1
|
Srinivasan S, Regmi R, Lin X, Dreyer CA, Chen X, Quinn SD, He W, Coleman MA, Carraway KL, Zhang B, Schlau-Cohen GS. Ligand-induced transmembrane conformational coupling in monomeric EGFR. Nat Commun 2022; 13:3709. [PMID: 35794108 PMCID: PMC9259572 DOI: 10.1038/s41467-022-31299-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/13/2022] [Indexed: 01/26/2023] Open
Abstract
Single pass cell surface receptors regulate cellular processes by transmitting ligand-encoded signals across the plasma membrane via changes to their extracellular and intracellular conformations. This transmembrane signaling is generally initiated by ligand binding to the receptors in their monomeric form. While subsequent receptor-receptor interactions are established as key aspects of transmembrane signaling, the contribution of monomeric receptors has been challenging to isolate due to the complexity and ligand-dependence of these interactions. By combining membrane nanodiscs produced with cell-free expression, single-molecule Förster Resonance Energy Transfer measurements, and molecular dynamics simulations, we report that ligand binding induces intracellular conformational changes within monomeric, full-length epidermal growth factor receptor (EGFR). Our observations establish the existence of extracellular/intracellular conformational coupling within a single receptor molecule. We implicate a series of electrostatic interactions in the conformational coupling and find the coupling is inhibited by targeted therapeutics and mutations that also inhibit phosphorylation in cells. Collectively, these results introduce a facile mechanism to link the extracellular and intracellular regions through the single transmembrane helix of monomeric EGFR, and raise the possibility that intramolecular transmembrane conformational changes upon ligand binding are common to single-pass membrane proteins.
Collapse
Affiliation(s)
- Shwetha Srinivasan
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Raju Regmi
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA ,grid.4444.00000 0001 2112 9282Present Address: Institut Curie, CNRS, Laboratoire Physico Chimie Curie, Paris, France
| | - Xingcheng Lin
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Courtney A. Dreyer
- grid.27860.3b0000 0004 1936 9684Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Xuyan Chen
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Steven D. Quinn
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA ,grid.5685.e0000 0004 1936 9668Present Address: Department of Physics, University of York, York, UK
| | - Wei He
- grid.250008.f0000 0001 2160 9702Lawrence Livermore National Laboratory, Livermore, CA 94550 USA
| | - Matthew A. Coleman
- grid.250008.f0000 0001 2160 9702Lawrence Livermore National Laboratory, Livermore, CA 94550 USA ,grid.27860.3b0000 0004 1936 9684Radiation Oncology, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Kermit L. Carraway
- grid.27860.3b0000 0004 1936 9684Biochemistry and Molecular Medicine, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Bin Zhang
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Gabriela S. Schlau-Cohen
- grid.116068.80000 0001 2341 2786Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| |
Collapse
|
2
|
Pinet L, Assrir N, van Heijenoort C. Expanding the Disorder-Function Paradigm in the C-Terminal Tails of Erbbs. Biomolecules 2021; 11:1690. [PMID: 34827688 PMCID: PMC8615588 DOI: 10.3390/biom11111690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022] Open
Abstract
ErbBs are receptor tyrosine kinases involved not only in development, but also in a wide variety of diseases, particularly cancer. Their extracellular, transmembrane, juxtamembrane, and kinase folded domains were described extensively over the past 20 years, structurally and functionally. However, their whole C-terminal tails (CTs) following the kinase domain were only described at atomic resolution in the last 4 years. They were shown to be intrinsically disordered. The CTs are known to be tyrosine-phosphorylated when the activated homo- or hetero-dimers of ErbBs are formed. Their phosphorylation triggers interaction with phosphotyrosine binding (PTB) or Src Homology 2 (SH2) domains and activates several signaling pathways controling cellular motility, proliferation, adhesion, and apoptosis. Beyond this passive role of phosphorylated domain and site display for partners, recent structural and function studies unveiled active roles in regulation of phosphorylation and interaction: the CT regulates activity of the kinase domain; different phosphorylation states have different compaction levels, potentially modulating the succession of phosphorylation events; and prolines have an important role in structure, dynamics, and possibly regulatory interactions. Here, we review both the canonical role of the disordered CT domains of ErbBs as phosphotyrosine display domains and the recent findings that expand the known range of their regulation functions linked to specific structural and dynamic features.
Collapse
|
3
|
Woodbury DJ, Whitt EC, Coffman RE. A review of TNP-ATP in protein binding studies: benefits and pitfalls. BIOPHYSICAL REPORTS 2021; 1:100012. [PMID: 36425312 PMCID: PMC9680771 DOI: 10.1016/j.bpr.2021.100012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 08/03/2021] [Indexed: 06/16/2023]
Abstract
We review 50 years of use of 2',3'-O-trinitrophenyl (TNP)-ATP, a fluorescently tagged ATP analog. It has been extensively used to detect binding interactions of ATP to proteins and to measure parameters of those interactions such as the dissociation constant, Kd, or inhibitor dissociation constant, Ki. TNP-ATP has also found use in other applications, for example, as a fluorescence marker in microscopy, as a FRET pair, or as an antagonist (e.g., of P2X receptors). However, its use in protein binding studies has limitations because the TNP moiety often enhances binding affinity, and the fluorescence changes that occur with binding can be masked or mimicked in unexpected ways. The goal of this review is to provide a clear perspective of the pros and cons of using TNP-ATP to allow for better experimental design and less ambiguous data in future experiments using TNP-ATP and other TNP nucleotides.
