1
|
Liang B, Song W, Xing R, Liu S, Yu H, Li P. The source, activity influencing factors and biological activities for future development of chitin deacetylase. Carbohydr Polym 2023; 321:121335. [PMID: 37739548 DOI: 10.1016/j.carbpol.2023.121335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/24/2023]
Abstract
Chitin deacetylase (CDA), a prominent member of the carbohydrate esterase enzyme family 4 (CE4), is found ubiquitously in bacteria, fungi, insects, and crustaceans. This metalloenzyme plays a pivotal role in recognizing and selectively removing acetyl groups from chitin, thus offering an environmentally friendly and biologically-driven preparation method for chitosan with immense industrial potential. Due to its diverse origins, CDAs sourced from different organisms exhibit unique functions, optimal pH ranges, and temperature preferences. Furthermore, certain organic reagents can induce structural changes in CDAs, influencing their catalytic activity. Leveraging CDA's capabilities extends beyond chitosan biocatalysis, as it demonstrates promising application value in agricultural pest control. In this paper, the source, reaction mechanism, influencing factors, the fermentation methods and applications of CDA are reviewed, which provides theoretical help for the research and application of CDA.
Collapse
Affiliation(s)
- Bicheng Liang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Wen Song
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 7 Nanhai Road, Qingdao 266000, China.
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 7 Nanhai Road, Qingdao 266000, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 7 Nanhai Road, Qingdao 266000, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 7 Nanhai Road, Qingdao 266000, China
| |
Collapse
|
2
|
Weyer R, Hellmann MJ, Hamer-Timmermann SN, Singh R, Moerschbacher BM. Customized chitooligosaccharide production-controlling their length via engineering of rhizobial chitin synthases and the choice of expression system. Front Bioeng Biotechnol 2022; 10:1073447. [PMID: 36588959 PMCID: PMC9795070 DOI: 10.3389/fbioe.2022.1073447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Chitooligosaccharides (COS) have attracted attention from industry and academia in various fields due to their diverse bioactivities. However, their conventional chemical production is environmentally unfriendly and in addition, defined and pure molecules are both scarce and expensive. A promising alternative is the in vivo synthesis of desired COS in microbial platforms with specific chitin synthases enabling a more sustainable production. Hence, we examined the whole cell factory approach with two well-established microorganisms-Escherichia coli and Corynebacterium glutamicum-to produce defined COS with the chitin synthase NodC from Rhizobium sp. GRH2. Moreover, based on an in silico model of the synthase, two amino acids potentially relevant for COS length were identified and mutated to direct the production. Experimental validation showed the influence of the expression system, the mutations, and their combination on COS length, steering the production from originally pentamers towards tetramers or hexamers, the latter virtually pure. Possible explanations are given by molecular dynamics simulations. These findings pave the way for a better understanding of chitin synthases, thus allowing a more targeted production of defined COS. This will, in turn, at first allow better research of COS' bioactivities, and subsequently enable sustainable large-scale production of oligomers.
Collapse
|
3
|
Review: Advances in preparation of chitooligosaccharides with heterogeneous sequences and their bioactivity. Carbohydr Polym 2020; 252:117206. [PMID: 33183640 DOI: 10.1016/j.carbpol.2020.117206] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/18/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Chitooligosaccharides has attracted increasing attention due to their diverse bioactivities and potential application. Previous studies on the bioactivity of chitooligosaccharides were mostly carried out using a mixture. The structure-function relationship of chitooligosaccharides is not clear. Recently, it is confirmed that chitooligosaccharides with different degrees of polymerization play different roles in many bioactivities. However, heterogeneous chitooligosaccharides with a single degree of polymerization is still a mixture of many uncertain sequences and it is difficult to determine which structure is responsible for biological effects. Therefore, an interesting and challenging field of studying chitooligosaccharides with heterogeneous sequences has emerged. Herein, we reviewed the current methods for preparing heterogeneous chitooligosaccharides, including chemical synthesis, separation techniques and enzymatic methods. Advances in the bioactivities of chitooligosaccharides with heterogeneous sequences are also reviewed.
Collapse
|
4
|
Anderson LA, Islam MA, Prather KLJ. Synthetic biology strategies for improving microbial synthesis of "green" biopolymers. J Biol Chem 2018; 293:5053-5061. [PMID: 29339554 PMCID: PMC5892568 DOI: 10.1074/jbc.tm117.000368] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Polysaccharide-based biopolymers have many material properties relevant to industrial and medical uses, including as drug delivery agents, wound-healing adhesives, and food additives and stabilizers. Traditionally, polysaccharides are obtained from natural sources. Microbial synthesis offers an attractive alternative for sustainable production of tailored biopolymers. Here, we review synthetic biology strategies for select "green" biopolymers: cellulose, alginate, chitin, chitosan, and hyaluronan. Microbial production pathways, opportunities for pathway yield improvements, and advances in microbial engineering of biopolymers in various hosts are discussed. Taken together, microbial engineering has expanded the repertoire of green biological chemistry by increasing the diversity of biobased materials.
