1
|
Pavlov RV, Akimov SA, Dashinimaev EB, Bashkirov PV. Boosting Lipofection Efficiency Through Enhanced Membrane Fusion Mechanisms. Int J Mol Sci 2024; 25:13540. [PMID: 39769303 PMCID: PMC11677079 DOI: 10.3390/ijms252413540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Gene transfection is a fundamental technique in the fields of biological research and therapeutic innovation. Due to their biocompatibility and membrane-mimetic properties, lipid vectors serve as essential tools in transfection. The successful delivery of genetic material into the cytoplasm is contingent upon the fusion of the vector and cellular membranes, which enables hydrophilic polynucleic acids to traverse the hydrophobic barriers of two intervening membranes. This review examines the critical role of membrane fusion in lipofection efficiency, with a particular focus on the molecular mechanisms that govern lipoplex-membrane interactions. This analysis will examine the key challenges inherent to the fusion process, from achieving initial membrane proximity to facilitating final content release through membrane remodeling. In contrast to viral vectors, which utilize specialized fusion proteins, lipid vectors necessitate a strategic formulation and environmental optimization to enhance their fusogenicity. This review discusses recent advances in vector design and fusion-promoting strategies, emphasizing their potential to improve gene delivery yield. It highlights the importance of understanding lipoplex-membrane fusion mechanisms for developing next-generation delivery systems and emphasizes the need for continued fundamental research to advance lipid-mediated transfection technology.
Collapse
Affiliation(s)
- Rais V. Pavlov
- Research Institute for Systems Biology and Medicine, 18 Nauchniy Proezd, Moscow 117246, Russia
| | - Sergey A. Akimov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, Moscow 119071, Russia;
| | - Erdem B. Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia;
| | - Pavel V. Bashkirov
- Research Institute for Systems Biology and Medicine, 18 Nauchniy Proezd, Moscow 117246, Russia
| |
Collapse
|
2
|
Foo ACY, Lafont BAP, Mueller GA. Expanding the Antiviral Potential of the Mosquito Lipid-transfer Protein AEG12 Against SARS-CoV-2 Using Hydrophobic Antiviral Ligands. FEBS Lett 2022; 596:2555-2565. [PMID: 35891619 PMCID: PMC9353291 DOI: 10.1002/1873-3468.14456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022]
Abstract
The mosquito protein AEG12 encompasses a large (~ 3800 Å3) hydrophobic cavity which binds and delivers unsaturated fatty acids into biological membranes, allowing it to lyse cells and neutralize a wide range of enveloped viruses. Herein, the lytic and antiviral activities are modified with non‐naturally occurring lipid ligands. We generated novel AEG12 complexes in which the endogenous fatty acid ligands were replaced with hydrophobic viral inhibitors. The resulting compounds modulated cytotoxicity and infectivity against SARS‐CoV‐2, potentially reflecting additional mechanisms of action beyond membrane destabilization. These studies provide valuable insight into the design of novel broad‐spectrum antiviral therapeutics centred on the AEG12 protein scaffold as a delivery vehicle for hydrophobic therapeutic compounds.
Collapse
Affiliation(s)
- Alexander C Y Foo
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Bernard A P Lafont
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Geoffrey A Mueller
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
3
|
Humes ST, Iovine N, Prins C, Garrett TJ, Lednicky JA, Coker ES, Sabo-Attwood T. Association between lipid profiles and viral respiratory infections in human sputum samples. Respir Res 2022; 23:177. [PMID: 35780155 PMCID: PMC9250719 DOI: 10.1186/s12931-022-02091-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/13/2022] [Indexed: 12/03/2022] Open
Abstract
Background Respiratory infections such as influenza account for significant global mortality each year. Generating lipid profiles is a novel and emerging research approach that may provide new insights regarding the development and progression of priority respiratory infections. We hypothesized that select clusters of lipids in human sputum would be associated with specific viral infections (Influenza (H1N1, H3N2) or Rhinovirus). Methods Lipid identification and semi-quantitation was determined with liquid chromatography and high-resolution mass spectrometry in induced sputum from individuals with confirmed respiratory infections (influenza (H1N1, H3N2) or rhinovirus). Clusters of lipid species and associations between lipid profiles and the type of respiratory viral agent was determined using Bayesian profile regression and multinomial logistic regression. Results More than 600 lipid compounds were identified across the sputum samples with the most abundant lipid classes identified as triglycerides (TG), phosphatidylethanolamines (PE), phosphatidylcholines (PC), Sphingomyelins (SM), ether-PC, and ether-PE. A total of 12 lipid species were significantly different when stratified by infection type and included acylcarnitine (AcCar) (10:1, 16:1, 18:2), diacylglycerols (DG) (16:0_18:0, 18:0_18:0), Lysophosphatidylcholine (LPC) (12:0, 20:5), PE (18:0_18:0), and TG (14:1_16:0_18:2, 15:0_17:0_19:0, 16:0_17:0_18:0, 19:0_19:0_19:0). Cluster analysis yielded three clusters of lipid profiles that were driven by just 10 lipid species (TGs and DGs). Cluster 1 had the highest levels of each lipid species and the highest prevalence of influenza A H3 infection (56%, n = 5) whereas cluster 3 had lower levels of each lipid species and the highest prevalence of rhinovirus (60%; n = 6). Using cluster 3 as the reference group, the crude odds of influenza A H3 infection compared to rhinovirus in cluster 1 was significantly (p = 0.047) higher (OR = 15.00 [95% CI: 1.03, 218.29]). After adjustment for confounders (smoking status and pulmonary comorbidities), the odds ratio (OR) became only marginally significant (p = 0.099), but the magnitude of the effect estimate was similar (OR = 16.00 [0.59, 433.03]). Conclusions In this study, human sputum lipid profiles were shown to be associated with distinct types of viral infection. Better understanding the relationship between respiratory infections of global importance and lipids contributes to advancing knowledge of pathogenesis of infections including identifying populations with increased susceptibility and developing effective therapeutics and biomarkers of health status. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02091-w.
Collapse
Affiliation(s)
- Sara T Humes
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology, Emerging Pathogens Institute, University of Florida, Gainesville, Florida, 32611, USA
| | - Nicole Iovine
- Division of Infectious Diseases & Global Medicine, University of Florida, Gainesville, Florida, 32611, USA
| | - Cindy Prins
- Department of Epidemiology, University of Florida, Gainesville, Florida, 32611, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology and Laboratory Medicine and Southeast Center for Integrated Metabolomics, University of Florida, Gainesville, Florida, 32611, USA
| | - John A Lednicky
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology, Emerging Pathogens Institute, University of Florida, Gainesville, Florida, 32611, USA
| | - Eric S Coker
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology, Emerging Pathogens Institute, University of Florida, Gainesville, Florida, 32611, USA
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology, Emerging Pathogens Institute, University of Florida, Gainesville, Florida, 32611, USA.
| |
Collapse
|
4
|
Joardar A, Pattnaik GP, Chakraborty H. Mechanism of Membrane Fusion: Interplay of Lipid and Peptide. J Membr Biol 2022; 255:211-224. [PMID: 35435451 PMCID: PMC9014786 DOI: 10.1007/s00232-022-00233-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/25/2022] [Indexed: 11/26/2022]
Abstract
Membrane fusion is an essential process for the survival of eukaryotes and the entry of enveloped viruses into host cells. A proper understanding of the mechanism of membrane fusion would provide us a handle to manipulate several biological pathways, and design efficient vaccines against emerging and re-emerging viral infections. Although fusion proteins take the central stage in catalyzing the process, role of lipid composition is also of paramount importance. Lipid composition modulates membrane organization and dynamics and impacts the lipid–protein (peptide) interaction. Moreover, the intrinsic curvature of lipids has strong impact on the formation of stalk and hemifusion diaphragm. Detection of transiently stable intermediates remains the bottleneck in the understanding of fusion mechanism. In order to circumvent this challenge, analytical methods can be employed to determine the kinetic parameters from ensemble average measurements of observables, such as lipid mixing, content mixing, and content leakage. The current review aims to present an analytical method that would aid our understanding of the fusion mechanism, provides a better insight into the role of lipid shape, and discusses the interplay of lipid and peptide in membrane fusion.
Collapse
Affiliation(s)
- Ankita Joardar
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768019, India
| | | | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768019, India.
| |
Collapse
|
5
|
Siniavin AE, Streltsova MA, Nikiforova MA, Kudryavtsev DS, Grinkina SD, Gushchin VA, Mozhaeva VA, Starkov VG, Osipov AV, Lummis SCR, Tsetlin VI, Utkin YN. Snake venom phospholipase A 2s exhibit strong virucidal activity against SARS-CoV-2 and inhibit the viral spike glycoprotein interaction with ACE2. Cell Mol Life Sci 2021; 78:7777-7794. [PMID: 34714362 PMCID: PMC8554752 DOI: 10.1007/s00018-021-03985-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/17/2021] [Accepted: 10/14/2021] [Indexed: 01/08/2023]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 requires new treatments both to alleviate the symptoms and to prevent the spread of this disease. Previous studies demonstrated good antiviral and virucidal activity of phospholipase A2s (PLA2s) from snake venoms against viruses from different families but there was no data for coronaviruses. Here we show that PLA2s from snake venoms protect Vero E6 cells against SARS-CoV-2 cytopathic effects. PLA2s showed low cytotoxicity to Vero E6 cells with some activity at micromolar concentrations, but strong antiviral activity at nanomolar concentrations. Dimeric PLA2 from the viper Vipera nikolskii and its subunits manifested especially potent virucidal effects, which were related to their phospholipolytic activity, and inhibited cell-cell fusion mediated by the SARS-CoV-2 spike glycoprotein. Moreover, PLA2s interfered with binding both of an antibody against ACE2 and of the receptor-binding domain of the glycoprotein S to 293T/ACE2 cells. This is the first demonstration of a detrimental effect of PLA2s on β-coronaviruses. Thus, snake PLA2s are promising for the development of antiviral drugs that target the viral envelope, and could also prove to be useful tools to study the interaction of viruses with host cells.
