, Sakagami R, Okabe K. A novel inhibitory mechanism of nitrogen-containing bisphosphonate on the activity of Cl− extrusion in osteoclasts. Naunyn Schmiedebergs Arch Pharmacol 2013; 386:589-98. [DOI: 10.1007/s00210-013-0857-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/18/2013] [Indexed: 11/29/2022]
|
2
|
Wu ZY, Yu DJ, Soong TW, Dawe GS, Bian JS. Progesterone impairs human ether-a-go-go-related gene (HERG) trafficking by disruption of intracellular cholesterol homeostasis. J Biol Chem 2011; 286:22186-94. [PMID: 21525004 DOI: 10.1074/jbc.m110.198853] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The prolongation of QT intervals in both mothers and fetuses during the later period of pregnancy implies that higher levels of progesterone may regulate the function of the human ether-a-go-go-related gene (HERG) potassium channel, a key ion channel responsible for controlling the length of QT intervals. Here, we studied the effect of progesterone on the expression, trafficking, and function of HERG channels and the underlying mechanism. Treatment with progesterone for 24 h decreased the abundance of the fully glycosylated form of the HERG channel in rat neonatal cardiac myocytes and HERG-HEK293 cells, a cell line stably expressing HERG channels. Progesterone also concentration-dependently decreased HERG current density, but had no effect on voltage-gated L-type Ca(2+) and K(+) channels. Immunofluorescence microscopy and Western blot analysis show that progesterone preferentially decreased HERG channel protein abundance in the plasma membrane, induced protein accumulation in the dilated endoplasmic reticulum (ER), and increased the protein expression of C/EBP homologous protein, a hallmark of ER stress. Application of 2-hydroxypropyl-β-cyclodextrin (a sterol-binding agent) or overexpression of Rab9 rescued the progesterone-induced HERG trafficking defect and ER stress. Disruption of intracellular cholesterol homeostasis with simvastatin, imipramine, or exogenous application of cholesterol mimicked the effect of progesterone on HERG channel trafficking. Progesterone may impair HERG channel folding in the ER and/or block its trafficking to the Golgi complex by disrupting intracellular cholesterol homeostasis. Our findings may reveal a novel molecular mechanism to explain the QT prolongation and high risk of developing arrhythmias during late pregnancy.
Collapse
Affiliation(s)
- Zhi-Yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | | | | | | | | |
Collapse
|
3
|
Sakamoto K, Wada I, Kimura J. Inhibition of Rab1 GTPase and endoplasmic reticulum-to-Golgi trafficking underlies statin's toxicity in rat skeletal myofibers. J Pharmacol Exp Ther 2011; 338:62-9. [PMID: 21467191 DOI: 10.1124/jpet.111.179762] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
HMG-CoA reductase inhibitor statins are used for the treatment of hypercholesterolemia. However, statins have adverse effects on skeletal muscles with unknown mechanism. We have reported previously that fluvastatin induced vacuolation and cell death in rat skeletal myofibers by depleting geranylgeranylpyrophosphate (GGPP) and suppressing small GTPases, particularly Rab (FASEB J 21:4087-4094, 2007). Rab1 is one of the most susceptible Rab isoforms to GGPP depletion and is essential for endoplasmic reticulum (ER)-to-Golgi trafficking. Here, we explored whether Rab1 and ER-to-Golgi vesicle trafficking were affected by statins in cultured single myofibers isolated from flexor digitorum brevis muscles of adult rats. Western blot analysis revealed that Rab1A protein resided predominantly in membrane but not in cytosol in control myofibers, whereas it was opposite in fluvastatin-treated myofibers, indicating that fluvastatin inhibited Rab1A translocation from cytosol to membrane. GGPP supplementation prevented the effect of fluvastatin on Rab1A translocation. Brefeldin A, a specific suppressor of ER-to-Golgi trafficking, induced vacuolation and cell death in myofibers in a manner similar to that of fluvastatin. Although ER-to-Golgi traffic suppression induces unfolded protein response (UPR) and cell death in some cell types, neither fluvastatin nor brefeldin A up-regulated UPR in myofibers. Immunofluorescence study revealed that the distribution of an ER marker, calnexin, was restricted to the region around nucleus with fluvastatin, suggesting the inhibition of ER membrane traffic by fluvastatin. We conclude that suppression of Rab1 GTPase and the subsequent inhibition of ER-to-Golgi traffic are involved in statin-induced skeletal myotoxicity.
