1
|
Bondarev AD, Jonsson J, Chubarev VN, Tarasov VV, Lagunas-Rangel FA, Schiöth HB. Recent developments of topoisomerase inhibitors: Clinical trials, emerging indications, novel molecules and global sales. Pharmacol Res 2024; 209:107431. [PMID: 39307213 DOI: 10.1016/j.phrs.2024.107431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 11/11/2024]
Abstract
The nucleic acid topoisomerases (TOP) are an evolutionary conserved mechanism to solve topological problems within DNA and RNA that have been historically well-established as a chemotherapeutic target. During investigation of trends within clinical trials, we have identified a very high number of clinical trials involving TOP inhibitors, prompting us to further evaluate the current status of this class of therapeutic agents. In total, we have identified 233 unique molecules with TOP-inhibiting activity. In this review, we provide an overview of the clinical drug development highlighting advances in current clinical uses and discussing novel drugs and indications under development. A wide range of bacterial infections, along with solid and hematologic neoplasms, represent the bulk of clinically approved indications. Negative ADR profile and drug resistance among the antibacterial TOP inhibitors and anthracycline-mediated cardiotoxicity in the antineoplastic TOP inhibitors are major points of concern, subject to continuous research efforts. Ongoing development continues to focus on bacterial infections and cancer; however, there is a degree of diversification in terms of novel drug classes and previously uncovered indications, such as glioblastoma multiforme or Clostridium difficile infections. Preclinical studies show potential in viral, protozoal, parasitic and fungal infections as well and suggest the emergence of a novel target, TOP IIIβ. We predict further growth and diversification of the field thanks to the large number of experimental TOP inhibitors emerging.
Collapse
Affiliation(s)
- Andrey D Bondarev
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Jörgen Jonsson
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Vladimir N Chubarev
- Advanced Molecular Technologies, Limited Liability Company (LLC), Moscow 354340, Russia
| | - Vadim V Tarasov
- Advanced Molecular Technologies, Limited Liability Company (LLC), Moscow 354340, Russia
| | - Francisco Alejandro Lagunas-Rangel
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden; Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia.
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Homiski C, Dey-Rao R, Shen S, Qu J, Melendy T. DNA damage-induced phosphorylation of a replicative DNA helicase results in inhibition of DNA replication through attenuation of helicase function. Nucleic Acids Res 2024; 52:10311-10328. [PMID: 39126317 PMCID: PMC11417368 DOI: 10.1093/nar/gkae663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/14/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
A major function of the DNA damage responses (DDRs) that act during the replicative phase of the cell cycle is to inhibit initiation and elongation of DNA replication. It has been shown that DNA replication of the polyomavirus, SV40, is inhibited and its replication fork is slowed by cellular DDR responses. The inhibition of SV40 DNA replication is associated with enhanced DDR kinase phosphorylation of SV40 Large T-antigen (LT), the viral DNA helicase. Mass spectroscopy was used to identify a novel highly conserved DDR kinase site, T518, on LT. In cell-based assays expression of a phosphomimetic form of LT at T518 (T518D) resulted in dramatically decreased levels of SV40 DNA replication, but LT-dependent transcriptional activation was unaffected. Purified WT and LT T518D were analyzed in vitro. In concordance with the cell-based data, reactions using SV40 LT-T518D, but not T518A, showed dramatic inhibition of SV40 DNA replication. A myriad of LT protein-protein interactions and LT's biochemical functions were unaffected by the LT T518D mutation; however, LT's DNA helicase activity was dramatically decreased on long, but not very short, DNA templates. These results suggest that DDR phosphorylation at T518 inhibits SV40 DNA replication by suppressing LT helicase activity.
Collapse
Affiliation(s)
- Caleb Homiski
- Departments of Microbiology & Immunology and Biochemistry, and the Witebsky Center for Microbial Pathogenesis & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Rama Dey-Rao
- Departments of Microbiology & Immunology and Biochemistry, and the Witebsky Center for Microbial Pathogenesis & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA; NYS Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA; NYS Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Thomas Melendy
- Departments of Microbiology & Immunology and Biochemistry, and the Witebsky Center for Microbial Pathogenesis & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
3
|
Moreira F, Arenas M, Videira A, Pereira F. Evolution of TOP1 and TOP1MT Topoisomerases in Chordata. J Mol Evol 2023; 91:192-203. [PMID: 36651963 PMCID: PMC10081982 DOI: 10.1007/s00239-022-10091-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023]
Abstract
Type IB topoisomerases relax the torsional stress associated with DNA metabolism in the nucleus and mitochondria and constitute important molecular targets of anticancer drugs. Vertebrates stand out among eukaryotes by having two Type IB topoisomerases acting specifically in the nucleus (TOP1) and mitochondria (TOP1MT). Despite their major importance, the origin and evolution of these paralogues remain unknown. Here, we examine the molecular evolutionary processes acting on both TOP1 and TOP1MT in Chordata, taking advantage of the increasing number of available genome sequences. We found that both TOP1 and TOP1MT evolved under strong purifying selection, as expected considering their essential biological functions. Critical active sites, including those associated with resistance to anticancer agents, were found particularly conserved. However, TOP1MT presented a higher rate of molecular evolution than TOP1, possibly related with its specialized activity on the mitochondrial genome and a less critical role in cells. We could place the duplication event that originated the TOP1 and TOP1MT paralogues early in the radiation of vertebrates, most likely associated with the first round of vertebrate tetraploidization (1R). Moreover, our data suggest that cyclostomes present a specialized mitochondrial Type IB topoisomerase. Interestingly, we identified two missense mutations replacing amino acids in the Linker region of TOP1MT in Neanderthals, which appears as a rare event when comparing the genome of both species. In conclusion, TOP1 and TOP1MT differ in their rates of evolution, and their evolutionary histories allowed us to better understand the evolution of chordates.
Collapse
Affiliation(s)
- Filipa Moreira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N 4450-208, Matosinhos, Portugal
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310, Vigo, Spain
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | - Arnaldo Videira
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Filipe Pereira
- IDENTIFICA Genetic Testing, Rua Simão Bolívar 259 3º Dir Tras, 4470-214, Maia, Portugal.
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| |
Collapse
|
4
|
Duprey A, Groisman EA. The regulation of DNA supercoiling across evolution. Protein Sci 2021; 30:2042-2056. [PMID: 34398513 PMCID: PMC8442966 DOI: 10.1002/pro.4171] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 11/11/2022]
Abstract
DNA supercoiling controls a variety of cellular processes, including transcription, recombination, chromosome replication, and segregation, across all domains of life. As a physical property, DNA supercoiling alters the double helix structure by under- or over-winding it. Intriguingly, the evolution of DNA supercoiling reveals both similarities and differences in its properties and regulation across the three domains of life. Whereas all organisms exhibit local, constrained DNA supercoiling, only bacteria and archaea exhibit unconstrained global supercoiling. DNA supercoiling emerges naturally from certain cellular processes and can also be changed by enzymes called topoisomerases. While structurally and mechanistically distinct, topoisomerases that dissipate excessive supercoils exist in all domains of life. By contrast, topoisomerases that introduce positive or negative supercoils exist only in bacteria and archaea. The abundance of topoisomerases is also transcriptionally and post-transcriptionally regulated in domain-specific ways. Nucleoid-associated proteins, metabolites, and physicochemical factors influence DNA supercoiling by acting on the DNA itself or by impacting the activity of topoisomerases. Overall, the unique strategies that organisms have evolved to regulate DNA supercoiling hold significant therapeutic potential, such as bactericidal agents that target bacteria-specific processes or anticancer drugs that hinder abnormal DNA replication by acting on eukaryotic topoisomerases specialized in this process. The investigation of DNA supercoiling therefore reveals general principles, conserved mechanisms, and kingdom-specific variations relevant to a wide range of biological questions.
Collapse
Affiliation(s)
- Alexandre Duprey
- Department of Microbial PathogenesisYale School of MedicineNew HavenConnecticutUSA
| | - Eduardo A. Groisman
- Department of Microbial PathogenesisYale School of MedicineNew HavenConnecticutUSA
- Yale Microbial Sciences InstituteWest HavenConnecticutUSA
| |
Collapse
|
5
|
Álvarez-Quilón A, Wojtaszek JL, Mathieu MC, Patel T, Appel CD, Hustedt N, Rossi SE, Wallace BD, Setiaputra D, Adam S, Ohashi Y, Melo H, Cho T, Gervais C, Muñoz IM, Grazzini E, Young JTF, Rouse J, Zinda M, Williams RS, Durocher D. Endogenous DNA 3' Blocks Are Vulnerabilities for BRCA1 and BRCA2 Deficiency and Are Reversed by the APE2 Nuclease. Mol Cell 2020; 78:1152-1165.e8. [PMID: 32516598 PMCID: PMC7340272 DOI: 10.1016/j.molcel.2020.05.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/18/2020] [Accepted: 05/13/2020] [Indexed: 02/08/2023]
Abstract
The APEX2 gene encodes APE2, a nuclease related to APE1, the apurinic/apyrimidinic endonuclease acting in base excision repair. Loss of APE2 is lethal in cells with mutated BRCA1 or BRCA2, making APE2 a prime target for homologous recombination-defective cancers. However, because the function of APE2 in DNA repair is poorly understood, it is unclear why BRCA-deficient cells require APE2 for viability. Here we present the genetic interaction profiles of APE2, APE1, and TDP1 deficiency coupled to biochemical and structural dissection of APE2. We conclude that the main role of APE2 is to reverse blocked 3' DNA ends, problematic lesions that preclude DNA synthesis. Our work also suggests that TOP1 processing of genomic ribonucleotides is the main source of 3'-blocking lesions relevant to APEX2-BRCA1/2 synthetic lethality. The exquisite sensitivity of BRCA-deficient cells to 3' blocks indicates that they represent a tractable vulnerability in homologous recombination-deficient tumor cells.