Collapse
Affiliation(s)
- Andrei E. Siniavin
- grid.4886.20000 0001 2192 9124Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia ,N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ivanovsky Institute of Virology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Maria A. Streltsova
- grid.4886.20000 0001 2192 9124Department of Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Maria A. Nikiforova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ivanovsky Institute of Virology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Denis S. Kudryavtsev
- grid.4886.20000 0001 2192 9124Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Svetlana D. Grinkina
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ivanovsky Institute of Virology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir A. Gushchin
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ivanovsky Institute of Virology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vera A. Mozhaeva
- grid.4886.20000 0001 2192 9124Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia ,grid.4886.20000 0001 2192 9124Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, Russia
| | - Vladislav G. Starkov
- grid.4886.20000 0001 2192 9124Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexey V. Osipov
- grid.4886.20000 0001 2192 9124Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sarah C. R. Lummis
- grid.5335.00000000121885934Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Victor I. Tsetlin
- grid.4886.20000 0001 2192 9124Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yuri N. Utkin
- grid.4886.20000 0001 2192 9124Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
6
|
Sparks RP, Arango AS, Starr ML, Aboff ZL, Hurst LR, Rivera-Kohr DA, Zhang C, Harnden KA, Jenkins JL, Guida WC, Tajkhorshid E, Fratti RA. A small-molecule competitive inhibitor of phosphatidic acid binding by the AAA+ protein NSF/Sec18 blocks the SNARE-priming stage of vacuole fusion. J Biol Chem 2019; 294:17168-17185. [PMID: 31515268 DOI: 10.1074/jbc.ra119.008865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/04/2019] [Indexed: 12/13/2022] Open
Abstract
The homeostasis of most organelles requires membrane fusion mediated by soluble N -ethylmaleimide-sensitive factor (NSF) attachment protein receptors (SNAREs). SNAREs undergo cycles of activation and deactivation as membranes move through the fusion cycle. At the top of the cycle, inactive cis-SNARE complexes on a single membrane are activated, or primed, by the hexameric ATPase associated with the diverse cellular activities (AAA+) protein, N-ethylmaleimide-sensitive factor (NSF/Sec18), and its co-chaperone α-SNAP/Sec17. Sec18-mediated ATP hydrolysis drives the mechanical disassembly of SNAREs into individual coils, permitting a new cycle of fusion. Previously, we found that Sec18 monomers are sequestered away from SNAREs by binding phosphatidic acid (PA). Sec18 is released from the membrane when PA is hydrolyzed to diacylglycerol by the PA phosphatase Pah1. Although PA can inhibit SNARE priming, it binds other proteins and thus cannot be used as a specific tool to further probe Sec18 activity. Here, we report the discovery of a small-molecule compound, we call IPA (inhibitor of priming activity), that binds Sec18 with high affinity and blocks SNARE activation. We observed that IPA blocks SNARE priming and competes for PA binding to Sec18. Molecular dynamics simulations revealed that IPA induces a more rigid NSF/Sec18 conformation, which potentially disables the flexibility required for Sec18 to bind to PA or to activate SNAREs. We also show that IPA more potently and specifically inhibits NSF/Sec18 activity than does N-ethylmaleimide, requiring the administration of only low micromolar concentrations of IPA, demonstrating that this compound could help to further elucidate SNARE-priming dynamics.
Collapse
Affiliation(s)
- Robert P Sparks
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Andres S Arango
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Matthew L Starr
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Zachary L Aboff
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Logan R Hurst
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - David A Rivera-Kohr
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Chi Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Kevin A Harnden
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Jermaine L Jenkins
- Structural Biology and Biophysics Facility, University of Rochester Medical Center, Rochester, New York 14642
| | - Wayne C Guida
- Department of Chemistry, University of South Florida, Tampa, Florida 336204
| | - Emad Tajkhorshid
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Rutilio A Fratti
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 .,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
7
|
Meher G, Chakraborty H. Membrane Composition Modulates Fusion by Altering Membrane Properties and Fusion Peptide Structure. J Membr Biol 2019; 252:261-272. [PMID: 31011762 PMCID: PMC7079885 DOI: 10.1007/s00232-019-00064-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/12/2019] [Indexed: 01/21/2023]
Abstract
Membrane fusion, one of the most essential processes in the life of eukaryotes, occurs when two separate lipid bilayers merge into a continuous bilayer and internal contents of two separated membranes mingle. There is a certain class of proteins that assist the binding of the viral envelope to the target host cell and catalyzing fusion. All class I viral fusion proteins contain a highly conserved 20–25 amino-acid amphipathic peptide at the N-terminus, which is essential for fusion activity and is termed as the ‘fusion peptide’. It has been shown that insertion of fusion peptides into the host membrane and the perturbation in the membrane generated thereby is crucial for membrane fusion. Significant efforts have been given in the last couple of decades to understand the lipid-dependence of structure and function of the fusion peptide in membranes to understand the role of lipid compositions in membrane fusion. In addition, the lipid compositions further change the membrane physical properties and alter the mechanism and extent of membrane fusion. Therefore, lipid compositions modulate membrane fusion by changing membrane physical properties and altering structure of the fusion peptide.
Collapse
Affiliation(s)
- Geetanjali Meher
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 019, India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 019, India.
| |
Collapse
|
8
|
Du LN, Xie T, Xu JY, Kang A, Di LQ, Shan JJ, Wang SC. A metabolomics approach to studying the effects of Jinxin oral liquid on RSV-infected mice using UPLC/LTQ-Orbitrap mass spectrometry. JOURNAL OF ETHNOPHARMACOLOGY 2015; 174:25-36. [PMID: 26234176 DOI: 10.1016/j.jep.2015.07.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 07/17/2015] [Accepted: 07/27/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jinxin oral liquid (JOL) is a traditional Chinese medicine (TCM) formula modified from ma-xing-shi-gan-tang, an ancient formula widely used in the treatment of respiratory diseases such as bronchitis, pneumonia, and asthma. In our previous studies, JOL was shown to safely and effectively treat viral pneumonia, especially that involving respiratory syncytial virus (RSV). AIM OF THE STUDY To investigate the mechanism of the effect of JOL in RSV infected mice, using a metabolomics approach based on ultra-performance liquid chromatography coupled with linear ion trap quadrupole-Orbitrap mass spectrometry (UPLC/LTQ-Orbitrap-MS). MATERIALS AND METHODS BALB/c mice were divided into four groups, the control group (saline inoculation/no treatment), RSV group (RSV inoculation/saline treatment), RSV+JOL group (RSV inoculation/JOL treatment), and RSV+Riba group (RSV inoculation/ribavirin treatment). Plasma and lung tissue samples were collected 7 days after the inoculation/treatment protocols, and UPLC/LTQ-Orbitrap-MS method based on metabolomics was developed. Principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were utilized to identify biomarkers potentially associated with the anti-RSV activity of JOL. RESULTS JOL was associated with reduced inflammatory responses in RSV-infected lung tissue. The combination of PCA and OPLS-DA revealed deviations in 11 biomarkers in plasma, and 16 biomarkers in lung tissue induced by RSV that were corrected with JOL treatment. These biomarkers were primarily components of metabolic pathways involving glycerophosphocholines, sphingolipids, and glycerolipids. JOL was able to restore the abnormal levels of these biomarkers detected in the plasma and lung tissue of RSV-infected mice to approximately normal levels. CONCLUSIONS This study suggested that JOL can treat RSV pneumonia effectively, partially by ameliorating the associated disturbances to lipid metabolism. The results provided insight into the anti-RSV mechanism of JOL, and also demonstrated that metabolomics is a valuable tool for investigating the efficacy of TCM treatment for RSV pneumonia, and the associated biomarkers involved.
Collapse
Affiliation(s)
- Li-na Du
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Traditional Chinese Medicine, Beijing Children's Hospital Affiliated to Capital Medical University, Beijing 100045, China
| | - Tong Xie
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jian-ya Xu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - An Kang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210023, China
| | - Liu-qing Di
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210023, China
| | - Jin-jun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210023, China.
| | - Shou-chuan Wang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
9
|
Yoshida E. PH response behavior of giant vesicles comprised of amphiphilic poly(methacrylic acid)-block-poly(methyl methacrylate-random-mathacrylic acid). Colloid Polym Sci 2014. [DOI: 10.1007/s00396-014-3482-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Schang LM. Biophysical approaches to entry inhibitor antivirals with a broad spectrum of action. Future Virol 2014. [DOI: 10.2217/fvl.13.130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT: Antivirals have traditionally been developed to act by biochemical principles targeting proteins, such as inhibition of enzymes or protein–protein interactions. This approach has resulted in 57 clinical antivirals or boosters, and multiple others under development. However, viral infection also requires specific unique biophysical activities from the lipids in the viral envelope. These biophysical activities could also be targeted with small molecules. Several phospholipids, for example, inhibit infectivity in model systems. Such knowledge had not been applied to antiviral development until recently. However, two families of small molecules that inhibit viral infectivity by biophysical mechanisms affecting the lipids of the virion envelope were independently identified in 2010. Although they have yet to prove strong antiviral activities in vivo, and their long-term toxicological profiles have yet to be characterized, they do provide proof-of-principle that small molecule ‘drug-like’ compounds can act by biophysical principles affecting the lipids of the virion envelope.
Collapse
Affiliation(s)
- Luis M Schang
- *Department of Biochemistry, Li Ka Shing Institute of Virology & Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB, Canada; 6-142G KATZ, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
11
|
Chamoun-Emanuelli AM, Bobardt M, Moncla B, Mankowski MK, Ptak RG, Gallay P, Chen Z. Evaluation of PD 404,182 as an anti-HIV and anti-herpes simplex virus microbicide. Antimicrob Agents Chemother 2013; 58:687-97. [PMID: 24217696 PMCID: PMC3910842 DOI: 10.1128/aac.02000-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/05/2013] [Indexed: 12/17/2022] Open
Abstract
PD 404,182 (PD) is a synthetic compound that was found to compromise HIV integrity via interaction with a nonenvelope protein viral structural component (A. M. Chamoun et al., Antimicrob. Agents Chemother. 56:672-681, 2012). The present study evaluates the potential of PD as an anti-HIV microbicide and establishes PD's virucidal activity toward another pathogen, herpes simplex virus (HSV). We show that the anti-HIV-1 50% inhibitory concentration (IC50) of PD, when diluted in seminal plasma, is ∼1 μM, similar to the IC50 determined in cell culture growth medium, and that PD retains full anti-HIV-1 activity after incubation in cervical fluid at 37°C for at least 24 h. In addition, PD is nontoxic toward vaginal commensal Lactobacillus species (50% cytotoxic concentration [CC50], >300 μM), freshly activated human peripheral blood mononuclear cells (CC50, ∼200 μM), and primary CD4(+) T cells, macrophages, and dendritic cells (CC50, >300 μM). PD also exhibited high stability in pH-adjusted Dulbecco's phosphate-buffered saline with little to no activity loss after 8 weeks at pH 4 and 42°C, indicating suitability for formulation for transportation and storage in developing countries. Finally, for the first time, we show that PD inactivates herpes simplex virus 1 (HSV-1) and HSV-2 at submicromolar concentrations. Due to the prevalence of HSV infection, the ability of PD to inactivate HSV may provide an additional incentive for use as a microbicide. The ability of PD to inactivate both HIV-1 and HSV, combined with its low toxicity and high stability, warrants additional studies for the evaluation of PD's microbicidal candidacy in animals and humans.
