1
|
Baeuml SW, Biechl D, Wullimann MF. Adult islet1 Expression Outlines Ventralized Derivatives Along Zebrafish Neuraxis. Front Neuroanat 2019; 13:19. [PMID: 30863287 PMCID: PMC6399416 DOI: 10.3389/fnana.2019.00019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/01/2019] [Indexed: 01/16/2023] Open
Abstract
Signals issued by dorsal roof and ventral floor plates, respectively, underlie the major patterning process of dorsalization and ventralization during vertebrate neural tube development. The ventrally produced morphogen Sonic hedgehog (SHH) is crucial for vertebrate hindbrain and spinal motor neuron development. One diagnostic gene for motor neurons is the LIM/homeodomain gene islet1, which has additional ventral expression domains extending into mid- and forebrain. In order to corroborate motor neuron development and, in particular, to improve on the identification of poorly documented zebrafish forebrain islet1 populations, we studied adult brains of transgenic islet1-GFP zebrafish (3 and 6 months). This molecular neuroanatomical analysis was supported by immunostaining these brains for tyrosine hydroxylase (TH) or choline acetyltransferase (ChAT), respectively, revealing zebrafish catecholaminergic and cholinergic neurons. The present analysis of ChAT and islet1-GFP label confirms ongoing adult expression of islet1 in zebrafish (basal plate) midbrain, hindbrain, and spinal motor neurons. In contrast, non-motor cholinergic systems lack islet1 expression. Additional presumed basal plate islet1 positive systems are described in detail, aided by TH staining which is particularly informative in the diencephalon. Finally, alar plate zebrafish forebrain systems with islet1 expression are described (i.e., thalamus, preoptic region, and subpallium). We conclude that adult zebrafish continue to express islet1 in the same brain systems as in the larva. Further, pending functional confirmation we hypothesize that the larval expression of sonic hedgehog (shh) might causally underlie much of adult islet1 expression because it explains findings beyond ventrally located systems, for example regarding shh expression in the zona limitans intrathalamica and correlated islet1-GFP expression in the thalamus.
Collapse
Affiliation(s)
- Stephan W Baeuml
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daniela Biechl
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mario F Wullimann
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
2
|
Spemann organizer gene Goosecoid promotes delamination of neuroblasts from the otic vesicle. Proc Natl Acad Sci U S A 2016; 113:E6840-E6848. [PMID: 27791112 DOI: 10.1073/pnas.1609146113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurons of the Statoacoustic Ganglion (SAG), which innervate the inner ear, originate as neuroblasts in the floor of the otic vesicle and subsequently delaminate and migrate toward the hindbrain before completing differentiation. In all vertebrates, locally expressed Fgf initiates SAG development by inducing expression of Neurogenin1 (Ngn1) in the floor of the otic vesicle. However, not all Ngn1-positive cells undergo delamination, nor has the mechanism controlling SAG delamination been elucidated. Here we report that Goosecoid (Gsc), best known for regulating cellular dynamics in the Spemann organizer, regulates delamination of neuroblasts in the otic vesicle. In zebrafish, Fgf coregulates expression of Gsc and Ngn1 in partially overlapping domains, with delamination occurring primarily in the zone of overlap. Loss of Gsc severely inhibits delamination, whereas overexpression of Gsc greatly increases delamination. Comisexpression of Ngn1 and Gsc induces ectopic delamination of some cells from the medial wall of the otic vesicle but with a low incidence, suggesting the action of a local inhibitor. The medial marker Pax2a is required to restrict the domain of gsc expression, and misexpression of Pax2a is sufficient to block delamination and fully suppress the effects of Gsc The opposing activities of Gsc and Pax2a correlate with repression or up-regulation, respectively, of E-cadherin (cdh1). These data resolve a genetic mechanism controlling delamination of otic neuroblasts. The data also elucidate a developmental role for Gsc consistent with a general function in promoting epithelial-to-mesenchymal transition (EMT).