Collapse
Affiliation(s)
- Dixon J. Woodbury
- Department of Cell Biology and Physiology
- Neuroscience Center, Brigham Young University, Provo, Utah
| | | | | |
Collapse
|
4
|
Regmi R, Srinivasan S, Latham AP, Kukshal V, Cui W, Zhang B, Bose R, Schlau-Cohen GS. Phosphorylation-Dependent Conformations of the Disordered Carboxyl-Terminus Domain in the Epidermal Growth Factor Receptor. J Phys Chem Lett 2020; 11:10037-10044. [PMID: 33179922 PMCID: PMC8063277 DOI: 10.1021/acs.jpclett.0c02327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, regulates basic cellular functions and is a major target for anticancer therapeutics. The carboxyl-terminus domain is a disordered region of EGFR that contains the tyrosine residues, which undergo autophosphorylation followed by docking of signaling proteins. Local phosphorylation-dependent secondary structure has been identified and is thought to be associated with the signaling cascade. Deciphering and distinguishing the overall conformations, however, have been challenging because of the disordered nature of the carboxyl-terminus domain and resultant lack of well-defined three-dimensional structure for most of the domain. We investigated the overall conformational states of the isolated EGFR carboxyl-terminus domain using single-molecule Förster resonance energy transfer and coarse-grained simulations. Our results suggest that electrostatic interactions between charged residues emerge within the disordered domain upon phosphorylation, producing a looplike conformation. This conformation may enable binding of downstream signaling proteins and potentially reflect a general mechanism in which electrostatics transiently generate functional architectures in disordered regions of a well-folded protein.
Collapse
Affiliation(s)
- Raju Regmi
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shwetha Srinivasan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Andrew P Latham
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Vandna Kukshal
- Department of Medicine and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Weidong Cui
- Department of Chemistry, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ron Bose
- Department of Medicine and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Gabriela S Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Fujino Y, Miyagawa T, Torii M, Inoue M, Fujii Y, Okanishi H, Kanai Y, Masui R. Structural changes induced by ligand binding drastically increase the thermostability of the Ser/Thr protein kinase TpkD from Thermus thermophilus HB8. FEBS Lett 2020; 595:264-274. [PMID: 33159808 DOI: 10.1002/1873-3468.13996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 11/06/2022]
Abstract
Thermophilic proteins maintain their structure at high temperatures through a combination of various factors. Here, we report the ligand-induced stabilization of a thermophilic Ser/Thr protein kinase. Thermus thermophilus TpkD unfolds completely at 55 °C despite the optimum growth temperature of 75 °C. Unexpectedly, we found that the TpkD structure is drastically stabilized by its natural ligands ATP and ADP, as evidenced by the increase in the melting temperature to 80 °C. Such a striking effect of a substrate on thermostability has not been reported for other protein kinases. Conformational changes upon ATP binding were observed in fluorescence quenching and limited proteolysis experiments. Urea denaturation of Trp mutants suggested that ATP binding affects not only the ATP-binding site, but also the remote regions. Our findings shed light on thermoadaptation of thermophilic proteins.
Collapse
Affiliation(s)
- Yusuke Fujino
- Graduate School of Science, Osaka City University, Japan
| | - Takero Miyagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Masayuki Torii
- Graduate School of Science, Osaka City University, Japan
| | - Masao Inoue
- Graduate School of Agriculture, Kyoto University, Japan
| | - Yuki Fujii
- Graduate School of Science, Osaka City University, Japan
| | | | - Yoshikatsu Kanai
- Graduate School of Medicine, Osaka University, Suita, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiative, Osaka University, Suita, Japan
| | - Ryoji Masui
- Graduate School of Science, Osaka City University, Japan
| |
Collapse
|
6
|
Real-time tracking reveals catalytic roles for the two DNA binding sites of Rad51. Nat Commun 2020; 11:2950. [PMID: 32528002 PMCID: PMC7289862 DOI: 10.1038/s41467-020-16750-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 05/19/2020] [Indexed: 02/03/2023] Open
Abstract
During homologous recombination, Rad51 forms a nucleoprotein filament on single-stranded DNA to promote DNA strand exchange. This filament binds to double-stranded DNA (dsDNA), searches for homology, and promotes transfer of the complementary strand, producing a new heteroduplex. Strand exchange proceeds via two distinct three-strand intermediates, C1 and C2. C1 contains the intact donor dsDNA whereas C2 contains newly formed heteroduplex DNA. Here, we show that the conserved DNA binding motifs, loop 1 (L1) and loop 2 (L2) in site I of Rad51, play distinct roles in this process. L1 is involved in formation of the C1 complex whereas L2 mediates the C1–C2 transition, producing the heteroduplex. Another DNA binding motif, site II, serves as the DNA entry position for initial Rad51 filament formation, as well as for donor dsDNA incorporation. Our study provides a comprehensive molecular model for the catalytic process of strand exchange mediated by eukaryotic RecA-family recombinases. Rad51 drives DNA strand exchange, the central reaction in recombinational DNA repair. Two sites of Rad51 are responsible for DNA binding, but the function of these sites has proven elusive. Here, the authors employ real-time assays to reveal catalytic roles for the two DNA binding sites of Rad51.
Collapse
|
7
|
Quinn SD, Srinivasan S, Gordon JB, He W, Carraway KL, Coleman MA, Schlau-Cohen GS. Single-Molecule Fluorescence Detection of the Epidermal Growth Factor Receptor in Membrane Discs. Biochemistry 2019; 58:286-294. [PMID: 29553754 PMCID: PMC6173994 DOI: 10.1021/acs.biochem.8b00089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The epidermal growth factor receptor (EGFR) is critical to normal cellular signaling pathways. Moreover, it has been implicated in a range of pathologies, including cancer. As a result, it is the primary target of many anticancer drugs. One limitation to the design and development of these drugs has been the lack of molecular-level information about the interactions and conformational dynamics of EGFR. To overcome this limitation, this work reports the construction and characterization of functional, fluorescently labeled, and full-length EGFR in model membrane nanolipoprotein particles (NLPs) for in vitro fluorescence studies. To demonstrate the utility of the system, we investigate ATP-EGFR interactions. We observe that ATP binds at the catalytic site providing a means to measure a range of distances between the catalytic site and the C-terminus via Förster resonance energy transfer (FRET). These ATP-based experiments suggest a range of conformations of the C-terminus that may be a function of the phosphorylation state for EGFR. This work is a proof-of-principle demonstration of single-molecule studies as a noncrystallographic assay for EGFR interactions in real-time and under near-physiological conditions. The diverse nature of EGFR interactions means that new tools at the molecular level have the potential to significantly enhance our understanding of receptor pathology and are of utmost importance for cancer-related drug discovery.
