1
|
Schut GJ, Haja DK, Feng X, Poole FL, Li H, Adams MWW. An Abundant and Diverse New Family of Electron Bifurcating Enzymes With a Non-canonical Catalytic Mechanism. Front Microbiol 2022; 13:946711. [PMID: 35875533 PMCID: PMC9304861 DOI: 10.3389/fmicb.2022.946711] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Microorganisms utilize electron bifurcating enzymes in metabolic pathways to carry out thermodynamically unfavorable reactions. Bifurcating FeFe-hydrogenases (HydABC) reversibly oxidize NADH (E′∼−280 mV, under physiological conditions) and reduce protons to H2 gas (E°′−414 mV) by coupling this endergonic reaction to the exergonic reduction of protons by reduced ferredoxin (Fd) (E′∼−500 mV). We show here that HydABC homologs are surprisingly ubiquitous in the microbial world and are represented by 57 phylogenetically distinct clades but only about half are FeFe-hydrogenases. The others have replaced the hydrogenase domain with another oxidoreductase domain or they contain additional subunits, both of which enable various third reactions to be reversibly coupled to NAD+ and Fd reduction. We hypothesize that all of these enzymes carry out electron bifurcation and that their third substrates can include hydrogen peroxide, pyruvate, carbon monoxide, aldehydes, aryl-CoA thioesters, NADP+, cofactor F420, formate, and quinones, as well as many yet to be discovered. Some of the enzymes are proposed to be integral membrane-bound proton-translocating complexes. These different functionalities are associated with phylogenetically distinct clades and in many cases with specific microbial phyla. We propose that this new and abundant class of electron bifurcating enzyme be referred to as the Bfu family whose defining feature is a conserved bifurcating BfuBC core. This core contains FMN and six iron sulfur clusters and it interacts directly with ferredoxin (Fd) and NAD(H). Electrons to or from the third substrate are fed into the BfuBC core via BfuA. The other three known families of electron bifurcating enzyme (abbreviated as Nfn, EtfAB, and HdrA) contain a special FAD that bifurcates electrons to high and low potential pathways. The Bfu family are proposed to use a different electron bifurcation mechanism that involves a combination of FMN and three adjacent iron sulfur clusters, including a novel [2Fe-2S] cluster with pentacoordinate and partial non-Cys coordination. The absolute conservation of the redox cofactors of BfuBC in all members of the Bfu enzyme family indicate they have the same non-canonical mechanism to bifurcate electrons. A hypothetical catalytic mechanism is proposed as a basis for future spectroscopic analyses of Bfu family members.
Collapse
Affiliation(s)
- Gerrit J. Schut
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Dominik K. Haja
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Xiang Feng
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Farris L. Poole
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- *Correspondence: Michael W. W. Adams, ; orcid.org/0000-0002-9796-5014
| |
Collapse
|
2
|
Di Rocco G, Battistuzzi G, Borsari M, Bortolotti CA, Ranieri A, Sola M. The enthalpic and entropic terms of the reduction potential of metalloproteins: Determinants and interplay. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
3
|
An alternative plant-like cyanobacterial ferredoxin with unprecedented structural and functional properties. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:148084. [DOI: 10.1016/j.bbabio.2019.148084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/02/2019] [Accepted: 09/08/2019] [Indexed: 11/23/2022]
|
4
|
Sagadin T, Riehm J, Putkaradze N, Hutter MC, Bernhardt R. Novel approach to improve progesterone hydroxylation selectivity by
CYP
106A2 via rational design of adrenodoxin binding. FEBS J 2019; 286:1240-1249. [DOI: 10.1111/febs.14722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/09/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Tanja Sagadin
- Department of Biochemistry Saarland University Saarbrücken Germany
| | - Jan Riehm
- Center for Bioinformatics Saarland University Saarbrücken Germany
| | | | | | - Rita Bernhardt
- Department of Biochemistry Saarland University Saarbrücken Germany
| |
Collapse
|
5
|
Wise CE, Hsieh CH, Poplin NL, Makris TM. Dioxygen Activation by the Biofuel-Generating Cytochrome P450 OleT. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02631] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Courtney E. Wise
- University of South Carolina, Department of Chemistry and Biochemistry, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Chun H. Hsieh
- University of South Carolina, Department of Chemistry and Biochemistry, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Nathan L. Poplin
- University of South Carolina, Department of Chemistry and Biochemistry, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Thomas M. Makris
- University of South Carolina, Department of Chemistry and Biochemistry, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
6
|
The unique fold and lability of the [2Fe-2S] clusters of NEET proteins mediate their key functions in health and disease. J Biol Inorg Chem 2018; 23:599-612. [PMID: 29435647 PMCID: PMC6006223 DOI: 10.1007/s00775-018-1538-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/26/2018] [Indexed: 02/08/2023]
Abstract
NEET proteins comprise a new class of [2Fe-2S] cluster proteins. In human, three genes encode for NEET proteins: cisd1 encodes mitoNEET (mNT), cisd2 encodes the Nutrient-deprivation autophagy factor-1 (NAF-1) and cisd3 encodes MiNT (Miner2). These recently discovered proteins play key roles in many processes related to normal metabolism and disease. Indeed, NEET proteins are involved in iron, Fe-S, and reactive oxygen homeostasis in cells and play an important role in regulating apoptosis and autophagy. mNT and NAF-1 are homodimeric and reside on the outer mitochondrial membrane. NAF-1 also resides in the membranes of the ER associated mitochondrial membranes (MAM) and the ER. MiNT is a monomer with distinct asymmetry in the molecular surfaces surrounding the clusters. Unlike its paralogs mNT and NAF-1, it resides within the mitochondria. NAF-1 and mNT share similar backbone folds to the plant homodimeric NEET protein (At-NEET), while MiNT's backbone fold resembles a bacterial MiNT protein. Despite the variation of amino acid composition among these proteins, all NEET proteins retained their unique CDGSH domain harboring their unique 3Cys:1His [2Fe-2S] cluster coordination through evolution. The coordinating exposed His was shown to convey the lability to the NEET proteins' [2Fe-2S] clusters. In this minireview, we discuss the NEET fold and its structural elements. Special attention is given to the unique lability of the NEETs' [2Fe-2S] cluster and the implication of the latter to the NEET proteins' cellular and systemic function in health and disease.
Collapse
|
7
|
Griffin A, Parajes S, Weger M, Zaucker A, Taylor AE, O'Neil DM, Müller F, Krone N. Ferredoxin 1b (Fdx1b) Is the Essential Mitochondrial Redox Partner for Cortisol Biosynthesis in Zebrafish. Endocrinology 2016; 157:1122-34. [PMID: 26650568 PMCID: PMC4769370 DOI: 10.1210/en.2015-1480] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mitochondrial cytochrome P450 (CYP) enzymes rely on electron transfer from the redox partner ferredoxin 1 (FDX1) for catalytic activity. Key steps in steroidogenesis require mitochondrial CYP enzymes and FDX1. Over 30 ferredoxin mutations have been explored in vitro; however, no spontaneously occurring mutations have been identified in humans leaving the impact of FDX1 on steroidogenesis in the whole organism largely unknown. Zebrafish are an important model to study human steroidogenesis, because they have similar steroid products and endocrine tissues. This study aimed to characterize the influence of ferredoxin on steroidogenic capacity in vivo by using zebrafish. Zebrafish have duplicate ferredoxin paralogs: fdx1 and fdx1b. Although fdx1 was observed throughout development and in most tissues, fdx1b was expressed after development of the zebrafish interrenal gland (counterpart to the mammalian adrenal gland). Additionally, fdx1b was restricted to adult steroidogenic tissues, such as the interrenal, gonads, and brain, suggesting that fdx1b was interacting with steroidogenic CYP enzymes. By using transcription activator-like effector nucleases, we generated fdx1b mutant zebrafish lines. Larvae with genetic disruption of fdx1b were morphologically inconspicuous. However, steroid hormone analysis by liquid chromatography tandem mass spectrometry revealed fdx1b mutants failed to synthesize glucocorticoids. Additionally, these mutants had an up-regulation of the hypothalamus-pituitary-interrenal axis and showed altered dark-light adaptation, suggesting impaired cortisol signaling. Antisense morpholino knockdown confirmed Fdx1b is required for de novo cortisol biosynthesis. In summary, by using zebrafish, we generated a ferredoxin knockout model system, which demonstrates for the first time the impact of mitochondrial redox regulation on glucocorticoid biosynthesis in vivo.