Collapse
Affiliation(s)
- Alejandro Álvarez-Quilón
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Jessica L Wojtaszek
- Structural Cell Biology Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, US Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Marie-Claude Mathieu
- Repare Therapeutics, 7210 Frederick-Banting, Suite 100, St-Laurent, QC H4S 2A1, Canada
| | - Tejas Patel
- Structural Cell Biology Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, US Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - C Denise Appel
- Structural Cell Biology Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, US Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Nicole Hustedt
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Silvia Emma Rossi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Bret D Wallace
- Structural Cell Biology Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, US Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Dheva Setiaputra
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Salomé Adam
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Yota Ohashi
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Henrique Melo
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Tiffany Cho
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Christian Gervais
- National Research Council Canada Human Health Therapeutics Research Center, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada
| | - Ivan M Muñoz
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Eric Grazzini
- National Research Council Canada Human Health Therapeutics Research Center, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada
| | - Jordan T F Young
- Repare Therapeutics, 7210 Frederick-Banting, Suite 100, St-Laurent, QC H4S 2A1, Canada
| | - John Rouse
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Michael Zinda
- Repare Therapeutics, 7210 Frederick-Banting, Suite 100, St-Laurent, QC H4S 2A1, Canada
| | - R Scott Williams
- Structural Cell Biology Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, US Department of Health and Human Services, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
6
|
Karunakaran J, Dhatchana Moorthy N, Chowdhury SR, Iqbal S, Majumder HK, Gunasekaran K, Vellaichamy E, Mohanakrishnan AK. Divergent Synthesis and Evaluation of the in vitro Cytotoxicity Profiles of 3,4-Ethylenedioxythiophenyl-2-propen-1-one Analogues. ChemMedChem 2019; 14:1418-1430. [PMID: 31343838 DOI: 10.1002/cmdc.201900225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/08/2019] [Indexed: 12/18/2022]
Abstract
A new series of 3,4-ethylenedioxythiophene (EDOT)-appended propenones were prepared by condensation reaction and their in vitro cytotoxicity effects were evaluated against five human cancer cell lines. Preliminary structure-activity relationships of EDOT-incorporated 2-propenone derivatives were also established. The EDOT-appended enones demonstrated significant cytotoxicity against human cancer cell lines. The most active analogue, (E)-3-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (3 p, GI50 =110 nm), severely inhibited the clonogenic potential of cancer cells, and induced cell-cycle arrest in the G2/M phase and caused an accumulation of HCT116 colon cancer cells with >4 N DNA content. Also, 3 p exhibited weak inhibition of the enzymatic activity of human topoisomerase I. Molecular docking studies indicated preferential binding of the compounds to the ATP-binding pocket of the human checkpoint 2 kinase (Chk2) catalytic domain, thus, identifying a novel diaryl 2-propenone chemotype for the development of potent inhibitors of Chk2.
Collapse
Affiliation(s)
- Jayachandran Karunakaran
- Department of Organic Chemistry, School of Chemistry, University of Madras, Guindy Campus, Chennai, 600025, Tamil Nadu, India
| | - Nachiappan Dhatchana Moorthy
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, 600025, Tamil Nadu, India.,Department of Biotechnology, Orchid Pharma Limited, Orchid Towers #313, Valluvar Kottam High Road, Nungambakkam, Chennai, 600034, Tamil Nadu, India
| | - Somenath Roy Chowdhury
- Division of Infectious Diseases & Immunology, Indian Institute of Chemical Biology, 4, Raja S. C. Mallick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Saleem Iqbal
- Center for Advanced studies in Crystallography & Biophysics, University of Madras, Guindy Campus, Chennai, 600025, Tamil Nadu, India
| | - Hemanta K Majumder
- Division of Infectious Diseases & Immunology, Indian Institute of Chemical Biology, 4, Raja S. C. Mallick Road, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Krishnasamy Gunasekaran
- Center for Advanced studies in Crystallography & Biophysics, University of Madras, Guindy Campus, Chennai, 600025, Tamil Nadu, India
| | - Elangovan Vellaichamy
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, 600025, Tamil Nadu, India
| | - Arasambattu K Mohanakrishnan
- Department of Organic Chemistry, School of Chemistry, University of Madras, Guindy Campus, Chennai, 600025, Tamil Nadu, India
| |
Collapse
|
7
|
Bansal S, Sur S, Tandon V. Benzimidazoles: Selective Inhibitors of Topoisomerase I with Differential Modes of Action. Biochemistry 2018; 58:809-817. [DOI: 10.1021/acs.biochem.8b01102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sandhya Bansal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Souvik Sur
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
8
|
Muthu Ramalingam B, Dhatchana Moorthy N, Chowdhury SR, Mageshwaran T, Vellaichamy E, Saha S, Ganesan K, Rajesh BN, Iqbal S, Majumder HK, Gunasekaran K, Siva R, Mohanakrishnan AK. Synthesis and Biological Evaluation of Calothrixins B and their Deoxygenated Analogues. J Med Chem 2018; 61:1285-1315. [PMID: 29313676 DOI: 10.1021/acs.jmedchem.7b01797] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A series of calothrixin B (2) analogues bearing substituents at the 'E' ring and their corresponding deoxygenated quinocarbazoles lacking quinone unit were synthesized. The cytotoxicities of calothrixins 1, 2, and 15b-p and quinocarbazole analogues were investigated against nine cancer cell lines. The quinocarbazoles 21a and 25a inhibited the catalytic activity of human topoisomerase II. The plasmid DNA cleavage abilities of calothrixins 1, 2, and 15b-p identified compound 15h causing DNA cleavage comparable to that of calothrixin A (1). Calothrixin A (1), 3-fluorocalothrixin 15h and 4-fluoroquinocarbazole 21b induced extensive DNA damage followed by apoptotic cell death. Spectral and plasmid unwinding studies demonstrated an intercalative mode of binding for quinocarbazoles. We identified two promising drug candidates, the 3-fluorocalothrixin B 15h with low toxicity in animal model and its deoxygenated derivative 4-fluoroquinocarbazole 21b as having potent cytotoxicity against NCI-H460 cell line with a GI50 of 1 nM.
Collapse
Affiliation(s)
- Bose Muthu Ramalingam
- Department of Organic Chemistry, University of Madras , Guindy Campus, Chennai 600 025, India
| | - Nachiappan Dhatchana Moorthy
- Department of Biochemistry, University of Madras , Guindy Campus, Chennai 600 025, India.,Research and Development Centre, Orchid Pharma Ltd , Sholinganallur, Chennai 600 119, India
| | - Somenath Roy Chowdhury
- Division of Infectious Diseases & Immunology, Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | | | - Elangovan Vellaichamy
- Department of Biochemistry, University of Madras , Guindy Campus, Chennai 600 025, India
| | - Sourav Saha
- Division of Infectious Diseases & Immunology, Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Karthikeyan Ganesan
- Research and Development Centre, Orchid Pharma Ltd , Sholinganallur, Chennai 600 119, India
| | - B Navin Rajesh
- Research and Development Centre, Orchid Pharma Ltd , Sholinganallur, Chennai 600 119, India
| | - Saleem Iqbal
- CAS in Crystallography & Biophysics, University of Madras , Chennai 600 025, India
| | - Hemanta K Majumder
- Division of Infectious Diseases & Immunology, Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | | | - Ramamoorthy Siva
- School of Bio Sciences and Technology, VIT University , Vellore 632 014, India
| | | |
Collapse
|
9
|
Bansal S, Bajaj P, Pandey S, Tandon V. Topoisomerases: Resistance versus Sensitivity, How Far We Can Go? Med Res Rev 2016; 37:404-438. [PMID: 27687257 DOI: 10.1002/med.21417] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/04/2016] [Accepted: 08/29/2016] [Indexed: 12/15/2022]
Abstract
DNA topoisomerases are ubiquitously present remarkable molecular machines that help in altering topology of DNA in living cells. The crucial role played by these nucleases during DNA replication, transcription, and recombination vis-à-vis less sequence similarity among different species makes topoisomerases unique and attractive targets for different anticancer and antibacterial drugs. However, druggability of topoisomerases by the existing class of molecules is increasingly becoming questationable due to resistance development predominated by mutations in the corresponding genes. The current scenario facing a decline in the development of new molecules further comprises an important factor that may challenge topoisomerase-targeting therapy. Thus, it is imperative to wisely use the existing inhibitors lest with this rapid rate of losing grip over the target we may not go too far. Furthermore, it is important not only to design new molecules but also to develop new approaches that may avoid obstacles in therapies due to multiple resistance mechanisms. This review provides a succinct account of different classes of topoisomerase inhibitors, focuses on resistance acquired by mutations in topoisomerases, and discusses the various approaches to increase the efficacy of topoisomerase inhibitors. In a later section, we also suggest the possibility of using bisbenzimidazoles along with efflux pump inhibitors for synergistic bactericidal effects.
Collapse
Affiliation(s)
- Sandhya Bansal
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Priyanka Bajaj
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Stuti Pandey
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.,Department of Chemistry, University of Delhi, New Delhi, India
| |
Collapse
|
10
|
Mamidala R, Majumdar P, Jha KK, Bathula C, Agarwal R, Chary MT, Majumder HK, Munshi P, Sen S. Identification of Leishmania donovani Topoisomerase 1 inhibitors via intuitive scaffold hopping and bioisosteric modification of known Top 1 inhibitors. Sci Rep 2016; 6:26603. [PMID: 27221589 PMCID: PMC4879574 DOI: 10.1038/srep26603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/03/2016] [Indexed: 01/21/2023] Open
Abstract
A library of arylidenefuropyridinediones was discovered as potent inhibitors of Leishmania donovani Topoisomerase 1 (LdTop1) where the active molecules displayed considerable inhibition with single digit micromolar EC50 values. This molecular library was designed via intuitive scaffold hopping and bioisosteric modification of known topoisomerase 1 inhibitors such as camptothecin, edotecarin and etc. The design was rationalized by molecular docking analysis of the compound prototype with human topoisomerase 1 (HTop1) and Leishmania donovani topoisomerase 1(LdTop1). The most active compound 4 displayed no cytotoxicity against normal mammalian COS7 cell line (~100 fold less inhibition at the EC50). Similar to camptothecin, 4 interacted with free LdTop1 as observed in the preincubation DNA relaxation inhibition experiment. It also displayed anti-protozoal activity against Leishmania donovani promastigote. Crystal structure investigation of 4 and its molecular modelling with LdTop1 revealed putative binding sites in the enzyme that could be harnessed to generate molecules with better potency.