Collapse
Affiliation(s)
- Lisa A Anderson
- From the Department of Chemical Engineering and Center for Integrative Synthetic Biology (CISB), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - M Ahsanul Islam
- From the Department of Chemical Engineering and Center for Integrative Synthetic Biology (CISB), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Kristala L J Prather
- From the Department of Chemical Engineering and Center for Integrative Synthetic Biology (CISB), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
5
|
Chitin Deacetylases: Structures, Specificities, and Biotech Applications. Polymers (Basel) 2018; 10:polym10040352. [PMID: 30966387 PMCID: PMC6415152 DOI: 10.3390/polym10040352] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 12/20/2022] Open
Abstract
Depolymerization and de-N-acetylation of chitin by chitinases and deacetylases generates a series of derivatives including chitosans and chitooligosaccharides (COS), which are involved in molecular recognition events such as modulation of cell signaling and morphogenesis, immune responses, and host-pathogen interactions. Chitosans and COS are also attractive scaffolds for the development of bionanomaterials for drug/gene delivery and tissue engineering applications. Most of the biological activities associated with COS seem to be largely dependent not only on the degree of polymerization but also on the acetylation pattern, which defines the charge density and distribution of GlcNAc and GlcNH₂ moieties in chitosans and COS. Chitin de-N-acetylases (CDAs) catalyze the hydrolysis of the acetamido group in GlcNAc residues of chitin, chitosan, and COS. The deacetylation patterns are diverse, some CDAs being specific for single positions, others showing multiple attack, processivity or random actions. This review summarizes the current knowledge on substrate specificity of bacterial and fungal CDAs, focusing on the structural and molecular aspects of their modes of action. Understanding the structural determinants of specificity will not only contribute to unravelling structure-function relationships, but also to use and engineer CDAs as biocatalysts for the production of tailor-made chitosans and COS for a growing number of applications.
Collapse
|
6
|
New insights into Nod factor biosynthesis: Analyses of chitooligomers and lipo-chitooligomers of Rhizobium sp. IRBG74 mutants. Carbohydr Res 2016; 434:83-93. [PMID: 27623438 PMCID: PMC5080398 DOI: 10.1016/j.carres.2016.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 11/30/2022]
Abstract
Soil-dwelling, nitrogen-fixing rhizobia signal their presence to legume hosts by secreting lipo-chitooligomers (LCOs) that are decorated with a variety of chemical substituents. It has long been assumed, but never empirically shown, that the LCO backbone is synthesized first by NodC, NodB, and NodA, followed by addition of one or more substituents by other Nod proteins. By analyzing a collection of in-frame deletion mutants of key nod genes in the bacterium Rhizobium sp. IRBG74 by mass spectrometry, we were able to shed light on the possible substitution order of LCO decorations, and we discovered that the prevailing view is probably erroneous. We found that most substituents could be transferred to a short chitin backbone prior to acylation by NodA, which is probably one of the last steps in LCO biosynthesis. The existence of substituted, short chitin oligomers offers new insights into symbiotic plant–microbe signaling. Rhizobia produce chemically substituted, short chitooligomers (COs). Deacetylation of the non-reducing GlcNAc is necessary for most substitutions. Acylation may be one of the last steps in the biosynthesis of rhizobial lipo-chitooligosaccharides (LCOs).
Collapse
|
7
|
Zhao Y, Nickels LM, Wang H, Ling J, Zhong Z, Zhu J. OxyR-regulated catalase activity is critical for oxidative stress resistance, nodulation and nitrogen fixation in Azorhizobium caulinodans. FEMS Microbiol Lett 2016; 363:fnw130. [PMID: 27190162 DOI: 10.1093/femsle/fnw130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2016] [Indexed: 11/13/2022] Open
Abstract
The legume-rhizobial interaction results in the formation of symbiotic nodules in which rhizobia fix nitrogen. During the process of symbiosis, reactive oxygen species (ROS) are generated. Thus, the response of rhizobia to ROS is important for successful nodulation and nitrogen fixation. In this study, we investigated how Azorhizobium caulinodans, a rhizobium that forms both root and stem nodules on its host plant, regulates ROS resistance. We found that in-frame deletions of a gene encoding the putative catalase-peroxidase katG or a gene encoding a LysR-family regulatory protein, oxyR, exhibited increased sensitivity to H2O2 We then showed that OxyR positively regulated katG expression in an H2O2-independent fashion. Furthermore, we found that deletion of katG or oxyR led to significant reduction in the number of stem nodules and decrease of nitrogen fixation capacities in symbiosis. Our results revealed that KatG and OxyR are not only critical for antioxidant defense in vitro, but also important for nodule formation and nitrogen fixation during interaction with plant hosts.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Microbiology, College of Biological Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China 210095
| | - Logan M Nickels
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hui Wang
- Department of Microbiology, College of Biological Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China 210095
| | - Jun Ling
- Department of Microbiology, College of Biological Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China 210095
| | - Zengtao Zhong
- Department of Microbiology, College of Biological Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China 210095
| | - Jun Zhu
- Department of Microbiology, College of Biological Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China 210095 Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Naqvi S, Moerschbacher BM. The cell factory approach toward biotechnological production of high-value chitosan oligomers and their derivatives: an update. Crit Rev Biotechnol 2015; 37:11-25. [DOI: 10.3109/07388551.2015.1104289] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Leppyanen IV, Artamonova TO, Lopatin SA, Varlamov VP, Tikhonovich IA, Dolgikh EA. Biosynthesis of hexa- and pentameric chitooligosaccharides using N-acetyl-glucoseaminyl transferase from rhizobial bacteria. ACTA ACUST UNITED AC 2014. [DOI: 10.1134/s2079059714050098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