Collapse
Affiliation(s)
- Aliesha Griffin
- Centre for Endocrinology, Diabetes, and Metabolism (A.G., S.P., M.W., A.Z., A.E.T., D.M.O., N.K.), School of Clinical and Experimental Medicine (F.M.), College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and Department of Oncology and Metabolism (N.K.), University of Sheffield, Sheffield S10 2TG, United Kingdom
| | - Silvia Parajes
- Centre for Endocrinology, Diabetes, and Metabolism (A.G., S.P., M.W., A.Z., A.E.T., D.M.O., N.K.), School of Clinical and Experimental Medicine (F.M.), College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and Department of Oncology and Metabolism (N.K.), University of Sheffield, Sheffield S10 2TG, United Kingdom
| | - Meltem Weger
- Centre for Endocrinology, Diabetes, and Metabolism (A.G., S.P., M.W., A.Z., A.E.T., D.M.O., N.K.), School of Clinical and Experimental Medicine (F.M.), College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and Department of Oncology and Metabolism (N.K.), University of Sheffield, Sheffield S10 2TG, United Kingdom
| | - Andreas Zaucker
- Centre for Endocrinology, Diabetes, and Metabolism (A.G., S.P., M.W., A.Z., A.E.T., D.M.O., N.K.), School of Clinical and Experimental Medicine (F.M.), College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and Department of Oncology and Metabolism (N.K.), University of Sheffield, Sheffield S10 2TG, United Kingdom
| | - Angela E Taylor
- Centre for Endocrinology, Diabetes, and Metabolism (A.G., S.P., M.W., A.Z., A.E.T., D.M.O., N.K.), School of Clinical and Experimental Medicine (F.M.), College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and Department of Oncology and Metabolism (N.K.), University of Sheffield, Sheffield S10 2TG, United Kingdom
| | - Donna M O'Neil
- Centre for Endocrinology, Diabetes, and Metabolism (A.G., S.P., M.W., A.Z., A.E.T., D.M.O., N.K.), School of Clinical and Experimental Medicine (F.M.), College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and Department of Oncology and Metabolism (N.K.), University of Sheffield, Sheffield S10 2TG, United Kingdom
| | - Ferenc Müller
- Centre for Endocrinology, Diabetes, and Metabolism (A.G., S.P., M.W., A.Z., A.E.T., D.M.O., N.K.), School of Clinical and Experimental Medicine (F.M.), College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and Department of Oncology and Metabolism (N.K.), University of Sheffield, Sheffield S10 2TG, United Kingdom
| | - Nils Krone
- Centre for Endocrinology, Diabetes, and Metabolism (A.G., S.P., M.W., A.Z., A.E.T., D.M.O., N.K.), School of Clinical and Experimental Medicine (F.M.), College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; and Department of Oncology and Metabolism (N.K.), University of Sheffield, Sheffield S10 2TG, United Kingdom
| |
Collapse
|
8
|
Hlavica P. Mechanistic basis of electron transfer to cytochromes p450 by natural redox partners and artificial donor constructs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 851:247-97. [PMID: 26002739 DOI: 10.1007/978-3-319-16009-2_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cytochromes P450 (P450s) are hemoproteins catalyzing oxidative biotransformation of a vast array of natural and xenobiotic compounds. Reducing equivalents required for dioxygen cleavage and substrate hydroxylation originate from different redox partners including diflavin reductases, flavodoxins, ferredoxins and phthalate dioxygenase reductase (PDR)-type proteins. Accordingly, circumstantial analysis of structural and physicochemical features governing donor-acceptor recognition and electron transfer poses an intriguing challenge. Thus, conformational flexibility reflected by togging between closed and open states of solvent exposed patches on the redox components was shown to be instrumental to steered electron transmission. Here, the membrane-interactive tails of the P450 enzymes and donor proteins were recognized to be crucial to proper orientation toward each other of surface sites on the redox modules steering functional coupling. Also, mobile electron shuttling may come into play. While charge-pairing mechanisms are of primary importance in attraction and complexation of the redox partners, hydrophobic and van der Waals cohesion forces play a minor role in docking events. Due to catalytic plasticity of P450 enzymes, there is considerable promise in biotechnological applications. Here, deeper insight into the mechanistic basis of the redox machinery will permit optimization of redox processes via directed evolution and DNA shuffling. Thus, creation of hybrid systems by fusion of the modified heme domain of P450s with proteinaceous electron carriers helps obviate the tedious reconstitution procedure and induces novel activities. Also, P450-based amperometric biosensors may open new vistas in pharmaceutical and clinical implementation and environmental monitoring.
Collapse
Affiliation(s)
- Peter Hlavica
- Walther-Straub-Institut für Pharmakologie und Toxikologie der LMU, Goethestrasse 33, 80336, München, Germany,
| |
Collapse
|
9
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part II. {[Fe2S2](SγCys)4} proteins. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Ewen KM, Hannemann F, Iametti S, Morleo A, Bernhardt R. Functional characterization of Fdx1: evidence for an evolutionary relationship between P450-type and ISC-type ferredoxins. J Mol Biol 2011; 413:940-51. [PMID: 21945528 DOI: 10.1016/j.jmb.2011.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/26/2011] [Accepted: 09/06/2011] [Indexed: 10/17/2022]
Abstract
Ferredoxins are ubiquitous proteins with electron transfer activity involved in a variety of biological processes. In this work, we investigated the characteristics and function of Fdx1 from Sorangium cellulosum So ce56 by using a combination of bioinformatics and of biochemical/biophysical approaches. We were able to experimentally confirm a role of Fdx1 in the iron-sulfur cluster biosynthesis by in vitro reduction studies with cluster-loaded So ce56 IscU and by transfer studies of the cluster from the latter protein to apo-aconitase A. Moreover, we found that Fdx1 can replace mammalian adrenodoxin in supporting the activity of bovine CYP11A1. This makes S. cellulosum Fdx1 the first prokaryotic ferredoxin reported to functionally interact with this mammalian enzyme. Although the interaction with CYP11A1 is non-physiological, this is-to the best of our knowledge-the first study to experimentally prove the activity of a postulated ISC-type ferredoxin in both the ISC assembly and a cytochrome P450 system. This proves that a single ferredoxin can be structurally able to provide electrons to both cytochromes P450 and IscU and thus support different biochemical processes. Combining this finding with phylogenetic and evolutionary trace analyses led us to propose the evolution of eukaryotic mitochondrial P450-type ferredoxins and ISC-type ferredoxins from a common prokaryotic ISC-type ancestor.