Collapse
Affiliation(s)
- Steven D. Quinn
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139
| | - Shwetha Srinivasan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139
| | - Jesse B. Gordon
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139
| | - Wei He
- Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Kermit L. Carraway
- University of California Davis School of Medicine, Biochemistry and Molecular Medicine, Sacramento, California, USA
| | - Matthew A. Coleman
- Lawrence Livermore National Laboratory, Livermore, California, USA
- University of California Davis School of Medicine, Radiation Oncology, Sacramento, California, USA
| | - Gabriela S. Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139
| |
Collapse
|
8
|
Fanconi-Anemia-Associated Mutations Destabilize RAD51 Filaments and Impair Replication Fork Protection. Cell Rep 2018; 21:333-340. [PMID: 29020621 DOI: 10.1016/j.celrep.2017.09.062] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 08/25/2017] [Accepted: 09/18/2017] [Indexed: 12/13/2022] Open
Abstract
Fanconi anemia (FA) is a genetic disorder characterized by a defect in DNA interstrand crosslink (ICL) repair, chromosomal instability, and a predisposition to cancer. Recently, two RAD51 mutations were reported to cause an FA-like phenotype. Despite the tight association of FA/HR proteins with replication fork (RF) stabilization during normal replication, it remains unknown how FA-associated RAD51 mutations affect replication beyond ICL lesions. Here, we report that these mutations fail to protect nascent DNA from MRE11-mediated degradation during RF stalling in Xenopus laevis egg extracts. Reconstitution of DNA protection in vitro revealed that the defect arises directly due to altered RAD51 properties. Both mutations induce pronounced structural changes and RAD51 filament destabilization that is not rescued by prevention of ATP hydrolysis due to aberrant ATP binding. Our results further interconnect the FA pathway with DNA replication and provide mechanistic insight into the role of RAD51 in recombination-independent mechanisms of genome maintenance.
Collapse
|
9
|
LaConte LEW, Srivastava S, Mukherjee K. Probing Protein Kinase-ATP Interactions Using a Fluorescent ATP Analog. Methods Mol Biol 2018; 1647:171-183. [PMID: 28809002 DOI: 10.1007/978-1-4939-7201-2_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Eukaryotic protein kinases are an intensely investigated class of enzymes which have garnered attention due to their usefulness as drug targets. Determining the regulation of ATP binding to a protein kinase is not only critical for understanding function in a cellular context but also for designing kinase-specific molecular inhibitors. Here, we provide a general procedure for characterizing ATP binding to eukaryotic protein kinases. The protocol can be adapted to identify the conditions under which a particular kinase is activated. The approach is simple, requiring only a fluorescent ATP analog such as TNP-ATP or MANT-ATP and an instrument to monitor changes in fluorescence. Although the interaction kinetics between a kinase and a given ATP analog may differ from that of native ATP, this disadvantage is offset by the ease of performing and interpreting this assay. Importantly, it can be optimized to probe a large variety of conditions under which the kinase-nucleotide binding might be affected.
Collapse
Affiliation(s)
- Leslie E W LaConte
- Virginia Tech Carilion Research Institute, Roanoke, 2 Riverside Circle, Roanoke, VA, 24016, USA
| | - Sarika Srivastava
- Virginia Tech Carilion Research Institute, Roanoke, 2 Riverside Circle, Roanoke, VA, 24016, USA
| | - Konark Mukherjee
- Virginia Tech Carilion Research Institute, Roanoke, 2 Riverside Circle, Roanoke, VA, 24016, USA. .,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24060, USA.
| |
Collapse
|
10
|
The Tribbles 2 (TRB2) pseudokinase binds to ATP and autophosphorylates in a metal-independent manner. Biochem J 2015; 467:47-62. [PMID: 25583260 DOI: 10.1042/bj20141441] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The human Tribbles (TRB)-related pseudokinases are CAMK (calcium/calmodulin-dependent protein kinase)-related family members that have evolved a series of highly unusual motifs in the 'pseudocatalytic' domain. In canonical kinases, conserved amino acids bind to divalent metal ions and align ATP prior to efficient phosphoryl-transfer to substrates. However, in pseudokinases, atypical residues give rise to diverse and often unstudied biochemical and structural features that are thought to be central to cellular functions. TRB proteins play a crucial role in multiple signalling networks and overexpression confers cancer phenotypes on human cells, marking TRB pseudokinases out as a novel class of drug target. In the present paper, we report that the human pseudokinase TRB2 retains the ability to both bind and hydrolyse ATP weakly in vitro. Kinase activity is metal-independent and involves a catalytic lysine residue, which is conserved in TRB proteins throughout evolution alongside several unique amino acids in the active site. A similar low level of autophosphorylation is also preserved in the closely related human TRB3. By employing chemical genetics, we establish that the nucleotide-binding site of an 'analogue-sensitive' (AS) TRB2 mutant can be targeted with specific bulky ligands of the pyrazolo-pyrimidine (PP) chemotype. Our analysis confirms that TRB2 retains low levels of ATP binding and/or catalysis that is targetable with small molecules. Given the significant clinical successes associated with targeting of cancer-associated kinases with small molecule inhibitors, it is likely that similar approaches will be useful for further evaluating the TRB pseudokinases, with the translation of this information likely to furnish new leads for drug discovery.