Collapse
|
3
|
Makarev E, Gorivodsky M. Islet1 and its co-factor Ldb1 are expressed in quiescent cells of mouse intestinal epithelium. PLoS One 2014; 9:e95256. [PMID: 24755910 PMCID: PMC3995853 DOI: 10.1371/journal.pone.0095256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 03/26/2014] [Indexed: 01/06/2023] Open
Abstract
Islet1 belongs to Lim homeobox (Lhx) gene family which encodes transcription factors that have been conserved in evolution. They form complexes with other transcriptional regulators, among them obligatory co-factors encoded by Ldb genes. Isl1 (Islet1), Lhx and Ldb1 genes play a crucial role in organ patterning, cell fate determination and cell differentiation in both embryonic and adult tissues. In this study we analyzed expression pattern of Isl1 and its co-factor Ldb1 in small intestine. We also studied the biological role of Ldb1 in gut endoderm. Quantitative PCR analysis revealed a relatively high level of expression of Lhx1, Isl1, Isl2, Lmx1a, Ldb1 and Ldb2 mRNAs in the gut tissue as compared to the level of less abundant detectable Lmx1b mRNA. Immunohistochemical studies demonstrated a unique pattern of Ldb1 and Islet1 proteins in the crypt compartment. Ldb1 is produced at a low level in majority of crypt cells; but, its abundant expression was demonstrated for some single cells. Islet1 is also expressed in single cells of the crypt. Double staining experiments with Ldb1 and Isl1 antibodies showed that both genes are co-expressed in certain cells of the crypt. Further analysis revealed the Ldb1-expressing cells in the gut are both of endodermal and mesodermal origin. Proliferation studies using antibodies to phospho-histone H3 and Ki-67 antigens, as well as long-term BrdU labeling, showed that cells prominently expressing Ldb1/Islet1 are quiescent but do not belong to any known terminally differentiated cell lineages. They may represent a group of stem-like cells in the crypt. Further experiments by cell lineage tracing should be performed to better characterize this cell population. Functional studies of mice with Ldb1 gene ablated in gut endoderm revealed no specific role of Ldb1 in that tissue.
Collapse
Affiliation(s)
- Evgeny Makarev
- Section on Mammalian Molecular Genetics, Laboratory of Mammalian Genes and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
| | - Marat Gorivodsky
- Section on Mammalian Molecular Genetics, Laboratory of Mammalian Genes and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
4
|
Wilfinger A, Arkhipova V, Meyer D. Cell type and tissue specific function of islet genes in zebrafish pancreas development. Dev Biol 2013; 378:25-37. [PMID: 23518338 PMCID: PMC3657195 DOI: 10.1016/j.ydbio.2013.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 02/06/2013] [Accepted: 03/11/2013] [Indexed: 12/21/2022]
Abstract
Isl1 is a LIM homeobox transcription factor showing conserved expression in the developing and mature vertebrate pancreas. So far, functions of pancreatic Isl1 have mainly been studied in the mouse, where Isl1 has independent functions during formation of exocrine and endocrine tissues. Here, we take advantage of a recently described isl1 mutation in zebrafish to address pancreatic isl1 functions in a non-mammalian system. Isl1 in zebrafish, as in mouse, shows transient expression in mesenchyme flanking the pancreatic endoderm, and continuous expression in all endocrine cells. In isl1 mutants, endocrine cells are specified in normal numbers but more than half of these cells fail to establish expression of endocrine hormones. By using a lineage tracking approach that highlights cells leaving cell cycle early in development, we show that isl1 functions are different in first and second wave endocrine cells. In isl1 mutants, early forming first wave cells show virtually no glucagon expression and a reduced number of cells expressing insulin and somatostatin, while in the later born second wave cells somatostatin expressing cells are strongly reduced and insulin and glucagon positive cells form in normal numbers. Isl1 mutant zebrafish also display a smaller exocrine pancreas. We find that isl1 expression in the pancreatic mesenchyme overlaps with that of the related genes isl2a and isl2b and that pancreatic expression of isl-genes is independent of each other. As a combined block of two or three isl1/2 genes results in a dose-dependent reduction of exocrine tissue, our data suggest that all three genes cooperatively contribute to non-cell autonomous exocrine pancreas extension. The normal expression of the pancreas mesenchyme markers meis3, fgf10 and fgf24 in isl1/2 depleted embryos suggests that this activity is independent of isl-gene function in pancreatic mesenchyme formation as was found in mouse. This indicates species-specific differences in the requirement for isl-genes in pancreatic mesenchyme formation. Overall, our data reveal a novel interaction of isl1 and isl2 genes in exocrine pancreas expansion and cell type specific requirements during endocrine cell maturation. • Overlapping functions of islet1, islet2a and islet2b in exocrine pancreas formation. • Islet1/2a/2b are not required for pancreatic mesenchyme formation. • Islet1 but not islet2a/b is required for endocrine cell maturation. • Endocrine cell types are differently affected by the loss of islet1.