The Role of Diffusible Signals in the Establishment of Rhizobial and Mycorrhizal Symbioses. SIGNALING AND COMMUNICATION IN PLANT SYMBIOSIS 2012. [DOI: 10.1007/978-3-642-20966-6_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
11
|
Müller MG, Forsberg LS, Keating DH. The rkp-1 cluster is required for secretion of Kdo homopolymeric capsular polysaccharide in Sinorhizobium meliloti strain Rm1021. J Bacteriol 2009; 191:6988-7000. [PMID: 19734304 PMCID: PMC2772494 DOI: 10.1128/jb.00466-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Accepted: 08/31/2009] [Indexed: 11/20/2022] Open
Abstract
Under conditions of nitrogen stress, leguminous plants form symbioses with soil bacteria called rhizobia. This partnership results in the development of structures called root nodules, in which differentiated endosymbiotic bacteria reduce molecular dinitrogen for the host. The establishment of rhizobium-legume symbioses requires the bacterial synthesis of oligosaccharides, exopolysaccharides, and capsular polysaccharides. Previous studies suggested that the 3-deoxy-D-manno-oct-2-ulopyranosonic acid (Kdo) homopolymeric capsular polysaccharide produced by strain Sinorhizobium meliloti Rm1021 contributes to symbiosis with Medicago sativa under some conditions. However, a conclusive symbiotic role for this polysaccharide could not be determined due to a lack of mutants affecting its synthesis. In this study, we have further characterized the synthesis, secretion, and symbiotic function of the Kdo homopolymeric capsule. We showed that mutants lacking the enigmatic rkp-1 gene cluster fail to display the Kdo capsule on the cell surface but accumulate an intracellular polysaccharide of unusually high M(r). In addition, we have demonstrated that mutations in kdsB2, smb20804, and smb20805 affect the polymerization of the Kdo homopolymeric capsule. Our studies also suggest a role for the capsular polysaccharide in symbiosis. Previous reports have shown that the overexpression of rkpZ from strain Rm41 allows for the symbiosis of exoY mutants of Rm1021 that are unable to produce the exopolysaccharide succinoglycan. Our results demonstrate that mutations in the rkp-1 cluster prevent this phenotypic suppression of exoY mutants, although mutations in kdsB2, smb20804, and smb20805 have no effect.
Collapse
Affiliation(s)
- Maike G. Müller
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois 60153, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Lennart S. Forsberg
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois 60153, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - David H. Keating
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois 60153, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
12
|
|
13
|
Zhang D, Wang PG, Qi Q. A two-step fermentation process for efficient production of penta-N-acetyl-chitopentaose in recombinant Escherichia coli. Biotechnol Lett 2007; 29:1729-33. [PMID: 17710376 DOI: 10.1007/s10529-007-9462-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 06/11/2007] [Accepted: 06/18/2007] [Indexed: 10/22/2022]
Abstract
The nodC gene from Mesorhizobium loti was cloned into E. coli, leading to production of chitin oligosaccharides (COs)-mainly penta-N-acetyl-chitopentaose. A two-step fermentation procedure was then developed which gave 930 mg CO/L with a productivity of 37 mg/l.h.
Collapse
Affiliation(s)
- Dawei Zhang
- State Key Laboratory of Microbial Technology, Life Science School, Shandong University, Jinan, 250100, P. R. China
| | | | | |
Collapse
|
14
|
Abstract
Lipochitin Nod signals are produced by rhizobia and are required for the establishment of a nitrogen-fixing symbiosis with a legume host. The nodulation genes encode products required for the synthesis of this signal and are induced in response to plant-produced flavonoid compounds. The addition of chitin and lipo-chitin oligomers to Bradyrhizobium japonicum cultures resulted in a significant reduction in the expression of a nod-lacZ fusion. Intracellular expression of NodC, encoding a chitin synthase, also reduced nod gene expression. In contrast, expression of the ChiB chitinase increased nod gene expression. The chain length of the oligosaccharide was important in feedback regulation, with chitotetraose molecules the best modulators of nod gene expression. Feedback regulation is mediated by the induction of nolA by chitin, resulting in elevated levels of the repressor protein, NodD2.
Collapse
Affiliation(s)
- J T Loh
- Center for Legume Research, Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA
| | | |
Collapse
|
15
|
López-Lara IM, Kafetzopoulos D, Spaink HP, Thomas-Oates JE. Rhizobial NodL O-acetyl transferase and NodS N-methyl transferase functionally interfere in production of modified Nod factors. J Bacteriol 2001; 183:3408-16. [PMID: 11344149 PMCID: PMC99639 DOI: 10.1128/jb.183.11.3408-3416.2001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The products of the rhizobial nodulation genes are involved in the biosynthesis of lipochitin oligosaccharides (LCOs), which are host-specific signal molecules required for nodule formation. The presence of an O-acetyl group on C-6 of the nonreducing N-acetylglucosamine residue of LCOs is due to the enzymatic activity of NodL. Here we show that transfer of the nodL gene into four rhizobial species that all normally produce LCOs that are not modified on C-6 of the nonreducing terminal residue results in production of LCOs, the majority of which have an acetyl residue substituted on C-6. Surprisingly, in transconjugant strains of Mesorhizobium loti, Rhizobium etli, and Rhizobium tropici carrying nodL, such acetylation of LCOs prevents the endogenous nodS-dependent transfer of the N-methyl group that is found as a substituent of the acylated nitrogen atom. To study this interference between nodL and nodS, we have cloned the nodS gene of M. loti and used its product in in vitro experiments in combination with purified NodL protein. It has previously been shown that a chitooligosaccharide N deacetylated on the nonreducing terminus (the so-called NodBC metabolite) is the preferred substrate for NodS as well as for NodL. Here we show that the NodBC metabolite, acetylated by NodL, is not used by the NodS protein as a substrate while the NodL protein can acetylate the NodBC metabolite that has been methylated by NodS.