Collapse
|
11
|
Niranjan Y, Ungureanu D, Hammarén H, Sanz-Sanz A, Westphal AH, Borst JW, Silvennoinen O, Hilhorst R. Analysis of steady-state Förster resonance energy transfer data by avoiding pitfalls: interaction of JAK2 tyrosine kinase with N-methylanthraniloyl nucleotides. Anal Biochem 2013; 442:213-22. [PMID: 23891636 DOI: 10.1016/j.ab.2013.07.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 07/10/2013] [Accepted: 07/14/2013] [Indexed: 10/26/2022]
Abstract
Förster resonance energy transfer (FRET) between the fluorescent ATP analogue 2'/3'-(N-methyl-anthraniloyl)-adenosine-5'-triphosphate (MANT-ATP) and enzymes is widely used to determine affinities for ATP-protein binding. However, in analysis of FRET fluorescence data, several important parameters are often ignored, resulting in poor accuracy of the calculated dissociation constant (Kd). In this study, we systematically analyze factors that interfere with Kd determination and describe methods for correction of primary and secondary inner filter effects that extend the use of the FRET method to higher MANT nucleotide concentrations. The interactions of the fluorescent nucleotide analogues MANT-ATP, MANT-ADP [2'/3'-O-(N-methylanthraniloyl) adenosine diphosphate], and MANT-AMP [2'/3'-O-(N-methylanthraniloyl) adenosine monophosphate] with the JAK2 tyrosine kinase domain are characterized. Taking all interfering factors into consideration, we found that JAK2 binds MANT-ATP tightly with a Kd of 15 to 25nM and excluded the presence of a second binding site. The affinity for MANT-ADP is also tight with a Kd of 50 to 80nM, whereas MANT-AMP does not bind. Titrations of JAK2 JH1 with nonhydrolyzable ATP analogue MANT-ATP-γ-S [2'/3'-O-(N-methylanthraniloyl) adenosine-5'-(thio)- triphosphate] yielded a Kd of 30 to 50nM. The methods demonstrated here are applicable to other enzyme-fluorophore combinations and are expected to help improve the analysis of steady-state FRET data in MANT nucleotide binding studies and to obtain more accurate results for the affinities of nucleotide binding proteins.
Collapse
Affiliation(s)
- Yashavanthi Niranjan
- Institute of Biomedical Technology, University of Tampere, FI-33014 Tampere, Finland
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Theeraladanon C, Takahashi N, Shiina M, Hamada K, Takada Y, Endo H, Tateishi U, Oka T, Ogata K, Inoue T. Rational approach to the synthesis, evaluation, and (68)ga labeling of a novel 4-anilinoquinoline epidermal growth factor receptor inhibitor as a new imaging agent that selectively targets the epidermal growth factor receptor tyrosine kinase. Cancer Biother Radiopharm 2011; 25:479-85. [PMID: 20735208 DOI: 10.1089/cbr.2009.0614] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Certain small-molecule inhibitors that target epidermal growth factor receptor (EGFR), such as Gefitinib, Erlotinib, and Lapatinib, provide a new approach for cancer treatment. In accordance with the pharmacophore model for inhibitor competition at EGFR-binding site, this study proposes a rationalized design for a novel 4-anilinoquinoline EGFR tyrosine kinase inhibitor, [6,7-dimethoxyethoxy]-quinolin-4-yl]-(3-ethynylphenyl)-amine (YCU07). This is the first study to apply ring-closing metathesis toward synthesis of the quinoline nucleus for this 4-anilinoquinoline EGFR inhibitor. YCU07 expressed significant inhibitory activity for EGFR tyrosine kinase in A431 cells, as confirmed by an ABTS microwell peroxidase substrate system read colorimetrically at 405 nm. Injection of (68)Ga-labeled glutamic acid polypeptide (GAP)-YCU07 conjugate in nude mice implanted with A431 was imaged by animal PET camera (LabPET8; Gamma Medica-Ideas) and computed tomography (eXplore Locus; GE Healthcare), to evaluate its biodistribution. (68)Ga-GAP-YCU accumulated in the receptor-positive tumors, with uptake values of 1.50% +/- 0.09% and 2.36% +/- 0.36% of injected activity per gram tissue at 30 and 90 minutes, respectively.
Collapse
|
13
|
Sasaki H, Okuda K, Takada M, Kawahara M, Kitahara N, Matsumura A, Iuchi K, Kawaguchi T, Kubo A, Endo K, Kawano O, Yukiue H, Yano M, Fujii Y. A novel EGFR mutation D1012H and polymorphism at exon 25 in Japanese lung cancer. J Cancer Res Clin Oncol 2008; 134:1371-6. [PMID: 18478265 DOI: 10.1007/s00432-008-0411-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 04/28/2008] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Mutations of the epidermal growth factor receptor (EGFR) gene at kinase domain have been reported in non-small-cell lung cancer (NSCLC). However, EGFR mutations status at C-terminal domain has not been reported in detail. MATERIALS AND METHODS We investigated the EGFR mutation and polymorphism statuses at C-terminal domain in 398 surgically treated NSCLC cases. Two hundred and sixty-eight adenocarcinoma cases were included. The presence or absence of EGFR mutation and polymorphism was analyzed by direct sequences. RESULTS A novel EGFR somatic mutation at exon 25 (G3034, D1012H) was found from 1 of 398 lung cancer patients. During sequencing of EGFR C-terminal domain in NSCLC, 194 EGFR polymorphism (C2982T) cases were identified at exon 25. The polymorphism statuses were not correlated with gender, smoking status (never smoker vs. smoker), pathological subtypes and EGFR mutations. The EGFR polymorphism ratio was significantly higher in younger NSCLC (< or =60, 56.8%) than in older NSCLC (>60, 45.6%, P = 0.0467). The EGFR polymorphism ratio was significantly higher in lymph node positive NSCLC (57.4%) than in lymph node negative NSCLC (44%, P = 0.0168). In 46 total gefitinib treated NSCLC patients, exon 25 polymorphism was not correlated with prognosis. CONCLUSION EGFR mutation at C-terminal in lung cancers seemed to be extremely rare, however, this D1012H mutation might be a role in EGFR function. EGFR polymorphism at exon 25 might be correlated with progression of NSCLC.