Collapse
Affiliation(s)
- Kazuho Sakamoto
- Department of Pharmacology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan.
| | | | | |
Collapse
|
4
|
Cheng J, Wang H, Guggino WB. Regulation of Cystic Fibrosis Transmembrane Regulator Trafficking and Protein Expression by a Rho Family Small GTPase TC10. J Biol Chem 2005; 280:3731-9. [PMID: 15546864 DOI: 10.1074/jbc.m410026200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR)-interacting protein, CFTR-associated ligand (CAL) down-regulates total and cell surface CFTR by targeting CFTR for degradation in the lysosome. Here, we report that a Rho family small GTPase TC10 interacts with CAL. This interaction specifically up-regulates CFTR protein expression. Co-expression of the constitutively active form, TC10Q75L, increases total and cell surface CFTR in a dose-dependent fashion. Moreover, co-expression of the dominant-negative mutant TC10T31N causes a dose-dependent reduction in mature CFTR. The effect of TC10 is independent of the level of CFTR expression, because a similar effect was observed in a stable cell line that expresses one-tenth of CFTR. Co-expression of TC10Q75L did not have a similar effect on the expression of plasma membrane proteins such as Frizzled-3 and Pr-cadherin or cytosolic proteins such as tubulin and green fluorescent protein. TC10Q75L also did not have a similar effect on the vesicular stomatitis virus glycoprotein. Co-expression of constitutively active and dominant-negative forms of Cdc42 or RhoA did not affect CFTR expression in a manner similar to TC10, indicating that the effect of TC10 is unique within the Rho family. Metabolic pulse-chase experiments show that TC10 did not affect CFTR maturation, suggesting that it exerts its effects on the mature CFTR. Importantly, TC10Q75L reverses CAL-mediated CFTR degradation, suggesting that TC10Q75L inhibits CAL-mediated degradation of CFTR. TC10Q75L does not operate by reducing CAL protein expression or its ability to form dimers or interact with CFTR. Interestingly, the expression of TC10Q75L causes a dramatic redistribution of CAL from the juxtanuclear region to the plasma membrane where the two molecules overlap. These data suggest that TC10 regulates both total and plasma membrane CFTR expression by interacting with CAL. The GTP-bound form of TC10 directs the trafficking of CFTR from the juxtanuclear region to the secretory pathway toward the plasma membrane, away from CAL-mediated degradation of CFTR in the lysosome.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Physiology, The Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
5
|
Irokawa T, Krouse ME, Joo NS, Wu JV, Wine JJ. A “virtual gland” method for quantifying epithelial fluid secretion. Am J Physiol Lung Cell Mol Physiol 2004; 287:L784-93. [PMID: 15169677 DOI: 10.1152/ajplung.00124.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We developed a new apparatus, the virtual gland (VG), for measuring the rate of fluid secretion ( Jv), its composition, and the transepithelial potential (TEP) in cultured epithelial cells under open circuit. The VG creates a 10-μl chamber above the apical surface of epithelial cells on a Costar filter with a small hole leading to an oil-filled reservoir. After the chamber is primed with a fluid of choice, secreted fluid is forced through the hole into the oil, where it forms a bubble that is monitored optically to determine Jv and collected for analysis. Calu-3 cells were mounted in the VG with a basolateral bath consisting of Krebs-Ringer bicarbonate buffer at 37°C. Basal Jv was 2.7 ± 0.1 μl·cm−2·h−1 ( n = 42), and TEP was −9.2 ± 0.6 mV ( n = 33); both measures were reduced to zero by ouabain ( n = 6). Jv and TEP were stimulated 64 and 59%, respectively, by 5 μM forskolin ( n = 10), 173 and 101% by 1 mM 1-ethyl-2-benzimidazolinone ( n = 5), 213 and 122% by 333 nM thapsigargin ( n = 5), and 520 and 240% by forskolin + thapsigargin ( n = 6). Basal Jv and TEP were inhibited to 82 and 63%, respectively, with 10 μM bumetanide ( n = 5), 71 and 82% with 100 μM acetazolamide ( n = 5), and 47 and 56% with 600 μM glibenclamide ( n = 4). Basal Jv and TEP were 52 and 89% of control values, respectively, after HCO3− replacement with HEPES ( n = 16). The net HCO3− concentration of the secreted fluid was close to that of the bath (25 mM), except when stimulated with forskolin or VIP, when it increased (∼80 mM). These results validate the use of the VG apparatus and provide the first direct measures of Jv in Calu-3 cells.
