1
|
|
2
|
Nicholas MW, Dooley MA, Hogan SL, Anolik J, Looney J, Sanz I, Clarke SH. A novel subset of memory B cells is enriched in autoreactivity and correlates with adverse outcomes in SLE. Clin Immunol 2008; 126:189-201. [PMID: 18077220 PMCID: PMC2812414 DOI: 10.1016/j.clim.2007.10.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 09/25/2007] [Accepted: 10/05/2007] [Indexed: 12/11/2022]
Abstract
We previously reported that some systemic lupus erythematosus (SLE) patients have a population of circulating memory B cells with >2-fold higher levels of CD19. We show here that the presence of CD19(hi) B cells correlates with long-term adverse outcomes. These B cells do not appear anergic, as they exhibit high basal levels of phosphorylated Syk and ERK1/2, signal transduce in response to BCR crosslinking, and can become plasma cells (PCs) in vitro. Autoreactive anti-Smith (Sm) B cells are enriched in this population and the degree of enrichment correlates with the log of the serum anti-Sm titer, arguing that they undergo clonal expansion before PC differentiation. PC differentiation may occur at sites of inflammation, as CD19(hi) B cells have elevated CXCR3 levels and chemotax in response to its ligand CXCL9. Thus, CD19(hi) B cells are precursors to anti-self PCs, and identify an SLE patient subset likely to experience poor clinical outcomes.
Collapse
MESH Headings
- Adult
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Murine-Derived
- Antigens, CD19/blood
- Antigens, CD19/immunology
- Autoantigens/blood
- Autoantigens/immunology
- Autoimmunity
- B-Lymphocyte Subsets/immunology
- Chemokine CXCL9/blood
- Chemokine CXCL9/immunology
- Female
- Humans
- Immunologic Factors/therapeutic use
- Immunologic Memory
- Lupus Erythematosus, Systemic/complications
- Lupus Erythematosus, Systemic/drug therapy
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/physiopathology
- Male
- Middle Aged
- Plasma Cells/immunology
- Plasma Cells/metabolism
- Receptors, CXCR3/blood
- Receptors, CXCR3/immunology
- Ribonucleoproteins, Small Nuclear/blood
- Ribonucleoproteins, Small Nuclear/immunology
- Rituximab
- snRNP Core Proteins
Collapse
Affiliation(s)
- Matilda W Nicholas
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Simon AR, Dalla-Riva C, Kühn C, Tessmann R, Meder I, Martin U, Haverich A. Adhesive functions of both chains of VLA-integrins are not fully conserved across the human-porcine species barrier: implications for xenotransplantation. Xenotransplantation 2005; 12:473-80. [PMID: 16202071 DOI: 10.1111/j.1399-3089.2005.00251.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND A possible solution to the shortage of organs for transplantation would be the use of swine as source animals. As current immunosuppressive protocols cannot prevent rejection of these organs, super-selective immunosuppression or the induction of donor-specific central tolerance represent two promising approaches. Central tolerance induction involves bone marrow transplantation, and depends on intrathymic deletion of donor reactive host cells by donor antigen-presenting cells. In super-selective immunosuppression, the aim would be to block specific adhesive interactions on one species side only, leaving the other species side unaffected. As both processes depend on the interaction of adhesion molecules with their ligands, we investigated whether the beta1-integrins, which play roles in hematopoiesis as well as in rejection, can successfully interact across the swine-to-human species barrier. METHODS We employed static cell-to-extracellular protein and cell-to-cell adhesion assays, using different cell types and monoclonal antibody as well as peptide-fragments to analyze conservation of cross-species adhesive interactions. RESULTS We found that porcine and human cells interact differently with their cross-species ligands than their own and that the adhesive function of the beta1-chain does not seem to be fully conserved across the species barrier. CONCLUSIONS Integrin functions are not fully conserved across the pig-to-human species barrier. While the development of multi-transgenic pigs, whose integrins interact with human ligands in a more ''human-like'' manner may be necessary to facilitate tolerance induction, these facts give rise to new possibilities concerning super-selective immunosuppression.