Collapse
Affiliation(s)
- Rajinikanth Mamidala
- Department of Chemistry, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad 500085, Telangana, India.,GVK Bioscience, 28A IDA Nacharam, Hyderabad, Telengana, India
| | - Papiya Majumdar
- Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Kunal Kumar Jha
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Chithera, Dadri, Gautam Buddha Nagar 201314, Uttar Pradesh, India
| | - Chandramohan Bathula
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Chithera, Dadri, Gautam Buddha Nagar 201314, Uttar Pradesh, India
| | - Rahul Agarwal
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Chithera, Dadri, Gautam Buddha Nagar 201314, Uttar Pradesh, India
| | - M Thirumala Chary
- Department of Chemistry, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad 500085, Telangana, India
| | - Hemanta K Majumder
- Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Parthapratim Munshi
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Chithera, Dadri, Gautam Buddha Nagar 201314, Uttar Pradesh, India
| | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Chithera, Dadri, Gautam Buddha Nagar 201314, Uttar Pradesh, India
| |
Collapse
|
11
|
Majumdar P, Bathula C, Basu SM, Das SK, Agarwal R, Hati S, Singh A, Sen S, Das BB. Design, synthesis and evaluation of thiohydantoin derivatives as potent topoisomerase I (Top1) inhibitors with anticancer activity. Eur J Med Chem 2015; 102:540-51. [DOI: 10.1016/j.ejmech.2015.08.032] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 08/14/2015] [Accepted: 08/15/2015] [Indexed: 11/30/2022]
|
12
|
Wang Z, D'Annessa I, Tesauro C, Croce S, Ottaviani A, Fiorani P, Desideri A. Mutation of Gly717Phe in human topoisomerase 1B has an effect on enzymatic function, reactivity to the camptothecin anticancer drug and on the linker domain orientation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:860-8. [PMID: 25910424 DOI: 10.1016/j.bbapap.2015.04.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 03/27/2015] [Accepted: 04/15/2015] [Indexed: 10/23/2022]
Abstract
Human topoisomerase 1B controls the topological state of supercoiled DNA allowing the progression of fundamental cellular processes. The enzyme, which is the unique molecular target of the natural anticancer compound camptothecin, acts by cleaving one DNA strand and forming a transient protein-DNA covalent adduct. In this work the role of the Gly717 residue, located in a α-helix structure bridging the active site and the linker domain, has been investigated mutating it in Phe. The mutation gives rise to drug resistance in vivo as observed through a viability assay of yeast cells. In vitro activity assays show that the mutant is characterized by a fast religation rate, only partially reduced by the presence of the drug. Comparative molecular dynamics simulations of the native and mutant proteins indicate that the mutation of Gly717 affects the motion orientation of the linker domain, changing its interaction with the DNA substrate, likely affecting the strand rotation and religation rate. The mutation also causes a slight rearrangement of the active site and of the drug binding site, providing an additional explanation for the lowered effect of camptothecin toward the mutant.
Collapse
Affiliation(s)
- Zhenxing Wang
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, Rome 00133, Italy
| | - Ilda D'Annessa
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, Rome 00133, Italy
| | - Cinzia Tesauro
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, Rome 00133, Italy
| | - Stefano Croce
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, Rome 00133, Italy
| | - Alessio Ottaviani
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, Rome 00133, Italy
| | - Paola Fiorani
- Institute of Translational Pharmacology, National Research Council, CNR, Via Del Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - Alessandro Desideri
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, Rome 00133, Italy.
| |
Collapse
|
13
|
D'Annessa I, Coletta A, Sutthibutpong T, Mitchell J, Chillemi G, Harris S, Desideri A. Simulations of DNA topoisomerase 1B bound to supercoiled DNA reveal changes in the flexibility pattern of the enzyme and a secondary protein-DNA binding site. Nucleic Acids Res 2014; 42:9304-12. [PMID: 25056319 PMCID: PMC4132758 DOI: 10.1093/nar/gku654] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human topoisomerase 1B has been simulated covalently bound to a negatively supercoiled DNA minicircle, and its behavior compared to the enzyme bound to a simple linear DNA duplex. The presence of the more realistic supercoiled substrate facilitates the formation of larger number of protein–DNA interactions when compared to a simple linear duplex fragment. The number of protein–DNA hydrogen bonds doubles in proximity to the active site, affecting all of the residues in the catalytic pentad. The clamp over the DNA, characterized by the salt bridge between Lys369 and Glu497, undergoes reduced fluctuations when bound to the supercoiled minicircle. The linker domain of the enzyme, which is implicated in the controlled relaxation of superhelical stress, also displays an increased number of contacts with the minicircle compared to linear DNA. Finally, the more complex topology of the supercoiled DNA minicircle gives rise to a secondary DNA binding site involving four residues located on subdomain III. The simulation trajectories reveal significant changes in the interactions between the enzyme and the DNA for the more complex DNA topology, which are consistent with the experimental observation that the protein has a preference for binding to supercoiled DNA.
Collapse
Affiliation(s)
- Ilda D'Annessa
- Department of Biology and Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB), University of Rome Tor Vergata, Via Della Ricerca Scientifica, Rome 00133, Italy
| | - Andrea Coletta
- Department of Biology and Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB), University of Rome Tor Vergata, Via Della Ricerca Scientifica, Rome 00133, Italy
| | | | - Jonathan Mitchell
- Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, SM2 5NG, UK
| | | | - Sarah Harris
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Alessandro Desideri
- Department of Biology and Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB), University of Rome Tor Vergata, Via Della Ricerca Scientifica, Rome 00133, Italy
| |
Collapse
|
14
|
Vlachakis D, Pavlopoulou A, Roubelakis MG, Feidakis C, Anagnou NP, Kossida S. 3D molecular modeling and evolutionary study of the Trypanosoma brucei DNA Topoisomerase IB, as a new emerging pharmacological target. Genomics 2014; 103:107-13. [DOI: 10.1016/j.ygeno.2013.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/19/2013] [Accepted: 11/29/2013] [Indexed: 10/25/2022]
|
15
|
The human topoisomerase 1B Arg634Ala mutation results in camptothecin resistance and loss of inter-domain motion correlation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2712-21. [DOI: 10.1016/j.bbapap.2013.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/23/2013] [Accepted: 09/25/2013] [Indexed: 11/22/2022]
|
16
|
Arnò B, D’Annessa I, Tesauro C, Zuccaro L, Ottaviani A, Knudsen B, Fiorani P, Desideri A. Replacement of the human topoisomerase linker domain with the plasmodial counterpart renders the enzyme camptothecin resistant. PLoS One 2013; 8:e68404. [PMID: 23844196 PMCID: PMC3699648 DOI: 10.1371/journal.pone.0068404] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 05/29/2013] [Indexed: 12/17/2022] Open
Abstract
A human/plasmodial hybrid enzyme, generated by swapping the human topoisomerase IB linker domain with the corresponding domain of the Plasmodium falciparum enzyme, has been produced and characterized. The hybrid enzyme displays a relaxation activity comparable to the human enzyme, but it is characterized by a much faster religation rate. The hybrid enzyme is also camptothecin resistant. A 3D structure of the hybrid enzyme has been built and its structural-dynamical properties have been analyzed by molecular dynamics simulation. The analysis indicates that the swapped plasmodial linker samples a conformational space much larger than the corresponding domain in the human enzyme. The large linker conformational variability is then linked to important functional properties such as an increased religation rate and a low drug reactivity, demonstrating that the linker domain has a crucial role in the modulation of the topoisomerase IB activity.
Collapse
Affiliation(s)
- Barbara Arnò
- Department of Biology and Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB), University of Rome Tor Vergata, Rome, Italy
| | - Ilda D’Annessa
- Department of Biology and Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB), University of Rome Tor Vergata, Rome, Italy
| | - Cinzia Tesauro
- Department of Biology and Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB), University of Rome Tor Vergata, Rome, Italy
| | - Laura Zuccaro
- Department of Biology and Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB), University of Rome Tor Vergata, Rome, Italy
| | - Alessio Ottaviani
- Department of Biology and Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB), University of Rome Tor Vergata, Rome, Italy
| | - Birgitta Knudsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Paola Fiorani
- Institute of Translational Pharmacology, National Research Council, CNR, Rome, Italy
| | - Alessandro Desideri
- Department of Biology and Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB), University of Rome Tor Vergata, Rome, Italy
- * E-mail:
| |
Collapse
|
17
|
Guha D, Poornima Priyadarshini C, Purakayastha A, Thippeswamy R, Lakshmikanth M, Savithri H. Biochemical characterization of C4 protein of Cotton Leaf Curl Kokhran Virus-Dabawali. Biochim Biophys Acta Gen Subj 2013; 1830:3734-44. [DOI: 10.1016/j.bbagen.2013.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 02/10/2013] [Accepted: 02/27/2013] [Indexed: 10/27/2022]
|
18
|
Abstract
Topoisomerases are nuclear enzymes that play essential roles in DNA replication, transcription, chromosome segregation, and recombination. All cells have two major forms of topoisomerases: type I enzymes, which make single-stranded cuts in DNA, and type II enzymes, which cut and pass double-stranded DNA. DNA topoisomerases are important targets of approved and experimental anti-cancer agents. The protocols described in this unit are for assays used to assess new chemical entities for their ability to inhibit both forms of DNA topoisomerase. Included are an in vitro assay for topoisomerase I activity based on relaxation of supercoiled DNA, and an assay for topoisomerase II based on the decatenation of double-stranded DNA. The preparation of mammalian cell extracts for assaying topoisomerase activity is described, along with a protocol for an ICE assay to examine topoisomerase covalent complexes in vivo, and an assay for measuring DNA cleavage in vitro.