Collapse
Affiliation(s)
- Kerstin Maria Ewen
- Department of Biochemistry, Saarland University, D-66041 Saarbrücken, Germany
| | | | | | | | | |
Collapse
|
11
|
Müller JJ, Hannemann F, Schiffler B, Ewen KM, Kappl R, Heinemann U, Bernhardt R. Structural and thermodynamic characterization of the adrenodoxin-like domain of the electron-transfer protein Etp1 from Schizosaccharomyces pombe. J Inorg Biochem 2011; 105:957-65. [DOI: 10.1016/j.jinorgbio.2011.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/16/2011] [Accepted: 04/02/2011] [Indexed: 10/18/2022]
|
12
|
Wu SP, Bellei M, Mansy SS, Battistuzzi G, Sola M, Cowan JA. Redox chemistry of the Schizosaccharomyces pombe ferredoxin electron-transfer domain and influence of Cys to Ser substitutions. J Inorg Biochem 2011; 105:806-11. [PMID: 21497579 DOI: 10.1016/j.jinorgbio.2011.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 01/29/2011] [Accepted: 03/10/2011] [Indexed: 11/26/2022]
Abstract
Schizosaccharomyces pombe (Sp) ferredoxin contains a C-terminal electron transfer protein ferredoxin domain (etp(Fd)) that is homologous to adrenodoxin. The ferredoxin has been characterized by spectroelectrochemical methods, and Mössbauer, UV-Vis and circular dichroism spectroscopies. The Mössbauer spectrum is consistent with a standard diferric [2Fe-2S](2+) cluster. While showing sequence homology to vertebrate ferredoxins, the E°' and the reduction thermodynamics for etp(Fd) (-0.392 V) are similar to plant-type ferredoxins. Relatively stable Cys to Ser derivatives were made for each of the four bound Cys residues and variations in the visible spectrum in the 380-450 nm range were observed that are characteristic of oxygen ligated clusters, including members of the [2Fe-2S] cluster IscU/ISU scaffold proteins. Circular dichroism spectra were similar and consistent with no significant structural change accompanying these mutations. All derivatives were active in an NADPH-Fd reductase cytochrome c assay. The binding affinity of Fd to the reductase was similar, however, V(max) reflecting rate limiting electron transfer was found to decrease ~13-fold. The data are consistent with relatively minor perturbations of both the electronic properties of the cluster following substitution of the Fe-bond S atom with O, and the electronic coupling of the cluster to the protein.
Collapse
Affiliation(s)
- Shu-pao Wu
- Evans Laboratory of Chemistry, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
13
|
Strushkevich NV, Harnastai IN, Usanov SA. Mechanism of steroidogenic electron transport: role of conserved Glu429 in destabilization of CYP11A1-adrenodoxin complex. BIOCHEMISTRY (MOSCOW) 2010; 75:570-8. [PMID: 20632935 DOI: 10.1134/s0006297910050056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the present work the role of conserved residue E429 of cytochrome P45011A1 has been studied. The charge neutralization of E429Q results in 3-fold decrease of K(d) as well as V(max) compared to the wild type hemoprotein indicating tighter binding and, as the result, the impaired dissociation of oxidized adrenodoxin from the complex. As cytochrome P45011A1-adrenodoxin complex formation is driven primarily by electrostatic interactions, the low activity of E429Q mutant is completely restored to that of wild type hemoprotein by increasing of ionic strength. The charge neutralization of the corresponding residue of rat cytochrome P45011B2 has the same effect: the activity is 10-fold decreased but it is restored by increasing of ionic strength without effect on the ratio of products formed. Thus, this is the first report on identification of residues involved in modulation of dissociation of redox partner from the complex with cytochrome P450s.
Collapse
Affiliation(s)
- N V Strushkevich
- Institute of Bioorganic Chemistry, Academy of Sciences of Belarus, Minsk, 220141, Belarus
| | | | | |
Collapse
|
14
|
Ewen KM, Kleser M, Bernhardt R. Adrenodoxin: the archetype of vertebrate-type [2Fe-2S] cluster ferredoxins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:111-25. [PMID: 20538075 DOI: 10.1016/j.bbapap.2010.06.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 05/28/2010] [Accepted: 06/01/2010] [Indexed: 11/15/2022]
Abstract
Adrenodoxin is probably the best characterized member of the vertebrate-type [2Fe-2S]-cluster ferredoxins. It has been in the spotlight of scientific interest for many years due to its essential role in mammalian steroid hormone biosynthesis, where it acts as electron mediator between the NADPH-dependent adrenodoxin reductase and several mitochondrial cytochromes P450. In this review we will focus on the present knowledge about protein-protein recognition in the mitochondrial cytochrome P450 system and the modulation of the electron transfer between Adx and its redox partners, AdR and CYP(s). We also intend to point out the potential biotechnological applications of Adx as a versatile electron donor to different cytochromes P450, both in vitro and in vivo. Finally we will address the comparison between the mammalian cytochrome P450-associated adrenodoxin and ferredoxins involved in iron-sulfur-cluster biosynthesis. Despite their different functions, these proteins display an amazing similarity regarding their primary sequence, tertiary structure and biophysical features.
Collapse
Affiliation(s)
- Kerstin Maria Ewen
- Department of Biochemistry, Saarland University, D-66041 Saarbrücken, Germany
| | | | | |
Collapse
|
15
|
Abstract
The 128 amino acid long soluble protein adrenodoxin (Adx) is a typical member of the ferredoxin protein family that are electron carrier proteins with an iron-sulfur cofactor. Adx carries electrons from adrenodoxin reductase (AdR) to cytochrome P450s. Its binding modes to these proteins were previously characterized by site-directed mutagenesis, by X-ray crystallography for the complex Adx:AdR, and by NMR. However, no clear evidence has been provided for the driving force that promotes Adx detachment from AdR upon reduction. Here, we characterized the conformational dynamics of unbound Adx in the oxidized and reduced forms using 2-20 ns long molecular dynamics simulations. The most noticeable difference between both forms is the enhanced flexibility of the loop (47-51) surrounding the iron-sulfur cluster in the reduced form. Together with several structural displacements at the binding interface, this increased flexibility may be the key factor promoting unbinding of reduced Adx from AdR. This points to an intrinsic property of reduced Adx that drives dissociation.
Collapse
|
16
|
Schiffler B, Bernhardt R. Bacterial (CYP101) and mitochondrial P450 systems—how comparable are they? Biochem Biophys Res Commun 2003; 312:223-8. [PMID: 14630046 DOI: 10.1016/j.bbrc.2003.09.214] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The bacterial CYP101 system and mitochondrial P450 systems show high similarity. Both systems contain the same protein components, a FAD containing reductase, a ferredoxin of the [2Fe2S] type, and a cytochrome P450. At a first glance they seem to be comparable but there are considerable differences among both proteins. Thus, the ferredoxin components of the two systems display significant structural homology but cannot substitute for each other in functional assays. Going into more detail, pronounced differences between the two systems that affect their biological functions are found.
Collapse
Affiliation(s)
- Burkhard Schiffler
- Universität des Saarlandes, Gebäude 9.2, P.O. Box 151150, 66041 Saarbrücken, Germany
| | | |
Collapse
|
17
|
Hlavica P, Schulze J, Lewis DFV. Functional interaction of cytochrome P450 with its redox partners: a critical assessment and update of the topology of predicted contact regions. J Inorg Biochem 2003; 96:279-97. [PMID: 12888264 DOI: 10.1016/s0162-0134(03)00152-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The problem of donor-acceptor recognition has been the most important and intriguing one in the area of P450 research. The present review outlines the topological background of electron-transfer complex formation, showing that the progress in collaborative investigations, combining physical techniques with chemical-modification and immunolocalization studies as well as site-directed mutagenesis experiments, has increasingly enabled the substantiation of hypothetical work resulting from homology modelling of P450s. Circumstantial analysis reveals the contact regions for redox proteins to cluster on the proximal face of P450s, constituting parts of the highly conserved, heme-binding core fold. However, more variable structural components located in the periphery of the hemoprotein molecules also participate in donor docking. The cross-reactivity of electron carriers, purified from pro- and eukaryotic sources, with a diversity of P450 species points at a possible evolutionary conservation of common anchoring domains. While electrostatic mechanisms appear to dominate orientation toward each other of the redox partners to generate pre-collisional encounter complexes, hydrophobic forces are likely to foster electron transfer events by through-bonding or pi-stacking interactions. Moreover, electron-tunneling pathways seem to be operative as well. The availability of new P450 crystal structures together with improved validation strategies will undoubtedly permit the production of increasingly satisfactory three-dimensional donor-acceptor models serving to better understand the molecular principles governing functional association of the redox proteins.