Collapse
Affiliation(s)
- Ana M. Chamoun-Emanuelli
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Michael Bobardt
- Department of Immunology and Microbial Sciences, IMM-9, The Scripps Research Institute, La Jolla, California, USA
| | - Bernard Moncla
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA, and Magee-Womens Research Institute Foundation, Pittsburgh, Pennsylvania, USA
| | - Marie K. Mankowski
- Southern Research Institute, Infectious Disease Research Department, Frederick, Maryland, USA
| | - Roger G. Ptak
- Southern Research Institute, Infectious Disease Research Department, Frederick, Maryland, USA
| | - Philippe Gallay
- Department of Immunology and Microbial Sciences, IMM-9, The Scripps Research Institute, La Jolla, California, USA
| | - Zhilei Chen
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
- Department of Microbial and Molecular Pathogenesis, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
12
|
Karunakaran S, Fratti RA. The lipid composition and physical properties of the yeast vacuole affect the hemifusion-fusion transition. Traffic 2013; 14:650-62. [PMID: 23438067 DOI: 10.1111/tra.12064] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/21/2013] [Accepted: 02/25/2013] [Indexed: 12/12/2022]
Abstract
Yeast vacuole fusion requires the formation of SNARE bundles between membranes. Although the function of vacuolar SNAREs is controlled in part by regulatory lipids, the exact role of the membrane in regulating fusion remains unclear. Because SNAREs are membrane-anchored and transmit the force required for fusion to the bilayer, we hypothesized that the lipid composition and curvature of the membrane aid in controlling fusion. Here, we examined the effect of altering membrane fluidity and curvature on the functionality of fusion-incompetent SNARE mutants that are thought to generate insufficient force to trigger the hemifusion-fusion transition. The hemifusion-fusion transition was inhibited by disrupting the 3Q:1R stoichiometry of SNARE bundles with the mutant SNARE Vam7p(Q283R) . Similarly, replacing the transmembrane domain of the syntaxin homolog Vam3p with a lipid anchor allowed hemifusion, but not content mixing. Hemifusion-stalled reactions containing either of the SNARE mutants were stimulated to fuse with chlorpromazine, an amphipathic molecule that alters membrane fluidity and curvature. The activity of mutant SNAREs was also rescued by the overexpression of SNAREs, thus multiplying the force transferred to the membrane. Thus, we conclude that either increasing membrane fluidity, or multiplying SNARE-generated energy restored the fusogenicity of mutant SNAREs that are stalled at hemifusion. We also found that regulatory lipids differentially modulated the complex formation of wild-type SNAREs. Together, these data indicate that the physical properties and the lipid composition of the membrane affect the function of SNAREs in promoting the hemifusion-fusion transition.
Collapse
Affiliation(s)
- Surya Karunakaran
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
13
|
5-(Perylen-3-yl)ethynyl-arabino-uridine (aUY11), an arabino-based rigid amphipathic fusion inhibitor, targets virion envelope lipids to inhibit fusion of influenza virus, hepatitis C virus, and other enveloped viruses. J Virol 2013; 87:3640-54. [PMID: 23283943 DOI: 10.1128/jvi.02882-12] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Entry of enveloped viruses requires fusion of viral and cellular membranes. Fusion requires the formation of an intermediate stalk structure, in which only the outer leaflets are fused. The stalk structure, in turn, requires the lipid bilayer of the envelope to bend into negative curvature. This process is inhibited by enrichment in the outer leaflet of lipids with larger polar headgroups, which favor positive curvature. Accordingly, phospholipids with such shape inhibit viral fusion. We previously identified a compound, 5-(perylen-3-yl)ethynyl-2'-deoxy-uridine (dUY11), with overall shape and amphipathicity similar to those of these phospholipids. dUY11 inhibited the formation of the negative curvature necessary for stalk formation and the fusion of a model enveloped virus, vesicular stomatitis virus (VSV). We proposed that dUY11 acted by biophysical mechanisms as a result of its shape and amphipathicity. To test this model, we have now characterized the mechanisms against influenza virus and HCV of 5-(perylen-3-yl)ethynyl-arabino-uridine (aUY11), which has shape and amphipathicity similar to those of dUY11 but contains an arabino-nucleoside. aUY11 interacted with envelope lipids to inhibit the infectivity of influenza virus, hepatitis C virus (HCV), herpes simplex virus 1 and 2 (HSV-1/2), and other enveloped viruses. It specifically inhibited the fusion of influenza virus, HCV, VSV, and even protein-free liposomes to cells. Furthermore, aUY11 inhibited the formation of negative curvature in model lipid bilayers. In summary, the arabino-derived aUY11 and the deoxy-derived dUY11 act by the same antiviral mechanisms against several enveloped but otherwise unrelated viruses. Therefore, chemically unrelated compounds of appropriate shape and amphipathicity target virion envelope lipids to inhibit formation of the negative curvature required for fusion, inhibiting infectivity by biophysical, not biochemical, mechanisms.
Collapse
|
14
|
Papanicolaou KN, Phillippo MM, Walsh K. Mitofusins and the mitochondrial permeability transition: the potential downside of mitochondrial fusion. Am J Physiol Heart Circ Physiol 2012; 303:H243-55. [PMID: 22636681 DOI: 10.1152/ajpheart.00185.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mitofusins (Mfn-1 and Mfn-2) are transmembrane proteins that bind and hydrolyze guanosine 5'-triphosphate to bring about the merging of adjacent mitochondrial membranes. This event is necessary for mitochondrial fusion, a biological process that is critical for organelle function. The broad effects of mitochondrial fusion on cell bioenergetics have been extensively studied, whereas the local effects of mitofusin activity on the structure and integrity of the fusing mitochondrial membranes have received relatively little attention. From the study of fusogenic proteins, theoretical models, and simulations, it has been noted that the fusion of biological membranes is associated with local perturbations on the integrity of the membrane that present in the form of lipidic holes which open on the opposing bilayers. These lipidic holes represent obligate intermediates that make the fusion process thermodynamically more favorable and at the same time induce leakage to the fusing membranes. In this perspectives article we present the relevant evidence selected from a spectrum of membrane fusion/leakage models and attempt to couple this information with observations conducted with cardiac myocytes or mitochondria deficient in Mfn-1 and Mfn-2. More specifically, we argue in favor of a situation whereby mitochondrial fusion in cardiac myocytes is coupled with outer mitochondrial membrane destabilization that is opportunistically employed during the process of mitochondrial permeability transition. We hope that these insights will initiate research on this new hypothesis of mitochondrial permeability transition regulation, a poorly understood mitochondrial function with significant consequences on myocyte survival.
Collapse
Affiliation(s)
- Kyriakos N Papanicolaou
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Massachusetts, 02118, USA
| | | | | |
Collapse
|
15
|
PD 404,182 is a virocidal small molecule that disrupts hepatitis C virus and human immunodeficiency virus. Antimicrob Agents Chemother 2011; 56:672-81. [PMID: 22083468 DOI: 10.1128/aac.05722-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We describe a virucidal small molecule, PD 404,182, that is effective against hepatitis C virus (HCV) and human immunodeficiency virus (HIV). The median 50% inhibitory concentrations (IC(50)s) for the antiviral effect of PD 404,182 against HCV and HIV in cell culture are 11 and 1 μM, respectively. The antiviral activity of PD 404,182 is due to the physical disruption of virions that is accompanied to various degrees (depending on the virus and exposure temperature/time) by the release of viral nucleic acids into the surrounding medium. PD 404,182 does not directly lyse liposomal membranes even after extended exposure, and it shows no attenuation in antiviral activity when preincubated with liposomes of various lipid compositions, suggesting that the compound inactivates viruses through interaction with a nonlipid structural component of the virus. The virucidal activity of PD 404,182 appears to be virus specific, as little to no viral inactivation was detected with the enveloped Dengue and Sindbis viruses. PD 404,182 effectively inactivates a broad range of primary isolates of HIV-1 as well as HIV-2 and simian immunodeficiency virus (SIV), and it does not exhibit significant cytotoxicity with multiple human cell lines in vitro (50% cytotoxic concentration, >300 μM). The compound is fully active in cervical fluids, although it exhibits decreased potency in the presence of human serum, retains its full antiviral potency for 8 h when in contact with cells, and is effective against both cell-free and cell-associated HIV. These qualities make PD 404,182 an attractive candidate anti-HIV microbicide for the prevention of HIV transmission through sexual intercourse.
Collapse
|
16
|
Chan RB, Tanner L, Wenk MR. Implications for lipids during replication of enveloped viruses. Chem Phys Lipids 2010; 163:449-59. [PMID: 20230810 PMCID: PMC7124286 DOI: 10.1016/j.chemphyslip.2010.03.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 03/08/2010] [Indexed: 01/27/2023]
Abstract
Enveloped viruses, which include many medically important viruses such as human immunodeficiency virus, influenza virus and hepatitis C virus, are intracellular parasites that acquire lipid envelopes from their host cells. Success of replication is intimately linked to their ability to hijack host cell mechanisms, particularly those related to membrane dynamics and lipid metabolism. Despite recent progress, our knowledge of lipid mediated virus-host interactions remains highly incomplete. In addition, diverse experimental systems are used to study different stages of virus replication thus complicating comparisons. This review aims to present a unifying view of the widely diverse strategies used by enveloped viruses at distinct stages of their replication cycles.
Collapse
Affiliation(s)
- Robin B Chan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | |
Collapse
|
17
|
Clancy EK, Barry C, Ciechonska M, Duncan R. Different activities of the reovirus FAST proteins and influenza hemagglutinin in cell–cell fusion assays and in response to membrane curvature agents. Virology 2010; 397:119-29. [DOI: 10.1016/j.virol.2009.10.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 09/30/2009] [Accepted: 10/22/2009] [Indexed: 12/12/2022]
|
18
|
A broad-spectrum antiviral targeting entry of enveloped viruses. Proc Natl Acad Sci U S A 2010; 107:3157-62. [PMID: 20133606 DOI: 10.1073/pnas.0909587107] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We describe an antiviral small molecule, LJ001, effective against numerous enveloped viruses including Influenza A, filoviruses, poxviruses, arenaviruses, bunyaviruses, paramyxoviruses, flaviviruses, and HIV-1. In sharp contrast, the compound had no effect on the infection of nonenveloped viruses. In vitro and in vivo assays showed no overt toxicity. LJ001 specifically intercalated into viral membranes, irreversibly inactivated virions while leaving functionally intact envelope proteins, and inhibited viral entry at a step after virus binding but before virus-cell fusion. LJ001 pretreatment also prevented virus-induced mortality from Ebola and Rift Valley fever viruses. Structure-activity relationship analyses of LJ001, a rhodanine derivative, implicated both the polar and nonpolar ends of LJ001 in its antiviral activity. LJ001 specifically inhibited virus-cell but not cell-cell fusion, and further studies with lipid biosynthesis inhibitors indicated that LJ001 exploits the therapeutic window that exists between static viral membranes and biogenic cellular membranes with reparative capacity. In sum, our data reveal a class of broad-spectrum antivirals effective against enveloped viruses that target the viral lipid membrane and compromises its ability to mediate virus-cell fusion.