Collapse
Affiliation(s)
- John L Nitiss
- Molecular Pharmacology Department, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | | | | | |
Collapse
|
19
|
Álvarez-Añorve LI, Alonzo DA, Mora-Lugo R, Lara-González S, Bustos-Jaimes I, Plumbridge J, Calcagno ML. Allosteric kinetics of the isoform 1 of human glucosamine-6-phosphate deaminase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1846-53. [DOI: 10.1016/j.bbapap.2011.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 06/09/2011] [Accepted: 07/12/2011] [Indexed: 10/17/2022]
|
20
|
Effects of DNA and protein size on substrate cleavage by human tyrosyl-DNA phosphodiesterase 1. Biochem J 2011; 436:559-66. [PMID: 21463258 DOI: 10.1042/bj20101841] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
TDP (tyrosyl-DNA phosphodiesterase) 1 catalyses the hydrolysis of phosphodiester linkages between a DNA 3' phosphate and a tyrosine residue as well as a variety of other DNA 3' substituents, and has been implicated in the repair of covalent complexes involving eukaryotic type IB topoisomerases. To better understand the substrate features that are recognized by TDP1, the size of either the DNA or protein component of the substrate was varied. Competition experiments and gel-shift analyses comparing a series of substrates with DNA lengths increasing from 6 to 28 nt indicated that, contrary to predictions based on the crystal structure of the protein, the apparent affinity for the substrate increased as the DNA length was increased over the entire range tested. It has been found previously that a substrate containing the full-length native form of human topoisomerase I protein is not cleaved by TDP1. Protein-oligonucleotide complexes containing either a 53 or 108 amino acid topoisomerase I-derived peptide were efficiently cleaved by TDP1, but similar to the full-length protein, a substrate containing a 333 amino acid topoisomerase I fragment was resistant to cleavage. Consistent with these results, evidence is presented that processing by the proteasome is required for TDP1 cleavage in vivo.
Collapse
|
21
|
Chen YA, Kuo HC, Chen YM, Huang SY, Liu YR, Lin SC, Yang HL, Chen TY. A gene delivery system based on the N-terminal domain of human topoisomerase I. Biomaterials 2011; 32:4174-84. [PMID: 21406310 DOI: 10.1016/j.biomaterials.2011.02.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 02/19/2011] [Indexed: 02/07/2023]
Abstract
The N-terminal 200 amino acid residues of topoisomerase I (TopoN) is highly positive in charge and has DNA binding activity, without DNA sequence and topological specificity. Here, a fusion protein (6 x His-PTD-TopoN) containing a hexahistidine (6 x His) tag, a membrane penetration domain and TopoN (amino acid 3-200) was designed and developed. The protein can bind to different sizes (3.0-8.0 kb) and forms (circular and linear) of DNA and translocates the bound DNA to the nucleus. The protein also showed low cytotoxicity to GF-1 grouper fish fin cells that were previously very sensitive and difficult to transfect in vitro. Maintaining the hexahistidine tag increased the protein's transfection efficiency in COS7 African green monkey kidney cells and simplified the purification process. The plasmid pEGFP-N1 was delivered into COS7 cells by the protein in ATP- and temperature-dependent manners. The results indicate that the binding ability of TopoN is very useful for DNA delivery and the carrier protein can be expressed in Escherichia coli without removal of the hexahistidine tag.
Collapse
Affiliation(s)
- Yi-An Chen
- Laboratory of Molecular Genetics, Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 70101, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Sengupta S, Ganguly A, Roy A, Bosedasgupta S, D'Annessa I, Desideri A, Majumder HK. ATP independent type IB topoisomerase of Leishmania donovani is stimulated by ATP: an insight into the functional mechanism. Nucleic Acids Res 2010; 39:3295-309. [PMID: 21186185 PMCID: PMC3082896 DOI: 10.1093/nar/gkq1284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Most type IB topoisomerases do not require ATP and Mg(2+) for activity. However, as shown previously for vaccinia topoisomerase I, we demonstrate that ATP stimulates the relaxation activity of the unusual heterodimeric type IB topoisomerase from Leishmania donovani (LdTOP1L/S) in the absence of Mg(2+). The stimulation is independent of ATP hydrolysis but requires salt as a co-activator. ATP binds to LdTOP1L/S and increases its rate of strand rotation. Docking studies indicate that the amino acid residues His93, Tyr95, Arg188 and Arg190 of the large subunit may be involved in ATP binding. Site directed mutagenesis of these four residues individually to alanine and subsequent relaxation assays reveal that the R190A mutant topoisomerase is unable to exhibit ATP-mediated stimulation in the absence of Mg(2+). However, the ATP-independent relaxation activities of all the four mutant enzymes remain unaffected. Additionally, we provide evidence that ATP binds LdTOP1L/S and modulates the activity of the otherwise ATP-independent enzyme. This study establishes ATP as an activator of LdTOP1L/S in the absence of Mg(2+).
Collapse
Affiliation(s)
- Souvik Sengupta
- Molecular Parasitology Laboratory, Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata 700032, India
| | | | | | | | | | | | | |
Collapse
|
23
|
Vassallo O, Castelli S, D'Annessa I, della Rocca BM, Stella L, Knudsen BR, Desideri A. Evidences of a natively unfolded state for the human topoisomerase IB N-terminal domain. Amino Acids 2010; 41:945-53. [PMID: 21046176 DOI: 10.1007/s00726-010-0794-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 10/20/2010] [Indexed: 09/29/2022]
Abstract
The N-terminal domain of human topoisomerase IB has been expressed, purified and characterized by spectroscopic techniques. CD spectra as a function of concentration and pH indicate that the domain does not possess any defined secondary structure. The protein is probably in a natively unfolded state since its denaturation curve is indicative of a non-cooperative transition. Evidence of a partially folded structure comes from the fluorescence spectrum of ANS, whose intensity increases in presence of the domain. Indication of a partial structural arrangement of the domain comes also from the endogenous fluorescence of tryptophans that is centred at 350 nm in the native and shifts to 354 nm in the fully denaturated protein. Interestingly despite the poor structural degree, as also confirmed by a predictive approach, the domain efficiently binds DNA, suggesting that the absence of a defined 3D structure has a functional meaning that permits the domain to be available for the interaction with different molecular partners.
Collapse
Affiliation(s)
- Oscar Vassallo
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica, 00133, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Rajan R, Taneja B, Mondragón A. Structures of minimal catalytic fragments of topoisomerase V reveals conformational changes relevant for DNA binding. Structure 2010; 18:829-38. [PMID: 20637419 DOI: 10.1016/j.str.2010.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 03/19/2010] [Accepted: 03/27/2010] [Indexed: 10/19/2022]
Abstract
Topoisomerase V is an archaeal type I topoisomerase that is unique among topoisomerases due to presence of both topoisomerase and DNA repair activities in the same protein. It is organized as an N-terminal topoisomerase domain followed by 24 tandem helix-hairpin-helix (HhH) motifs. Structural studies have shown that the active site is buried by the (HhH) motifs. Here we show that the N-terminal domain can relax DNA in the absence of any HhH motifs and that the HhH motifs are required for stable protein-DNA complex formation. Crystal structures of various topoisomerase V fragments show changes in the relative orientation of the domains mediated by a long bent linker helix, and these movements are essential for the DNA to enter the active site. Phosphate ions bound to the protein near the active site helped model DNA in the topoisomerase domain and show how topoisomerase V may interact with DNA.
Collapse
Affiliation(s)
- Rakhi Rajan
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | | | | |
Collapse
|
25
|
Foster EC, Simmons DT. The SV40 large T-antigen origin binding domain directly participates in DNA unwinding. Biochemistry 2010; 49:2087-96. [PMID: 20108984 DOI: 10.1021/bi901827k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The origin binding domain (OBD) of SV40 large T-ag serves a critical role during initiation of DNA replication to position T-ag on the origin. After origin recognition, T-ag forms a double hexamer over the origin. Within each hexamer, the OBD adopts a lock washer structure where the origin recognizing A1 and B2 loops face toward the helicase domain and likely become unavailable for binding DNA. In this study, we investigated the role of the central channel of the OBD hexamer in DNA replication by analyzing the effects of mutations of residues lining the channel. All mutants showed binding defects with origin DNA and ssDNA especially at low protein concentrations, but only half were defective at supporting DNA replication in vitro. All mutants were normal in unwinding linear origin DNA fragments. However, replication defective mutants failed to unwind a small origin containing circular DNA whereas replication competent mutants did so normally. The presence of RPA and/or pol/prim restored circular DNA unwinding activity of compromised mutants probably by interacting with the separated DNA strands on the T-ag surface. We interpret these results to indicate a role for the OBD central channel in binding and threading ssDNA during unwinding of circular SV40 DNA. Mixing experiments suggested that only one monomer in an OBD hexamer was necessary for DNA unwinding. We present a model of DNA threading through the T-ag complex illustrating how single-stranded DNA could pass close to a trough generated by key residues in one monomer of the OBD hexamer.
Collapse
Affiliation(s)
- Erin C Foster
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716-2590, USA
| | | |
Collapse
|
26
|
Abstract
The systemic autoimmune diseases are a complex group of disorders characterized by elaboration of high titer autoantibodies and immune-mediated damage of tissues. Two striking features of autoimmune rheumatic diseases are their self-sustaining nature and capacity for autoamplification, exemplified by disease flares. These features suggest the presence of a feed-forward cycle in disease propagation, in which immune effector pathways drive the generation/release of autoantigens, which in turn fuel the immune response. There is a growing awareness that structural modification during cytotoxic granule-induced cell death is a frequent and striking feature of autoantigens, and may be an important principle driving disease. This review focuses on granzyme B (GrB)-mediated cleavage of autoantigens including (i) features of GrB cleavage sites within autoantigens, (ii) co-location of cleavage sites with autoimmune epitopes, and (iii) GrB sensitivity of autoantigens in disease-relevant target tissue. The mechanisms whereby GrB-induced changes in autoantigen structure may contribute to the initiation and propagation of autoimmunity are reviewed and reveal that GrB has the potential to create or destroy autoimmune epitopes. As there remains no direct evidence showing a causal function for GrB cleavage of antigens in the generation of autoimmunity, this review highlights important outstanding questions about the function of GrB in autoantigen selection.