Collapse
Affiliation(s)
- Armin Wilfinger
- Institute for Molecular Biology/ CMBI, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria.
| | | | | |
Collapse
|
5
|
Marzinke MA, Henderson EM, Yang KS, See AWM, Knutson DC, Clagett-Dame M. Calmin expression in embryos and the adult brain, and its regulation by all-trans retinoic acid. Dev Dyn 2009; 239:610-9. [DOI: 10.1002/dvdy.22171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
6
|
Kappen C, Salbaum JM. Identification of regulatory elements in the Isl1 gene locus. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2009; 53:935-46. [PMID: 19598113 DOI: 10.1387/ijdb.082819ck] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Isl1 is a LIM/homeodomain transcription factor with critical roles for the development of the heart, the nervous system and the pancreas. Both deficiency and mis-expression of Isl1 cause profound developmental defects, demonstrating the importance of proper regulation of Isl1 gene expression during development. In order to understand the mechanisms that control Isl1 expression during embryogenesis and in tissue differentiation, we initiated a screen for gene regulatory elements in the Isl1 locus using a novel dual reporter gene vector that allows screens of large genomic regions through reporter gene assays in vitro and in vivo. We identified regions from the Isl1 gene locus that confer transcriptional activity in pancreatic cell lines in vitro. Using transgenic mice, we furthermore discovered an enhancer with in vivo specificity for the developing heart, as well as visceral and posterior mesoderm. Our findings further suggest that Foxo1 as well as Gata4 contribute to the activity of this enhancer in the developing embryo. We conclude that Isl1 gene expression is controlled in modular fashion by several elements with distinct functionality. Embryonic Isl1 expression in several tissues of mesodermal origin is driven by a specific enhancer that is located 3-6kb downstream of the gene.
Collapse
Affiliation(s)
- Claudia Kappen
- Pennington Biomedical Research Center, Baton Rouge, LA 71010, USA.
| | | |
Collapse
|
7
|
Lebel M, Mo R, Shimamura K, Hui CC. Gli2 and Gli3 play distinct roles in the dorsoventral patterning of the mouse hindbrain. Dev Biol 2006; 302:345-55. [PMID: 17026983 DOI: 10.1016/j.ydbio.2006.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 08/01/2006] [Accepted: 08/02/2006] [Indexed: 10/24/2022]
Abstract
Sonic Hedgehog (Shh) signaling plays a critical role during dorsoventral (DV) patterning of the developing neural tube by modulating the expression of neural patterning genes. Overlapping activator functions of Gli2 and Gli3 have been shown to be required for motoneuron development and correct neural patterning in the ventral spinal cord. However, the role of Gli2 and Gli3 in ventral hindbrain development is unclear. In this paper, we have examined DV patterning of the hindbrain of Shh(-/-), Gli2(-/-) and Gli3(-/-) embryos, and found that the respective role of Gli2 and Gli3 is not only different between the hindbrain and spinal cord, but also at distinct rostrocaudal levels of the hindbrain. Remarkably, the anterior hindbrain of Gli2(-/-) embryos displays ventral patterning defects as severe as those observed in Shh(-/-) embryos suggesting that, unlike in the spinal cord and posterior hindbrain, Gli3 cannot compensate for the loss of Gli2 activator function in Shh-dependent ventral patterning of the anterior hindbrain. Loss of Gli3 also results in a distinct patterning defect in the anterior hindbrain, including dorsal expansion of Nkx6.1 expression. Furthermore, we demonstrate that ventral patterning of rhombomere 4 is less affected by loss of Gli2 function revealing a different requirement for Gli proteins in this rhombomere. Taken together, these observations indicate that Gli2 and Gli3 perform rhombomere-specific function during DV patterning of the hindbrain.
Collapse
Affiliation(s)
- Mélanie Lebel
- Program in Developmental Biology, The Hospital for Sick Children, Room 13-314, Toronto Medical Discovery Tower, Ontario, Canada
| | | | | | | |
Collapse
|
8
|
Cheng CW, Yan CHM, Hui CC, Strähle U, Cheng SH. The homeobox gene irx1a is required for the propagation of the neurogenic waves in the zebrafish retina. Mech Dev 2006; 123:252-63. [PMID: 16457994 DOI: 10.1016/j.mod.2005.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 11/26/2005] [Accepted: 12/02/2005] [Indexed: 11/20/2022]
Abstract
Neurogenesis in the compound eyes of Drosophila and the camera eyes of vertebrates spreads in a wave-like fashion. In both phyla, waves of hedgehog expression are known to drive the wave of neuronal differentiation. The mechanism controlling the propagation of hedgehog expression during retinogenesis of the vertebrate eye is poorly understood. The Iroquois homeobox genes play important roles in Drosophila eye development; they are required for the up-regulation of hedgehog expression during propagation of the morphogenetic furrow. Here, we show that the zebrafish Iroquois homolog irx1a is expressed during retinogenesis and knockdown of irx1a results in a retinal phenotype strikingly similar to those of sonic hedgehog (shh) mutants. Analysis of shh-GFP transgene expression in irx1a knockdown retinas revealed that irx1a is required for the propagation of shh expression through the retina. Transplantation experiments illustrated that the effects of irx1a on shh expression are both cell-autonomous and non-cell-autonomous. Our results reveal a role for Iroquois genes in controlling hedgehog expression during vertebrate retinogenesis.