Collapse
|
19
|
Human group III phospholipase A2 suppresses adenovirus infection into host cells. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:1389-96. [DOI: 10.1016/j.bbalip.2007.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 09/27/2007] [Accepted: 09/27/2007] [Indexed: 11/22/2022]
|
20
|
Go EP, Wikoff WR, Shen Z, O’Maille G, Morita H, Conrads TP, Nordstrom A, Trauger SA, Uritboonthai W, Lucas DA, Chan KC, Veenstra TD, Lewicki H, Oldstone MB, Schneemann A, Siuzdak G. Mass spectrometry reveals specific and global molecular transformations during viral infection. J Proteome Res 2006; 5:2405-16. [PMID: 16944953 PMCID: PMC2566936 DOI: 10.1021/pr060215t] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mass spectrometry analysis was used to target three different aspects of the viral infection process: the expression kinetics of viral proteins, changes in the expression levels of cellular proteins, and the changes in cellular metabolites in response to viral infection. The combination of these methods represents a new, more comprehensive approach to the study of viral infection revealing the complexity of these events within the infected cell. The proteins associated with measles virus (MV) infection of human HeLa cells were measured using a label-free approach. On the other hand, the regulation of cellular and Flock House Virus (FHV) proteins in response to FHV infection of Drosophila cells was monitored using stable isotope labeling. Three complementary techniques were used to monitor changes in viral protein expression in the cell and host protein expression. A total of 1500 host proteins was identified and quantified, of which over 200 proteins were either up- or down-regulated in response to viral infection, such as the up-regulation of the Drosophila apoptotic croquemort protein, and the down-regulation of proteins that inhibited cell death. These analyses also demonstrated the up-regulation of viral proteins functioning in replication, inhibition of RNA interference, viral assembly, and RNA encapsidation. Over 1000 unique metabolites were also observed with significant changes in over 30, such as the down-regulated cellular phospholipids possibly reflecting the initial events in cell death and viral release. Overall, the cellular transformation that occurs upon viral infection is a process involving hundreds of proteins and metabolites, many of which are structurally and functionally uncharacterized.
Collapse
Affiliation(s)
- Eden P. Go
- Department of Molecular Biology and The Center for Mass Spectrometry, The Scripps Research Institute La Jolla, CA 92037
| | - William R. Wikoff
- Department of Molecular Biology and The Center for Mass Spectrometry, The Scripps Research Institute La Jolla, CA 92037
| | - Zhouxin Shen
- Department of Molecular Biology and The Center for Mass Spectrometry, The Scripps Research Institute La Jolla, CA 92037
- Mass Consortium Corporation, San Diego, CA 92109
| | - Grace O’Maille
- Department of Molecular Biology and The Center for Mass Spectrometry, The Scripps Research Institute La Jolla, CA 92037
| | - Hirotoshi Morita
- Department of Molecular Biology and The Center for Mass Spectrometry, The Scripps Research Institute La Jolla, CA 92037
| | - Thomas P. Conrads
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., National Cancer Institute, Frederick, MD 21702
| | - Anders Nordstrom
- Department of Molecular Biology and The Center for Mass Spectrometry, The Scripps Research Institute La Jolla, CA 92037
| | - Sunia A. Trauger
- Department of Molecular Biology and The Center for Mass Spectrometry, The Scripps Research Institute La Jolla, CA 92037
| | - Wilasinee Uritboonthai
- Department of Molecular Biology and The Center for Mass Spectrometry, The Scripps Research Institute La Jolla, CA 92037
| | - David A. Lucas
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., National Cancer Institute, Frederick, MD 21702
| | - King C. Chan
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., National Cancer Institute, Frederick, MD 21702
| | - Timothy D. Veenstra
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., National Cancer Institute, Frederick, MD 21702
| | - Hanna Lewicki
- Departments of Molecular and Integrative Neuroscience and Infectology, The Scripps Research Institute La Jolla, CA 92037
| | - Michael B. Oldstone
- Departments of Molecular and Integrative Neuroscience and Infectology, The Scripps Research Institute La Jolla, CA 92037
| | - Anette Schneemann
- Department of Molecular Biology and The Center for Mass Spectrometry, The Scripps Research Institute La Jolla, CA 92037
- Corresponding authors to whom all correspondence should be addressed, email addresses: , and
| | - Gary Siuzdak
- Department of Molecular Biology and The Center for Mass Spectrometry, The Scripps Research Institute La Jolla, CA 92037
- Corresponding authors to whom all correspondence should be addressed, email addresses: , and
| |
Collapse
|
21
|
Ohki S, Baker GA, Page PM, McCarty TA, Epand RM, Bright FV. Interaction of influenza virus fusion peptide with lipid membranes: effect of lysolipid. J Membr Biol 2006; 211:191-200. [PMID: 17091213 DOI: 10.1007/s00232-006-0862-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 07/12/2006] [Indexed: 11/29/2022]
Abstract
The effect of lysophosphatidylcholine (LPC) on lipid vesicle fusion and leakage induced by influenza virus fusion peptides and the peptide interaction with lipid membranes were studied by using fluorescence spectroscopy and monolayer surface tension measurements. It was confirmed that the wild-type fusion peptide-induced vesicle fusion rate increased several-fold between pH 7 and 5, unlike a mutated peptide, in which valine residues were substituted for glutamic acid residues at positions 11 and 15. This mutated peptide exhibited a much greater ability to induce lipid vesicle fusion and leakage but in a less pH-dependent manner compared to the wild-type fusion peptide. The peptide-induced vesicle fusion and leakage were well correlated with the degree of interaction of these peptides with lipid membranes, as deduced from the rotational correlation time obtained for the peptide tryptophan fluorescence. Both vesicle fusion and leakage induced by the peptides were suppressed by LPC incorporated into lipid vesicle membranes in a concentration-dependent manner. The rotational correlation time associated with the peptide's tryptophan residue, which interacts with lipid membranes containing up to 25 mole % LPC, was virtually the same compared to lipid membranes without LPC, indicating that LPC-incorporated membrane did not affect the peptide interaction with the membrane. The adsorption of peptide onto a lipid monolayer also showed that the presence of LPC did not affect peptide adsorption.
Collapse
Affiliation(s)
- S Ohki
- Department of Physiology & Biophysics, School of Medicine & Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Zhukovsky MA, Leikina E, Markovic I, Bailey AL, Chernomordik LV. Heterogeneity of early intermediates in cell-liposome fusion mediated by influenza hemagglutinin. Biophys J 2006; 91:3349-58. [PMID: 16905609 PMCID: PMC1614502 DOI: 10.1529/biophysj.106.088005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To explore early intermediates in membrane fusion mediated by influenza virus hemagglutinin (HA) and their dependence on the composition of the target membrane, we studied lipid mixing between HA-expressing cells and liposomes containing phosphatidylcholine (PC) with different hydrocarbon chains. For all tested compositions, our results indicate the existence of at least two types of intermediates, which differ in their lifetimes. The composition of the target membrane affects the stability of fusion intermediates at a stage before lipid mixing. For less fusogenic distearoyl PC-containing liposomes at 4 degrees C, some of the intermediates inactivate, and no intermediates advance to lipid mixing. Fusion intermediates that formed for the more fusogenic dioleoyl PC-containing liposomes did not inactivate and even yielded partial lipid mixing at 4 degrees C. Thus, a more fusogenic target membrane effectively blocks nonproductive release of the conformational energy of HA. Even for the same liposome composition, HA forms two types of fusion intermediates, dissimilar in their stability and propensity to fuse. This diversity of fusion intermediates emphasizes the importance of local membrane composition and local protein concentration in fusion of heterogeneous biological membranes.
Collapse
Affiliation(s)
- Mikhail A Zhukovsky
- Laboratory of Cellular and Molecular Biophysics, Section on Membrane Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
23
|
Abstract
SNARE proteins mediate the fusion of lipid bilayers by the directed assembly of coiled-coil domains arising from apposing membranes. We have utilized inverted cone-shaped lipids, antagonists of the necessary membrane deformation during fusion to characterize the extent and range of SNARE assembly up to the moment of stalk formation between bilayers. The inverted cone-shaped lipid family of acyl-CoAs specifically inhibits the completion of fusion in an acyl-chain length-dependent manner. Removal of acyl-CoA from the membrane relieves the inhibition and initiates a burst of membrane fusion with rates exceeding any point in the control curves lacking acyl-CoA. This burst indicates the accumulation of semi-assembled fusion complexes. These preformed complexes are resistant to cleavage by botulinum toxin B and thus appear to have progressed beyond the "loosely zippered" state of docked synaptic vesicles. Surprisingly, application of the soluble domain of VAMP2, which blocks SNARE assembly by competing for binding on the available t-SNAREs, blocks recovery from the acyl-CoA inhibition. Thus, complexes formed in the presence of a lipidic antagonist to fusion are incompletely assembled, suggesting that the formation of tightly assembled SNARE pairs requires progression all the way through to membrane fusion. In this regard, physiologically docked exocytic vesicles may be anchored by a highly dynamic and potentially even reversible SNAREpin.
Collapse
Affiliation(s)
- Thomas J Melia
- Department of Physiology and Cellular Biophysics, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA.
| | | | | | | |
Collapse
|
24
|
Mitsuishi M, Masuda S, Kudo I, Murakami M. Group V and X secretory phospholipase A2 prevents adenoviral infection in mammalian cells. Biochem J 2006; 393:97-106. [PMID: 16146426 PMCID: PMC1383668 DOI: 10.1042/bj20050781] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
sPLA2 (secretory phospholipase A2) enzymes have been implicated in various biological events, yet their precise physiological functions remain largely unresolved. In the present study we show that group V and X sPLA2s, which are two potent plasma membrane-acting sPLA2s, are capable of preventing host cells from being infected with an adenovirus. Bronchial epithelial cells and lung fibroblasts pre-expressing group V and X sPLA2s showed marked resistance to adenovirus-mediated gene delivery in a manner dependent on their catalytic activity. Although adenovirus particles were insensitive to recombinant group V and X sPLA2s, direct addition of these enzymes to 293A cells suppressed both number and size of adenovirus plaque formation. Group V and X sPLA2s retarded the entry of adenovirus into endosomes. Moreover, adenoviral infection was suppressed by LPC (lysophosphatidylcholine), a membrane-hydrolytic product of these sPLA2s. Thus hydrolysis of the plasma membrane by these sPLA2s may eventually lead to the protection of host cells from adenovirus entry. Given that group V and X sPLA2s are expressed in human airway epithelium and macrophages and that the expression of endogenous group V sPLA2 is upregulated by virus-related stimuli in these cells, our present results raise the possibility that group V and X sPLA2s may play a role in innate immunity against adenoviral infection in the respiratory tract.
