1
|
Williams HF, Layfield HJ, Vallance T, Patel K, Bicknell AB, Trim SA, Vaiyapuri S. The Urgent Need to Develop Novel Strategies for the Diagnosis and Treatment of Snakebites. Toxins (Basel) 2019; 11:E363. [PMID: 31226842 PMCID: PMC6628419 DOI: 10.3390/toxins11060363] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 01/09/2023] Open
Abstract
Snakebite envenoming (SBE) is a priority neglected tropical disease, which kills in excess of 100,000 people per year. Additionally, many millions of survivors also suffer through disabilities and long-term health consequences. The only treatment for SBE, antivenom, has a number of major associated problems, not least, adverse reactions and limited availability. This emphasises the necessity for urgent improvements to the management of this disease. Administration of antivenom is too frequently based on symptomatology, which results in wasting crucial time. The majority of SBE-affected regions rely on broad-spectrum polyvalent antivenoms that have a low content of case-specific efficacious immunoglobulins. Research into small molecular therapeutics such as varespladib/methyl-varespladib (PLA2 inhibitors) and batimastat/marimastat (metalloprotease inhibitors) suggest that such adjunctive treatments could be hugely beneficial to victims. Progress into toxin-specific monoclonal antibodies as well as alternative binding scaffolds such as aptamers hold much promise for future treatment strategies. SBE is not implicit during snakebite, due to venom metering. Thus, the delay between bite and symptom presentation is critical and when symptoms appear it may often already be too late to effectively treat SBE. The development of reliable diagnostical tools could therefore initiate a paradigm shift in the treatment of SBE. While the complete eradication of SBE is an impossibility, mitigation is in the pipeline, with new treatments and diagnostics rapidly emerging. Here we critically review the urgent necessity for the development of diagnostic tools and improved therapeutics to mitigate the deaths and disabilities caused by SBE.
Collapse
Affiliation(s)
| | | | - Thomas Vallance
- School of Pharmacy, University of Reading, Reading RG6 6AH, UK.
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading RG6 6AH, UK.
| | - Andrew B Bicknell
- School of Biological Sciences, University of Reading, Reading RG6 6AH, UK.
| | | | | |
Collapse
|
2
|
Fujii S, Ikeda K, Hayashi K. Catalytic and Toxicity Mechanisms of Secretory Phospholipases A2. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/15569549809040395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
3
|
Chen YH, Wang YM, Hseu MJ, Tsai IH. Molecular evolution and structure-function relationships of crotoxin-like and asparagine-6-containing phospholipases A2 in pit viper venoms. Biochem J 2004; 381:25-34. [PMID: 15032748 PMCID: PMC1133758 DOI: 10.1042/bj20040125] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Revised: 03/16/2004] [Accepted: 03/22/2004] [Indexed: 11/17/2022]
Abstract
Some myotoxic or neurotoxic PLA2s (phospholipases A2) from pit viper venoms contain characteristic N6 substitutions. Our survey of the venoms of more than ten pit viper genera revealed that N6-PLA2s exist only in limited Asian pit vipers of two genera, Protobothrops and Gloydius, and exist as either monomers or the basic subunits of heterodimers in some New World pit vipers. For the newly identified N6-PLA2s, the neuromuscular blocking activities were assayed with the chick biventer cervicis neuromuscular tissue, whereas the increased serum creatine kinase level assessed their myotoxicities. The purified N6-PLA2s from Protobothrops mangshanensis and Gloydius intermedius saxatilis were found to be presynaptic neurotoxins. In contrast, all N6-PLA2s from the venoms of Sistrurus miliarius strackeri, S. m. barbouri, Crotalus viridis viridis, C. lepidus lepidus, Cerrophidion godmani and Bothreichis schlegelii were myotoxins without neurotoxicity even in the presence of crotoxin A. Crotoxin-like complexes were for the first time purified from the venoms of Sitrurus catenatus tergeminus, C. mitchelli mitchelli, C. horridus atricaudatus, C. basiliscus and C. durissus cumanensis. The cDNAs encoding six novel N6-PLA2s and subunits of the crotoxin-like complex from S. c. tergeminus were cloned and fully sequenced. Phylogeny analysis showed that two structural subtypes of N6-PLA2s with either F24 or S24 substitution have been evolved in parallel, possibly descended respectively from species related to present-day Protobothrops and Gloydius. Calmodulin binds all the N6-PLA2s but crotoxin A may inhibit its binding to crotoxin B and to other neurotoxic N6-PLA2s. Structure-activity relationships at various regions of the PLA2 molecules were extensively discussed.