Collapse
Affiliation(s)
- Chi Wa Cheng
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | | | | | | | | |
Collapse
|
9
|
Holm P, Rydlander B, Luthman H, Kockum I. Interaction and association analysis of a type 1 diabetes susceptibility locus on chromosome 5q11-q13 and the 7q32 chromosomal region in Scandinavian families. Diabetes 2004; 53:1584-91. [PMID: 15161765 DOI: 10.2337/diabetes.53.6.1584] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We have previously reported suggestive linkage to chromosome 5p13-q13 in type 1 diabetic families. ISL1, a transcription factor involved in pancreas development, maps to this region. Sequencing of the ISL1 gene in patients and control subjects identified seven single nucleotide polymorphisms (SNPs) and one microsatellite in noncoding regions. Four haplotypes formed by six of these SNPs and one microsatellite were associated with type 1 diabetes in Swedish families (P < 0.04). To identify possible interactions with the 5q11-q13 region, we applied pathway-restricted linkage analysis by analyzing for effects from regions encoding other transcription factors that are active during pancreas development and maintenance of insulin production. Linkage analysis allowing for interaction between 5q11-q13 and 7q32 resulted in an increase of logarithm of odds from 2.2 to 5.3. This increase was estimated to correspond to a P value <0.0016 using permutation. The transcription factor PAX4 is located at 7q32 and participates downstream of ISL1 in the transcription factor cascade critical to beta-cell development. Association with type 1 diabetes was also observed using the transmission disequilibrium test for two haplotypes at the PAX4 locus (P < 0.05). We conclude that pathway-restricted linkage analysis assists in the identification of possible gene-gene interactions and that 5q11-q13 and 7q32 together constitute a significant susceptibility factor for type 1 diabetes.
Collapse
Affiliation(s)
- Pernilla Holm
- Department of Molecular Medicine, Karolinska Institutet, CMM L8:00, Karolinska Hospital, S-171 76 Stockholm, Sweden
| | | | | | | |
Collapse
|
10
|
Huang L, Li B, Luo C, Xie J, Chen P, Liang S. Proteome comparative analysis of gynogenetic haploid and diploid embryos of goldfish (
Carassius auratus
). Proteomics 2003; 4:235-43. [PMID: 14730685 DOI: 10.1002/pmic.200300553] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recently, it was found that in the gynogenetic haploid and diploid embryos of goldfish, which have exactly the same genome, the haploid condition results in obstruction of gene expression and abnormal development while the diploid embryos have normal gene expression and development. A diploid-dependent regulatory apparatus was proposed to regulate gene expression. To study the difference at the protein expression level of the embryos of haploid and diploid in development, we extracted the total proteins of both the gynogenetic haploid and diploid embryos of goldfish in the same eye formation stage. Two-dimensional polyacrylamide gel electrophoresis was used to separate proteins. The stained gel images were analyzed with the PDQUEST software. A part of protein spots that were differentially expressed in haploid and diploid embryos were identified by matrix assisted laser desorption/ionisation-time of flight-mass spectrometry and database analysis. Sixteen protein spots that were absolutely different (only expressed in diploid embryos but not in haploid embryos or vice versa) and 16 protein spots that were up- and downregulated were identified unambiguously, which include some proteins that are correlative with eyes development, nerve development, developing regulation, cell differentiation, and signal transduction. The different significantly gene expression during embryos developing between diploid and haploid is demonstrated.
Collapse
Affiliation(s)
- Lingyun Huang
- College of Life Science, Hunan Normal University, Changsha, PR China.
| | | | | | | | | | | |
Collapse
|
11
|
Wang X, Chu LT, He J, Emelyanov A, Korzh V, Gong Z. A novel zebrafish bHLH gene, neurogenin3, is expressed in the hypothalamus. Gene 2001; 275:47-55. [PMID: 11574151 DOI: 10.1016/s0378-1119(01)00648-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Many basic helix-loop-helix transcriptional factors play important roles in vertebrate neurogenesis. Among them, Neurogenins act as determination factors and initiate the expression of differentiation genes such as neuroD and other neurogenic genes. Here we describe a zebrafish cDNA (neurogenin3 or ngn3) encoding a novel member of the Neurogenin family closest to mouse Ngn3 and human NGN3. Using a zebrafish radiation hybrid panel, ngn3 was mapped to zebrafish linkage group 13 and the region displayed a conserved synteny with the region of human chromosome 10 containing NGN3. As judged by RT-PCR and whole-mount in situ hybridization, ngn3 expression in zebrafish started much later than other neurogenin genes, at only around 24 h post-fertilization (hpf) and with a higher level of expression on the left side of the anterio-ventral diencephalon. Later at 48 hpf, ngn3 expression was detected in a small number of cells in the tuberal hypothalamus. Unlike Ngn3 in the mouse, zebrafish ngn3 mRNAs were not detected in developing pancreas and spinal cord. Genomic Southern blot hybridization suggested that a closely related sequence is present in the zebrafish genome and the hypothetical gene might result from the recent genome duplication in certain teleost lineage and share the function of the common ancestor with the currently characterized ngn3.