Collapse
Affiliation(s)
- Michiko Mitsuishi
- *Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Seiko Masuda
- *Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Ichiro Kudo
- *Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Makoto Murakami
- *Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
- †Tokyo Metropolitan Institute of Medical Science, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
25
|
Churchward MA, Rogasevskaia T, Höfgen J, Bau J, Coorssen JR. Cholesterol facilitates the native mechanism of Ca2+-triggered membrane fusion. J Cell Sci 2005; 118:4833-48. [PMID: 16219690 DOI: 10.1242/jcs.02601] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The process of regulated exocytosis is defined by the Ca2+-triggered fusion of two apposed membranes, enabling the release of vesicular contents. This fusion step involves a number of energetically complex steps and requires both protein and lipid membrane components. The role of cholesterol has been investigated using isolated release-ready native cortical secretory vesicles to analyze the Ca2+-triggered fusion step of exocytosis. Cholesterol is a major component of vesicle membranes and we show here that selective removal from membranes, selective sequestering within membranes, or enzymatic modification causes a significant inhibition of the extent, Ca2+ sensitivity and kinetics of fusion. Depending upon the amount incorporated, addition of exogenous cholesterol to cholesterol-depleted membranes consistently recovers the extent, but not the Ca2+ sensitivity or kinetics of fusion. Membrane components of comparable negative curvature selectively recover the ability to fuse, but are unable to recover the kinetics and Ca2+ sensitivity of vesicle fusion. This indicates at least two specific positive roles for cholesterol in the process of membrane fusion: as a local membrane organizer contributing to the efficiency of fusion, and, by virtue of its intrinsic negative curvature, as a specific molecule working in concert with protein factors to facilitate the minimal molecular machinery for fast Ca2+-triggered fusion.
Collapse
Affiliation(s)
- Matthew A Churchward
- Department of Physiology and Biophysics, Hotchkiss Brain Institute, University of Calgary, Health Sciences Centre, Faculty of Medicine, Calgary, Alberta, T2N 4N1, Canada
| | | | | | | | | |
Collapse
|
26
|
Goonesinghe A, Mundy E, Smith M, Khosravi-Far R, Martinou JC, Esposti M. Pro-apoptotic Bid induces membrane perturbation by inserting selected lysolipids into the bilayer. Biochem J 2005; 387:109-18. [PMID: 15500442 PMCID: PMC1134938 DOI: 10.1042/bj20041389] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bid is a BH3-only member of the Bcl-2 family that regulates cell death at the level of mitochondrial membranes. Bid appears to link the mitochondrial pathway with the death receptor-mediated pathway of cell death. It is generally assumed that the f.l. (full-length) protein becomes activated after proteolytic cleavage, especially by apical caspases like caspase 8. The cleaved protein then relocates to mitochondria and promotes membrane permeabilization, presumably by interaction with mitochondrial lipids and other Bcl-2 proteins that facilitate the release of apoptogenic proteins like cytochrome c. Although the major action may reside in the C-terminus part, tBid (cleaved Bid), un-cleaved Bid also has pro-apoptotic potential when ectopically expressed in cells or in vitro. This pro-apoptotic action of f.l. Bid has remained unexplained, especially at the biochemical level. In the present study, we show that f.l. (full-length) Bid can insert specific lysolipids into the membrane surface, thereby priming mitochondria for the release of apoptogenic factors. This is most effective for lysophosphatidylcholine species that we report to accumulate in mitochondria during apoptosis induction. A Bid mutant that is not pro-apoptotic in vivo is defective in lysophosphatidylcholine-mediated membrane perturbation in vitro. Our results thus provide a biochemical explanation for the pro-apoptotic action of f.l. Bid.
Collapse
Affiliation(s)
- Alexander Goonesinghe
- *School of Biological Sciences, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, U.K
| | - Elizabeth S. Mundy
- *School of Biological Sciences, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, U.K
| | - Melanie Smith
- *School of Biological Sciences, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, U.K
| | - Roya Khosravi-Far
- †Department of Pathology, Harvard Medical School, Beth Israel Deaconess Medical Center, 99 Brookline Ave, Boston, MA 02215, U.S.A
| | | | - Mauro D. Esposti
- *School of Biological Sciences, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
27
|
Amacker M, Engler O, Kammer AR, Vadrucci S, Oberholzer D, Cerny A, Zurbriggen R. Peptide-loaded chimeric influenza virosomes for efficient in vivo induction of cytotoxic T cells. Int Immunol 2005; 17:695-704. [PMID: 15843436 DOI: 10.1093/intimm/dxh249] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Virus-specific CD8(+) T cells are thought to play an important role in resolving acute hepatitis C virus (HCV) infection as viral clearance has been associated with a strong and sustained CD8(+) T cell response. During the chronic state of HCV infection virus-specific T cells have a low frequency and a reduced responsiveness. Based on this, a therapeutic vaccine increasing the frequency of specific T cells is a promising alternative for the treatment of chronic HCV infection. We improved an existing vaccine platform based on immunopotentiating reconstituted influenza virosomes (IRIVs) for efficient delivery of peptide epitopes to the MHC class I antigen presentation pathway. IRIVs are proteoliposomes composed of phospholipids and influenza surface glycoproteins. Due to their fusogenic activity, IRIVs are able to deliver encapsulated macromolecules, e.g. peptides to immunocompetent cells. We developed a novel method based on chimeric virosomes [chimeric immunopotentiating reconstituted influenza virosomes (CIRIVs)] combining the high peptide-encapsulation capacity of liposomes and the fusion activity of virosomes. This new approach resulted in a 30-fold increase of the amount of incorporated soluble peptide compared with current preparation methods. To study the immunogenicity of chimeric virosomes HLA-A2.1 transgenic mice were immunized with CIRIVs containing the HCV Core132 peptide. Core132-CIRIVs efficiently induced specific cytotoxic and IFNgamma-producing T cells already with low peptide doses. Vaccine formulations, which include combinations of different HCV-derived CTL epitopes could be used to induce not only a strong but also a multi-specific CTL response, making them potential candidates for therapeutic and maybe prophylactic T cell vaccines in humans.
Collapse
Affiliation(s)
- Mario Amacker
- Pevion Biotech Ltd, Rehhagstrasse 79, CH-3018 Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
28
|
Stiasny K, Heinz FX. Effect of membrane curvature-modifying lipids on membrane fusion by tick-borne encephalitis virus. J Virol 2004; 78:8536-42. [PMID: 15280462 PMCID: PMC479076 DOI: 10.1128/jvi.78.16.8536-8542.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Accepted: 04/03/2004] [Indexed: 11/20/2022] Open
Abstract
Enveloped viruses enter cells by fusion of their own membrane with a cellular membrane. Incorporation of inverted-cone-shaped lipids such as lysophosphatidylcholine (LPC) into the outer leaflet of target membranes has been shown previously to impair fusion mediated by class I viral fusion proteins, e.g., the influenza virus hemagglutinin. It has been suggested that these results provide evidence for the stalk-pore model of fusion, which involves a hemifusion intermediate (stalk) with highly bent outer membrane leaflets. Here, we investigated the effect of inverted-cone-shaped LPCs and the cone-shaped oleic acid (OA) on the membrane fusion activity of a virus with a class II fusion protein, the flavivirus tick-borne encephalitis virus (TBEV). This study included an analysis of lipid mixing, as well as of the steps preceding or accompanying fusion, i.e., binding to the target membrane and lipid-induced conformational changes in the fusion protein E. We show that the presence of LPC in the outer leaflet of target liposomes strongly inhibited TBEV-mediated fusion, whereas OA caused a very slight enhancement, consistent with a fusion mechanism involving a lipid stalk. However, LPC also impaired the low-pH-induced binding of a soluble form of the E protein to liposomes and its conversion into a trimeric postfusion structure that requires membrane binding at low pH. Because inhibition is already observed before the lipid-mixing step, it cannot be determined whether impairment of stalk formation is a contributing factor in the inhibition of fusion by LPC. These data emphasize, however, the importance of the composition of the target membrane in its interactions with the fusion peptide that are crucial for the initiation of fusion.
Collapse
Affiliation(s)
- Karin Stiasny
- Institute of Virology, Medical University of Vienna, Kinderspitalgasse 15, A-1095 Vienna, Austria.
| | | |
Collapse
|
29
|
Matsuyama S, Delos SE, White JM. Sequential roles of receptor binding and low pH in forming prehairpin and hairpin conformations of a retroviral envelope glycoprotein. J Virol 2004; 78:8201-9. [PMID: 15254191 PMCID: PMC446138 DOI: 10.1128/jvi.78.15.8201-8209.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Accepted: 03/23/2004] [Indexed: 11/20/2022] Open
Abstract
A general model has been proposed for the fusion mechanisms of class I viral fusion proteins. According to this model a metastable trimer, anchored in the viral membrane through its transmembrane domain, transits to a trimeric prehairpin intermediate, anchored at its opposite end in the target membrane through its fusion peptide. A subsequent refolding event creates a trimer of hairpins (often termed a six-helix bundle) in which the previously well-separated transmembrane domain and fusion peptide (and their attached membranes) are brought together, thereby driving membrane fusion. While there is ample biochemical and structural information on the trimer-of-hairpins conformation of class I viral fusion proteins, less is known about intermediate states between native metastable trimers and the final trimer of hairpins. In this study we analyzed conformational states of the transmembrane subunit (TM), the fusion subunit, of the Env glycoprotein of the subtype A avian sarcoma and leukosis virus (ASLV-A). By analyzing forms of EnvA TM on mildly denaturing sodium dodecyl sulfate gels we identified five conformational states of EnvA TM. Following interaction of virions with a soluble form of the ASLV-A receptor at 37 degrees C, the metastable form of EnvA TM (which migrates at 37 kDa) transits to a 70-kDa and then to a 150-kDa species. Following subsequent exposure to a low pH (or an elevated temperature or the fusion promoting agent chlorpromazine), an additional set of bands at >150 kDa, and then a final band at 100 kDa, forms. Both an EnvA C-helix peptide (which inhibits virus fusion and infectivity) and the fusion-inhibitory agent lysophosphatidylcholine inhibit the formation of the >150- and 100-kDa bands. Our data are consistent with the 70- and 150-kDa bands representing precursor and fully formed prehairpin conformations of EnvA TM. Our data are also consistent with the >150-kDa bands representing higher-order oligomers of EnvA TM and with the 100-kDa band representing the fully formed six-helix bundle. In addition to resolving fusion-relevant conformational intermediates of EnvA TM, our data are compatible with a model in which the EnvA protein is activated by its receptor (at neutral pH and a temperature greater than or equal to room temperature) to form prehairpin conformations of EnvA TM, and in which subsequent exposure to a low pH is required to stabilize the final six-helix bundle, which drives a later stage of fusion.