Collapse
Affiliation(s)
- Yi-Hsuan Chen
- *Institute of Biological Chemistry, Academia Sinica, POB 23-106, Taipei, Taiwan
| | - Ying-Ming Wang
- *Institute of Biological Chemistry, Academia Sinica, POB 23-106, Taipei, Taiwan
| | - Ming-Jhy Hseu
- *Institute of Biological Chemistry, Academia Sinica, POB 23-106, Taipei, Taiwan
| | - Inn-Ho Tsai
- *Institute of Biological Chemistry, Academia Sinica, POB 23-106, Taipei, Taiwan
- †Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- To whom correspondence should be addressed (e-mail )
| |
Collapse
|
4
|
Berg OG, Gelb MH, Tsai MD, Jain MK. Interfacial enzymology: the secreted phospholipase A(2)-paradigm. Chem Rev 2001; 101:2613-54. [PMID: 11749391 DOI: 10.1021/cr990139w] [Citation(s) in RCA: 266] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- O G Berg
- Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
5
|
Affiliation(s)
- M Murakami
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | |
Collapse
|
6
|
Anwer K, Shi M, French MF, Muller SR, Chen W, Liu Q, Proctor BL, Wang J, Mumper RJ, Singhal A, Rolland AP, Alila HW. Systemic effect of human growth hormone after intramuscular injection of a single dose of a muscle-specific gene medicine. Hum Gene Ther 1998; 9:659-70. [PMID: 9551614 DOI: 10.1089/hum.1998.9.5-659] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A muscle-specific gene medicine is described that provides for long-term secretion of biologically active human growth hormone (hGH) from skeletal muscle into the systemic circulation. The hGH gene medicine is composed of a muscle-specific hGH plasmid expression system complexed with a protective, interactive, non-condensing (PINC) delivery system. The muscle-specific gene expression system, pSK-hGH-GH, was constructed by linking the promoter/enhancer regions of chicken skeletal alpha-actin to hGH gene. C2C12 myoblast transfection with pSK-hGH-GH resulted in the synthesis of hGH in a muscle-specific manner. Direct injection into rat tibialis cranialis muscle of pSK-hGH-GH complexed with a polymeric PINC delivery system, polyvinylpyrrolidone (PVP), produced hGH levels in muscle that were 10- to 15-fold higher compared with plasmid formulated in saline at 14 days post-injection. Intratracheal instillation in rat lung of pSK-hGH-GH did not produce significantly detectable levels of hGH. In hypophysectomized rats, a single intramuscular dose of the pSK-hGH-GH/PVP complex resulted in hGH expression and a subsequent increase in serum levels of rat IGF-I and growth. hGH expression and effects on rat serum IGF-I levels were detectable up to 28 days after injection of formulated plasmid and effects on growth were detectable unto 21 days. Anti-hGH antibodies were detectable in serum at 14 days post-injection, reached a plateau at 21 days, and remained elevated through the study period. Cyclosporin treatment of the pSK-hGH-GH/PVP-injected animals completely inhibited the antibody response and resulted in increased hGH expression.