Collapse
Affiliation(s)
- P Hlavica
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Nussbaumstrasse 26, D-80336, Munich, Germany.
| | | | | |
Collapse
|
18
|
Zöllner A, Hannemann F, Lisurek M, Bernhardt R. Deletions in the loop surrounding the iron-sulfur cluster of adrenodoxin severely affect the interactions with its native redox partners adrenodoxin reductase and cytochrome P450(scc) (CYP11A1). J Inorg Biochem 2002; 91:644-54. [PMID: 12237230 DOI: 10.1016/s0162-0134(02)00463-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The redox active iron-sulfur center of bovine adrenodoxin is coordinated by four cysteine residues in positions 46, 52, 55 and 92 and is covered by a loop containing the residues Glu-47, Gly-48, Thr-49, Leu-50 and Ala-51. In plant-type [2Fe-2S] ferredoxins, the corresponding loop consists of only four amino acids. The loop is positioned at the surface of the proteins and forms a boundary separating the [2Fe-2S] cluster from solvent. In order to analyze the biological function of the five amino acids of the loop in adrenodoxin (Adx) for this electron transfer protein each residue was deleted by site-directed mutagenesis. The resulting five recombinant Adx variants show dramatic differences among each other regarding their spectroscopic characteristics and functional properties. The redox potential is affected differently depending on the position of the conducted deletion. In contrast, all mutations in the protein loop influence the binding to the redox partners adrenodoxin reductase (AdR) and cytochrome P450(scc) (CYP11A1) indicating the importance of this loop for the physiological function of this iron--sulfur protein.
Collapse
Affiliation(s)
- Andy Zöllner
- Naturwissenschaftlich-Technische Fakultät III, Fachrichtung 8.8--Biochemie, Universität des Saarlandes, P.O. Box 15 11 50, D-66041, Saarbrücken, Germany
| | | | | | | |
Collapse
|
19
|
Hannemann F, Bera AK, Fischer B, Lisurek M, Teuchner K, Bernhardt R. Unfolding and conformational studies on bovine adrenodoxin probed by engineered intrinsic tryptophan fluorescence. Biochemistry 2002; 41:11008-16. [PMID: 12206673 DOI: 10.1021/bi020450z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An intrinsic steady-state fluorescent system for bovine adrenodoxin has been developed to study the protein structure in solution and the processes involved in protein unfolding. Since mature Adx contains no natural Trp residue as internal probe, all of the aromatic amino acids, tyrosine at position 82 and four phenylalanines at positions 11, 43, 59 and 64, were at each case replaced by tryptophan. The resulting single tryptophan containing mutants kept their biological function compared with the wild type. Molecular modeling studies verify thermal unfolding experiments which point to a dramatically reduced stability caused by steric hindrance only for mutant F59W. Fluorescence spectra, Stern-Volmer quenching constants, and fluorescence energy transfer calculations indicated the analyzed positions to be situated in solution in the same immediate environment as in the crystal structure. Unfolding experiments with Gdn-HCl and time-resolved stopped-flow measurements provide evidence for differential stability and a chronologically ordered unfolding mechanism of the different fluorescence probe positions in the protein.
Collapse
Affiliation(s)
- Frank Hannemann
- FR 8.8 Biochemie, Universität des Saarlandes, D-66041 Saarbrücken, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Grinberg AV, Bernhardt R. Contribution of a salt bridge to the thermostability of adrenodoxin determined by site-directed mutagenesis. Arch Biochem Biophys 2001; 396:25-34. [PMID: 11716458 DOI: 10.1006/abbi.2001.2556] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We identified a unique conserved salt bridge Arg89-Glu74 inside the protein core of adrenodoxin, which ensures proper orientation between the [2Fe-2S] cluster-containing domain and the recognition helix. Incorporation and geometry of the redox center were essentially preserved in the mutants E74D, R89A, and R89K as judged by EPR spectroscopy. However, absorption and CD spectra pointed out essential conformational changes in the protein vicinity of the [2Fe-2S] cluster. Judged by essentially increased K(m) and K(d) values and changed redox properties, mutations resulted in displacement of the recognition helix and hindered proper docking of the protein with both adrenodoxin reductase and CYP11A1. Substitutions of Arg89 and Glu74 induce thermodynamic destabilization attested by dramatically decreased unfolding temperature (T(d)) and enthalpy (Delta(d)H(T(d))). The heat capacity change of denaturation (Delta(d)C(p)) was significantly decreased for the mutants, suggesting that parts of the polypeptide chain normally hidden inside the protein core are exposed to the solvent in these variants.
Collapse
Affiliation(s)
- A V Grinberg
- Fachrichtung 8.8-Biochemie, Universität des Saarlandes, Saarbrücken, D-66041, Germany
| | | |
Collapse
|
21
|
Schiffler B, Kiefer M, Wilken A, Hannemann F, Adolph HW, Bernhardt R. The interaction of bovine adrenodoxin with CYP11A1 (cytochrome P450scc) and CYP11B1 (cytochrome P45011beta ). Acceleration of reduction and substrate conversion by site-directed mutagenesis of adrenodoxin. J Biol Chem 2001; 276:36225-32. [PMID: 11459837 DOI: 10.1074/jbc.m102320200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The kinetics of protein-protein interaction and heme reduction between adrenodoxin wild type as well as eight mutants and the cytochromes P450 CYP11A1 and CYP11B1 was studied in detail. Rate constants for the formation of the reduced CYP11A1.CO and CYP11B1.CO complexes by wild type adrenodoxin, the adrenodoxin mutants Adx-(4-108), Adx-(4-114), T54S, T54A, and S112W, and the double mutants Y82F/S112W, Y82L/S112W, and Y82S/S112W (the last four mutants are Delta113-128) are presented. The rate constants observed differ by a factor of up to 10 among the respective adrenodoxin mutants for CYP11A1 but not for CYP11B1. According to their apparent rate constants for CYP11A1, the adrenodoxin mutants can be grouped into a slow (wild type, T54A, and T54S) and a fast group (all the other mutants). The adrenodoxin mutants forming the most stable complexes with CYP11A1 show the fastest rates of reduction and the highest rate constants for cholesterol to pregnenolone conversion. This strong correlation suggests that C-terminal truncation of adrenodoxin in combination with the introduction of a C-terminal tryptophan residue enables a modified protein-protein interaction rendering the system almost as effective as the bacterial putidaredoxin/CYP101 system. Such a variation of the adrenodoxin structure resulted in a mutant protein (S112W) showing a 100-fold increased efficiency in conversion of cholesterol to pregnenolone.
Collapse
Affiliation(s)
- B Schiffler
- Universität des Saarlandes, FR 8.8 Biochemie, P.O. Box 151150, D-66041 Saarbrücken, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Iametti S, Bera AK, Vecchio G, Grinberg A, Bernhardt R, Bonomi F. GroEL-assisted refolding of adrenodoxin during chemical cluster insertion. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:2421-9. [PMID: 11298762 DOI: 10.1046/j.1432-1327.2001.02130.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chemical reconstitution of recombinant bovine adrenal mitochondrial apoadrenodoxin was carried out in the presence of the nonhomologous chaperone protein GroEL and of the cochaperone GroES, both in the presence and in the absence of ATP. The approach used here was different from the one characterizing studies on chaperone activity, as we used an adrenodoxin apoprotein, devoid of the cluster iron and sulfide, rather than a denaturant-unfolded form of the protein, and catalytic amounts of the chaperone proteins. A possible scaffolding role for two bacterial sulfur transferases, namely, rhodanese from Azotobacter vinelandii and a rhodanese-like sulfurtransferase from Escherichia coli, was also investigated in the absence of the enzyme substrates. The extent and the rate of adrenodoxin refolding following cluster insertion was measured by spectroscopy and by monitoring the activity recovery in a NADPH-cytochrome c reduction assay. These measurements were carried out on the unresolved reaction mixture and on the adrenodoxin-containing fraction obtained by HPLC fractionation of the reconstitution mixture at different reaction times. The rate and extent of cluster insertion and activity recovery were substantially improved by addition of GroEL and increased with increasing the GroEL/apoadrenodoxin ratio. GroES and ATP had no effect by themselves, and did not enhance the effect of GroEL. A. vinelandii rhodanese, the E. coli sulfurtransferase, and bovine serum albumin had no effect on the rate and yield of chemical reconstitution. The accelerated chemical reconstitution of apoadrenoxin in the presence of GroEL is therefore attributable to a scaffolding effect of this protein.