Collapse
Affiliation(s)
- Hidefumi Sasaki
- Department of Surgery II, Nagoya City University Medical School, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lüth A, Löwe W. Syntheses of 4-(indole-3-yl)quinazolines: a new class of epidermal growth factor receptor tyrosine kinase inhibitors. Eur J Med Chem 2007; 43:1478-88. [PMID: 17981366 DOI: 10.1016/j.ejmech.2007.09.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 08/28/2007] [Accepted: 09/10/2007] [Indexed: 10/22/2022]
Abstract
The epidermal growth factor (EGF) family of membrane receptors has been identified as a key element in the complex signaling network that is utilized by various classes of cell-surface receptors. The synthesis and pharmacological results of 4-(indole-3-yl)quinazolines are described. The synthesized compounds are new high potent EGFR-tyrosine kinase inhibitors with excellent cytotoxic properties at different cell lines. Furthermore the 4-(indole-3-yl)quinazolines show some tendencies to inhibit the HER-2 TK, too. Moreover this substance class has remarkable strong fluorescence properties.
Collapse
Affiliation(s)
- Anja Lüth
- Freie Universität Berlin, Institut für Pharmazie, Berlin, Germany.
| | | |
Collapse
|
15
|
Lee NY, Hazlett TL, Koland JG. Structure and dynamics of the epidermal growth factor receptor C-terminal phosphorylation domain. Protein Sci 2006; 15:1142-52. [PMID: 16597832 PMCID: PMC2242510 DOI: 10.1110/ps.052045306] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The C-terminal phosphorylation domain of the epidermal growth factor receptor is believed to regulate protein kinase activity as well as mediate the assembly of signal transduction complexes. The structure and dynamics of this proposed autoregulatory domain were examined by labeling the extreme C terminus of the EGFR intracellular domain (ICD) with an extrinsic fluorophore. Fluorescence anisotropy decay analysis of the nonphosphorylated EGFR-ICD yielded two rotational correlation times: a longer time, consistent with the global rotational motion of a 60- to 70-kDa protein with an elongated globular conformation, and a shorter time, presumably contributed by segmental motion near the fluorophore. A C-terminally truncated form of EGFR-ICD yielded a slow component consistent with the rotational motion of the 38-kDa kinase core. These findings suggested a structural arrangement of the EGFR-ICD in which the C-terminal phosphorylation domain interacts with the kinase core to move as an extended structure. A marked reduction in the larger correlation time of EGFR-ICD was observed upon its autophosphorylation. This dynamic component was faster than predicted for the globular motion of the 62-kDa EGFR-ICD, suggesting an increase in the mobility of the C-terminal domain and a likely displacement of this domain from the kinase core. The interaction between the SH2 domain of c-Src and the phosphorylated EGFR C-terminal domain was shown to impede its mobility. Circular dichroism spectroscopy indicated that the EGFR C-terminal domain possessed a significant level of secondary structure in the form of alpha-helices and beta-sheets, with a marginal change in beta-sheet content occurring upon phosphorylation.
Collapse
Affiliation(s)
- Nam Y Lee
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242-1109, USA
| | | | | |
Collapse
|
16
|
Lee NY, Koland JG. Conformational changes accompany phosphorylation of the epidermal growth factor receptor C-terminal domain. Protein Sci 2005; 14:2793-803. [PMID: 16199664 PMCID: PMC2253217 DOI: 10.1110/ps.051630305] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The precise regulation of epidermal growth factor receptor (EGFR) signaling is crucial to its function in cellular growth control. Various studies have suggested that the C-terminal phosphorylation domain, itself a substrate for the EGFR kinase activity, exerts a regulatory influence upon it, although the molecular mechanism for this regulation is unknown. The fluorescence resonance energy transfer (FRET) technique was employed to examine how C-terminal domain conformational changes in the context of receptor activation and autophosphorylation might regulate EGFR enzymatic activity. A novel FRET reporter system was devised in which recombinant purified EGFR intracellular domain (ICD) proteins of varying C-terminal lengths were site-specifically labeled at their extreme C termini with blue fluorescent protein (BFP) and a fluorescent nucleotide analog, 2'(3')-O-(2,4,6-trinitrophenyl)-adenosine 5'-triphosphate (TNP-ATP), binding at their active sites. This novel BFP/TNP-ATP FRET pair demonstrated efficient energy transfer as evidenced by appreciable BFP-donor quenching by bound TNP-ATP. In particular, a marked reduction in energy transfer was observed for the full-length BFP-labeled EGFR-ICD protein upon phosphorylation, likely reflecting its movement away from the active site. The estimated distances from the BFP module to the TNP-ATP-occupied active site for the full-length and C-terminally truncated proteins also reveal the possible folding geometry of this domain with respect to the kinase core. The present studies demonstrate the first use of BFP/TNP-ATP as a FRET reporter system. Furthermore, the results described here provide biophysical evidence for phosphorylation-dependent conformational changes in the C-terminal phosphorylation domain and its likely interaction with the kinase core.