Collapse
Affiliation(s)
- Shutoku Matsuyama
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908-0732, USA
| | | | | |
Collapse
|
30
|
Thorp EB, Gallagher TM. Requirements for CEACAMs and cholesterol during murine coronavirus cell entry. J Virol 2004; 78:2682-92. [PMID: 14990688 PMCID: PMC353758 DOI: 10.1128/jvi.78.6.2682-2692.2004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous reports have documented that cholesterol supplementations increase cytopathic effects in tissue culture and also intensify in vivo pathogenicities during infection by the enveloped coronavirus murine hepatitis virus (MHV). To move toward a mechanistic understanding of these phenomena, we used growth media enriched with methyl-beta-cyclodextrin or cholesterol to reduce or elevate cellular membrane sterols, respectively. Cholesterol depletions reduced plaque development 2- to 20-fold, depending on the infecting MHV strain, while supplementations increased susceptibility 2- to 10-fold. These various cholesterol levels had no effect on the binding of viral spike (S) proteins to cellular carcinoembryonic antigen-related cell adhesion molecule (CEACAM) receptors, rather they correlated directly with S-protein-mediated membrane fusion activities. We considered whether cholesterol was indirectly involved in membrane fusion by condensing CEACAMs into "lipid raft" membrane microdomains, thereby creating opportunities for simultaneous binding of multiple S proteins that subsequently cooperate in the receptor-triggered membrane fusion process. However, the vast majority of CEACAMs were solubilized by cold Triton X-100 (TX-100), indicating their absence from lipid rafts. Furthermore, engineered CEACAMs appended to glycosylphosphatidylinositol anchors partitioned with TX-100-resistant lipid rafts, but cells bearing these raft-associated CEACAMs were not hypersensitive to MHV infection. These findings argued against the importance of cholesterol-dependent CEACAM localizations into membrane microdomains for MHV entry, instead suggesting that cholesterol had a more direct role. Indeed, we found that cholesterol was required even for those rare S-mediated fusions taking place in the absence of CEACAMs. We conclude that cholesterol is an essential membrane fusion cofactor that can act with or without CEACAMs to promote MHV entry.
Collapse
Affiliation(s)
- Edward B Thorp
- Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, Illinois 60153, USA
| | | |
Collapse
|
31
|
Abstract
Disparate biological processes involve fusion of two membranes into one and fission of one membrane into two. To formulate the possible job description for the proteins that mediate remodeling of biological membranes, we analyze the energy price of disruption and bending of membrane lipid bilayers at the different stages of bilayer fusion. The phenomenology and the pathways of the well-characterized reactions of biological remodeling, such as fusion mediated by influenza hemagglutinin, are compared with those studied for protein-free bilayers. We briefly consider some proteins involved in fusion and fission, and the dependence of remodeling on the lipid composition of the membranes. The specific hypothetical mechanisms by which the proteins can lower the energy price of the bilayer rearrangement are discussed in light of the experimental data and the requirements imposed by the elastic properties of the bilayer.
Collapse
Affiliation(s)
- Leonid V Chernomordik
- Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, NICHD, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892-1855, USA.
| | | |
Collapse
|
32
|
Smit JM, Li G, Schoen P, Corver J, Bittman R, Lin KC, Wilschut J. Fusion of alphaviruses with liposomes is a non-leaky process. FEBS Lett 2002; 521:62-6. [PMID: 12067727 DOI: 10.1016/s0014-5793(02)02823-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
It has been reported that low-pH-induced fusion of influenza virus with liposomes results in rapid and extensive release of both low- and high-molecular-weight substances from the liposomes [Günther-Ausborn et al., J. Biol. Chem. 270 (1995) 29279-29285; Shangguan et al., Biochemistry 35 (1996) 4956-4965]. Here, we demonstrate retention of encapsulated water-soluble compounds during fusion of Semliki Forest virus (SFV) or Sindbis virus with liposomes at low pH. Under conditions allowing complete fusion of the liposomes, a limited fluorescence dequenching of liposome-encapsulated calcein was observed, particularly for SFV. Also, radioactively labeled inulin or sucrose were largely retained. Freezing and thawing of the viruses in the absence of sucrose resulted in an enhanced leakiness of fusion. These results support the notion that the alphavirus fusion event per se is non-leaky and may well involve a discrete hemifusion intermediate.
Collapse
Affiliation(s)
- Jolanda M Smit
- Department of Medical Microbiology, Molecular Virology Section, University of Groningen and Academic Hospital, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
33
|
Baljinnyam B, Schroth-Diez B, Korte T, Herrmann A. Lysolipids do not inhibit influenza virus fusion by interaction with hemagglutinin. J Biol Chem 2002; 277:20461-7. [PMID: 11923295 DOI: 10.1074/jbc.m112217200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction of a spin-labeled lysophosphatidylcholine analog with intact and bromelain-treated influenza viruses as well as with the bromelain-solubilized hemagglutinin ectodomain has been studied. The inhibition of fusion of influenza viruses with erythrocytes by the lysophosphatidylcholine analog was similar to that observed for non-labeled lysophosphatidylcholine. Only a weak interaction of the lysophosphatidylcholine analog with the hemagglutinin ectodomain was observed even upon triggering the conformational change of the ectodomain at a low pH. A significant interaction of spin-labeled lysophosphatidylcholine with the hemagglutinin ectodomain of intact viruses was observed neither at neutral nor at low pH, whereas a strong interaction of the lipid analog with the viral lipid bilayer was evident. We suggest that the high number of lipid binding sites of the virus bilayer and their affinity compete efficiently with binding sites of the hemagglutinin ectodomain. We conclude that the inhibition of influenza virus fusion by lysolipids is not mediated by binding to the hemagglutinin ectodomain, preventing its interaction with the target membrane. The results unambiguously argue for an inhibition mechanism based on the action of lysolipid inserted into the lipid bilayer.
Collapse
Affiliation(s)
- Bolormaa Baljinnyam
- Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, Institut für Biologie, Molekulare Biophysik, Invalidenstrasse 42, D-10115 Berlin, Germany
| | | | | | | |
Collapse
|
34
|
Fischer K, Chatterjee D, Torrelles J, Brennan PJ, Kaufmann SH, Schaible UE. Mycobacterial lysocardiolipin is exported from phagosomes upon cleavage of cardiolipin by a macrophage-derived lysosomal phospholipase A2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2187-92. [PMID: 11490004 DOI: 10.4049/jimmunol.167.4.2187] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pathogenic mycobacteria are able to survive and proliferate in phagosomes within host macrophages (Mphi). This capability has been attributed in part to their cell wall, which consists of various unique lipids. Some of these are important in the host-pathogen interaction, such as resistance against microbicidal effector mechanisms and modulation of host cell functions, and/or are presented as Ags to T cells. Here we show that two lipids are released from the mycobacterial cell wall within the phagosome of infected Mphi and transported out of this compartment into intracellular vesicles. One of these lipids was identified as lysocardiolipin. Lysocardiolipin was generated through cleavage of mycobacterial cardiolipin by a Ca2+-independent phospholipase A2 present in Mphi lysosomes. This result indicates that lysosomal host cell enzymes can interact with released mycobacterial lipids to generate new products with a different intracellular distribution. This represents a novel pathway for the modification of bacterial lipid Ags.
Collapse
Affiliation(s)
- K Fischer
- Max-Planck Institute for Infection Biology, Department of Immunology, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Fuller N, Rand RP. The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes. Biophys J 2001; 81:243-54. [PMID: 11423410 PMCID: PMC1301507 DOI: 10.1016/s0006-3495(01)75695-0] [Citation(s) in RCA: 254] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The effects of lysolipids on phospholipid layer curvature and bending elasticity were examined using x-ray diffraction and the osmotic stress method. Lysolipids with two different head groups, phosphatidylcholine (PC) and phosphatidylethanolamine (PE), and differing hydrocarbon chains were mixed with the hexagonal-forming lipid, dioleoylphosphatidylethanolamine (DOPE). With up to 30 mole% lysolipid in DOPE, the mixture maintains the inverted hexagonal (H(II)) phase in excess water, where increasing levels of lysolipid result in a systematic increase in the H(II) lattice dimension. Analysis of the structural changes imposed by lysolipids show that, opposite to DOPE itself, which has an spontaneous radius of curvature (R(0)) of -30 A, PC lysolipids add high positive curvature, with R(0) = +38 to +60 A, depending on chain length. LysoPEs, in contrast, add very small curvatures. When both polar group and hydrocarbon chains of the added lysolipid mismatch those of DOPE, the structural effects are qualitatively different from otherwise. Such mismatched lysolipids "reshape" the effective combination molecule into a longer and more cylindrical configuration compared to those lysolipids with either matching polar group or hydrocarbon chain.
Collapse
Affiliation(s)
- N Fuller
- Department of Biological Sciences, Brock University, St.Catharines, Ontario L2S 3A1, Canada.
| | | |
Collapse
|
36
|
Abstract
Although membrane fusion occurs ubiquitously and continuously in all eukaroytic cells, little is known about the mechanism that governs lipid bilayer fusion associated with any intracellular fusion reactions. Recent studies of the fusion of enveloped viruses with host cell membranes have helped to define the fusion process. The identification and characterization of key proteins involved in fusion reactions have mainly driven recent advances in our understanding of membrane fusion. The most important denominator among the fusion proteins is the fusion peptide. In this review, work done in the last few years on the molecular mechanism of viral membrane fusion will be highlighted, focusing in particular on the role of the fusion peptide and the modification of the lipid bilayer structure. Much of what is known regarding the molecular mechanism of viral membrane fusion has been gained using liposomes as model systems in which the molecular components of the membrane and the environment are strictly controlled. Many amphilphilic peptides have a high affinity for lipid bilayers, but only a few sequences are able to induce membrane fusion. The presence of alpha-helical structure in at least part of the fusion peptide is strongly correlated with activity whereas, beta-structure tends to be less prevalent, associated with non-native experimental conditions, and more related to vesicle aggregation than fusion. The specific angle of insertion of the peptides into the membrane plane is also found to be an important characteristic for the fusion process. A shallow penetration, extending only to the central aliphatic core region, is likely responsible for the destabilization of the lipids required for coalescence of the apposing membranes and fusion.
Collapse
Affiliation(s)
- I Martin
- Laboratoire de Chimie-Physique des Macromolécules aux Interfaces (LPCMI) CP206/2, Université Libre de Bruxelles, Brussels, Belgium.
| | | |
Collapse
|
37
|
Abstract
Exocytosis in yeast requires the assembly of the secretory vesicle soluble N-ethylmaleimide-sensitive factor attachment protein receptor (v-SNARE) Sncp and the plasma membrane t-SNAREs Ssop and Sec9p into a SNARE complex. High-level expression of mutant Snc1 or Sso2 proteins that have a COOH-terminal geranylgeranylation signal instead of a transmembrane domain inhibits exocytosis at a stage after vesicle docking. The mutant SNARE proteins are membrane associated, correctly targeted, assemble into SNARE complexes, and do not interfere with the incorporation of wild-type SNARE proteins into complexes. Mutant SNARE complexes recruit GFP-Sec1p to sites of exocytosis and can be disassembled by the Sec18p ATPase. Heterotrimeric SNARE complexes assembled from both wild-type and mutant SNAREs are present in heterogeneous higher-order complexes containing Sec1p that sediment at greater than 20S. Based on a structural analogy between geranylgeranylated SNAREs and the GPI-HA mutant influenza virus fusion protein, we propose that the mutant SNAREs are fusion proteins unable to catalyze fusion of the distal leaflets of the secretory vesicle and plasma membrane. In support of this model, the inverted cone-shaped lipid lysophosphatidylcholine rescues secretion from SNARE mutant cells.