Collapse
Affiliation(s)
- X Wang
- Department of Biological Sciences, National University of Singapore, Singapore 119260, Singapore
| | | | | | | | | | | |
Collapse
|
12
|
Gay F, Anglade I, Gong Z, Salbert G. The LIM/homeodomain protein islet-1 modulates estrogen receptor functions. Mol Endocrinol 2000; 14:1627-48. [PMID: 11043578 DOI: 10.1210/mend.14.10.0538] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
LIM/Homeodomain (HD) proteins are classically considered as major transcriptional regulators which, in cooperation with other transcription factors, play critical roles in the developing nervous system. Among LIM/HD proteins, Islet-1 (ISL1) is the earliest known marker of motoneuron differentiation and has been extensively studied in this context. However, ISL1 expression is not restricted to developing motoneurons. In both embryonic and adult central nervous system of rodent and fish, ISL1 is found in discrete brain areas known to express the estrogen receptor (ER). These observations led us to postulate the possible involvement of ISL1 in the control of brain functions by steroid hormones. Dual immunohistochemistry for ISL1 and ER provided evidence for ISL1-ER coexpression by the same neuronal subpopulation within the rat hypothalamic arcuate nucleus. The relationship between ER and ISL1 was further analyzed at the molecular level and we could show that 1) ISL1 directly interacts in vivo and in vitro with the rat ER, as well as with various other nuclear receptors; 2) ISL1-ER interaction is mediated, at least in part, by the ligand binding domain of ER and is significantly strengthened by estradiol; 3) as a consequence, ISL1 prevents ER dimerization in solution, thus leading to a strong and specific inhibition of ER DNA binding activity; 4) ISL1, via its N-terminal LIM domains, specifically inhibits the ER-driven transcriptional activation in some promoter contexts, while ER can serve as a coactivator for ISL1 in other promoter contexts. Taken together, these data suggest that ISL1-ER cross-talk could differentially regulate the expression of ER and ISL1 target genes.
Collapse
Affiliation(s)
- F Gay
- Equipe Information et Programmation Cellulaire, UMR 6026 Centre Nationale de la Recherche Scientifique, Université de Rennes I, France
| | | | | | | |
Collapse
|
13
|
Feldman B, Dougan ST, Schier AF, Talbot WS. Nodal-related signals establish mesendodermal fate and trunk neural identity in zebrafish. Curr Biol 2000; 10:531-4. [PMID: 10801442 DOI: 10.1016/s0960-9822(00)00469-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The vertebrate body plan arises during gastrulation, when morphogenetic movements form the ectoderm, mesoderm, and endoderm. In zebrafish, mesoderm and endoderm derive from the marginal region of the late blastula, and cells located nearer the animal pole form the ectoderm [1]. Analysis in mouse, Xenopus, and zebrafish has demonstrated that Nodal-related proteins, a subclass of the TGF-beta superfamily, are essential for mesendoderm development [2], but previous mutational studies have not established whether Nodal-related signals control fate specification, morphogenetic movements, or survival of mesendodermal precursors. Here, we report that Nodal-related signals are required to allocate marginal cells to mesendodermal fates in the zebrafish embryo. In double mutants for the zebrafish nodal-related genes squint (sqt) and cyclops (cyc) [3] [4] [5], dorsal marginal cells adopt neural fates, whereas in wild-type embryos, cells at this position form endoderm and axial mesoderm. Involution movements characteristic of developing mesendoderm are also blocked in the absence of Nodal signaling. Because it has been proposed [6] that inhibition of Nodal-related signals promotes the development of anterior neural fates, we also examined anteroposterior organization of the neural tube in sqt;cyc mutants. Anterior trunk spinal cord is absent in sqt;cyc mutants, despite the presence of more anterior and posterior neural fates. These results demonstrate that nodal-related genes are required for the allocation of dorsal marginal cells to mesendodermal fates and for anteroposterior patterning of the neural tube.