Collapse
Affiliation(s)
- Nam Y Lee
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
| | | |
Collapse
|
17
|
Murata K, Kumagai H, Kawashima T, Tamitsu K, Irie M, Nakajima H, Suzu S, Shibuya M, Kamihira S, Nosaka T, Asano S, Kitamura T. Selective cytotoxic mechanism of GTP-14564, a novel tyrosine kinase inhibitor in leukemia cells expressing a constitutively active Fms-like tyrosine kinase 3 (FLT3). J Biol Chem 2003; 278:32892-8. [PMID: 12815052 DOI: 10.1074/jbc.m210405200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The receptor tyrosine kinase FLT3 is constitutively activated by an internal tandem duplication (ITD) mutation within the juxtamembrane domain in 20-30% of patients with acute myeloid leukemia. In this study, we identified GTP-14564 as a specific kinase inhibitor for ITD-FLT3 and investigated the molecular basis of its specificity. GTP-14564 inhibited the growth of interleukin-3-independent Ba/F3 expressing ITD-FLT3 at 1 microM, whereas a 30-fold higher concentration of GTP-14564 was required to inhibit FLT3 ligand-dependent growth of Ba/F3 expressing wild type FLT3 (wt-FLT3). However, this inhibitor suppressed the kinase activities of wt-FLT3 and ITD-FLT3 equally, suggesting that the signaling pathways for proliferation differ between wt-FLT3 and ITD-FLT3. Analysis of downstream targets of FLT3 using GTP-14564 revealed STAT5 activation to be essential for growth signaling of ITD-FLT3. In contrast, wt-FLT3 appeared to mainly use the MAPK pathway rather than the STAT5 pathway to transmit a proliferative signal. Further analysis demonstrated that the first two tyrosines in an ITD were critical for STAT5 activation and growth induction but that all of the tyrosines in the juxtamembrane region were dispensable in terms of the proliferation signals of wt-FLT3. These results indicate that an ITD mutation in FLT3 elicits an aberrant STAT5 activation that results in increased sensitivity to GTP-14564. Thus, FLT3-targeted inhibition is an attractive approach, with the potential for selective cytotoxicity, to the treatment of ITD-FLT3-positive acute myeloid leukemia.
Collapse
MESH Headings
- Animals
- Benzofurans/pharmacology
- Blotting, Western
- Cell Division
- Cell Line
- DNA, Complementary/metabolism
- DNA-Binding Proteins/metabolism
- Dose-Response Relationship, Drug
- Electrophoresis, Polyacrylamide Gel
- Enzyme Inhibitors/pharmacology
- Genes, Dominant
- Genetic Vectors
- Green Fluorescent Proteins
- Humans
- Inhibitory Concentration 50
- Interleukin-3/metabolism
- Leukemia, Myeloid, Acute/metabolism
- Luminescent Proteins/metabolism
- MAP Kinase Signaling System
- Mice
- Milk Proteins
- Models, Biological
- Models, Chemical
- Mutation
- Phosphorylation
- Precipitin Tests
- Protein Structure, Tertiary
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Proto-Oncogene Proteins/metabolism
- Pyrazoles/pharmacology
- Receptor Protein-Tyrosine Kinases/metabolism
- Recombinant Proteins/metabolism
- Retroviridae/genetics
- STAT5 Transcription Factor
- Signal Transduction
- Time Factors
- Trans-Activators/metabolism
- Transfection
- Tumor Cells, Cultured
- Tyrosine/chemistry
- fms-Like Tyrosine Kinase 3
Collapse
Affiliation(s)
- Ken Murata
- Division of Hematopoietic Factors, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hays JL, Watowich SJ. Oligomerization-induced modulation of TPR-MET tyrosine kinase activity. J Biol Chem 2003; 278:27456-63. [PMID: 12711601 DOI: 10.1074/jbc.m210648200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Phosphorylation, although necessary, may not be sufficient to fully activate many receptor tyrosine kinases (RTKs). Oligomerization-induced conformational changes may be necessary to modulate the kinetic properties of RTKs and render them fully functional. To investigate this regulatory mechanism, recombinant TPR-MET, a functionally active oncoprotein derivative of the RTK c-MET, has been expressed and purified for quantitative enzymatic analysis. This naturally occurring oncoprotein contains the cytoplasmic domain of c-MET fused to a coiled coil motif from the nuclear pore complex (TPR). cytoMET, the monomeric analog of TPR-MET, has also been expressed and purified for comparative enzymatic analysis. ATP and peptide substrates have been kinetically characterized for both TPR-MET and cytoMET. Significantly, phosphorylated TPR-MET has smaller Km values for ATP (Km,ATP) and peptide substrates (Km,peptide) and a larger kcat relative to phosphorylated cytoMET. This provides the first direct evidence that receptor oligomerization and not simply activation loop phosphorylation modulates RTK enzymatic activity. The ATP dissociation constants (Kd,ATP) for the two enzymes also displayed significant differences. In contrast, the KI values for the ATP competitive inhibitor staurosporin are similar for the two phosphorylated enzymes. These results suggest that much of the oligomerization-induced kinetic changes occur with respect to peptide substrate binding or catalytic efficiency. The possibility that oligomerization-induced conformational changes occur within the cytoplasmic domain of receptor tyrosine kinases has significant implications for structure-based design of RTK inhibitors and the development of a detailed mechanistic model of RTK activation.
Collapse
Affiliation(s)
- John L Hays
- Department of Human Biological Chemistry and Genetics and the Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, Texas 77555-0645, USA
| | | |
Collapse
|
19
|
Odero-Marah VA, Khalkhali-Ellis Z, Schneider GB, Seftor EA, Seftor REB, Koland JG, Hendrix MJC. Tyrosine phosphorylation of maspin in normal mammary epithelia and breast cancer cells. Biochem Biophys Res Commun 2002; 295:800-5. [PMID: 12127964 DOI: 10.1016/s0006-291x(02)00764-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Maspin is a 42kDa tumor suppressor protein that belongs to the serine protease inhibitor (serpin) family. It inhibits cell motility and invasion in vitro, and tumor growth and metastasis in nude mice; however, maspin's molecular mechanism of action has remained elusive. Maspin contains several tyrosine residues and we hypothesized that phosphorylation of maspin could play a role in its biological function. Our study reveals that maspin is phosphorylated on tyrosine moiety(ies) in normal mammary epithelial cells endogenously expressing maspin. In addition, transfection of the maspin gene, using either a stable or inducible system into maspin-deficient breast cancer cell lines, yields a protein product that is phosphorylated on tyrosine residue(s). Furthermore, recombinant maspin protein can be tyrosine-phosphorylated by the kinase domain from the epidermal growth factor receptor in vitro. These novel observations suggest that maspin, which deviates from the classical serpin, may be an important signal transduction molecule in its phosphorylated form.