Collapse
Affiliation(s)
- I M López-Lara
- Institute of Molecular Plant Sciences, Leiden University, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| | | | | | | |
Collapse
|
16
|
Abstract
Rhizobia are soil bacteria that can engage in a symbiosis with leguminous plants that produces nitrogen-fixing root nodules. This symbiosis is based on specific recognition of signal molecules, which are produced by both the bacterial and plant partners. In this review, recognition factors from the bacterial endosymbionts are discussed, with particular attention to secreted and cell surface glycans. Glycans that are discussed include the Nod factors, the extracellular polysaccharides, the lipopolysaccharides, the K-antigens, and the cyclic glucans. Recent advances in the understanding of the biosynthesis, secretion, and regulation of production of these glycans are reviewed, and their functions are compared with glycans produced by other bacteria, such as plant pathogens.
Collapse
Affiliation(s)
- H P Spaink
- Institute of Molecular Plant Sciences, Leiden University, 2333 AL Leiden, The Netherlands.
| |
Collapse
|
17
|
Metzler DE, Metzler CM, Sauke DJ. The Metabolism of Nitrogen and Amino Acids. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50027-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Machida S, Niimi S, Shi X. Expression of the Cytoplasmic Domain of NodC as an Active Form in Drosophila S2 Cells. J Biosci Bioeng 2001; 91:251-5. [PMID: 16232984 DOI: 10.1263/jbb.91.251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2000] [Accepted: 12/05/2000] [Indexed: 11/17/2022]
Abstract
NodC, a membrane protein that catalyzes the synthesis of the chitin oligosaccharide chain, was successfully produced in a soluble form. The truncated NodC gene encoding only the cytoplasmic domain that deletes the hydrophobic N-terminus expressed both cytoplasmic and secreted proteins in Drosophila Schneider 2 cells. The expressed protein maintained the ability to synthesize chitin oligosaccharides, primarily (GlcNAc)4, similar to the native membrane-bound NodC. This evidence suggests that only the large hydrophilic loop of NodC is efficient for enzymatic activity. Moreover, immobilizing the soluble NodC to a solid phase has no effect on the enzymatic activity. This, anchoring NodC is not necessary for its activity.
Collapse
Affiliation(s)
- S Machida
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan.
| | | | | |
Collapse
|
19
|
|
20
|
Bakkers J, Kijne JW, Spaink HP. Function of chitin oligosaccharides in plant and animal development. EXS 2000; 87:71-83. [PMID: 10906952 DOI: 10.1007/978-3-0348-8757-1_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
In plant development chitin oligosaccharides have been studied intensively as part of the communication between leguminous plants and Rhizobium bacteria. The Rhizobium bacteria synthesize and secrete lipochitin oligosaccharides (LCOs) to induce the development of a root nodule, in which the bacteria will infiltrate to start a symbiotic relation with the plant. Here we will give an overview of the biosynthetic route used by the bacteria to synthesize these LCOs. Perception by the plant will also be discussed as well as early responses to the LCOs. By working with the genes from the biosynthetic route, other genes were identified that share homology with the chitin synthase genes from Rhizobium. These genes are now isolated from human, mouse, chick, Xenopus and zebrafish and can be divided into three classes. They are mainly expressed during early development at the same stage as chitin oligosaccharide synthase activity can be detected. A controversy has been risen about their biochemical activity and will be further discussed here.
Collapse
Affiliation(s)
- J Bakkers
- Leiden University, Institute of Molecular Plant Sciences, The Netherlands
| | | | | |
Collapse
|
21
|
D'Haeze W, Mergaert P, Promé JC, Holsters M. Nod factor requirements for efficient stem and root nodulation of the tropical legume Sesbania rostrata. J Biol Chem 2000; 275:15676-84. [PMID: 10821846 DOI: 10.1074/jbc.275.21.15676] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Azorhizobium caulinodans ORS571 synthesizes mainly pentameric Nod factors with a household fatty acid, an N-methyl, and a 6-O-carbamoyl group at the nonreducing-terminal residue and with a d-arabinosyl, an l-fucosyl group, or both at the reducing-terminal residue. Nodulation on Sesbania rostrata was carried out with a set of bacterial mutants that produce well characterized Nod factor populations. Purified Nod factors were tested for their capacity to induce root hair formation and for their stability in an in vitro degradation assay with extracts of uninfected adventitious rootlets. The glycosylations increased synergistically the nodulation efficiency and the capacity to induce root hairs, and they protected the Nod factor against degradation. The d-arabinosyl group was more important than the l-fucosyl group for nodulation efficiency. Replacement of the 6-O-l-fucosyl group by a 6-O-sulfate ester did not affect Nod factor stability, but reduced nodulation efficiency, indicating that the l-fucosyl group may play a role in recognition. The 6-O-carbamoyl group contributes to nodulation efficiency, biological activity, and protection, but could be replaced by a 6-O-acetyl group for root nodulation. The results demonstrate that none of the studied substitutions is strictly required for triggering normal nodule formation. However, the nodulation efficiency was greatly determined by the synergistic presence of substitutions. Within the range tested, fluctuations of Nod factor amounts had little impact on the symbiotic phenotype.