Collapse
Affiliation(s)
- B Feldman
- Developmental Genetics Program, Division of Developmental Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, The National Institute for Medical Research, New York, London, New York 10016, NW7 1AA, USA, UK
| | | | | | | |
Collapse
|
14
|
Abstract
The vertebrate embryonic hindbrain is segmented into rhombomeres. Gene expression studies suggest that amphioxus, the closest invertebrate relative of vertebrates, has a hindbrain homolog. However, this region is not overtly segmented in amphioxus, raising the question of how hindbrain segmentation arose in chordate evolution. Vertebrate hindbrain segmentation includes the patterning of cranial motor neurons, which can be identified by their expression of the LIM-homeodomain transcription factor islet1. To learn if the amphioxus hindbrain homolog is cryptically segmented, we cloned an amphioxus gene closely related to islet1, which we named simply islet. We report that amphioxus islet expression includes a domain of segmentally arranged cells in the ventral hindbrain homolog. We hypothesize that these cells are developing motor neurons and reveal a form of hindbrain segmentation in amphioxus. Hence, vertebrate rhombomeres may derive from a cryptically segmented brain present in the amphioxus/vertebrate ancestor. Other islet expression domains provide evidence for amphioxus homologs of the pineal gland, adenohypophysis, and endocrine pancreas. Surprisingly, homologs of vertebrate islet1-expressing spinal motor neurons and Rohon-Beard sensory neurons appear to be absent.
Collapse
Affiliation(s)
- W R Jackman
- Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403, USA
| | | | | |
Collapse
|
15
|
Abstract
The LIM domain is a zinc finger structure that is present in several types of proteins, including homeodomain transcription factors, kinases and proteins that consist of several LIM domains. Proteins containing LIM domains have been discovered to play important roles in a variety of fundamental biological processes including cytoskeleton organization, cell lineage specification and organ development, but also for pathological functions such as oncogenesis, leading to human disease. The LIM domain has been demonstrated to be a protein-protein interaction motif that is critically involved in these processes. The recent isolation and analysis of more LIM domain-containing proteins from several species have confirmed and broadened our knowledge about LIM protein function. Furthermore, the identification and characterization of factors that interact with LIM domains illuminates mechanisms of combinatorial developmental regulation.
Collapse
Affiliation(s)
- I Bach
- Center for Molecular Neurobiology, University of Hamburg, Martinistrasse 85, 20246, Hamburg, Germany.
| |
Collapse
|
16
|
Han YJ, Lee YH, Chun JY. Identification and characterization of Psx-2, a novel member of the Psx (placenta-specific homeobox) family. Gene 2000; 241:149-55. [PMID: 10607909 DOI: 10.1016/s0378-1119(99)00453-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Psx (now designated as Psx-1) is a murine placenta-specific homeobox gene. Here, we report the isolation and characterization of a second mouse Psx gene (Psx-2). Although 29bp were absent towards the 3' end of Psx-2, Psx-2 and Psx-1 cDNA had identical 5' and 3' ends. Overall sequence identity between the two cDNAs was 91% at the nucleotide level and 81% at the amino acid level. Both Psx proteins contain 227 amino acids. These results suggest that they arose through a recent gene duplication. A surprising finding is that the 81% sequence identity between Psx-1 and Psx-2 proteins drops at the level of homeodomain to 78%. Further, the amino acid at position 51, which is invariably an asparagine in other homeodomains and is known to contact DNA directly, is a methionine in the homeodomains of both Psx-1 and Psx-2. This suggests that Psx proteins may interact with DNA sequences differently to those bound by other homeodomains. Southern blot analysis indicated that the two Psx genes occur on separate loci in the mouse genome. The Psx-2 gene spans approx. 2. 6kb of mouse genome, and contains four exons and three introns.
Collapse
Affiliation(s)
- Y J Han
- Kumho Life and Environmental Science Laboratory, 572 Sangam-Dong, Kwangsan-Gu, Kwangju, South Korea
| | | | | |
Collapse
|
17
|
Liao J, He J, Yan T, Korzh V, Gong Z. A class of neuroD-related basic helix-loop-helix transcription factors expressed in developing central nervous system in zebrafish. DNA Cell Biol 1999; 18:333-44. [PMID: 10235116 DOI: 10.1089/104454999315394] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neuronal basic helix-loop-helix (bHLH) transcription factors such as neuroD and neurogenin have been shown to play important roles in neuronal development. In the present study, several distinct bHLH DNA fragments were isolated from the zebrafish genomic DNA by a pair of degenerate polymerase chain reaction (PCR) primers deduced from the conserved bHLH domains of neuroD and neurogenins. Based on the bHLH fragments, three complete neuroD-related cDNA clones, including complete coding regions, ndr1a, ndr1b, and ndr2 (ndr for neuroD related), were isolated and assembled by 5' and 3' rapid amplification of cDNA ends (RACE). A phylogenetic analysis indicated the presence of four groups of neuroD-related genes in the neuroD subfamily in vertebrates: neuroD, ndr1a/ndr1b/MATH-2, ndr2/NDRF, and neuroM/MATH3. Expression of the newly isolated neuroD-related genes was examined by reverse transcriptase (RT)-PCR and whole-mount in situ hybridization. Unlike neuroD, which was expressed broadly in primary neurons during early zebrafish development starting from 10 h postfertilization (hpf), expression of ndr1a and ndr1b started relatively late (around 22 hpf) and was restricted to the olfactory system: olfactory bulbs in the telecephalon (ndr1a and ndr1b) and olfactory organs (ndr1b) starting around 22 hpf. Although a faint ndr2 mRNA signal was detected by RT-PCR in early embryos, no ndr2 mRNA was detected by whole-mount in situ hybridization in embryos up to 72 hpf, suggesting that it is expressed rather late. Our observations suggest that the two novel neuroD-related genes, ndr1a and ndr1b, are involved in the development of the olfactory system and perhaps contribute to its functional complexity.