Collapse
Affiliation(s)
- S Iametti
- Dipartimento di Scienze Molecolari Agroalimentari, University of Milan, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Vassilieva EV, Antonkine ML, Zybailov BL, Yang F, Jakobs CU, Golbeck JH, Bryant DA. Electron transfer may occur in the chlorosome envelope: the CsmI and CsmJ proteins of chlorosomes are 2Fe-2S ferredoxins. Biochemistry 2001; 40:464-73. [PMID: 11148041 DOI: 10.1021/bi001917d] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chlorosomes of the green sulfur bacterium Chlorobium tepidum have previously been shown to contain at least 10 polypeptides [Chung, S., Frank, G., Zuber, H., and Bryant, D. A. (1994) Photosynth. Res. 41, 261-275]. Based upon the N-terminal amino acid sequences determined for two of these proteins, the corresponding genes were isolated using degenerate oligonucleotide hybridization probes. The csmI and csmJ genes encode proteins of 244 and 225 amino acids, respectively. A third gene, denoted csmX, that predicts a protein of 221 amino acids with strong sequence similarity to CsmI and CsmJ, was found to be encoded immediately upstream from the csmJ gene. All three proteins have strong sequence similarity in their amino-terminal domains to [2Fe-2S] ferredoxins of the adrenodoxin/putidaredoxin subfamily of ferredoxins. CsmI and CsmJ were overproduced in Escherichia coli, and both proteins were shown by EPR spectroscopy to contain iron-sulfur clusters. The g-tensor and relaxation properties are consistent with their assignment as [2Fe-2S] clusters. Isolated chlorosomes were also shown to contain [2Fe-2S] clusters whose properties were similar to those of the recombinant CsmI and CsmJ proteins. Redox titration of isolated chlorosomes showed these clusters to have potentials of about -201 and +92 mV vs SHE. The former potential is similar to that measured by redox titration of the clusters in inclusion bodies of CsmJ. Possible roles for these iron-sulfur proteins in electron transport and light harvesting are discussed.
Collapse
Affiliation(s)
- E V Vassilieva
- Department of Biochemistry and Molecular Biology and Center for Biomolecular Structure and Function, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Hannemann F, Rottmann M, Schiffler B, Zapp J, Bernhardt R. The loop region covering the iron-sulfur cluster in bovine adrenodoxin comprises a new interaction site for redox partners. J Biol Chem 2001; 276:1369-75. [PMID: 11013256 DOI: 10.1074/jbc.m007589200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The amino acid in position 49 in bovine adrenodoxin is conserved among vertebrate [2Fe-2S] ferredoxins as hydroxyl function. A corresponding residue is missing in the cluster-coordinating loop of plant-type [2Fe-2S] ferredoxins. To probe the function of Thr-49 in a vertebrate ferredoxin, replacement mutants T49A, T49S, T49L, and T49Y, and a deletion mutant, T49Delta, were generated and expressed in Escherichia coli. CD spectra of purified proteins indicate changes of the [2Fe-2S] center geometry only for mutant T49Delta, whereas NMR studies reveal no transduction of structural changes to the interaction domain. The redox potential of T49Delta (-370 mV) is lowered by approximately 100 mV compared with wild type adrenodoxin and reaches the potential range of plant-type ferredoxins (-305 to -455 mV). Substitution mutants show moderate changes in the binding affinity to the redox partners. In contrast, the binding affinity of T49Delta to adrenodoxin reductase and cytochrome P-450 11A1 (CYP11A1) is dramatically reduced. These results led to the conclusion that Thr-49 modulates the redox potential in adrenodoxin and that the cluster-binding loop around Thr-49 represents a new interaction region with the redox partners adrenodoxin reductase and CYP11A1. In addition, variations of the apparent rate constants of all mutants for CYP11A1 reduction indicate the participation of residue 49 in the electron transfer pathway between adrenodoxin and CYP11A1.
Collapse
Affiliation(s)
- F Hannemann
- Fachrichtung 8.8 Biochemie, and Fachrichtung 8.7 Pharmakognosie und Analytische Phytochemie, Universität des Saarlandes, D-66041 Saarbrücken, Germany
| | | | | | | | | |
Collapse
|
25
|
Coenzymes of Oxidation—Reduction Reactions. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Metzler DE, Metzler CM, Sauke DJ. Transition Metals in Catalysis and Electron Transport. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Grinberg AV, Hannemann F, Schiffler B, Müller J, Heinemann U, Bernhardt R. Adrenodoxin: structure, stability, and electron transfer properties. Proteins 2000; 40:590-612. [PMID: 10899784 DOI: 10.1002/1097-0134(20000901)40:4<590::aid-prot50>3.0.co;2-p] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Adrenodoxin is an iron-sulfur protein that belongs to the broad family of the [2Fe-2S]-type ferredoxins found in plants, animals and bacteria. Its primary function as a soluble electron carrier between the NADPH-dependent adrenodoxin reductase and several cytochromes P450 makes it an irreplaceable component of the steroid hormones biosynthesis in the adrenal mitochondria of vertebrates. This review intends to summarize current knowledge about structure, function, and biochemical behavior of this electron transferring protein. We discuss the recently solved first crystal structure of the vertebrate-type ferredoxin, the truncated adrenodoxin Adx(4-108), that offers the unique opportunity for better understanding of the structure-function relationships and stabilization of this protein, as well as of the molecular architecture of [2Fe-2S] ferredoxins in general. The aim of this review is also to discuss molecular requirements for the formation of the electron transfer complex. Essential comparison between bacterial putidaredoxin and mammalian adrenodoxin will be provided. These proteins have similar tertiary structure, but show remarkable specificity for interactions only with their own cognate cytochrome P450. The discussion will be largely centered on the protein-protein recognition and kinetics of adrenodoxin dependent reactions.
Collapse
Affiliation(s)
- A V Grinberg
- Naturwissenschaftlich-Technische Fakultät III, Fachrichtung 8.8 - Biochemie, Universität des Saarlandes, Saarbrücken, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Müller JJ, Müller A, Rottmann M, Bernhardt R, Heinemann U. Vertebrate-type and plant-type ferredoxins: crystal structure comparison and electron transfer pathway modelling. J Mol Biol 1999; 294:501-13. [PMID: 10610775 DOI: 10.1006/jmbi.1999.3253] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Crystallographic analysis of a fully functional, truncated bovine adrenodoxin, Adx(4-108), has revealed the structure of a vertebrate-type [2Fe-2S] ferredoxin at high resolution. Adrenodoxin is involved in steroid hormone biosythesis in adrenal gland mitochondria by transferring electrons from adrenodoxin reductase to different cytochromes P450. Plant-type [2Fe-2S] ferredoxins interact with photosystem I and a diverse set of reductases.A systematic structural comparison of Adx(4-108) with plant-type ferredoxins which share about 20 % sequence identity yields these results. (1) The ferredoxins of both types are partitioned into a large, strictly conserved core domain bearing the [2Fe-2S] cluster and a smaller interaction domain which is structurally different for both subfamilies. (2) In both types, residues involved in interactions with reductase are located at similar positions on the molecular surface and coupled to the [2Fe-2S] cluster via structurally equivalent hydrogen bonds. (3) The accessibility of the [2Fe-2S] cluster differs between Adx(4-108) and the plant-type ferredoxins where a solvent funnel leads from the surface to the cluster. (4) All ferredoxins are negative monopoles with a clear charge separation into two compartments, and all resulting dipoles but one point into a narrow cone located in between the interaction domain and the [2Fe-2S] cluster, possibly controlling predocking movements during interactions with redox partners. (5) Model calculations suggest that FE1 is the origin of electron transfer pathways to the surface in all analyzed [2Fe-2S] ferredoxins and that additional transfer probability for electrons tunneling from the more buried FE2 to the cysteine residue in position 92 of Adx is present in some.