Collapse
Affiliation(s)
- W D'Haeze
- Vakgroep Moleculaire Genetica en Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, B-9000 Gent, Belgium
| | | | | | | |
Collapse
|
22
|
Abstract
Eukaryotes often form symbioses with microorganisms. Among these, associations between plants and nitrogen-fixing bacteria are responsible for the nitrogen input into various ecological niches. Plants of many different families have evolved the capacity to develop root or stem nodules with diverse genera of soil bacteria. Of these, symbioses between legumes and rhizobia (Azorhizobium, Bradyrhizobium, Mesorhizobium, and Rhizobium) are the most important from an agricultural perspective. Nitrogen-fixing nodules arise when symbiotic rhizobia penetrate their hosts in a strictly controlled and coordinated manner. Molecular codes are exchanged between the symbionts in the rhizosphere to select compatible rhizobia from pathogens. Entry into the plant is restricted to bacteria that have the "keys" to a succession of legume "doors". Some symbionts intimately associate with many different partners (and are thus promiscuous), while others are more selective and have a narrow host range. For historical reasons, narrow host range has been more intensively investigated than promiscuity. In our view, this has given a false impression of specificity in legume-Rhizobium associations. Rather, we suggest that restricted host ranges are limited to specific niches and represent specialization of widespread and more ancestral promiscuous symbioses. Here we analyze the molecular mechanisms governing symbiotic promiscuity in rhizobia and show that it is controlled by a number of molecular keys.
Collapse
Affiliation(s)
- X Perret
- Laboratoire de Biologie Moléculaire des Plantes Supérieures, Université de Genève, 1292 Chambésy/Geneva, Switzerland
| | | | | |
Collapse
|
23
|
Kamst E, Zegelaar-Jaarsveld K, van der Marel GA, van Boom JH, Lugtenberg BJ, Spaink HP. Chemical synthesis of N-acetylglucosamine derivatives and their use as glycosyl acceptors by the Mesorhizobium loti chitin oligosaccharide synthase NodC. Carbohydr Res 1999. [DOI: 10.1016/s0008-6215(99)00190-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Samain E, Chazalet V, Geremia RA. Production of O-acetylated and sulfated chitooligosaccharides by recombinant Escherichia coli strains harboring different combinations of nod genes. J Biotechnol 1999; 72:33-47. [PMID: 10406097 DOI: 10.1016/s0168-1656(99)00048-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
High cell density cultivation of recombinant Escherichia coli strains harboring the nodBC genes (encoding chitooligosaccharide synthase and chitooligosaccharide N-deacetylase, respectively) from Azorhizobium caulinodans has been previously described as a practical method for the preparation of gram-scale quantities of penta-N-acetyl-chitopentaose and tetra-N-acetylchitopentaose (Samain, E., Drouillard, S., Heyraud, A., Driguez, H., Geremia, R.A., 1997. Carbohydr. Res. 30, 235-242). We have now extended this method to the production of sulfated and O-acetylated derivatives of these two compounds by coexpressing nodC or nodBC with nodH and/or nodL that encode chitooligosaccharide sulfotransferase and chitooligosaccharide O-acetyltransferase, respectively. In addition, these substituted chitooligosaccharides were also obtained as tetramers by using nodC from Rhizobium meliloti instead of nodC from A. caulinodans. These compounds should be useful precursors for the preparation of Nod factor analogues by chemical modification.
Collapse
Affiliation(s)
- E Samain
- Centre de Recherche sur les Macromolécules Végétales (CERMAV-CNRS), Grenoble, France.
| | | | | |
Collapse
|
25
|
Kamst E, Bakkers J, Quaedvlieg NE, Pilling J, Kijne JW, Lugtenberg BJ, Spaink HP. Chitin oligosaccharide synthesis by rhizobia and zebrafish embryos starts by glycosyl transfer to O4 of the reducing-terminal residue. Biochemistry 1999; 38:4045-52. [PMID: 10194317 DOI: 10.1021/bi982531u] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipochitin oligosaccharides are organogenesis-inducing signal molecules produced by rhizobia to establish the formation of nitrogen-fixing root nodules in leguminous plants. Chitin oligosaccharide biosynthesis by the Mesorhizobium loti nodulation protein NodC was studied in vitro using membrane fractions of an Escherichia coli strain expressing the cloned M. loti nodC gene. The results indicate that prenylpyrophosphate-linked intermediates are not involved in the chitin oligosaccharide synthesis pathway. We observed that, in addition to N-acetylglucosamine (GlcNAc) from UDP-GlcNAc, NodC also directly incorporates free GlcNAc into chitin oligosaccharides. Further analysis showed that free GlcNAc is used as a primer that is elongated at the nonreducing terminus. The synthetic glycoside p-nitrophenyl-beta-N-acetylglucosaminide (pNPGlcNAc) has a free hydroxyl group at C4 but not at C1 and could also be used as an acceptor by NodC, confirming that chain elongation by NodC takes place at the nonreducing-terminal residue. The use of artificial glycosyl acceptors such as pNPGlcNAc has not previously been described for a processive glycosyltransferase. Using this method, we show that also the DG42-directed chitin oligosaccharide synthase activity, present in extracts of zebrafish embryos, is able to initiate chitin oligosaccharide synthesis on pNPGlcNAc. Consequently, chain elongation in chitin oligosaccharide synthesis by M. loti NodC and zebrafish DG42 occurs by the transfer of GlcNAc residues from UDP-GlcNAc to O4 of the nonreducing-terminal residue, in contrast to earlier models on the mechanism of processive beta-glycosyltransferase reactions.