Collapse
Affiliation(s)
- Toshiya Irokawa
- Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California 94305-2130, USA
| | | | | | | | | |
Collapse
|
6
|
Kraynack NC, Corey DA, Elmer HL, Kelley TJ. Mechanisms of NOS2 regulation by Rho GTPase signaling in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2002; 283:L604-11. [PMID: 12169580 DOI: 10.1152/ajplung.00459.2001] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The aberrant dysregulation of the inducible form of nitric oxide synthase (NOS2) is thought to play a role in many inflammatory disorders including cystic fibrosis (CF). The complex regulation of NOS2 expression is the subject of intense investigation, and one intriguing regulatory pathway known to influence NOS2 expression is the Rho GTPase cascade. We examined NOS2 regulation in response to inflammatory cytokines in a human alveolar epithelial cell line treated with inhibitors of different upstream and downstream components of the Rho GTPase pathway to better define potential signaling mechanisms. Statin-mediated 3-hydroxy-3-methylglutaryl-CoA reductase inhibition increased cytokine-dependent activation of the NOS2 promoter, reversible by the addition of geranylgeranyl pyrphosphate. However, inhibition of Rho-associated kinase (ROCK) with Y-27632 resulted in a decrease in NOS2 promoter activity, yet an increase in NOS2 mRNA and protein levels. Our results suggest that prenylation events influence NOS2 promoter activity independently of the Rho GTPase pathway and that Rho GTPase signaling mediated through ROCK suppresses NOS2 production downstream of promoter function at the message and protein level.
Collapse
Affiliation(s)
- Nathan C Kraynack
- Department of Pediatrics, Case Western Reserve University and Rainbow Babies and Children's Hospital, Cleveland, Ohio 44106-4948, USA
| | | | | | | |
Collapse
|
7
|
Barrière H, Poujeol C, Tauc M, Blasi JM, Counillon L, Poujeol P. CFTR modulates programmed cell death by decreasing intracellular pH in Chinese hamster lung fibroblasts. Am J Physiol Cell Physiol 2001; 281:C810-24. [PMID: 11502558 DOI: 10.1152/ajpcell.2001.281.3.c810] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To study the potential influence of cystic fibrosis conductance regulator (CFTR) on intracellular pH regulation during apoptosis induction, we used PS120 Chinese hamster lung fibroblasts devoid of the Na(+)/H(+) exchanger (NHE1 isoform) transfected with constructs, allowing the expression of CFTR and/or NHE1. Kinetics of lovastatin-induced apoptosis were measured by orcein staining, double staining with Hoechst-33258, propidium iodide, DNA fragmentation, and annexin V labeling. In PS120 control cells, the percentage of apoptotic cells after 40 h of lovastatin treatment was 23 +/- 3%, whereas in PS120 CFTR-transfected cells, this percentage was 40 +/- 4%. In PS120 NHE1 cells, the transfection with CFTR did not modify the percentage of apoptotic cells after 40 h (control: 19 +/- 3%, n = 8; CFTR: 17 +/- 1%, n = 8), indicating that blocking intracellular acidification by overexpressing the Na(+)/H(+) exchanger inhibited the enhancement of apoptosis induced by CFTR. In all cell lines, the initial pH values were identical (pH = 7.46 +/- 0.04, n = 9), and treatment with lovastatin led to intracellular acidification. However, the pH value after 40 h was lower in PS120 CFTR-transfected cells (pH = 6.85 +/- 0.02, n = 10) than in PS120 cells (pH = 7.15 +/- 0.03, n = 10). To further investigate the origin of this increased intracellular acidification observed in CFTR-transfected cells, the activity of the DIDS-inhibitable Cl(-)/HCO exchanger was studied. 8-Bromoadenosine 3',5'-cyclic monophosphate incubation resulted in Cl(-)/HCO exchanger activation in PS120 CFTR-transfected cells but had no effect on PS120 cells. Together, our results suggest that CFTR can enhance apoptosis in Chinese hamster lung fibroblasts, probably due to the modulation of the Cl(-)/HCO exchanger, resulting in a more efficient intracellular acidification.
Collapse
Affiliation(s)
- H Barrière
- Unité Mixte de Recherche-Centre National de la Recherche Scientifique 6548, Université de Nice-Sophia Antipolis, 06108 Nice Cedex 2, France
| | | | | | | | | | | |
Collapse
|
8
|
Witschi C, Mrsny RJ. In vitro evaluation of microparticles and polymer gels for use as nasal platforms for protein delivery. Pharm Res 1999; 16:382-90. [PMID: 10213368 DOI: 10.1023/a:1018869601502] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE Nasal delivery of protein therapeutics can be compromised by the brief residence time at this mucosal surface. Some bioadhesive polymers have been suggested to extend residence time and improve protein uptake across the nasal mucosa. We examined several potential polymer platforms for their in vitro protein release, relative bioadhesive properties and induction of cytokine release from respiratory epithelium. METHODS Starch, alginate, chitosan or Carbopol microparticles, containing the test protein bovine serum albumin (BSA), were prepared by spray-drying and characterized by laser diffraction and scanning electron microscopy. An open-membrane system was used to determine protein release profiles and confluent, polarized Calu-3 cell sheets were used to evaluate relative bioadhesion, enhancement of protein transport and induction of cytokine release in vitro. RESULTS All spray-dried microparticles averaged 2-4 microm in diameter. Loaded BSA was not covalently aggregated or degraded. Starch and alginate microparticles released protein more rapidly but were less adhesive to polarized Calu-3 cells than chitosan and Carbopol microparticles. Protein transport across polarized Calu-3 cells was enhanced from Carbopol gels and chitosan microparticles. A mixture of chitosan microparticles with lysophosphatidylcholine increased protein transport further. Microparticles prepared from either chitosan or starch microparticles, applied apically, induced the basolateral release of IL-6 and IL-8 from polarized Calu-3 cells. Release of other cytokines, such as IL-1beta, TNF-alpha, GM-CSF and TGF-beta, were not affected by an apical exposure to polymer formulations. CONCLUSIONS We have described two systems for the in vitro assessment of potential nasal platforms for protein delivery. Based upon these assessments, Carbopol gels and chitosan microparticles provided the most desirable characteristics for protein therapeutic and protein antigen delivery, respectively, of the formulations examined.