Collapse
Affiliation(s)
- Valerie A Odero-Marah
- Department of Anatomy and Cell Biology, The Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Espinosa V, Kettlun AM, Zanocco A, Cardemil E, Valenzuela MA. Fluorescence studies of ATP-diphosphohydrolase from Solanum tuberosum var. Desirée. PHYTOCHEMISTRY 2000; 54:995-1001. [PMID: 11014304 DOI: 10.1016/s0031-9422(99)00528-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Chemical modification of potato apyrase suggests that tryptophan residues are close to the nucleotide binding site. Kd values (+/- Ca2+) for the complexes of apyrase with the non-hydrolysable phosphonate adenine nucleotide analogues, adenosine 5'-(beta,gamma-methylene) triphosphate and adenosine 5'-(alpha,beta-methylene) diphosphate, were obtained from quenching of the intrinsic enzyme fluorescence. Other fluorescent nucleotide analogues (2'(3')-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate, 2'(3')-O-(2,4,6-trinitrophenyl) adenosine 5'-diphosphate. 1,N6-ethenoadenosine triphosphate and 1,N6-ethenoadenosine diphosphate) were hydrolysed by apyrase in the presence of Ca2+, indicating binding to the active site. The dissociation constants for the binding of these analogues were calculated from both the decrease of the protein (tryptophan) fluorescence and enhancement of the nucleotide fluorescence. Using the sensitised acceptor (nucleotide analogue) fluorescence method, energy transfer was observed between enzyme tryptophans and ethene-derivatives. These results support the view that tryptophan residues are present in the nucleotide-binding region of the protein, appropriately oriented to allow the energy transfer process to occur.
Collapse
Affiliation(s)
- V Espinosa
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago
| | | | | | | | | |
Collapse
|
21
|
Cheng K, Koland JG. Nucleotide-binding properties of kinase-deficient epidermal-growth-factor-receptor mutants. Biochem J 1998; 330 ( Pt 1):353-9. [PMID: 9461530 PMCID: PMC1219147 DOI: 10.1042/bj3300353] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The nucleotide-binding properties of wild-type epidermal- growth-factor (EGF)-receptor protein tyrosine kinase (PTK) and EGF-receptor mutants with site-specific amino acid substitutions known to attenuate protein kinase activity were analysed by a fluorescence competition assay employing the nucleotide analogue 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate. Binding affinities for ATP and Mn.ATP complex were determined for the PTK domains of the wild-type and two mutant proteins. Surprisingly, mutation of the highly conserved Lys-721 residue in the nucleotide-binding site of the EGF- receptor PTK domain did not abolish ATP and Mn.ATP binding, although the binding affinity for the Mn.ATP complex was significantly reduced. A second kinase-inactivating mutation that targeted the highly conserved Asp-813 residue had little effect on the nucleotide-binding properties of the EGF-receptor PTK domain. These results indicated that the principle effect of these two kinase-inactivating amino acid substitutions is not to block nucleotide binding, but is instead an inhibition of the phospho-transfer reaction.
Collapse
Affiliation(s)
- K Cheng
- Department of Pharmacology, University of Iowa College of Medicine, Iowa City, IA 52242-1109, USA
| | | |
Collapse
|
22
|
Bandorowicz-Pikula J, Wrzosek A, Makowski P, Pikula S. The relationship between the binding of ATP and calcium to annexin IV. Effect of nucleotide on the calcium-dependent interaction of annexin with phosphatidylserine. Mol Membr Biol 1997; 14:179-86. [PMID: 9491369 DOI: 10.3109/09687689709048180] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
With the use of ATP analogues, we have found that porcine liver annexin (Anx) IV can be covalently labelled with 8-azido[gamma-32P]-ATP in the presence of Ca2+ (Kd 4.2 microM) and that the labelling is prevented by asolectin/cholesterol liposomes or chelation of calcium ions. On the other hand, non-covalent binding of 2'-(or 3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate (TNP-ATP) to AnxIV occurs optimally in the presence of liposomes and Ca2+ (Kd 7 microM). These observations were further confirmed by the results of intrinsic fluorescence quenching of AnxIV with various nucleotides, suggesting the existence of a relationship between Ca(2+)-, phospholipid- and ATP-binding sites within the annexin molecule. The interaction of AnxIV with nucleotides does not significantly affect its in vitro properties concerning the binding to phosphatidylserine (PS) monolayers.
Collapse
Affiliation(s)
- J Bandorowicz-Pikula
- Department of Cellular Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | |
Collapse
|
23
|
Arteaga CL, Ramsey TT, Shawver LK, Guyer CA. Unliganded epidermal growth factor receptor dimerization induced by direct interaction of quinazolines with the ATP binding site. J Biol Chem 1997; 272:23247-54. [PMID: 9287333 DOI: 10.1074/jbc.272.37.23247] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Receptor dimerization is critical for signaling by the epidermal growth factor receptor (EGFR) tyrosine kinase. This occurs after binding of the receptor's extracellular domain by ligand or bivalent antibodies. The role of other receptor domains in dimerization is less clear, and there are no examples of dimers induced by direct perturbation of the EGFR kinase domain. Submicromolar concentrations of AG-1478 and AG-1517, quinazolines specific for inhibition of the EGFR kinase, induced reversible receptor dimerization in vitro and in intact A431 cells. Consistent with the inhibitory effect of quinazolines on receptor kinase activity, the dimers formed lacked a detectable Tyr(P) signal. Quinazoline-induced EGFR dimerization was abrogated in vitro by ATP and the ATP analog adenyl-5'-yl imidodiphosphate. Receptors with a single-point mutation in the ATP binding site as well as wild-type EGFR with a covalent modification of the ATP site failed to dimerize in response to AG-1478 and AG-1517. These data suggest that EGFR dimerization can be induced by the interaction of quinazolines at the ATP site in the absence of receptor ligand binding. In SKBR-3 cells, the quinazolines induced the formation of inactive EGFR/ErbB-2 heterodimers, potentially sequestering ErbB-2 from interacting with other coreceptors of the ErbB family. Structural studies of the quinazoline interaction with the EGFR tyrosine kinase domain should allow for an analysis of receptor-specific chemical features required for binding to the ATP site and disruption of signaling, a strategy that can be perhaps applied to other tumor cell receptor systems.