Collapse
Affiliation(s)
- E Kamst
- Clusius Laboratory, Institute of Molecular Plant Sciences, Leiden University, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
26
|
Bettler E, Samain E, Chazalet V, Bosso C, Heyraud A, Joziasse DH, Wakarchuk WW, Imberty A, Geremia AR. The living factory: in vivo production of N-acetyllactosamine containing carbohydrates in E. coli. Glycoconj J 1999; 16:205-12. [PMID: 10596895 DOI: 10.1023/a:1007024320183] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Scientific and commercial interest in oligosaccharides is increasing, but their availability is limited as production relies on chemical or chemo-enzymatic synthesis. In search for a more economical, alternative procedure, we have investigated the possibility of producing specific oligosaccharides in E. coli that express the appropriate glycosyltransferases. The Azorhizobium chitin pentaose synthase NodC (a beta(1,4)GlcNAc-oligosaccharide synthase), and the Neisseria beta(1,4)galactosyltransferase LgtB, were co-expressed in E. coli. The major oligosaccharide isolated from the recombinant strain, was subjected to LC-MS, FAB-MS and NMR analysis, and identified as betaGal(1,4)[betaGlcNAc(1,4)]4GlcNAc. High cell density culture yielded more than 1.0 gr of the hexasaccharide per liter of culture. The compound was found to be an acceptor in vitro for betaGal(1,4)GlcNAc alpha(1,3)galactosyltransferase, which suggests that the expression of additional glycosyltransferases in E. coli will allow the production of more complex oligosaccharides.
Collapse
Affiliation(s)
- E Bettler
- Centre de Recherches sur les Macromolécules Végétales CNRS (Affiliated with the Joseph Fourier University) Grenoble, France
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
D'Haeze W, Van Montagu M, Promé JC, Holsters M. Carbamoylation of azorhizobial Nod factors is mediated by NodU. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1999; 12:68-73. [PMID: 9885196 DOI: 10.1094/mpmi.1999.12.1.68] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Lipochitooligosaccharides (LCOs) synthesized by Azorhizobium caulinodans ORS571 are substituted at the nonreducing-terminal residue with a 6-O-carbamoyl group. LCO biosynthesis in A. caulinodans is dependent on the nodABCSUIJZnoeC operon. Until now, the role of the nodulation protein NodU in the synthesis of azorhizobial LCOs remained unclear. Based on sequence similarities and structural analysis of LCOs produced by a nodU mutant, a complemented nodU mutant, and Escherichia coli DH5 alpha expressing the nodABCSU genes, NodU was shown to be involved in the carbamoylation step.
Collapse
Affiliation(s)
- W D'Haeze
- Departement Genetica, Vlaams Interuniversitair Instituut voor Biotechnologie (VIB), Universiteit Gent, Belgium
| | | | | | | |
Collapse
|
28
|
Gerke C, Kraft A, Süssmuth R, Schweitzer O, Götz F. Characterization of the N-acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin. J Biol Chem 1998; 273:18586-93. [PMID: 9660830 DOI: 10.1074/jbc.273.29.18586] [Citation(s) in RCA: 335] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The polysaccharide intercellular adhesin (PIA) is an important factor in the colonization of medical devices by Staphylococcus epidermidis. The genes encoding PIA production are organized in the icaADBC (intercellular adhesion) operon. To study the function of the individual genes, we have established an in vitro assay with UDP-N-acetylglucosamine, the substrate for PIA biosynthesis, and analyzed the products by thin-layer chromatography and mass spectrometry. IcaA alone exhibited a low N-acetylglucosaminyltransferase activity and represents the catalytic enzyme. Coexpression of icaA with icaD led to a significant increase in activity. The newly identified icaD gene is located between icaA and icaB and overlaps both genes. N-Acetylglucosamine oligomers produced by IcaAD reached a maximal length of 20 residues. Only when icaA and icaD were expressed together with icaC were oligomer chains that react with PIA-specific antiserum synthesized. IcaA and IcaD are located in the cytoplasmic membrane, and IcaC also has all the structural features of an integral membrane protein. These results indicate a close interaction between IcaA, IcaD, and IcaC. Tunicamycin and bacitracin did not affect the in vitro synthesis of PIA intermediates or the complete PIA biosynthesis in vivo, suggesting that a undecaprenyl phosphate carrier is not involved. IcaAD represents a novel protein combination among beta-glycosyltransferases.
Collapse
Affiliation(s)
- C Gerke
- Mikrobielle Genetik, Universität Tübingen, Waldhäuser Strasse 70/8, 72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
29
|
Goormachtig S, Mergaert P, Van Montagu M, Holsters M. The symbiotic interaction between Azorhizobium caulinodans and Sesbania rostrata molecular cross-talk in a beneficial plant-bacterium interaction. Subcell Biochem 1998; 29:117-64. [PMID: 9594646 DOI: 10.1007/978-1-4899-1707-2_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- S Goormachtig
- Department of Genetics, Flanders Interuniversity Institute for Biotechnology (VIB), Universiteit Gent, Belgium
| | | | | | | |
Collapse
|
30
|
Kamst E, Spaink HP, Kafetzopoulos D. Biosynthesis and secretion of rhizobial lipochitin-oligosaccharide signal molecules. Subcell Biochem 1998; 29:29-71. [PMID: 9594644 DOI: 10.1007/978-1-4899-1707-2_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- E Kamst
- Leiden University, Institute of Molecular Plant Sciences, Clusius Laboratory, The Netherlands
| | | | | |
Collapse
|
31
|
Samain E, Drouillard S, Heyraud A, Driguez H, Geremia RA. Gram-scale synthesis of recombinant chitooligosaccharides in Escherichia coli. Carbohydr Res 1997; 302:35-42. [PMID: 9249951 DOI: 10.1016/s0008-6215(97)00107-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cultivation of Escherichia coli harbouring heterologous genes of oligosaccharide synthesis is presented as a new method for preparing large quantities of high-value oligosaccharides. To test the feasibility of this method, we successfully produced in high yield (up to 2.5 g/L) penta-N-acetyl-chitopentaose (1) and its deacetylated derivative tetra-N-acetyl-chitopentaose (2) by cultivating at high density cells of E. coli expressing nodC or nodBC genes (nodC and nodB encode for chitooligosaccharide synthase and chitooligosaccharide N-deacetylase, respectively). These two products were easily purified by charcoal adsorption and ion-exchange chromatography. One important application of compound 2 could be its utilisation as a precursor for the preparation of synthetic nodulation factors by chemical acylation.