Collapse
Affiliation(s)
- J J Müller
- Forschungsgruppe Kristallographie, Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Str. 10, Berlin, D-13092, Germany.
| | | | | | | | | |
Collapse
|
29
|
Sagara Y, Watanabe Y, Kodama H, Aramaki H. cDNA cloning, overproduction and characterization of rat adrenodoxin reductase. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1434:284-95. [PMID: 10525147 DOI: 10.1016/s0167-4838(99)00180-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We isolated a full-length cDNA clone for rat adrenodoxin reductase (AdR). The precursor of rat AdR was predicted to consist of 34 amino-terminal residues of extrapeptide for transport into mitochondria and the following 460 residues of the mature peptide region. The deduced amino acid sequence was 70.8 and 61.8% homologous to those of bovine and human AdRs in the extrapeptide region, respectively, and 88.5% homologous to both the sequences of bovine and human AdRs in the mature peptide region. The predicted mature form of rat AdR was directly expressed in Escherichia coli, using cDNA, and was purified with a yield of 32 mg/l of culture. The purified recombinant rat AdR showed an absorption spectrum characteristic of a flavoprotein with peaks at 270, 378 and 450 nm and shoulders at 280, 425 and 474 nm. The extinction coefficient was estimated to be 10.9 mM(-1) cm(-1) at 450 nm. The absorbance ratio at 270 nm/450 nm was 7.1. From the θ(208) value in the circular dichroism spectrum, the alpha-helix content in the rat AdR was calculated to be 30%. In NADPH-cytochrome c reductase activity reconstituted with adrenodoxin (Ad), the apparent K(m) value of rat AdR for NADPH was 0.32 microM, a value significantly lower than that of bovine AdR (1.4 microM). The rat AdR showed a higher affinity to the heterologous redox partner (bovine Ad, K(m)=9.3 nM) than to the native partner (rat Ad, K(m)=16.7 nM), whereas the affinity of bovine AdR was slightly higher to the native partner (bovine Ad, K(m)=37.1 nM) than to the heterologous partner (rat Ad, K(m)=46.8 nM). The K(m) values showed a reverse correlation to the difference of pI values between the redox partners. These results indicate that AdR binds to Ad mainly by ionic interaction.
Collapse
Affiliation(s)
- Y Sagara
- Department of Medical Biology, Kochi Medical School, Oko-cho, Nankoku, Kochi, Japan
| | | | | | | |
Collapse
|
30
|
Lehnerer M, Schulze J, Bernhardt R, Hlavica P. Some properties of mitochondrial adrenodoxin associated with its nonconventional electron donor function toward rabbit liver microsomal cytochrome P450 2B4. Biochem Biophys Res Commun 1999; 254:83-7. [PMID: 9920736 DOI: 10.1006/bbrc.1998.9889] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondrial adrenodoxin (Adx) was found to cross-react with microsomal cytochrome P450 2B4 (CYP2B4) as the terminal electron acceptor. When compared with NADPH-cytochrome P450 reductase (P450R), the natural redox partner of CYP2B4, Adx was less efficient both in transferring the first electron and in coupling the system. The ferredoxin yielded an unusual reverse type I spectral change with low-spin CYP2B4, which underwent transformation to a typical type I optical perturbation upon deletion of the signal anchor sequence (Delta2-27) of the hemoprotein. Truncation of CYP2B4 slightly fostered electron transfer from Adx, but was deleterious to reduction of the engineered isozyme by P450R. Addition of manganese-substituted cytochrome b5, which failed to serve as an electron donor to CYP2B4, augmented the amount of hemoprotein existing in form of a low-spin complex with Adx and affected the ferredoxin-dependent reduction kinetics through causing a proportional rise in both Km and Vmax. Conservative replacement of Asp-76 with glutamate in the Adx molecule was associated with a drastic drop in reductive efficiency toward CYP2B4, while spectral binding of the mutant to the hemoprotein was marginally changed. The results support the concept of an evolutionary relationship between the various cytochrome P450 forms as regards the conservation of surface regions participating in contacts with heterologous donor proteins.
Collapse
Affiliation(s)
- M Lehnerer
- Walther-Straub-Institut für Pharmakologie und Toxikologie der LMU, Nussbaumstrasse 26, München, D-80336, Germany
| | | | | | | |
Collapse
|
31
|
Jin W, Wollenberger U, Bernhardt R, Stöcklein WF, Scheller FW. Direct electron transfer of adrenodoxin—a [2Fe–2S] protein—and its mutants at modified gold electrode. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0302-4598(98)00187-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Goder V, Beckert V, Pfeil W, Bernhardt R. Impact of the presequence of a mitochondrium-targeted precursor, preadrenodoxin, on folding, catalytic activity, and stability of the protein in vitro. Arch Biochem Biophys 1998; 359:31-41. [PMID: 9799557 DOI: 10.1006/abbi.1998.0873] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bovine preadrenodoxin, an adrenocortical precursor protein destined for mitochondrial import, was expressed in Escherichia coli as an [2Fe-2S] cluster-containing protein. It was found in inclusion bodies, purified from there, and finally reconstituted to obtain soluble holo-protein. The impact of the presequence on folding of the protein using biochemical and biophysical approaches has been investigated. Upon unfolding the preprotein reveals a decrease in the denaturational enthalpy and heat capacity compared with mature adrenodoxin, indicating an incomplete unfolding of the preprotein with remaining residual structure. Moreover, the data obtained show that the presequence is solvent exposed in aqueous solution with no preference for secondary structure elements and that it does not disturb the accurate folding of the mature part of the protein. The latter conclusion is also based on the finding that the precursor in vitro exhibits electron transfer function comparable to the mature protein, adrenodoxin. While the reduction of cytochrome c, reflecting the interaction between adrenodoxin and its reductase, and the interaction with CYP11B1 have not been significantly affected by the presence of the presequence, the binding affinity of preadrenodoxin to CYP11A1 is 5.5-fold lower than that of the mature form.
Collapse
Affiliation(s)
- V Goder
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Strasse 10, Berlin-Buch, D-13125, Germany
| | | | | | | |
Collapse
|
33
|
Lacour T, Achstetter T, Dumas B. Characterization of recombinant adrenodoxin reductase homologue (Arh1p) from yeast. Implication in in vitro cytochrome p45011beta monooxygenase system. J Biol Chem 1998; 273:23984-92. [PMID: 9727014 DOI: 10.1074/jbc.273.37.23984] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian electron transfer chain of mitochondrial cytochrome P450 forms involved in steroidogenesis includes very specific proteins, namely adrenodoxin reductase and adrenodoxin. Adrenodoxin reductase transfers electrons from NADPH to adrenodoxin, which subsequently donates them to the cytochrome P450 forms. The Saccharomyces cerevisiae ARH1 gene product (Arh1p) presents homology to mammalian adrenodoxin reductase. We demonstrate the capacity of recombinant Arh1p, made in Escherichia coli, to substitute for its mammalian homologue in ferricyanide, cytochrome c reduction, and, more importantly, in vitro 11beta-hydroxylase assays. Electrons could be transferred from NADPH and NADH as measured in the cytochrome c reduction assay. Apparent Km values were determined to be 0.5, 0.6, and 0.1 microM for NADPH, NADH, and bovine adrenodoxin, respectively. These values differ slightly from those of mammalian adrenodoxin reductase, except for NADH, which is a very poor electron donor to the mammalian protein. Subcellular fractionation studies have localized Arh1p to the inner membrane of yeast mitochondria. The biological function of Arh1p remains unknown, and to date, no mitochondrial cytochrome P450 has been identified. ARH1 is, however, essential for yeast viability because an ARH1 gene disruption is lethal not only in aerobic growth conditions but also, surprisingly enough, during fermentation.