Collapse
Affiliation(s)
- C Witschi
- Department of Pharmaceutical Research and Development, Genentech Inc., South San Francisco, California, USA
| | | |
Collapse
|
9
|
Ivessa NE, Gravotta D, De Lemos-Chiarandini C, Kreibich G. Functional protein prenylation is required for the brefeldin A-dependent retrograde transport from the Golgi apparatus to the endoplasmic reticulum. J Biol Chem 1997; 272:20828-34. [PMID: 9252408 DOI: 10.1074/jbc.272.33.20828] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In cells exposed to brefeldin A (BFA), enzymes of the Golgi apparatus are redistributed to the endoplasmic reticulum (ER) by retrograde membrane flow, where they may cause modifications on resident ER proteins. We have used a truncated form of the rough ER-specific type I transmembrane glycoprotein ribophorin I as a probe to detect Golgi glycosyltransferases relocated to the ER in a BFA-dependent fashion. This polypeptide (RI332) comprises the 332 amino-terminal amino acids of ribophorin I and behaves like a luminal ER protein when expressed in HeLa cells. Upon treatment of the cells with BFA, RI332 becomes quantitatively O-glycosylated by Golgi glycosyltransferases that are transported back to the ER. Here we demonstrate that pretreatment of the cells with lovastatin, an inhibitor of HMG-CoA reductase, abrogates this modification and that mevalonate, the product formed in the step inhibited by the drug, is able to counteract the effect of lovastatin. We also show by immunofluorescence using mannosidase II as a Golgi marker that the BFA-induced retrograde transport of Golgi enzymes is blocked by lovastatin, although electron microscopy indicates that BFA causes disassembly of the Golgi apparatus into swollen vesicles and tubules. Our observations support the role of a prenylated protein, such as the geranylgeranylated small G protein Rab6, in the retrograde transport from the Golgi apparatus to the ER, since lovastatin acts by inhibiting its prenylation.
Collapse
Affiliation(s)
- N E Ivessa
- Department of Molecular Genetics, University and Biocenter Vienna, A-1030 Vienna, Austria.
| | | | | | | |
Collapse
|
10
|
Barritt GJ, Gregory RB. An evaluation of strategies available for the identification of GTP-binding proteins required in intracellular signalling pathways. Cell Signal 1997; 9:207-18. [PMID: 9218120 DOI: 10.1016/s0898-6568(96)00131-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Strategies which can be used to elucidate the nature of a GTP-binding regulatory protein (G-protein) involved in an intracellular pathway of interest in the complex environment of the cell are described and evaluated. A desirable strategy is considered to be one in which the first stage indicates a requirement for one or more G-proteins, provides information on whether a monomeric, trimeric or other type of G-protein is involved, and gives some idea of the G-protein sub-class. In the second stage the specific G-protein involved is identified. Approaches available for investigations in the first stage include the use of analogues of GTP and GDP, AlF4-, inhibitors of G-protein isoprenylation, bacterial toxins which covalently modify G-proteins, and the introduction of a purified GDP dissociation inhibitor, GDP exchange and/or GTP-ase activating protein. Identification of the specific G-protein in the second stage can be achieved using anti G-protein antibodies, G-protein-or receptor-derived peptides, antisense G-protein RNA and over-expressed, constitutively-active or dominant-negative G-protein mutants. The correct interpretation of results obtained with GTP and GDP analogues and AlF4- in the first stage is complex and often difficult, and requires a thorough understanding of the functions and mechanisms of activation of G-proteins. Nevertheless, it is important to reach the correct conclusion at this stage since considerable time and expense are usually required for investigations in the second stage.
Collapse
Affiliation(s)
- G J Barritt
- Department of Medical Biochemistry, School of Medicine, Flinders University, Adelaide, Australia
| | | |
Collapse
|