Collapse
Affiliation(s)
- E Samain
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), Grenoble, France.
| | | | | | | | | |
Collapse
|
32
|
Mergaert P, Ferro M, D'Haeze W, van Montagu M, Holsters M, Promé JC. Nod factors of Azorhizobium caulinodans strain ORS571 can be glycosylated with an arabinosyl group, a fucosyl group, or both. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1997; 10:683-687. [PMID: 9204572 DOI: 10.1094/mpmi.1997.10.5.683] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In addition to the previously described arabinosylated Nod factors, Azorhizobium caulinodans can also produce fucosylated Nod factors and Nod factors that are both arabinosylated and fucosylated. The presence of a plasmid carrying extra copies of a subset of nod genes as well as bacterial growth conditions influence the relative proportion of carbamoylated, fucosylated, and arabinosylated Nod factors. By using a root hair formation assay, we demonstrate that the Nod factor glycosylations are important for biological activity on Sesbania rostrata roots.
Collapse
Affiliation(s)
- P Mergaert
- Department of Genetics, Flanders Interuniversity, Universiteit Gent, Belgium
| | | | | | | | | | | |
Collapse
|
33
|
Quinto C, Wijfjes AH, Bloemberg GV, Blok-Tip L, López-Lara IM, Lugtenberg BJ, Thomas-Oates JE, Spaink HP. Bacterial nodulation protein NodZ is a chitin oligosaccharide fucosyltransferase which can also recognize related substrates of animal origin. Proc Natl Acad Sci U S A 1997; 94:4336-41. [PMID: 9113990 PMCID: PMC20723 DOI: 10.1073/pnas.94.9.4336] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The nodZ gene, which is present in various soil bacteria such as Bradyrhizobium japonicum, Azorhizobium caulinodans, and Rhizobium loti, is involved in the addition of a fucosyl residue to the reducing N-acetylglucosamine residue of lipochitin oligosaccharide (LCO) signal molecules. Using an Escherichia coli strain that produces large quantities of the NodZ protein of B. japonicum, we have purified the NodZ protein to homogeneity. The purified NodZ protein appears to be active in an in vitro transfucosylation assay in which GDP-beta-fucose and LCOs or chitin oligosaccharides are used as substrates. The products of the in vitro reaction using chitin oligosaccharides as substrate were studied by using mass spectrometry, linkage analysis, and composition analysis. The data show that one fucose residue is added to C6 of the reducing-terminal N-acetylglucosamine residue. The substrate specificity of NodZ protein was analyzed in further detail, using radiolabeled GDP-beta-fucose as the donor. The results show that chitin oligosaccharides are much better substrates than LCOs, suggesting that in Rhizobium NodZ fucosylates chitin oligosaccharides prior to their acylation. The free glycan core pentasaccharides of N-linked glycoproteins are also substrates for NodZ. Therefore, the NodZ enzyme seems to have an activity equivalent to that of the enzyme involved in the addition of the C6-linked fucosyl substituent in the glycan core of N-linked glycoproteins in eukaryotes. Oligosaccharides that contain only one N-acetylglucosamine at the reducing terminus are also substrates for NodZ, although in this case very high concentrations of such oligosaccharides are needed. An example is the leukocyte antigen Lewis-X, which can be converted by NodZ to a novel fucosylated derivative that could be used for binding studies with E-selectin.
Collapse
Affiliation(s)
- C Quinto
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca Morelos 62271, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Kamst E, Pilling J, Raamsdonk LM, Lugtenberg BJ, Spaink HP. Rhizobium nodulation protein NodC is an important determinant of chitin oligosaccharide chain length in Nod factor biosynthesis. J Bacteriol 1997; 179:2103-8. [PMID: 9079892 PMCID: PMC178943 DOI: 10.1128/jb.179.7.2103-2108.1997] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Synthesis of chitin oligosaccharides by NodC is the first committed step in the biosynthesis of rhizobial lipochitin oligosaccharides (LCOs). The distribution of oligosaccharide chain lengths in LCOs differs between various Rhizobium species. We expressed the cloned nodC genes of Rhizobium meliloti, R. leguminosarum bv. viciae, and R. loti in Escherichia coli. The in vivo activities of the various NodC proteins differed with respect to the length of the major chitin oligosaccharide produced. The clearest difference was observed between strains with R. meliloti and R. loti NodC, producing chitintetraose and chitinpentaose, respectively. In vitro experiments, using UDP-[14C]GlcNAc as a precursor, show that this difference reflects intrinsic properties of these NodC proteins and that it is not influenced by the UDP-GlcNAc concentration. Analysis of oligosaccharide chain lengths in LCOs produced by a R. leguminosarum bv. viciae nodC mutant, expressing the three cloned nodC genes mentioned above, shows that the difference in oligosaccharide chain length in LCOs of R. meliloti and R. leguminosarum bv. viciae is due only to nodC. The exclusive production of LCOs which contain a chitinpentaose backbone by R. loti strains is not due to NodC but to end product selection by Nod proteins involved in further modification of the chitin oligosaccharide. These results indicate that nodC contributes to the host specificity of R. meliloti, a conclusion consistent with the results of several studies which have shown that the lengths of the oligosaccharide backbones of LCOs can strongly influence their activities on host plants.