Collapse
Affiliation(s)
- J Liao
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
18
|
Giuliano P, Marino R, Pinto MR, De Santis R. Identification and developmental expression of Ci-isl, a homologue of vertebrate islet genes, in the ascidian Ciona intestinalis. Mech Dev 1998; 78:199-202. [PMID: 9858732 DOI: 10.1016/s0925-4773(98)00143-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Here we describe the cloning and expression pattern of Ci-isl, a homologue of vertebrate genes, in the ascidian. Early in development, Ci-isl expression occurs in the primordia of palps and brain vesicle, then in the tailbud embryo it is transiently extended to the notochord cells. At larva stage, the expression is down-regulated in the notochord, and it persists predominantly in the compartments of the nervous system. These observations indicate that also in invertebrates, islet genes show an expression pattern during differentiation of the nervous system.
Collapse
Affiliation(s)
- P Giuliano
- Laboratory of Cell Biology, Stazione Zoologica 'A. Dohrn', Villa Comunale, 80121, Naples, Italy
| | | | | | | |
Collapse
|
19
|
Korzh V, Sleptsova I, Liao J, He J, Gong Z. Expression of zebrafish bHLH genes ngn1 and nrd defines distinct stages of neural differentiation. Dev Dyn 1998; 213:92-104. [PMID: 9733104 DOI: 10.1002/(sici)1097-0177(199809)213:1<92::aid-aja9>3.0.co;2-t] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Two zebrafish bHLH genes, neurogenin-related gene I (ngn1) and neuroD (nrd), have been isolated. ngn1 expression is initiated at the end of gastrulation in the neural plate and defines broad domains of cells that probably possess an ability to develop as neurons. This finding suggests that ngn1 may play a role during determination of cell fate in neuroblasts. ngn1 and pax-b are expressed in a mutually exclusive manner. nrd expression follows that of ngn1 in restricted populations of cells selected from ngn1-positive clusters of cells. The earliest nrd-positive cells in the brain and the trunk are a subset of the primary neurons. ngn1 is not expressed in the eye. Here, nrd transcription is activated at 25 hours postfertilization in the ventral retina. Expression of islet-1 occurs in nrd-positive cells after expression of nrd, and the expression of the two genes partially overlaps in time. These observations suggest that during eye development nrd expression may follow expression of some other neurodetermination gene(s). This supports the idea that expression of nrd is a necessary step leading toward overt neuronal differentiation.
Collapse
Affiliation(s)
- V Korzh
- Institute of Molecular Agrobiology, National University of Singapore, Singapore.
| | | | | | | | | |
Collapse
|
20
|
ANGLADE I, PLANCHOT S, GONG Z, HEW CL, KAH O, SALBERT G. Distribution of Islet-Expressing Cells in the Forebrain and Pituitary of the Rainbow Trout. Ann N Y Acad Sci 1998. [DOI: 10.1111/j.1749-6632.1998.tb10819.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Control of neural development and function in a thermoregulatory network by the LIM homeobox gene lin-11. J Neurosci 1998. [PMID: 9482795 DOI: 10.1523/jneurosci.18-06-02084.1998] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We show here that the lin-11 LIM homeobox gene is expressed in nine classes of head, ventral cord, and tail neurons and functions at a late step in the development of a subset of these neurons. In a lin-11 null mutant, all lin-11-expressing neurons are generated. Several of these neurons, however, exhibit neuroanatomical as well as functional defects. In the lateral head ganglion, lin-11 functions in a neural network that regulates thermosensory behavior. It is expressed in the AIZ interneuron that processes high temperature input and is required for the function of AIZ in the thermoregulatory neural network. Another LIM homeobox gene, ttx-3, functions in the antagonistic thermoregulatory interneuron AIY (). Thus, distinct LIM genes specify the functions of functionally related antagonistic interneurons within a neural network dedicated for thermoregulatory processes. Both ttx-3 and lin-11 expression are maintained throughout adulthood, suggesting that these LIM homeobox genes play a role in the functional maintenance of this neural circuit. We propose that particular LIM homeobox genes specify the distinct features of functionally related neurons that generate patterned behaviors.