Collapse
|
27
|
Erybraedin C, a natural compound from the plant Bituminaria bituminosa, inhibits both the cleavage and religation activities of human topoisomerase I. Biochem J 2010; 425:531-9. [PMID: 19883377 DOI: 10.1042/bj20091127] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The interaction of human topoisomerase I and erybraedin C, a pterocarpan purified from the plant Bituminaria bituminosa, that was shown to have an antitumour activity, was investigated through enzymatic activity assays and molecular docking procedures. Erybraedin C is able to inhibit both the cleavage and the religation steps of the enzyme reaction. In both cases, pre-incubation of the drug with the enzyme is required to produce a complete inhibition. Molecular docking simulations indicate that, when interacting with the enzyme alone, the preferential drug-binding site is localized in proximity to the active Tyr723 residue, with one of the two prenilic groups close to the active-site residues Arg488 and His632, essential for the catalytic reaction. When interacting with the cleavable complex, erybraedin C interacts with both the enzyme and DNA in a way similar to that found for topotecan. This is the first example of a natural compound able to act on both the cleavage and religation reaction of human topoisomerase I.
Collapse
|
28
|
Abstract
Keloids are distinguished by substantial deposition of collagen in the dermis, resulting in an imbalanced production and aggregation of extra cellular matrix. This study was undertaken to evaluate the effects of the topoisomerase I inhibitor camptothecin (CPT) on collagen synthesis in the activated dermal fibroblasts from healthy donors and patients with keloid. The fibroblasts were cultured in the presence or absence of CPT. Cellular toxicity assay was determined by MTT analysis. The expression of type I collagen and type III collagen was studied both at the transcriptional and post-transcriptional levels, using conventional quantitative real-time reverse transcription PCR and Western blotting. Results showed that there was predominantly a clear and dose-dependent decrease in the synthesis of collagen 1, not collagen 3, in keloid fibroblasts without significantly cellular toxicity. The CPT had an activity on the regulation of the ratio of type I/III collagen in the metabolism of keloid fibroblasts by inhibiting the secretion of type I collagen. The data suggest that the inhibitory effect of CPT, a topoisomerase I inhibitor, on collagen synthesis may be an effective treatment for limiting fibrosis in keloid patients.
Collapse
|
29
|
Fiorani P, Tesauro C, Mancini G, Chillemi G, D'Annessa I, Graziani G, Tentori L, Muzi A, Desideri A. Evidence of the crucial role of the linker domain on the catalytic activity of human topoisomerase I by experimental and simulative characterization of the Lys681Ala mutant. Nucleic Acids Res 2009; 37:6849-58. [PMID: 19767617 PMCID: PMC2777420 DOI: 10.1093/nar/gkp669] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The functional and structural-dynamical properties of the Lys681Ala mutation in the human topoisomerase IB linker domain have been investigated by catalytic assays and molecular dynamics simulation. The mutant is characterized by a comparable cleavage and a strongly reduced religation rate when compared to the wild type protein. The mutant also displays perturbed linker dynamics, as shown by analysis of the principal components of the motion, and a reduced electrostatic interaction with DNA. Inspection of the inter atomic distances in proximity of the active site shows that in the mutant the distance between the amino group of Lys532 side chain and the 5′ OH of the scissile phosphate is longer than the wild type enzyme, providing an atomic explanation for the reduced religation rate of the mutant. Taken together these results indicate the existence of a long range communication between the linker domain and the active site region and points out the crucial role of the linker in the modulation of the catalytic activity.
Collapse
Affiliation(s)
- Paola Fiorani
- Department of Biology, University of Rome Tor Vergata, CNR National Research Council, INFM National Institute for the Physics of Matter, Rome 00133, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yang Z, Carey JF, Champoux JJ. Mutational analysis of the preferential binding of human topoisomerase I to supercoiled DNA. FEBS J 2009; 276:5906-19. [PMID: 19740104 DOI: 10.1111/j.1742-4658.2009.07270.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human topoisomerase I binds DNA in a topology-dependent fashion with a strong preference for supercoiled DNAs of either sign over relaxed circular DNA. One hypothesis to account for this preference is that a second DNA-binding site exists on the enzyme that mediates an association with the nodes present in supercoiled DNA. The failure of the enzyme to dimerize, even in the presence of DNA, appears to rule out the hypothesis that two binding sites are generated by dimerization of the protein. A series of mutant protein constructs was generated to test the hypotheses that the homeodomain-like core subdomain II (residues 233-319) provides a second DNA-binding site, or that the linker or basic residues in core subdomain III are involved in the preferential binding to supercoiled DNAs. When putative DNA contact points within core subdomain II were altered or the domain was removed altogether, there was no effect on the ability of the enzyme to recognize supercoiled DNA, as measured by both a gel shift assay and a competition binding assay. However, the preference for supercoils was noticeably reduced for a form of the enzyme lacking the coiled-coil linker region or when pairs of lysines were changed to glutamic acids in core subdomain III. The results obtained implicate the linker and solvent-exposed basic residues in core subdomain III in the preferential binding of human topoisomerase I to supercoiled DNA.
Collapse
Affiliation(s)
- Zheng Yang
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195-7242, USA
| | | | | |
Collapse
|
31
|
Liu Z, Meng R, Zu Y, Li Q, Yao L. Imaging and studying human topoisomerase I on mica surfaces in air and in liquid by atomic force microscopy. SCANNING 2009; 31:160-166. [PMID: 19688808 DOI: 10.1002/sca.20154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In this study, the topography of human topoisomerase I (TOPO I) on mica surfaces in air and in liquid has been studied by atomic force microscopy (AFM). The average height of TOPO I on mica surface in air measured by AFM was 2.59+/-0.32 nm. After adsorption of the 0.3 U/microl TOPO I on mica surfaces for 2 h, and then imaged in liquid by AFM, well-separated single TOPO I was observed. The average height of TOPO I on mica surfaces in liquid measured by AFM was 2.93+/-0.42 nm. After adsorption of the 4 U/microl TOPO I on mica surfaces for 1.5 h, TOPO I monolayer can be formed. The produced TOPO I monolayer on mica was flat and exhibited good stability.
Collapse
Affiliation(s)
- Zhiguo Liu
- Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin, China
| | | | | | | | | |
Collapse
|
32
|
Sissi C, Palumbo M. Effects of magnesium and related divalent metal ions in topoisomerase structure and function. Nucleic Acids Res 2009; 37:702-11. [PMID: 19188255 PMCID: PMC2647314 DOI: 10.1093/nar/gkp024] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The catalytic steps through which DNA topoisomerases produce their biological effects and the interference of drug molecules with the enzyme–DNA cleavage complex have been thoroughly investigated both from the biophysical and the biochemical point of view. This provides the basic structural insight on how this family of essential enzymes works in living systems and how their functions can be impaired by natural and synthetic compounds. Besides other factors, the physiological environment is known to affect substantially the biological properties of topoisomerases, a key role being played by metal ion cofactors, especially divalent ions (Mg2+), that are crucial to bestow and modulate catalytic activity by exploiting distinctive chemical features such as ionic size, hardness and characteristics of the coordination sphere including coordination number and geometry. Indeed, metal ions mediate fundamental aspects of the topoisomerase-driven transphosphorylation process by affecting the kinetics of the forward and the reverse steps and by modifying the enzyme conformation and flexibility. Of particular interest in type IA and type II enzymes are ionic interactions involving the Toprim fold, a protein domain conserved through evolution that contains a number of acidic residues essential for catalysis. A general two-metal ion mechanism is widely accepted to account for the biophysical and biochemical data thus far available.
Collapse
Affiliation(s)
- Claudia Sissi
- Department of Pharmaceutical Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | | |
Collapse
|
33
|
Moulder S, Valkov N, Neuger A, Choi J, Lee JH, Minton S, Munster P, Gump J, Lacevic M, Lush R, Sullivan D. Phase 2 study of gemcitabine and irinotecan in metastatic breast cancer with correlatives to determine topoisomerase I localization as a predictor of response. Cancer 2008; 113:2646-54. [PMID: 18823053 DOI: 10.1002/cncr.23916] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Gemcitabine incorporation into DNA enhances cleavage complexes in vitro when combined with topoisomerase I inhibitors and demonstrates synergy in cancer cells when given with irinotecan. Topoisomerase I inhibitors require that topoisomerase I interacts with DNA to exert activity. METHODS Patients who had received previous anthracycline therapy or were not candidates for anthracycline therapy received gemcitabine at a dose of 1000 mg/m2 intravenously over 30 minutes followed by irinotecan at a dose of 100 mg/m2 over 90 minutes on Days 1 and 8 of a 21-day cycle. The primary endpoint was improvement in response from that historically observed with gemcitabine (from 25% to 45%) as measured by Response Evaluation Criteria in Solid Tumors. Correlative studies included characterization of cellular levels and nuclear distribution of topoisomerase I and pharmacokinetic analysis of gemcitabine and irinotecan. RESULTS Forty-nine patients were assessed for response. The response rate was approximately 25% (all partial responses [PRs], 12 patients; 95% confidence interval [95% CI], 13-39). Six patients had stable disease (SD) for > or =6 months for a clinical benefit rate (PR + SD) of 39%. The median time to disease progression was 3.7 months (95% CI, 2.5 months-4.6 months), and median survival was 11.6 months (95% CI, 8.9 months-15 months). Toxicities included neutropenia, nausea, and vomiting. Seven of 9 tissue biopsies were assessable for topoisomerase I. Tumors with the 2 lowest nuclear to cytoplasmic ratios demonstrated no response to irinotecan. CONCLUSIONS Gemcitabine and irinotecan are active in metastatic breast cancer, but response did not meet predetermined response parameters, and the null hypothesis was accepted. Topoisomerase I localization can be measured in metastatic breast cancer. Further validation is needed to determine whether this assay can predict response.