Collapse
Affiliation(s)
- C L Arteaga
- Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt Cancer Center, Nashville, Tennessee 37232-5536, USA.
| | | | | | | |
Collapse
|
24
|
Bandorowicz-Pikuła J, Wrzosek A, Pikuła S, Awasthi YC. Fluorescence spectroscopic studies on interactions between liver annexin VI and nucleotides--a possible role for a tryptophan residue. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:238-44. [PMID: 9310384 DOI: 10.1111/j.1432-1033.1997.t01-1-00238.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Annexin VI is a 68-kDa calcium-, phospholipid-, and cytoskeletal-element-binding protein, which has been implicated in various processes, including calcium release and sequestration in calcifying cartilage, in a receptor-mediated endocytosis in human fibroblasts, and in secretion from chromaffin granules. In these processes it was found that, in addition to Ca2+ and annexin, the presence of ATP is also a prerequisite. In the present report we show that annexin VI binds ATP and the binding of nucleotide to protein is accompanied by quenching of an intrinsic fluorescence of annexin VI, which was found to be specific for 2'-(or 3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate, GTP and ATP, and dependent on the annexin conformation. The nucleotide-binding site within an annexin VI molecule is likely to be close to the tryptophan-containing domain of annexin VI. We propose that ATP plays the role of a physiological ligand for annexin VI, and its binding to annexin VI may represent an alternative cellular mechanism for the regulation of annexin-membrane interactions coupled to overall energy transitions in the cell.
Collapse
Affiliation(s)
- J Bandorowicz-Pikuła
- Department of Cellular Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland.
| | | | | | | |
Collapse
|
25
|
Bandorowicz-Pikuła J, Awasthi YC. Interaction of annexins IV and VI with ATP. An alternative mechanism by which a cellular function of these calcium- and membrane-binding proteins is regulated. FEBS Lett 1997; 409:300-6. [PMID: 9202166 DOI: 10.1016/s0014-5793(97)00534-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Annexin VI from porcine liver can be photoaffinity-labeled with 8-azido-[gamma-32P]ATP in a concentration-dependent, saturable manner. The extent of labeling varied with the concentration of calcium. The dissociation constant for the nucleotide was found to be in the range reported for ATP-binding proteins. The ATP analog, 2'-(or 3')-O-(2,4,6-trinitrophenyl)-adenosine 5'-triphosphate, also bound to AnxVI, as indicated by shift in its fluorescence spectra in the presence of protein. Any significant 8-azido-ATP or TNP-ATP binding was not observed with AnxIV. ATP modulated the binding of AnxVI to erythrocyte membrane and increased the Ca2+ concentration required for half-maximal binding of AnxVI to F-actin.
Collapse
Affiliation(s)
- J Bandorowicz-Pikuła
- Department of Cellular Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland.
| | | |
Collapse
|
26
|
Lynch BA, Loiacono KA, Tiong CL, Adams SE, MacNeil IA. A fluorescence polarization based Src-SH2 binding assay. Anal Biochem 1997; 247:77-82. [PMID: 9126374 DOI: 10.1006/abio.1997.2042] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The tyrosine kinase pp60c.src has been implicated as being a potential therapeutic target in several human diseases including cancer and osteoporosis. An important region within this kinase is the SH2 domain (Src homology 2) which binds to phosphorylated tyrosine residues contained within specific peptide sequences. Homologous domains are found in a variety of cytoplasmic proteins and have been shown to be essential for controlling many important signaling pathways. Developing specific inhibitors of SH2 interactions would therefore be extremely useful for modulating a variety of signaling pathways and potentially be useful for the treatment of human disease. Current methodology for the development of organic molecules as drug leads requires the ability to test thousands of individual compounds or natural product extracts in biochemical assays. Such tests must be reproducible, simple, and versatile. This paper describes an assay based on fluorescence polarization for measuring the binding of compounds to the Src-SH2 domain. The assay is insensitive to changes in fluorescence intensity working even in solutions with moderate optical density and functions in the presence of up to 20% dimethyl sulfoxide. These features make it especially useful for high-throughput screening of both natural and synthetic compound libraries.
Collapse
Affiliation(s)
- B A Lynch
- ARIAD Pharmaceuticals Inc., Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
27
|
Sierke SL, Cheng K, Kim HH, Koland JG. Biochemical characterization of the protein tyrosine kinase homology domain of the ErbB3 (HER3) receptor protein. Biochem J 1997; 322 ( Pt 3):757-63. [PMID: 9148746 PMCID: PMC1218252 DOI: 10.1042/bj3220757] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The putative protein tyrosine kinase domain (TKD) of the ErbB3 (HER3) receptor protein was generated as a histidine-tagged recombinant protein (hisTKD-B3) and characterized enzymologically. CD spectroscopy indicated that the hisTKD-B3 protein assumed a native conformation with a secondary structure similar to that of the epidermal growth factor (EGF) receptor TKD. However, when compared with the EGF receptor-derived protein, hisTKD-B3 exhibited negligible intrinsic protein tyrosine kinase activity. Immune complex kinase assays of full-length ErbB3 proteins also yielded no evidence of catalytic activity. A fluorescence assay previously used to characterize the nucleotide-binding properties of the EGF receptor indicated that the ErbB3 protein was unable to bind nucleotide. The hisTKD-B3 protein was subsequently found to be an excellent substrate for the EGF receptor protein tyrosine kinase, which suggested that in vivo phosphorylation of ErbB3 in response to EGF could be attributed to a direct cross-phosphorylation by the EGF receptor protein tyrosine kinase.
Collapse
Affiliation(s)
- S L Sierke
- Department of Pharmacology, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|