Collapse
Affiliation(s)
- T Lacour
- Biotechnology Department, Hoechst Marion Roussel, 102 route de Noisy, 93230 Romainville, France
| | | | | |
Collapse
|
34
|
Weber-Main AM, Hurley JK, Cheng H, Xia B, Chae YK, Markley JL, Martinez-Júlvez M, Gomez-Moreno C, Stankovich MT, Tollin G. An electrochemical, kinetic, and spectroscopic characterization of [2Fe-2S] vegetative and heterocyst ferredoxins from Anabaena 7120 with mutations in the cluster binding loop. Arch Biochem Biophys 1998; 355:181-8. [PMID: 9675025 DOI: 10.1006/abbi.1998.0743] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Residues within the cluster binding loops of plant-type [2Fe-2S] ferredoxins are highly conserved and serve to structurally stabilize this unique region of the protein. We have investigated the influence of these residues on the thermodynamic reduction potentials and rate constants of electron transfer to ferredoxin:NADP+ reductase (FNR) by characterizing various single and multiple site-specific mutants of both the vegetative (VFd) and the heterocyst (HFd) [2Fe-2S] ferredoxins from Anabaena. Incorporation of residues from one isoform into the polypeptide backbone of the other created hybrid mutants whose reduction potentials either were not significantly altered or were shifted, but did not reconcile the 33-mV potential difference between VFd and HFd. The reduction potential of VFd appears relatively insensitive to mutations in the binding loop, excepting nonconservative variations at position 78 (T78A/I) which resulted in approximately 40- to 50-mV positive shifts compared to wild type. These perturbations may be linked to the role of the T78 side chain in stabilizing an ordered water channel between the iron-sulfur cluster and the surface of the wild-type protein. While no thermodynamic barrier to electron transfer to FNR is created by these potential shifts, the electron-transfer reactivities of mutants T78A/I (as well as T48A which has a wild-type-like potential) are reduced to approximately 55-75% that of wild type. These studies suggest that residues 48 and 78 are involved in the pathway of electron transfer between VFd and FNR and/or that mutations at these positions induce a unique, but unproductive orientation of the two proteins within the protein-protein complex.
Collapse
Affiliation(s)
- A M Weber-Main
- Department of Chemistry, University of Minnesota, Minneapolis 55455, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Xiao Z, Lavery MJ, Ayhan M, Scrofani SDB, Wilce MCJ, Guss JM, Tregloan PA, George GN, Wedd AG. The Rubredoxin from Clostridium pasteurianum: Mutation of the Iron Cysteinyl Ligands to Serine. Crystal and Molecular Structures of Oxidized and Dithionite-Treated Forms of the Cys42Ser Mutant. J Am Chem Soc 1998. [DOI: 10.1021/ja973162c] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhiguang Xiao
- Contribution from the School of Chemistry, University of Melbourne, Parkville, Victoria 3052, Australia, Department of Biochemistry, University of Sydney, Sydney, New South Wales 2006, Australia, and Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, P.O. Box 4349, MS 69, Stanford, California 94309
| | - Megan J. Lavery
- Contribution from the School of Chemistry, University of Melbourne, Parkville, Victoria 3052, Australia, Department of Biochemistry, University of Sydney, Sydney, New South Wales 2006, Australia, and Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, P.O. Box 4349, MS 69, Stanford, California 94309
| | - Mustafa Ayhan
- Contribution from the School of Chemistry, University of Melbourne, Parkville, Victoria 3052, Australia, Department of Biochemistry, University of Sydney, Sydney, New South Wales 2006, Australia, and Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, P.O. Box 4349, MS 69, Stanford, California 94309
| | - Sergio D. B. Scrofani
- Contribution from the School of Chemistry, University of Melbourne, Parkville, Victoria 3052, Australia, Department of Biochemistry, University of Sydney, Sydney, New South Wales 2006, Australia, and Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, P.O. Box 4349, MS 69, Stanford, California 94309
| | - Matthew C. J. Wilce
- Contribution from the School of Chemistry, University of Melbourne, Parkville, Victoria 3052, Australia, Department of Biochemistry, University of Sydney, Sydney, New South Wales 2006, Australia, and Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, P.O. Box 4349, MS 69, Stanford, California 94309
| | - J. Mitchell Guss
- Contribution from the School of Chemistry, University of Melbourne, Parkville, Victoria 3052, Australia, Department of Biochemistry, University of Sydney, Sydney, New South Wales 2006, Australia, and Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, P.O. Box 4349, MS 69, Stanford, California 94309
| | - Peter A. Tregloan
- Contribution from the School of Chemistry, University of Melbourne, Parkville, Victoria 3052, Australia, Department of Biochemistry, University of Sydney, Sydney, New South Wales 2006, Australia, and Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, P.O. Box 4349, MS 69, Stanford, California 94309
| | - Graham N. George
- Contribution from the School of Chemistry, University of Melbourne, Parkville, Victoria 3052, Australia, Department of Biochemistry, University of Sydney, Sydney, New South Wales 2006, Australia, and Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, P.O. Box 4349, MS 69, Stanford, California 94309
| | - Anthony G. Wedd
- Contribution from the School of Chemistry, University of Melbourne, Parkville, Victoria 3052, Australia, Department of Biochemistry, University of Sydney, Sydney, New South Wales 2006, Australia, and Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, P.O. Box 4349, MS 69, Stanford, California 94309
| |
Collapse
|
36
|
Müller A, Müller JJ, Muller YA, Uhlmann H, Bernhardt R, Heinemann U. New aspects of electron transfer revealed by the crystal structure of a truncated bovine adrenodoxin, Adx(4-108). Structure 1998; 6:269-80. [PMID: 9551550 DOI: 10.1016/s0969-2126(98)00031-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Adrenodoxin (Adx) is a [2Fe-2S] ferredoxin involved in steroid hormone biosynthesis in the adrenal gland mitochondrial matrix of mammals. Adx is a small soluble protein that transfers electrons from adrenodoxin reductase (AR) to different cytochrome P450 isoforms where they are consumed in hydroxylation reactions. A crystallographic study of Adx is expected to reveal the structural basis for an important electron transfer reaction mediated by a vertebrate [2Fe-2S] ferredoxin. RESULTS The crystal structure of a truncated bovine adrenodoxin, Adx(4-108), was determined at 1.85 A resolution and refined to a crystallographic R value of 0.195. The structure was determined using multiple wavelength anomalous dispersion phasing techniques, making use of the iron atoms in the [2Fe-2S] cluster of the protein. The protein displays the compact (alpha + beta) fold typical for [2Fe-2S] ferredoxins. The polypeptide chain is organized into a large core domain and a smaller interaction domain which comprises 35 residues, including all those previously determined to be involved in binding to AR and cytochrome P450. A small interdomain motion is observed as a structural difference between the two independent molecules in the asymmetric unit of the crystal. Charged residues of Adx(4-108) are clustered to yield a strikingly asymmetric electric potential of the protein molecule. CONCLUSIONS The crystal structure of Adx(4-108) provides the first detailed description of a vertebrate [2Fe-2S] ferredoxin and serves to explain a large body of biochemical studies in terms of a three-dimensional structure. The structure suggests how a change in the redox state of the [2Fe-2S] cluster may be coupled to a domain motion of the protein. It seems likely that the clearly asymmetric charge distribution on the surface of Adx(4-108) and the resulting strong molecular dipole are involved in electrostatic steering of the interactions with AR and cytochrome P450.
Collapse
Affiliation(s)
- A Müller
- Forschungsgruppe Kristallographie, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Kümmerle R, Zhuang-Jackson H, Gaillard J, Moulis JM. Site-directed mutagenesis of rubredoxin reveals the molecular basis of its electron transfer properties. Biochemistry 1997; 36:15983-91. [PMID: 9398333 DOI: 10.1021/bi971636e] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Rubredoxins contain a single non-heme iron atom coordinated by four cysteines. This iron is redox active and confers a role to these proteins in electron transfer chains. The structural features responsible for setting the values of the reduction potential and of the electron self-exchange rate constant have been probed by site-directed mutagenesis. Replacements of the highly conserved residues in positions 8, 10, and 11 (valine, glycine, and tyrosine, respectively) all lead to shifts of the reduction potential, up to 75 mV. These cannot be explained by simple considerations about the physicochemical properties of the substituting side chains but rather indicate that the value of the reduction potential is finely tuned by a variety of interactions. In contrast, the electron self exchange rate constant measured by nuclear magnetic resonance does not vary much, except when a charged residue is included in position 8 or 10, at the surface of the protein closest to the iron atom. Analysis of the data with a model for electrostatic interactions, including both monopolar and dipolar terms, indicates that the presence of a charge in this region not only increases the repulsion between molecules but also affects the electron transfer efficiency of the bimolecular complexes formed. The studies presented constitute a first step toward probing the structural elements modulating the reactivity of the FeS4 unit in a protein and defining the electron transfer active site(s) of rubredoxin.