Collapse
Affiliation(s)
- Stacy Moulder
- Department of Breast Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Khopde S, Roy R, Simmons DT. The binding of topoisomerase I to T antigen enhances the synthesis of RNA-DNA primers during simian virus 40 DNA replication. Biochemistry 2008; 47:9653-60. [PMID: 18702506 DOI: 10.1021/bi800825r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Topoisomerase I (topo I) is required for the proper initiation of simian virus 40 (SV40) DNA replication. This enzyme binds to SV40 large T antigen at two places, close to the N-terminal end and near the C-terminal end of the helicase domain. We have recently demonstrated that the binding of topo I to the C-terminal site is necessary for the stimulation of DNA synthesis by topo I and for the formation of normal amounts of completed daughter molecules. In this study, we investigated the mechanism by which this stimulation occurs. Contrary to our expectation that the binding of topo I to this region of T antigen provides the proper unwound DNA substrate for initiation to occur, we demonstrate that binding of topo I stimulates polymerase alpha/primase (pol/prim) to synthesize larger amounts of primers consisting of short RNA and about 30 nucleotides of DNA. Topo I binding also stimulates the production of large molecular weight DNA by pol/prim. Mutant T antigens that fail to bind topo I normally do not participate in the synthesis of expected amounts of primers or large molecular weight DNAs indicating that the association of topo I with the C-terminal binding site on T antigen is required for these activities. It is also shown that topo I has the ability to bind to human RPA directly, suggesting that the stimulation of pol/prim activity may be mediated in part through RPA in the DNA synthesis initiation complex.
Collapse
Affiliation(s)
- Sujata Khopde
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716-2590, USA
| | | | | |
Collapse
|
35
|
Hackbarth JS, Galvez-Peralta M, Dai NT, Loegering DA, Peterson KL, Meng XW, Karnitz LM, Kaufmann SH. Mitotic phosphorylation stimulates DNA relaxation activity of human topoisomerase I. J Biol Chem 2008; 283:16711-22. [PMID: 18408216 PMCID: PMC2423254 DOI: 10.1074/jbc.m802246200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 03/20/2008] [Indexed: 11/06/2022] Open
Abstract
Human DNA topoisomerase I (topo I) is an essential mammalian enzyme that regulates DNA supercoiling during transcription and replication. In addition, topo I is specifically targeted by the anticancer compound camptothecin and its derivatives. Previous studies have indicated that topo I is a phosphoprotein and that phosphorylation stimulates its DNA relaxation activity. The locations of most topo I phosphorylation sites have not been identified, preventing a more detailed examination of this modification. To address this issue, mass spectrometry was used to identify four topo I residues that are phosphorylated in intact cells: Ser(10), Ser(21), Ser(112), and Ser(394). Immunoblotting using anti-phosphoepitope antibodies demonstrated that these sites are phosphorylated during mitosis. In vitro kinase assays demonstrated that Ser(10) can be phosphorylated by casein kinase II, Ser(21) can be phosphorylated by protein kinase Calpha, and Ser(112) and Ser(394) can be phosphorylated by Cdk1. When wild type topo I was pulled down from mitotic cells and dephosphorylated with alkaline phosphatase, topo I activity decreased 2-fold. Likewise, topo I polypeptide with all four phosphorylation sites mutated to alanine exhibited 2-fold lower DNA relaxation activity than wild type topo I after isolation from mitotic cells. Further mutational analysis demonstrated that Ser(21) phosphorylation was responsible for this change. Consistent with these results, wild type topo I (but not S21A topo I) exhibited increased sensitivity to camptothecin-induced trapping on DNA during mitosis. Collectively these results indicate that topo I is phosphorylated during mitosis at multiple sites, one of which enhances DNA relaxation activity in vitro and interaction with DNA in cells.
Collapse
Affiliation(s)
- Jennifer S. Hackbarth
- Department of Biochemistry and Molecular
Biology and Division of Oncology Research, Mayo
Clinic, Mayo Graduate School, Rochester, Minnesota 55905
| | - Marina Galvez-Peralta
- Department of Biochemistry and Molecular
Biology and Division of Oncology Research, Mayo
Clinic, Mayo Graduate School, Rochester, Minnesota 55905
| | - Nga T. Dai
- Department of Biochemistry and Molecular
Biology and Division of Oncology Research, Mayo
Clinic, Mayo Graduate School, Rochester, Minnesota 55905
| | - David A. Loegering
- Department of Biochemistry and Molecular
Biology and Division of Oncology Research, Mayo
Clinic, Mayo Graduate School, Rochester, Minnesota 55905
| | - Kevin L. Peterson
- Department of Biochemistry and Molecular
Biology and Division of Oncology Research, Mayo
Clinic, Mayo Graduate School, Rochester, Minnesota 55905
| | - Xue W. Meng
- Department of Biochemistry and Molecular
Biology and Division of Oncology Research, Mayo
Clinic, Mayo Graduate School, Rochester, Minnesota 55905
| | - Larry M. Karnitz
- Department of Biochemistry and Molecular
Biology and Division of Oncology Research, Mayo
Clinic, Mayo Graduate School, Rochester, Minnesota 55905
| | - Scott H. Kaufmann
- Department of Biochemistry and Molecular
Biology and Division of Oncology Research, Mayo
Clinic, Mayo Graduate School, Rochester, Minnesota 55905
| |
Collapse
|
36
|
Role of a tryptophan anchor in human topoisomerase I structure, function and inhibition. Biochem J 2008; 411:523-30. [PMID: 18215123 DOI: 10.1042/bj20071436] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human Top1 (topoisomerase I) relaxes supercoiled DNA during cell division and transcription. Top1 is composed of 765 amino acids and contains an unstructured N-terminal domain of 200 amino acids, and a structured functional domain of 565 amino acids that binds and relaxes supercoiled DNA. In the present study we examined the region spanning the junction of the N-terminal domain and functional domain (junction region). Analysis of several published Top1 structures revealed that three tryptophan residues formed a network of aromatic stacking interactions and electrostatic interactions that anchored the N-terminus of the functional domain to sub-domains containing the nose cone and active site. Mutation of the three tryptophan residues (Trp(203)/Trp(205)/Trp(206)) to an alanine residue, either individually or together, in silico revealed that the individual tryptophan residue's contribution to the tryptophan 'anchor' was additive. When the three tryptophan residues were mutated to alanine in vitro, the resulting mutant Top1 differed from wild-type Top1 in that it lacked processivity, exhibited resistance to camptothecin and was inactivated by urea. The results indicated that the tryptophan anchor stabilized the N-terminus of the functional domain and prevented the loss of Top1 structure and function.
Collapse
|
37
|
Park SY, Leung CH, Cheng YC. ATP modulates poly(ADP-ribose) polymerase-1-facilitated topoisomerase I-linked DNA religation in the presence of camptothecin. Mol Pharmacol 2008; 73:1829-37. [PMID: 18349103 DOI: 10.1124/mol.107.044438] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Poly(ADP-ribose) polymerase (PARP)-1 was reported to promote the religation activity of topoisomerase I in the presence of camptothecin by itself through the direct interaction with topoisomerase I or by the formation of poly(ADP-ribosyl)ated topoisomerase I. We have demonstrated previously that ATP inhibited PARP-1/NAD-facilitated religation of topoisomerase I-linked DNA (TLD) in the presence of camptothecin. The mechanism of action was further studied in the present work. ATP as well as other nucleotides, including CTP, UTP, and GTP, had no effect on topoisomerase I cleavage and religation activities in the absence of camptothecin. In the presence of camptothecin or its derivative topotecan, ATP (at up to 2 mM) inhibited PARP-1/NAD-facilitated TLD religation in a dose-dependent manner. This could be due to the suppression of topoisomerase I poly(ADP-ribosyl)ation through the competition with NAD for the binding site(s) on PARP-1. The interaction between ATP and PARP-1 was independent of ATP hydrolysis. Study of different nucleotide analogs revealed that the structure could determine the dose response of nucleotides. In addition, it was noted that higher concentrations of ATP and CTP (at 2.5 mM or higher) promoted DNA religation by a PARP-1-independent mechanism. Our study implies the possible role of ATP and other nucleotides in the regulation of topoisomerase I activity in the presence of camptothecin analogs.
Collapse
Affiliation(s)
- Shin-Young Park
- Department of Pharmacology, Yale University School of Medicine, P.O. Box 208066, New Haven, CT 06520-8066, USA
| | | | | |
Collapse
|
38
|
Tarasenko VI, Katyshev AI, Kobzev VF, Konstantinov YM. Comparative analysis of nuclear and mitochondrial DNA topoisomerase I from Zea mays. Mol Biol 2008. [DOI: 10.1134/s0026893308010111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Ganguly A, Das B, Roy A, Sen N, Dasgupta SB, Mukhopadhayay S, Majumder HK. Betulinic Acid, a Catalytic Inhibitor of Topoisomerase I, Inhibits Reactive Oxygen Species Mediated Apoptotic Topoisomerase I DNA Cleavable Complex Formation in Prostate Cancer Cells but Does Not Affect the Process of Cell Death. Cancer Res 2007; 67:11848-58. [DOI: 10.1158/0008-5472.can-07-1615] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Simian virus 40 DNA replication is dependent on an interaction between topoisomerase I and the C-terminal end of T antigen. J Virol 2007; 82:1136-45. [PMID: 18003733 DOI: 10.1128/jvi.01314-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Topoisomerase I (topo I) is needed for efficient initiation of simian virus 40 (SV40) DNA replication and for the formation of completed DNA molecules. Two distinct binding sites for topo I have been previously mapped to the N-terminal (residues 83 to 160) and C-terminal (residues 602 to 708) regions of T antigen. By mutational analysis, we identified a cluster of six residues on the surface of the helicase domain at the C-terminal binding site that are necessary for efficient binding to topo I in enzyme-linked immunosorbent assay and far-Western blot assays. Mutant T antigens with single substitutions of these residues were unable to participate normally in SV40 DNA replication. Some mutants were completely defective in supporting DNA replication, and replication was not enhanced in the presence of added topo I. The same mutants were the ones that were severely compromised in binding topo I. Other mutants demonstrated intermediate levels of activity in the DNA replication assay and were correspondingly only partially defective in binding topo I. Mutations of nearby residues outside this cluster had no effect on DNA replication or on the ability to bind topo I. These results strongly indicate that the association of topo I with these six residues in T antigen is essential for DNA replication. These residues are located on the back edges of the T-antigen double hexamer. We propose that topo I binds to one site on each hexamer to permit the initiation of SV40 DNA replication.