Collapse
Affiliation(s)
- E Kamst
- Institute of Molecular Plant Sciences, Leiden University, The Netherlands.
| | | | | | | | | |
Collapse
|
35
|
Schultze M, Kondorosi A. The role of lipochitooligosaccharides in root nodule organogenesis and plant cell growth. Curr Opin Genet Dev 1996; 6:631-8. [PMID: 8939723 DOI: 10.1016/s0959-437x(96)80094-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Lipochitooligosaccharides (Nod signals) excreted by rhizobia induce the formation of symbiotic root nodules in leguminous plants. This process is host plant specific, depending on the structural modifications of Nod signals. Rapid responses of plant roots in single cell assays have provided powerful tools in dissecting Nod signal transduction pathways and in elucidating the molecular basis of host specificity. Recent findings indicate that lipochitooligosaccharides, as well as symbiosis-related genes, also function in non legumes, pointing to a general role for these elements in plant morphogenesis.
Collapse
Affiliation(s)
- M Schultze
- Institut des Sciences Végétales, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France.
| | | |
Collapse
|
36
|
Abstract
Developments during the past year have confirmed that several classes of oligosaccharides are able to activate the plant cell machinery, leading either to defence reactions or to plant developmental processes. Both fungal and plant cell walls contain molecules that elicit plant defence reactions; however, most of the studies focus on the activities induced by lipochito-oligomers (LCOs, or Nod factors) produced by bacteria which trigger plant infection and nodule formation (organogenesis). LCOs can be described as growth regulators of plants in general as they also induce protoplast cell divisions of tobacco plant (a nonlegume) at femtomolar concentrations. Recognition of the appropriate symbiotic bacteria by legumes is mediated by the structure of Nod factors, but the structural determinants involved in this recognition process are not always clearly understood. Although specific substitutions of the oligochitin backbone by several chemical groups are involved, it seems that some host range variations of the bacteria can only be explained by small variations in the hydrophobic balance between both ends of the molecule.
Collapse
Affiliation(s)
- J C Promé
- Institut de Pharmacologie et de Biologie Structurales, CNRS 205, Toulouse, France.
| |
Collapse
|
37
|
Bec-Ferté MP, Krishnan HB, Savagnac A, Pueppke SG, Promé JC. Rhizobium fredii synthesizes an array of lipooligosaccharides, including a novel compound with glucose inserted into the backbone of the molecule. FEBS Lett 1996; 393:273-9. [PMID: 8814304 DOI: 10.1016/0014-5793(96)00903-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Flavonoid cues from the plant host cause symbiotic, nitrogen-fixing rhizobia to synthesize lipochitooligosaccharides (LCOs), which act as return signals to initiate the nodulation process. Rhizobium fredii strain USDA257 is known to produce four LCOs, all substituted with vaccenic acid (C18:1). We show here that a mutant strain can replace vaccenic acid with a C16:0 side chain, and that strain USDA191 synthesizes additional LCOs that differ from one another in the length and unsaturation of their fatty acyl substituents. USADA191 and 257DH4 both produce a novel LCO with glucose substituted for N-acetyl-D-glucosamine in the backbone of the molecule.
Collapse
Affiliation(s)
- M P Bec-Ferté
- Institut de Pharmacologie et de Biologie Structurale du Centre National de la Recherche Scientifique, Toulouse, France
| | | | | | | | | |
Collapse
|
38
|
Fernández-López M, D'Haeze W, Mergaert P, Verplancke C, Promé JC, Van Montagu M, Holsters M. Role of nodl and nodJ in lipo-chitooligosaccharide secretion in Azorhizobium caulinodans and Escherichia coli. Mol Microbiol 1996; 20:993-1000. [PMID: 8809752 DOI: 10.1111/j.1365-2958.1996.tb02540.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Lipo-chitooligosaccharide (LCO) Nod factors are produced and secreted by rhizobia and trigger nodule development in leguminous host plants. The products of the bacterial nodlJ genes are related to transporters of capsular polysaccharides and were proposed to be involved in LCO transport. We have studied nodlJ of Azorhizobium caulinodans ORS571 by analysis of cell-associated and secreted radioactively labelled Nod factors in wild-type ORS571, a nodJ mutant and a complemented strain. Secretion was strongly reduced in the nodJ mutant, and restored to wild-type levels after complementation. Constructs were made for expression of combinations of different nod genes in Escherichia coli DH5 alpha. The strain DH5 alpha (pUCNABCSU) synthesized LCOs, but they were only secreted when a plasmid containing both nodl and nodJ was supplied in trans. nodl or nodJ alone was not sufficient. In E. coli as well as in Azorhizobium, the nodlJ-encoded transporter showed a specificity for more hydrophilic LCOs.
Collapse
Affiliation(s)
- M Fernández-López
- Laboratorium voor Genetica, Flanders Interuniversity Institute for Biotechnology, Universiteit Gent, Belgium
| | | | | | | | | | | | | |
Collapse
|
39
|
Schultze M, Kondorosi A. The role of Nod signal structures in the determination of host specificity in the Rhizobium-legume symbiosis. World J Microbiol Biotechnol 1996; 12:137-49. [DOI: 10.1007/bf00364678] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|