Collapse
Affiliation(s)
- R Kümmerle
- CEA, Département de Recherche Fondamentale sur la Matière Condens-ee, SCIB/SCPM, 38054 Grenoble Cedex 9, France
| | | | | | | |
Collapse
|
38
|
Uhlmann H, Iametti S, Vecchio G, Bonomi F, Bernhardt R. Pro108 is important for folding and stabilization of adrenal ferredoxin, but does not influence the functional properties of the protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:897-902. [PMID: 9342244 DOI: 10.1111/j.1432-1033.1997.00897.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The truncated mutant Met-adrenodoxin-(4-107)-peptide of bovine adrenal ferredoxin was expressed as apoprotein in Escherichia coli BL21 and could be reconstituted to the holoform by chemical or enzymatic methods. The reconstituted protein had spectroscopic, functional and redox properties similar to the Met-adrenodoxin-(4-108)-peptide of adrenal ferredoxin, into which the cluster was inserted upon expression in the same Escherichia coli strain. Rate of in vitro cluster insertion into the Met-adrenodoxin-(4-107) apoprotein was much lower than for the Met-adrenodoxin-(4-108) apoprotein under identical conditions. Comparative thermodynamic studies with the Met-adrenodoxin-(4-108)-peptide indicated that removal of Pro108 resulted in an extensive decrease of the overall stability of the protein in either oxidation state. The Met-adrenodoxin-(4-107)-peptide showed a higher sensitivity to urea denaturation and had a sensibly lower denaturation temperature, 44.8 degrees C, compared with 51.7 degrees C for mutant Met-adrenodoxin-(4-108). The stability of the reduced state of both mutants is slightly lower than that of the oxidized state indicating that this protein region does not undergo major structural changes upon reduction.
Collapse
Affiliation(s)
- H Uhlmann
- Fachbereich Pharmazie und Umwelttechnologie, Fachrichtung Biochemie, Universität des Saarlandes, Saarbrücken, Germany
| | | | | | | | | |
Collapse
|
39
|
Beckert V, Bernhardt R. Specific aspects of electron transfer from adrenodoxin to cytochromes p450scc and p45011beta. J Biol Chem 1997; 272:4883-8. [PMID: 9030546 DOI: 10.1074/jbc.272.8.4883] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
An analysis of the electron transfer kinetics from the reduced [2Fe-2S] center of bovine adrenodoxin and its mutants to the natural electron acceptors, cytochromes P450scc and P45011beta, is the primary focus of this paper. A series of mutant proteins with distinctive structural parameters such as redox potential, microenvironment of the iron-sulfur cluster, electrostatic properties, and conformational stability was used to provide more detailed insight into the contribution of the electronic and conformational states of adrenodoxin to the driving forces of the complex formation of reduced adrenodoxin with cytochromes P450scc and P45011beta and electron transfer. The apparent rate constants of P450scc reduction were generally proportional to the adrenodoxin redox potential under conditions in which the protein-protein interactions were not affected. However, the effect of redox potential differences was shown to be masked by structural and electrostatic effects. In contrast, no correlation of the reduction rates of P45011beta with the redox potential of adrenodoxin mutants was found. Compared with the interaction with P450scc, however, the hydrophobic protein region between the iron-sulfur cluster and the acidic site on the surface of adrenodoxin seems to play an important role for precise complementarity in the tightly associated complex with P45011beta.
Collapse
Affiliation(s)
- V Beckert
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle Strasse 10, D-13125 Berlin-Buch, Germany
| | | |
Collapse
|
40
|
Abstract
Mitochondrial monooxygenase systems are involved in the biosynthesis of glucocorticoids, mineralocorticoids, bile acids, and 1,25-dihydroxyvitamin D. The reactions are catalyzed by specific P450 enzymes that receive reducing equivalents via NADPH-ferredoxin oxidoreductase (adrenodoxin reductase) and ferredoxin (adrenodoxin). Although the three-dimensional structures of the individual components have not yet been solved, methods of expressing recombinant forms of these enzymes in Escherichia coli have allowed the use of site-directed mutagenesis to investigate the roles of specific amino acids in protein binding interactions, electron transfer, and catalysis. These studies have identified key charged residues in NADPH-ferredoxin oxidoreductase, ferredoxin, and P450scc, which are involved in electrostatic interactions critical for recognition, high-affinity binding, and electron transfer. The finding that the binding sites on ferredoxin for NADPH-ferredoxin oxidoreductase and P450 show significant overlap supports the proposed function for ferredoxin as a mobile electron shuttle between the reductase and P450 enzymes and is consistent with ferredoxin's role in serving multiple P450 isoforms.
Collapse
Affiliation(s)
- L E Vickery
- Department of Physiology and Biophysics, University of California, Irvine 92697-4560, USA
| |
Collapse
|
41
|
Burova TV, Beckert V, Uhlmann H, Ristau O, Bernhardt R, Pfeil W. Conformational stability of adrenodoxin mutant proteins. Protein Sci 1996; 5:1890-7. [PMID: 8880913 PMCID: PMC2143542 DOI: 10.1002/pro.5560050915] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Adrenodoxin and the mutants at the positions T54, H56, D76, Y82, and C95, as well as the deletion mutants 4-114 and 4-108, were studied by high-sensitivity scanning microcalorimetry, limited proteolysis, and absorption spectroscopy. The mutants show thermal transition temperatures ranging from 46 to 56 degrees C, enthalpy changes from 250 to 370 kJ/mol, and heat capacity change delta Cp = 7.28 +/- 0.67 kJ/mol/K, except H56R. The amino acid replacement H56R produces substantial local changes in the region around positions 56 and Y82, as indicated by reduced heat capacity change (delta Cp = 4.29 +/- 0.37 kJ/mol/K) and enhanced fluorescence. Deletion mutant 4-108 is apparently more stable than the wild type, as judged by higher specific denaturation enthalpy and resistance toward proteolytic degradation. No simple correlation between conformational stability and functional properties could be found.
Collapse
Affiliation(s)
- T V Burova
- Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
42
|
Iametti S, Uhlmann H, Sala N, Bernhardt R, Ragg E, Bonomi F. Reversible, non-denaturing metal substitution in bovine adrenodoxin and spinach ferredoxin and the different reactivities of [2Fe-2S]-cluster-containing proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 239:818-26. [PMID: 8774731 DOI: 10.1111/j.1432-1033.1996.0818u.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The non-denaturing substitution of cluster iron by other metals was studied in spinach ferredoxin and in bovine adrenodoxin. Only some of several metal species tested (Cd2+, Zn2+, VO2+, Mn2+, Co2+, Ni2+) caused bleaching of the residual visible absorbance and of the EPR signals of the reduced ferredoxins. No formation of mixed-metal cluster was observed. The most reactive metal species were Cd2+ and Zn2+ and Cd2+ was found to react also with oxidized adrenodoxin. Metal-treated proteins were resolved into a mixture of apoprotein, metal-substituted protein and unreacted holoprotein. Their biological activity was proportional to the residual holoprotein concentration. Spinach ferredoxin and adrenodoxin were found to differ substantially with regard to their metal-substitution reactivity under oxidizing and reducing conditions, reaction time, and formation of apoprotein, which was more pronounced for spinach ferredoxin. Exchange of cluster iron with Cd2+ in adrenodoxin generated stable species containing 2 mol sulfide/mol protein and 2 or 5 mol cadmium/mol protein, respectively. The relative amount of the two substitution products depended on the experimental conditions. CD and NMR data on all the cadmium-substituted proteins suggest that iron replacement led to a significant structural rearrangement. Nevertheless, all the metal-substituted proteins could be re-converted into the native iron-containing form upon incubation with iron in the absence of reductants, of denaturing agents, and of an external source of sulfide. The different reactivity of the two proteins is discussed in terms of the cluster environment, along with the possible physiological relevance of these findings.
Collapse
Affiliation(s)
- S Iametti
- Dipartimento di Scienze Molecolari Agroalimentari, University of Milan, Italy
| | | | | | | | | | | |
Collapse
|