Collapse
|
41
|
Frøhlich RF, Veigaard C, Andersen FF, McClendon AK, Gentry AC, Andersen AH, Osheroff N, Stevnsner T, Knudsen BR. Tryptophane-205 of human topoisomerase I is essential for camptothecin inhibition of negative but not positive supercoil removal. Nucleic Acids Res 2007; 35:6170-80. [PMID: 17827209 PMCID: PMC2094083 DOI: 10.1093/nar/gkm669] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Positive supercoils are introduced in cellular DNA in front of and negative supercoils behind tracking polymerases. Since DNA purified from cells is normally under-wound, most studies addressing the relaxation activity of topoisomerase I have utilized negatively supercoiled plasmids. The present report compares the relaxation activity of human topoisomerase I variants on plasmids containing equal numbers of superhelical twists with opposite handedness. We demonstrate that the wild-type enzyme and mutants lacking amino acids 1–206 or 191–206, or having tryptophane-205 replaced with a glycine relax positive supercoils faster than negative supercoils under both processive and distributive conditions. In contrast to wild-type topoisomerase I, which exhibited camptothecin sensitivity during relaxation of both negative and positive supercoils, the investigated N-terminally mutated variants were sensitive to camptothecin only during removal of positive supercoils. These data suggest different mechanisms of action during removal of supercoils of opposite handedness and are consistent with a recently published simulation study [Sari and Andricioaei (2005) Nucleic Acids Res., 33, 6621–6634] suggesting flexibility in distinct parts of the enzyme during clockwise or counterclockwise strand rotation.
Collapse
Affiliation(s)
- Rikke From Frøhlich
- Department of Molecular Biology, Aarhus University, C. F. Møllers Allé Bldg. 130, 8000 Århus C, Denmark and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Christopher Veigaard
- Department of Molecular Biology, Aarhus University, C. F. Møllers Allé Bldg. 130, 8000 Århus C, Denmark and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Félicie Faucon Andersen
- Department of Molecular Biology, Aarhus University, C. F. Møllers Allé Bldg. 130, 8000 Århus C, Denmark and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - A. Kathleen McClendon
- Department of Molecular Biology, Aarhus University, C. F. Møllers Allé Bldg. 130, 8000 Århus C, Denmark and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Amanda C. Gentry
- Department of Molecular Biology, Aarhus University, C. F. Møllers Allé Bldg. 130, 8000 Århus C, Denmark and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Anni Hangaard Andersen
- Department of Molecular Biology, Aarhus University, C. F. Møllers Allé Bldg. 130, 8000 Århus C, Denmark and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Neil Osheroff
- Department of Molecular Biology, Aarhus University, C. F. Møllers Allé Bldg. 130, 8000 Århus C, Denmark and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Tinna Stevnsner
- Department of Molecular Biology, Aarhus University, C. F. Møllers Allé Bldg. 130, 8000 Århus C, Denmark and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Birgitta Ruth Knudsen
- Department of Molecular Biology, Aarhus University, C. F. Møllers Allé Bldg. 130, 8000 Århus C, Denmark and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
- *To whom correspondence should be addressed. +4589422703+4589422612
| |
Collapse
|
42
|
Punchihewa C, Dai J, Carver M, Yang D. Human topoisomerase I C-terminal domain fragment containing the active site tyrosine is a molten globule: implication for the formation of competent productive complex. J Struct Biol 2007; 159:111-21. [PMID: 17434318 PMCID: PMC1993844 DOI: 10.1016/j.jsb.2007.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 02/27/2007] [Accepted: 03/02/2007] [Indexed: 11/26/2022]
Abstract
Human topoisomerase I (topo I) is an essential cellular enzyme that relaxes DNA supercoiling. The 6.3 kDa C-terminal domain of topo I contains the active site tyrosine (Tyr723) but lacks enzymatic activity by itself. Activity can be fully reconstituted when the C-terminal domain is associated with the 56 kDa core domain. Even though several crystal structures of topo I/DNA complexes are available, crystal structures of the free topo I protein or its individual domain fragments have been difficult to obtain. In this report we analyze the human topo I C-terminal domain structure using a variety of biophysical methods. Our results indicate that this fragment protein (topo6.3) appears to be in a molten globule state. It appears to have a native-like tertiary fold that contains a large population of alpha-helix secondary structure and extensive surface hydrophobic regions. Topo6.3 is known to be readily activated with the association of the topo I core domain, and the molten globule state of topo6.3 is likely to be an energy-favorable conformation for the free topo I C-terminal domain protein. The structural fluctuation and plasticity may represent an efficient mechanism in the topo I functional pathway, where the flexibility aids in the complementary association with the core domain and in the formation of a fully productive topo I complex.
Collapse
Affiliation(s)
| | - Jixun Dai
- College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721
| | - Megan Carver
- College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721
| | - Danzhou Yang
- College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, AZ 85721
- Arizona Cancer Center, 1515 N. Campbell Avenue, Tucson, AZ 85724
- To whom correspondence should be addressed. Telephone: (520) 626-5969, Fax: (520) 626-6988,
| |
Collapse
|
43
|
Montaudon D, Palle K, Rivory LP, Robert J, Douat-Casassus C, Quideau S, Bjornsti MA, Pourquier P. Inhibition of topoisomerase I cleavage activity by thiol-reactive compounds: importance of vicinal cysteines 504 and 505. J Biol Chem 2007; 282:14403-12. [PMID: 17355975 DOI: 10.1074/jbc.m611673200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA topoisomerase I (Top1) is a nuclear enzyme that plays a crucial role in the removal of DNA supercoiling associated with replication and transcription. It is also the target of the anticancer agent, camptothecin (CPT). Top1 contains eight cysteines, including two vicinal residues (504 and 505), which are highly conserved across species. In this study, we show that thiol-reactive compounds such as N-ethylmaleimide and phenylarsine oxide can impair Top1 catalytic activity. We demonstrate that in contrast to CPT, which inhibits Top1-catalyzed religation, thiolation of Top1 inhibited the DNA cleavage step of the reaction. This inhibition was more pronounced when Top1 was preincubated with the thiol-reactive compound and could be reversed in the presence of dithiothreitol. We also established that phenylarsine oxide-mediated inhibition of Top1 cleavage involved the two vicinal cysteines 504 and 505, as this effect was suppressed when cysteines were mutated to alanines. Interestingly, mutation of Cys-505 also altered Top1 sensitivity to CPT, even in the context of the double Cys-504 to Cys-505 mutant, which relaxed supercoiled DNA with a comparable efficiency to that of wild-type Top1. This indicates that cysteine 505, which is located in the lower Lip domain of human Top1, is critical for optimal poisoning of the enzyme by CPT and its analogs. Altogether, our results suggest that conserved vicinal cysteines 504 and 505 of human Top1 play a critical role in enzyme catalytic activity and are the target of thiol-reactive compounds, which may be developed as efficient Top1 catalytic inhibitors.
Collapse
Affiliation(s)
- Danièle Montaudon
- Groupe de Pharmacologie Moléculaire INSERM E347 and Institut Bergonié, 229 Cours de l'Argonne, Université Victor Segalen Bordeaux II, 146 Rue Léo Saignat, 33076 Bordeaux Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Bowen C, Stuart A, Ju JH, Tuan J, Blonder J, Conrads TP, Veenstra TD, Gelmann EP. NKX3.1 homeodomain protein binds to topoisomerase I and enhances its activity. Cancer Res 2007; 67:455-64. [PMID: 17234752 DOI: 10.1158/0008-5472.can-06-1591] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The prostate-specific homeodomain protein NKX3.1 is a tumor suppressor that is commonly down-regulated in human prostate cancer. Using an NKX3.1 affinity column, we isolated topoisomerase I (Topo I) from a PC-3 prostate cancer cell extract. Topo I is a class 1B DNA-resolving enzyme that is ubiquitously expressed in higher organisms and many prokaryotes. NKX3.1 interacts with Topo I to enhance formation of the Topo I-DNA complex and to increase Topo I cleavage of DNA. The two proteins interacted in affinity pull-down experiments in the presence of either DNase or RNase. The NKX3.1 homeodomain was essential, but not sufficient, for the interaction with Topo I. NKX3.1 binding to Topo I occurred independently of the Topo I NH2-terminal domain. The binding of equimolar amounts of Topo I to NKX3.1 caused displacement of NKX3.1 from its cognate DNA recognition sequence. Topo I activity in prostates of Nkx3.1+/- and Nkx3.1-/- mice was reduced compared with wild-type mice, whereas Topo I activity in livers, where no NKX3.1 is expressed, was independent of Nkx3.1 genotype. Endogenous Topo I and NKX3.1 could be coimmunoprecipitated from LNCaP cells, where NKX3.1 and Topo I were found to colocalize in the nucleus and comigrate within the nucleus in response to either gamma-irradiation or mitomycin C exposure, two DNA-damaging agents. This is the first report that a homeodomain protein can modify the activity of Topo I and may have implications for organ-specific DNA replication, transcription, or DNA repair.