Collapse
Affiliation(s)
- E Grote
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
38
|
Stegmann T. Membrane fusion mechanisms: the influenza hemagglutinin paradigm and its implications for intracellular fusion. Traffic 2000; 1:598-604. [PMID: 11208147 DOI: 10.1034/j.1600-0854.2000.010803.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The mechanism of membrane fusion induced by the influenza virus hemagglutinin (HA) has been extensively characterized. Fusion is triggered by low pH, which induces conformational changes in the protein, leading to insertion of a hydrophobic 'fusion peptide' into the viral membrane and the target membrane for fusion. Insertion perturbs the target membrane, and hour glass-shaped lipidic fusion intermediates, called stalks, fusing the outer monolayers of the two membranes, are formed. Stalk formation is followed by complete fusion of the two membranes. Structures similar to those formed by HA at the pH of fusion are found not only in many other viral fusion proteins, but are also formed by SNAREs, proteins involved in intracellular fusion. Substances that inhibit or promote HA-induced fusion because they affect stalk formation, also inhibit or promote intracellular fusion, cell-cell fusion and even intracellular fission similarly. Therefore, the mechanism of influenza HA-induced fusion may be a paradigm for many intracellular fusion events.
Collapse
Affiliation(s)
- T Stegmann
- Institut de Pharmacologie et de Biologie Structurale, CNRS UPR 9062, 205 Route de Narbonne, 31077 Toulouse, France.
| |
Collapse
|
39
|
Sun C, Hanasaka A, Kashiwagi H, Ueno M. Formation and characterization of phosphatidylethanolamine/lysophosphatidylcholine mixed vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1467:18-26. [PMID: 10930505 DOI: 10.1016/s0005-2736(00)00192-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The lipid aggregates formed by adding lysophosphatidylcholine (lysoPC) solution to phosphatidylethanolamine (PE) dispersion at 4 degrees C followed by incubating it at 37 degrees C were proved to be a vesicle system judged from the negatively stained electron micrographs and the latency of calcein fluorescence. The results obtained are analogous to those described for phosphatidylcholine (PC) vesicles. The chromatography results showed that the incorporation of PE and lysoPC into the PE/lysoPC vesicles was in a molar ratio of 5 to 2. The PE/lysoPC membrane was found to have similar barrier potentials for Cl- or calcein efflux to the PC membrane. 1H Nuclear magnetic resonance measurement suggested that lysoPC dominated the external monolayer of the vesicles. Furthermore, it was found that PE/lysoPC vesicles and micelles could coexist when a large amount of lysoPC was added to the PE/lysoPC vesicle suspension. The formation of PE/lysoPC vesicles is discussed in combination with the inhibition of interlayer attachment by lysoPC from the PE membrane.
Collapse
Affiliation(s)
- C Sun
- Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Japan
| | | | | | | |
Collapse
|
40
|
Abstract
Membrane fusion involves the merger of two phospholipid bilayers in an aqueous environment. In artificial lipid bilayers, fusion proceeds by means of defined transition states, including hourglass-shaped intermediates in which the proximal leaflets of the fusing membranes are merged whereas the distal leaflets are separate (fusion stalk), followed by the reversible opening of small aqueous fusion pores. Fusion of biological membranes requires the action of specific fusion proteins. Best understood are the viral fusion proteins that are responsible for merging the viral with the host cell membrane during infection. These proteins undergo spontaneous and dramatic conformational changes upon activation. In the case of the paradigmatic fusion proteins of the influenza virus and of the human immunodeficiency virus, an amphiphilic fusion peptide is inserted into the target membrane. The protein then reorients itself, thus forcing the fusing membranes together and inducing lipid mixing. Fusion of intracellular membranes in eukaryotic cells involves several protein families including SNAREs, Rab proteins, and Sec1/Munc-18 related proteins (SM-proteins). SNAREs form a novel superfamily of small and mostly membrane-anchored proteins that share a common motif of about 60 amino acids (SNARE motif). SNAREs reversibly assemble into tightly packed helical bundles, the core complexes. Assembly is thought to pull the fusing membranes closely together, thus inducing fusion. SM-proteins comprise a family of soluble proteins that bind to certain types of SNAREs and prevent the formation of core complexes. Rab proteins are GTPases that undergo highly regulated GTP-GDP cycles. In their GTP form, they interact with specific proteins, the effector proteins. Recent evidence suggests that Rab proteins function in the initial membrane contact connecting the fusing membranes but are not involved in the fusion reaction itself.
Collapse
Affiliation(s)
- R Jahn
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.
| | | |
Collapse
|
41
|
Abstract
Immobilized lipase from Candida antarctica lipase B (Novozym 435) was effective in the synthesis of lysophosphatidylcholine (LPC). The transesterification of L-alpha-glycerophosphorylcholine (GPC) and vinyl laurate was carried out in a solvent free system or in the presence of 50% (v/v) t95%) were easily achieved. The lipase was selective for the sn10 times). High purity products could be produced by a decrease of the reaction temperature to induce precipitation of the product. The temperature needed depended on the fatty acid chain length. Thus, only lysophosphatidylcholine was produced with palmitic acid vinyl ester at 45 degrees C, whereas for the vinyl esters of lauric acid, capric acid, and caprylic acid, a lower reaction temperature (25 degrees C) was necessary to obtain solely the lysophospholipid products.
Collapse
|
42
|
Bonnafous P, Stegmann T. Membrane perturbation and fusion pore formation in influenza hemagglutinin-mediated membrane fusion. A new model for fusion. J Biol Chem 2000; 275:6160-6. [PMID: 10692407 DOI: 10.1074/jbc.275.9.6160] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Low pH-induced fusion mediated by the hemagglutinin (HA) of influenza virus involves conformational changes in the protein that lead to the insertion of a "fusion peptide" domain of this protein into the target membrane and is thought to perturb the membrane, triggering fusion. By using whole virus, purified HA, or HA ectodomains, we found that shortly after insertion, pores of less than 26 A in diameter were formed in liposomal membranes. As measured by a novel assay, these pores stay open, or continue to close and open, for minutes to hours and persist after pH neutralization. With virus and purified HA, larger pores, allowing the leakage of dextrans, were seen at times well after insertion. For virus, dextran leakage was simultaneous with lipid mixing and the formation of "fusion pores," allowing the transfer of dextrans from the liposomal to the viral interior or vice versa. Pores did not form in the viral membrane in the absence of a target membrane. Based on these data, we propose a new model for fusion, in which HA initially forms a proteinaceous pore in the target, but not in the viral membrane, before a lipidic hemifusion intermediate is formed.
Collapse
Affiliation(s)
- P Bonnafous
- Institut de Pharmacologie et de Biologie Structurale, CNRS UPR 9062, 205 Route de Narbonne, 31077 Toulouse, France
| | | |
Collapse
|
43
|
Günther-Ausborn S, Schoen P, Bartoldus I, Wilschut J, Stegmann T. Role of hemagglutinin surface density in the initial stages of influenza virus fusion: lack of evidence for cooperativity. J Virol 2000; 74:2714-20. [PMID: 10684287 PMCID: PMC111761 DOI: 10.1128/jvi.74.6.2714-2720.2000] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Membrane fusion mediated by influenza virus hemagglutinin (HA) is believed to proceed via the cooperative action of multiple HA trimers. To determine the minimal number of HA trimers required to trigger fusion, and to assess the importance of cooperativity between these HA trimers, we have generated virosomes containing coreconstituted HAs derived from two strains of virus with different pH dependencies for fusion, X-47 (optimal fusion at pH 5.1; threshold at pH 5.6) and A/Shangdong (optimal fusion at pH 5.6; threshold at pH 6.0), and measured fusion of these virosomes with erythrocyte ghosts by a fluorescence lipid mixing assay. Virosomes with different X-47-to-A/Shangdong HA ratios, at a constant HA-to-lipid ratio, showed comparable ghost-binding activities, and the low-pH-induced conformational change of A/Shangdong HA did not affect the fusion activity of X-47 HA. The initial rate of fusion of these virosomes at pH 5.7 increased directly proportional to the surface density of A/Shangdong HA, and a single A/Shangdong trimer per virosome appeared to suffice to induce fusion. The reciprocal of the lag time before the onset of fusion was directly proportional to the surface density of fusion-competent HA. These results support the notion that there is no cooperativity between HA trimers during influenza virus fusion.
Collapse
Affiliation(s)
- S Günther-Ausborn
- Department of Biophysical Chemistry, Biozentrum of the University of Basel, CH 4056 Basel, Switzerland.
| | | | | | | | | |
Collapse
|
44
|
Abstract
A molecular model of the low-pH-induced membrane fusion by influenza hemagglutinin (HA) is proposed based upon the hypothesis that the conformational change to the extended coiled coil creates a high-energy hydrophobic membrane defect in the viral envelope or HA expressing cell. It is known that 1) an aggregate of at least eight HAs is required at the fusion site, yet only two or three of these HAs need to undergo the "essential" conformational change for the first fusion pore to form (Bentz, J. 2000. Biophys. J. 78:000-000); 2) the formation of the first fusion pore signifies a stage of restricted lipid flow into the nascent fusion site; and 3) some HAs can partially insert their fusion peptides into their own viral envelopes at low pH. This suggests that the committed step for HA-mediated fusion begins with a tightly packed aggregate of HAs whose fusion peptides are inserted into their own viral envelope, which causes restricted lateral lipid flow within the HA aggregate. The transition of two or three HAs in the center of the aggregate to the extended coiled coil extracts the fusion peptide and creates a hydrophobic defect in the outer monolayer of the virion, which is stabilized by the closely packed HAs. These HAs are inhibited from diffusing away from the site to admit lateral lipid flow, in part because that would initially increase the surface area of hydrophobic exposure. The other obvious pathway to heal this hydrophobic defect, or some descendent, is recruitment of lipids from the outer monolayer of the apposed target membrane, i.e., fusion. Other viral fusion proteins and the SNARE fusion protein complex appear to fit within this hypothesis.