Collapse
Affiliation(s)
- K Anwer
- GeneMedicine, Inc., The Woodlands, TX 77381-4248, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Matsuzawa A, Murakami M, Atsumi G, Imai K, Prados P, Inoue K, Kudo I. Release of secretory phospholipase A2 from rat neuronal cells and its possible function in the regulation of catecholamine secretion. Biochem J 1996; 318 ( Pt 2):701-9. [PMID: 8809065 PMCID: PMC1217675 DOI: 10.1042/bj3180701] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Here we show that secretory phospholipase A2 (sPLA2) that is immunochemically indistinguishable from type II sPLA2 is (i) stored in neuroendocrine cells, (ii) released in response to neurotransmitters or depolarization, and (iii) involved in the regulation of catecholamine secretion by these cells. Rat brain synaptic vesicle fractions contained PLA2 activity, which was neutralized completely by an antibody raised against rat type II sPLA2. sPLA2 immunoreactive with anti-(type II sPLA2) antibody was released from synaptosomes in response to depolarization evoked by a high concentration of potassium in the presence of Ca2+. Rat pheochromocytoma PC12 cells, which differentiated into adherent cells similar to sympathetic neurons in response to nerve growth factor, were used for the detailed analysis of the dynamics and function of sPLA2 in neuronal cells. Antibody against rat type II sPLA2 precipitated approximately 80% of the PLA2 activity in PC12 cell lysates. Transcript for type II sPLA2 was detected in PC12 cells by reverse transcriptase-PCR. When neuronally differentiated PC12 cells were stimulated with carbamylcholine or potassium, sPLA2 was released into the medium and reached a maximal approximately 40% release by 15 min. Inhibitors specific to type II sPLA2 suppressed catecholamine secretion by PC12 cells which had been activated by carbamylcholine. Furthermore, treatment of PC12 cells with exogenous type II sPLA2 alone elicited catecholamine secretion. These observations indicate that sPLA2 released from neuronal cells may regulate the degranulation process leading to release of neurotransmitters and are compatible with our earlier finding that this enzyme is involved in the degranulation of rat mast cells.
Collapse
Affiliation(s)
- A Matsuzawa
- Faculty of Pharmaceutical Science, University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Phospholipases A2 (PLA2) are widely distributed in nature and are well characterized proteins with respect to their catalytic and pharmacological activities. A wealth of structural information has recently become available both from X-ray diffraction and NMR studies, and although a detailed model of the catalytic mechanism of PLA2 has been proposed, the structural bases of other aspects of PLA2 function, such as interfacial activation and venom PLA2 pharmacological activities, are still under debate. An appreciation of the PLA2 protein structure will yield new insights with regard to these activities. The salient structural features of the class I, II and III PLA2 are discussed with respect to their functional roles.
Collapse
Affiliation(s)
- R K Arni
- Department of Physics, IBILCE/UNESP, São Jose do Rio Preto, Brazil
| | | |
Collapse
|
9
|
Tzeng MC, Yen CH, Tsai MD. Binding proteins on synaptic membranes for certain phospholipases A2 with presynaptic toxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 391:271-8. [PMID: 8726066 DOI: 10.1007/978-1-4613-0361-9_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- M C Tzeng
- Institute of Biological Chemistry Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|
10
|
Tsai IH, Lu PJ, Wang YM, Ho CL, Liaw LL. Molecular cloning and characterization of a neurotoxic phospholipase A2 from the venom of Taiwan habu (Trimeresurus mucrosquamatus). Biochem J 1995; 311 ( Pt 3):895-900. [PMID: 7487947 PMCID: PMC1136085 DOI: 10.1042/bj3110895] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Using gel-filtration chromatography and reverse-phase (RP) HPLC we have purified a presynaptic neurotoxin (designated as trimucrotoxin) from the crude venom of Taiwan habu (Trimeresurus mucrosquamatus). Its complete primary structure was solved by an automated N-terminal sequencing and cDNA sequencing method. The enzyme inhibited the twitch of the chick biventer cervicis muscle at 0.1-1 micrograms/ml and showed lethality in mice (LD50 = 1.2 micrograms/g, when given intravenously). Trimucrotoxin exists mainly as a homodimer of 14 kDa subunits as shown by a gel-filtration experiment, and dissociates into monomers during SDS/PAGE in the absence of Ca2+. However, most of trimucrotoxin migrated as slowly as a trimer during nondenaturing SDS/PAGE in the presence of Ca2+ or Sr2+. Its amino acid sequence identity to crotoxin B and agkistrodotoxin is about 75%, and its cDNA sequence is 82% identical to that of crotoxin B. Rabbit antiserum against trimucrotoxin also cross-reacted with the other crotalid neurotoxic phospholipases A2. Furthermore, the purified acidic subunit of crotoxin potentiated the neurotoxicity of trimucrotoxin. A comparison of the sequences of these crotalid neurotoxins revealed some common features of the possible neurotoxic sites, including residues 6, 11, 76-81 and 119-125.
Collapse
Affiliation(s)
- I H Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|