Collapse
Affiliation(s)
- Cai Bowen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia 20007-2197, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Ganguly A, Das BB, Sen N, Roy A, Dasgupta SB, Majumder HK. 'LeishMan' topoisomerase I: an ideal chimera for unraveling the role of the small subunit of unusual bi-subunit topoisomerase I from Leishmania donovani. Nucleic Acids Res 2006; 34:6286-97. [PMID: 17098934 PMCID: PMC1669778 DOI: 10.1093/nar/gkl829] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The active site tyrosine residue of all monomeric type IB topoisomerases resides in the C-terminal domain of the enzyme. Leishmania donovani, possesses unusual heterodimeric type IB topoisomerase. The small subunit harbors the catalytic tyrosine within the SKXXY motif. To explore the functional relationship between the two subunits, we have replaced the small subunit of L.donovani topoisomerase I with a C-terminal fragment of human topoisomerase I (HTOP14). The purified LdTOP1L (large subunit of L.donovani topoisomerase I) and HTOP14 were able to reconstitute topoisomerase I activity when mixed in vitro. This unusual enzyme, 'LeishMan' topoisomerase I (Leish for Leishmania and Man for human) exhibits less efficiency in DNA binding and strand passage compared with LdTOP1L/S. Fusion of LdTOP1L with HTOP14 yielded a more efficient enzyme with greater affinity for DNA and faster strand passage ability. Both the chimeric enzymes are less sensitive to camptothecin than LdTOP1L/S. Restoration of topoisomerase I activity by LdTOP1L and HTOP14 suggests that the small subunit of L.donovani topoisomerase I is primarily required for supplying the catalytic tyrosine. Moreover, changes in the enzyme properties due to substitution of LdTOP1S with HTOP14 indicate that the small subunit contributes to subunit interaction and catalytic efficiency of the enzyme.
Collapse
Affiliation(s)
| | | | | | | | | | - Hemanta K. Majumder
- To whom correspondence should be addressed. Tel: +91 33 2412 3207; Fax: +91 33 2473 5197;
| |
Collapse
|
46
|
Hu Y, Clower RV, Melendy T. Cellular topoisomerase I modulates origin binding by bovine papillomavirus type 1 E1. J Virol 2006; 80:4363-71. [PMID: 16611895 PMCID: PMC1472030 DOI: 10.1128/jvi.80.9.4363-4371.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In addition to viral proteins E1 and E2, bovine papillomavirus type 1 (BPV1) depends heavily on host replication machinery for genome duplication. It was previously shown that E1 binds to and recruits cellular replication proteins to the BPV1 origin of replication, including DNA polymerase alpha-primase, replication protein A (RPA), and more recently, human topoisomerase I (Topo I). Here, we show that Topo I specifically stimulates the origin binding of E1 severalfold but has no effect on nonorigin DNA binding. This is highly specific, as binding to nonorigin DNA is not stimulated, and other cellular proteins that bind E1, such as RPA and polymerase alpha-primase, show no such effect. The stimulation of E1's origin binding by Topo I is not synergistic with the stimulation by E2. Although the enhanced origin binding of E1 by Topo I requires ATP and Mg2+ for optimal efficiency, ATP hydrolysis is not required. Using an enzyme-linked immunosorbent assay, we showed that the interaction between E1 and Topo I is decreased in the presence of DNA. Our results suggest that Topo I participates in the initiation of papillomavirus DNA replication by enhancing E1 binding to the BPV1 origin.
Collapse
Affiliation(s)
- Yan Hu
- Department of Microbiology and Immunology, University at Buffalo, The School of Medicine and Biomedical Sciences, 213 Biomedical Research Building, 3435 Main Street, Buffalo, New York 14214, USA
| | | | | |
Collapse
|
47
|
Marchand C, Antony S, Kohn KW, Cushman M, Ioanoviciu A, Staker BL, Burgin AB, Stewart L, Pommier Y. A novel norindenoisoquinoline structure reveals a common interfacial inhibitor paradigm for ternary trapping of the topoisomerase I-DNA covalent complex. Mol Cancer Ther 2006; 5:287-95. [PMID: 16505102 PMCID: PMC2860177 DOI: 10.1158/1535-7163.mct-05-0456] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We show that five topoisomerase I inhibitors (two indenoisoquinolines, two camptothecins, and one indolocarbazole) each intercalate between the base pairs flanking the cleavage site generated during the topoisomerase I catalytic cycle and are further stabilized by a network of hydrogen bonds with topoisomerase I. The interfacial inhibition paradigm described for topoisomerase I inhibitors can be generalized to a variety of natural products that trap macromolecular complexes as they undergo catalytic conformational changes that create hotspots for drug binding. Stabilization of such conformational states results in uncompetitive inhibition and exemplifies the relevance of screening for ligands and drugs that stabilize ("trap") these macromolecular complexes.
Collapse
Affiliation(s)
- Christophe Marchand
- Laboratory of Molecular Pharmacology, Bldg. 37, Rm. 5068, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4255
| | - Smitha Antony
- Laboratory of Molecular Pharmacology, Bldg. 37, Rm. 5068, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4255
| | - Kurt W. Kohn
- Laboratory of Molecular Pharmacology, Bldg. 37, Rm. 5068, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4255
| | - Mark Cushman
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Cancer Center, School of Pharmacy and Pharmaceutical Sciences, Purdue University, West Lafayette, IN 47907
| | - Alexandra Ioanoviciu
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Cancer Center, School of Pharmacy and Pharmaceutical Sciences, Purdue University, West Lafayette, IN 47907
| | - Bart L. Staker
- deCODE biostructures, Inc., 7869 Northeast Day Road West, Bainbridge Island, WA 98110
| | - Alex B. Burgin
- deCODE biostructures, Inc., 7869 Northeast Day Road West, Bainbridge Island, WA 98110
| | - Lance Stewart
- deCODE biostructures, Inc., 7869 Northeast Day Road West, Bainbridge Island, WA 98110
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Bldg. 37, Rm. 5068, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4255
- To whom correspondence should be addressed: Tel: 301-496-5944. Fax: 301-402-0752.
| |
Collapse
|
48
|
Clower RV, Hu Y, Melendy T. Papillomavirus E2 protein interacts with and stimulates human topoisomerase I. Virology 2006; 348:13-8. [PMID: 16537084 DOI: 10.1016/j.virol.2006.02.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2005] [Revised: 02/08/2006] [Accepted: 02/13/2006] [Indexed: 11/26/2022]
Abstract
The papillomavirus (PV) E2 protein plays a role in recruiting viral and cellular DNA replication factors, such as PV E1 or RPA to PV genomes. Using both purified proteins and through co-precipitation, it was determined that HPV-11 E2 binds human topoisomerase I. E2 can stimulate topoisomerase I DNA relaxation activity 3- to 4-fold. Conversely, topoisomerase I is unable to stimulate E2 DNA binding. These findings suggest that stimulation of topoisomerase I by E2 may help promote efficient relaxation of the torsional stress induced by PV DNA replication.
Collapse
Affiliation(s)
- Randolph V Clower
- University at Buffalo, Departments of Microbiology and Immunology, Biochemistry and the Witebsky Center for Microbial Pathogenesis, 210 Biomedical Research Building, School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
49
|
Yang M, Hsu CT, Ting CY, Liu LF, Hwang J. Assembly of a polymeric chain of SUMO1 on human topoisomerase I in vitro. J Biol Chem 2006; 281:8264-74. [PMID: 16428803 DOI: 10.1074/jbc.m510364200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human (h) DNA topoisomerase I has been identified as a major SUMO1 target in camptothecin-treated cells. In response to TOP1-mediated DNA damage induced by camptothecin, multiple SUMO1 molecules are conjugated to the N-terminal domain of a single TOP1 molecule. To investigate the molecular mechanism of SUMO1 conjugation to TOP1, an in vitro system using purified SAE1/2, Ubc9, SUMO1, and TOP1 peptides was developed. Consistent with results from in vivo studies, multiple SUMO1 molecules were found to be conjugated to the N-terminal domain of a single TOP1 molecule. Systematic analysis has identified a single major SUMO1 conjugation site located between amino acid residues 110 and 125 that contains a single lysine residue at 117 (Lys-117). Using a short peptide spanning this region, we showed that a poly-SUMO1 chain was assembled in this peptide at Lys-117. Interestingly, a Ubc9-poly-SUMO1 intermediate had accumulated to a high level when the sumoylation assay was performed in the absence of hTOP1 substrate, suggesting a possibility that the poly-SUMO1 chain is formed on Ubc9 first and then transferred en bloc onto hTOP1. This is the first definitive demonstration of the assembly of a poly-SUMO1 chain on protein substrate. These results offer new insight into hTOP1 polysumoylation in response to TOP1-mediated DNA damage and may have general implications in protein polysumoylation.
Collapse
Affiliation(s)
- Meiluen Yang
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang Ming University, Taipei 112, Taiwan
| | | | | | | | | |
Collapse
|
50
|
Sari L, Andricioaei I. Rotation of DNA around intact strand in human topoisomerase I implies distinct mechanisms for positive and negative supercoil relaxation. Nucleic Acids Res 2005; 33:6621-34. [PMID: 16314322 PMCID: PMC1298917 DOI: 10.1093/nar/gki935] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Topoisomerases are enzymes of quintessence to the upkeep of superhelical DNA, and are vital for replication, transcription and recombination. An atomic-resolution model for human topoisomerase I in covalent complex with DNA is simulated using molecular dynamics with external potentials that mimic torque and bias the DNA duplex downstream of a single-strand cut to rotate around the intact strand, according to the prevailing enzymatic mechanism. The simulations reveal the first dynamical picture of how topoisomerase accommodates large-scale motion of DNA as it changes its supercoiling state, and indicate that relaxation of positive and negative supercoils are fundamentally different. To relax positive supercoils, two separate domains (the 'lips') of the protein open up by about 10-14 A, whereas to relax negative supercoils, a continuous loop connecting the upper and lower parts (and which was a hinge for opening the lips) stretches about 12 A while the lips remain unseparated. Normal mode analysis is additionally used to characterize the functional flexibility of the protein. Remarkably, the same combination of low-frequency eigenvectors exhibit the dominant contribution for both rotation mechanisms through a see-saw motion. The simulated mechanisms suggest mutations to control the relaxation of either type of supercoiling selectively and advance a hypothesis for the debated role of the N-terminal domain in supercoil relaxation.
Collapse
Affiliation(s)
| | - Ioan Andricioaei
- To whom correspondence should be addressed. Tel: +1 734 763 8013; Fax: +1 734 615 6553;
| |
Collapse
|