Collapse
Affiliation(s)
- J Bentz
- Department of Bioscience and Biotechnology, Drexel University, Philadelphia, Pennsylvania 19104-2875, USA.
| |
Collapse
|
45
|
Abstract
Although catalyzed by different proteins, the energy barriers for lipid bilayer fusion in exocytosis, viral fusion, and trafficking seem to be the same as those for the fusion of protein-free phospholipid membranes. To minimize this energy, fusion will proceed through a minimal number of lipid molecules, probably localized in bent non-bilayer intermediates. Experiments on phospholipid bilayer membrane fusion show the pathway of contact, hemifusion, flickering fusion pore formation, and fusion pore enlargement caused by swelling of the vesicle. Lipid curvature determines the barriers to hemifusion and fusion pore formation, while swelling-induced membrane tension drives fusion pore enlargement. Experiments on viral protein-induced cell-cell fusion and exocytosis show the same pathway with the same fundamental effects of lipid curvature and membrane tension. Thus while proteins control these reactions, lipid energetics determine the basic reaction scheme for membrane fusion.
Collapse
Affiliation(s)
- J Zimmerberg
- Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
46
|
McIntosh TJ, Kulkarni KG, Simon SA. Membrane fusion promoters and inhibitors have contrasting effects on lipid bilayer structure and undulations. Biophys J 1999; 76:2090-8. [PMID: 10096904 PMCID: PMC1300182 DOI: 10.1016/s0006-3495(99)77365-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
It has been established that the fusion of both biological membranes and phospholipid bilayers can be modulated by altering their lipid composition (Chernomordik et al., 1995 .J. Membr. Biol. 146:3). In particular, when added exogenously between apposing membranes, monomyristoylphosphatidylcholine (MMPC) inhibits membrane fusion, whereas glycerol monoleate (GMO), oleic acid (OA), and arachidonic acid (AA) promote fusion. This present study uses x-ray diffraction to investigate the effects of MMPC, GMO, OA, and AA on the bending and stability of lipid bilayers when bilayers are forced together with applied osmotic pressure. The addition of 10 and 30 mol% MMPC to egg phosphatidylcholine (EPC) bilayers maintains the bilayer structure, even when the interbilayer fluid spacing is reduced to approximately 3 A, and increases the repulsive pressure between bilayers so that the fluid spacing in excess water increases by 5 and 15 A, respectively. Thus MMPC increases the undulation pressure, implying that the addition of MMPC promotes out-of-plane bending and decreases the adhesion energy between bilayers. In contrast, the addition of GMO has minor effects on the undulation pressure; 10 and 50 mol% GMO increase the fluid spacing of EPC in excess water by 0 and 2 A, respectively. However, x-ray diffraction indicates that, at small interbilayer separations, GMO, OA, or AA converts the bilayer to a structure containing hexagonally packed scattering units approximately 50 A in diameter. Thus GMO, OA, or AA destabilizes bilayer structure as apposing bilayers are brought into contact, which could contribute to their role in promoting membrane fusion.
Collapse
Affiliation(s)
- T J McIntosh
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
47
|
Chernomordik LV, Leikina E, Kozlov MM, Frolov VA, Zimmerberg J. Structural intermediates in influenza haemagglutinin-mediated fusion. Mol Membr Biol 1999; 16:33-42. [PMID: 10332735 DOI: 10.1080/096876899294733] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Fusion pore formation in the haemagglutinin (HA)-mediated fusion is a culmination of a multistep process, which involves low-pH triggered refolding of HA and rearrangement of membrane lipid bilayers. This rearrangement was arrested or slowed down by either altering lipid composition of the membranes, or lowering the density of HA, and/or temperature. The results suggest that fusion starts with the lateral assembly of activated HA into multimeric complexes surrounding future fusion sites. The next fusion stage involves hemifusion, i.e. merger of only contacting membrane monolayers. Lysophosphatidylcholine reversibly arrests fusion prior to this hemifusion stage. In the normal fusion pathway, hemifusion is transient and is not accompanied by any measurable transfer of lipid probes between the membranes. A temperature of 4 degrees C stabilizes this 'restricted hemifusion' intermediate. The restriction of lipid flow through the restricted hemifusion site is HA-dependent and can be released by partial cleaving of low pH-forms of HA with mild proteinase K treatment. Lipid effects indicate that fusion proceeds through two different lipid-involving intermediates, which are characterized by two opposite curvatures of the lipid monolayer. Hemifusion involves formation of a stalk, a local bent connection between the outer membrane monolayers. Fusion pore formation apparently involves bending of the inner membrane monolayers, which come together in hemifusion. To couple low pH-induced refolding of HA with lipid rearrangements, it is proposed that the extension of the alpha-helical coiled coil of HA pulls fusion peptides inserted into the HA-expressing membrane and locally bends the membrane into a saddle-like shape. Elastic energy drives self-assembly of these HA-containing membrane elements into a ring-like complex and causes the bulging of the host membrane into a dimple growing towards the target membrane. Bending stresses in the lipidic top of the dimple facilitate membrane fusion.
Collapse
|
48
|
Ruiz-Argüello MB, Goñi FM, Alonso A. Vesicle membrane fusion induced by the concerted activities of sphingomyelinase and phospholipase C. J Biol Chem 1998; 273:22977-82. [PMID: 9722520 DOI: 10.1074/jbc.273.36.22977] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
When vesicles composed of an equimolar mixture of sphingomyelin, phosphatidylcholine, phosphatidylethanolamine, and cholesterol are treated with phospholipase C, phospholipid hydrolysis occurs without major changes in vesicle architecture. In the same way, addition of sphingomyelinase leads only to sphingomyelin cleavage. However, when both enzymes are added together, their joint hydrolytic activities give rise to leakage-free vesicle aggregation, lipid mixing, and aqueous contents mixing, i.e. vesicle fusion. The contribution of both enzymes is unequal, the main role of sphingomyelinase being the production of relatively large amounts of ceramide that will facilitate the lamellar-to-nonlamellar transition in the formation of the fusion pore, whereas phospholipase C provides mainly a localized, asymmetric, high concentration of diacylglycerol that constitutes the trigger for the fusion process. The lipidic end-products of both enzymes cooperate in destabilizing and fusing the membranes in a way that is never achieved through the action of any of the enzymes individually, nor by the products themselves when premixed with the other lipids during liposome preparation. Thus the enzymes appear to be coupled through their reaction products. This is the first observation of membrane fusion induced by the concerted activities of two enzymes. Besides, considering that both diacylglycerol and ceramide are important metabolites involved in cell signaling, it may also provide new ideas in the exploration of "cross-talk" phenomena between different signal transduction pathways.
Collapse
Affiliation(s)
- M B Ruiz-Argüello
- Grupo Biomembranas (Unidad Asociada al C.S.I.C.), Departamento de Bioquímica, Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain
| | | | | |
Collapse
|
49
|
Epand RF, Infante MR, Flanagan TD, Epand RM. Properties of lipoamino acids incorporated into membrane bilayers. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1373:67-75. [PMID: 9733922 DOI: 10.1016/s0005-2736(98)00088-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Several lipoamino acids were synthesized in which palmitic acid was coupled with the alpha-amino group of an amino acid. These lipoamino acids were tested for their inhibitory action against Sendai virus fusion to liposomes composed of egg phosphatidylethanolamine and 5 mol% of the ganglioside GD1a. A commonly employed viral fusion assay based on the dilution of the fluorescent probe octadecylrhodamine (R18) exhibited an additional complication in the presence of Nalpha-palmitoyl tryptophan (palm-Trp). At higher mol fraction of palm-Trp it was observed that there was an increase in R18 quenching. Studies on the dependence of the emission wavelength of palm-Trp on excitation wavelength demonstrated that the presence of R18 alters the environment of the indole. The results illustrate one of the complexities of viral fusion assays using the R18 probe. Despite this complication it was possible to demonstrate that several of the lipoamino acids are effective at inhibiting the fusion of Sendai virus to liposomes as measured by the R18 assay. One of the most effective inhibitors of this process is palm-Trp which, at a concentration of 4 mol% in liposomes, markedly reduces the apparent rate of fusion. At pH 5.0 this amphiphile is also an inhibitor of Sendai virus fusion, indicating that the ionization of the carboxyl group of this amphiphile is not required for its antiviral activity. The inhibitory action of palm-Trp against Sendai virus was confirmed by demonstrating inhibition of Sendai-mediated cytopathic effects studied in tissue culture. A property associated with antiviral activity is the ability of amphiphiles to raise the bilayer to hexagonal phase transition temperature of dielaidoyl phosphatidylethanolamine. All of these lipoamino acids were found to possess this property, but a quantitative relationship with inhibition of viral fusion was not found.
Collapse
Affiliation(s)
- R F Epand
- Department of Biochemistry, McMaster University Health Sciences Centre, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | | | | | | |
Collapse
|
50
|
Wenk MR, Seelig J. Proton induced vesicle fusion and the isothermal lalpha-->HII phase transition of lipid bilayers: a 31P-NMR and titration calorimetry study. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1372:227-36. [PMID: 9675291 DOI: 10.1016/s0005-2736(98)00059-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The proton-induced isothermal fusion of unilamellar lipid vesicles (Duzgunes et al., Biochemistry 24 (1985) 3091-3098) is compared with the lamellar (Lalpha)-->hexagonal (HII) phase transition of multilamellar lipid dispersions. Both lipid systems are composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and oleic acid (OA) at a 7:3 molar ratio. Using solid-state phosphorus-31 nuclear magnetic resonance (31P-NMR) it is demonstrated that the multilamellar lipid dispersions are in the bilayer state at physiological pH and undergo a Lalpha-->HII phase transition between pH 6.3 and 5.7. This phase transition can also be induced at constant pH by increasing the temperature. The midpoint of the temperature-induced Lalpha-->HII transition is Th=56 degrees C (at pH 7.4) and the corresponding transition enthalpy is DeltaH=0. 7+/-0.1 kcal/mol as determined with differential scanning calorimetry. Both the proton-induced and the temperature-induced phase transition can be completely inhibited by addition of 30 mol% of 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (LPC). In a second set of experiments unilamellar vesicles are prepared either by sonication or by extrusion through polycarbonate filters at pH 7. 4 and are titrated into buffer at pH 5.7. The proton-induced fusion of the lipid vesicles is monitored with isothermal titration calorimetry, light scattering and fluorescence spectroscopy. The fusion reaction is characterized by an endothermic enthalpy of DeltaH=0.5+/-0.2 kcal/mol (at 28 degrees C). The fusion enthalpy is independent of the vesicle diameter and is only slightly reduced by an increase in temperature to 50 degrees C. Vesicle fusion is accompanied by an increase in light scattering, indicating the formation of larger lipid structures. The transition from unilamellar vesicles to fused lipid structures occurs in the same narrow pH range of 6.3-5.7 as observed for the Lalpha-->HII transition of multilamellar dispersions. Vesicle fusion can be inhibited with 30% LPC. The virtually identical set of parameters found for the Lalpha-->HII phase transition and the vesicle fusion reaction suggests that vesicle fusion also entails a Lalpha-->HII phase transition.
Collapse
Affiliation(s)
- M R Wenk
- Department of Biophysical Chemistry, Biocenter of the University of Basel, Klingelbergstr. 70, CH-4056 Basel, Switzerland
| | | |
Collapse
|