Collapse
|
22
|
Passini MA, Levine EM, Canger AK, Raymond PA, Schechter N. Vsx-1 and Vsx-2: differential expression of two paired-like homeobox genes during zebrafish and goldfish retinogenesis. J Comp Neurol 1997; 388:495-505. [PMID: 9368856 DOI: 10.1002/(sici)1096-9861(19971124)388:3<495::aid-cne11>3.0.co;2-l] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Vsx-1 and Vsx-2 are two homeobox genes that were cloned originally from an adult goldfish retinal library. They are members of the paired-like:CVC gene family, which is characterized by the presence of a paired homeodomain and an additional conserved region, termed the CVC domain. To analyze the possible roles for Vsx-1 and Vsx-2 in eye development, we used in situ hybridization to examine their expression patterns in zebrafish and goldfish embryos. Vsx-2 is initially expressed by proliferating neuroepithelial cells of the presumptive neural retina, then it is down-regulated as differentiation begins, and it is finally reexpressed at later stages of differentiation in a subset of cells, presumed to be bipolar cells, in the inner nuclear layer. In contrast, Vsx-1 is expressed only weakly in undifferentiated, presumptive neural retina and is then up-regulated selectively in presumptive bipolar cells at early stages of differentiation (when Vsx-2 is turned off), before decreasing to an intermediate level, which is maintained in the differentiated (adult) retina. The restricted expression patterns of Vsx-2 correspond to the observed phenotypes in mice with the ocular retardation mutation (orJ), further supporting the notion that Vsx-2 and Chx10 are homologues. The sequential complimentary and then corresponding expression patterns of Vsx-1 and Vsx-2 suggest that these similar transcription factors may be recruited for partially overlapping, but distinct, functions during the development of the retina.
Collapse
Affiliation(s)
- M A Passini
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook 11794, USA
| | | | | | | | | |
Collapse
|
23
|
Expression of LIM protein genes Lmo1, Lmo2, and Lmo3 in adult mouse hippocampus and other forebrain regions: differential regulation by seizure activity. J Neurosci 1997. [PMID: 9204936 DOI: 10.1523/jneurosci.17-14-05549.1997] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The LIM domain is a zinc-binding amino acid motif that characterizes various proteins which function in protein-protein interactions and transcriptional regulation. Expression patterns of several LIM protein genes are compatible with roles in vertebrate CNS development, but little is known about the expression, regulation, or function of LIM proteins in the mature CNS. Lmo1, Lmo2, and Lmo3 are LIM-only genes originally identified as putative oncogenes that have been implicated in the control of cell differentiation and are active during CNS development. Using in situ hybridization for mRNA and immunohistochemical detection of reporter protein expression in transgenic mice, we found that Lmo1, Lmo2, and Lmo3 show individually unique but partially overlapping patterns of expression in several regions of the adult mouse forebrain, including hippocampus, caudate putamen, medial habenula, thalamus, amygdala, olfactory bulb, hypothalamus, and cerebral cortex. In the hippocampal formation, Lmo1, Lmo2, and Lmo3 show different combinatorial patterns of expression levels in CA pyramidal and dentate granule neurons, and Lmo1 is present in topographically restricted subpopulations of astrocytes. Kainic acid-induced limbic seizures differentially regulated Lmo1, Lmo2, and Lmo3 mRNA levels in hippocampal pyramidal and granule neurons, such that Lmo1 mRNA increased, whereas Lmo2 and Lmo3 mRNAs decreased significantly, with maximal changes at 6 hr after seizure onset and return to baseline by 24 hr. These findings show that Lmo1, Lmo2, and Lmo3 continue to be expressed in the adult mammalian CNS in a cell type-specific manner, are differentially regulated by neuronal activity, and may thus be involved in cell phenotype-specific regulatory functions.
Collapse
|
24
|
Abstract
Development of the anterior pituitary gland ultimately leads to the appearance of five distinct cell types that are defined by the trophic hormones which they produce, providing an instructive model system for elucidating the molecular mechanisms that underlie the determination of distinct cell phenotypes within an organ from a common precursor lineage. The recent identification of several homeodomain transcription factors expressed specifically in the anterior pituitary gland has revealed a transcriptional cascade orchestrating a developmental program that leads to the determination of the five mature cell types. Recent data from gene-targeting experiments in mice further imply that the execution of this program is dependent on inductive signals originating in the floor of the diencephalon.
Collapse
Affiliation(s)
- M Treier
- Howard Hughes Medical Institute, University of California at San Diego, Department and School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0648, USA.
| | | |
Collapse
|