Collapse
Affiliation(s)
- André R Simon
- Department of Thoracic- and Cardiovascular Surgery, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|
4
|
Kuroki K, Tsuchiya N, Tsao BP, Grossman JM, Fukazawa T, Hagiwara K, Kano H, Takazoe M, Iwata T, Hashimoto H, Tokunaga K. Polymorphisms of human CD19 gene: possible association with susceptibility to systemic lupus erythematosus in Japanese. Genes Immun 2002; 3 Suppl 1:S21-30. [PMID: 12215898 DOI: 10.1038/sj.gene.6363906] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2001] [Revised: 05/20/2002] [Accepted: 05/24/2002] [Indexed: 01/09/2023]
Abstract
CD19 regulates the signaling for B lymphocyte development, activation and proliferation. In mice, CD19 deficiency and overexpression were shown to result in hypogammaglobulinemia and autoantibody production, respectively. In the present study, we screened for the polymorphisms of CD19, and examined the detected polymorphisms for the association with rheumatoid arthritis (RA), Crohn's disease and systemic lupus erythematosus (SLE). Two SNPs, c.705G>T (P235P and IVS14-30C>T, were decreased (P = 0.0096 and P = 0.028, respectively), in SLE. A GT repeat polymorphism, c.*132(GT)(12-18), was detected within the 3'-untranslated region, and individuals with > or =15 times repeat was significantly increased in the independent two groups of Japanese SLE patients (P = 0.011 and P = 0.035, respectively); the overall difference between total SLE and controls was striking (P = 0.0061). No association was observed for RA and Crohn's disease. In addition, no variations other than the common polymorphisms were detected in four patients with common variable immunodeficiency, the phenotype of which resembles CD19 deficient mice. In Caucasian SLE families, this GT repeat polymorphism was rare. CD19 mRNA level in the isolated peripheral blood B lymphocytes was lower in individuals possessing (GT)(15-18) alleles compared with those without these alleles, both in controls and in SLE patients; however, the difference did not reach statistical significance. These results suggested that either the slight reduction in the CD19 mRNA level associated with the elongation of GT repeat, or an allele of another locus in linkage disequilibrium with CD19 (GT)(15-18), may be associated with susceptibility to SLE in Japanese.
Collapse
Affiliation(s)
- K Kuroki
- Department of Human Genetics, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
The transmembrane proteins of the tetraspanin superfamily are implicated in a diverse range of biological phenomena, including cell motility, metastasis, cell proliferation and differentiation. The tetraspanins are associated with adhesion receptors of the integrin family and regulate integrin-dependent cell migration. In cells attached to the extracellular matrix, the integrin-tetraspanin adhesion complexes are clustered into a distinct type of adhesion structure at the cell periphery. Various tetraspanins are associated with phosphatidylinositol 4-kinase and protein kinase C isoforms, and they may facilitate assembly of signalling complexes by tethering these enzymes to integrin heterodimers. At the plasma membrane, integrin-tetraspanin signalling complexes are partitioned into specific microdomains proximal to cholesterol-rich lipid rafts. A substantial fraction of tetraspanins colocalise with integrins in various intracellular vesicular compartments. It is proposed that tetraspanins can influence cell migration by one of the following mechanisms: (1) modulation of integrin signalling; (2) compartmentalisation of integrins on the cell surface; or (3) direction of intracellular trafficking and recycling of integrins.
Collapse
Affiliation(s)
- F Berditchevski
- CRC Institute for Cancer Studies, The University of Birmingham, Edgbaston, Birmingham, B15 2TA, UK.
| |
Collapse
|
6
|
Abstract
CD19 is rapidly phosphorylated upon B-cell antigen receptor (BCR) cross-linking, leading to the recruitment of downstream signaling intermediates. A prominent feature of CD19 signaling is the binding and activation of phosphoinositide 3-kinase (P13K), which accounts for the majority of PI3K activity induced by BCR ligation. Recent findings have implicated activation of the serine/threonine kinase Akt as imparting survival signals in a PI3K-dependent fashion. Using CD19-deficient B-lymphoma cells and mouse splenic B-cells, we show that CD19 is necessary for efficient activation of Akt following cross-linking of surface immunoglobulin or Igbeta. In the absence of CD19, Akt kinase activity is reduced and transient. In addition, coligation of CD19 with surface immunoglobulin leads to augmented Akt activity in a dose-dependent manner. Thus, CD19 is a key regulator of Akt activity in B-cells; as such it may contribute to pre-BCR or BCR-mediated cell survival in vivo.
Collapse
Affiliation(s)
- D C Otero
- Division of Biology and UCSD Cancer Center, University of California, San Diego, La Jolla, California 92093-0322, USA
| | | | | |
Collapse
|
7
|
da Cruz LA, Penfold S, Zhang J, Somani AK, Shi F, McGavin MK, Song X, Siminovitch KA. Involvement of the lymphocyte cytoskeleton in antigen-receptor signaling. Curr Top Microbiol Immunol 1999; 245:135-67. [PMID: 10533312 DOI: 10.1007/978-3-642-57066-7_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- L A da Cruz
- Department of Medicine, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Affiliation(s)
- Y Shimizu
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis 55455, USA
| | | | | |
Collapse
|
9
|
Cell Adhesion Mediated Drug Resistance (CAM-DR): Role of Integrins and Resistance to Apoptosis in Human Myeloma Cell Lines. Blood 1999. [DOI: 10.1182/blood.v93.5.1658.405a19_1658_1667] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrin-mediated adhesion influences cell survival and may prevent programmed cell death. Little is known about how drug-sensitive tumor cell lines survive initial exposures to cytotoxic drugs and eventually select for drug-resistant populations. Factors that allow for cell survival following acute cytotoxic drug exposure may differ from drug resistance mechanisms selected for by chronic drug exposure. We show here that drug-sensitive 8226 human myeloma cells, demonstrated to express both VLA-4 (4β1) and VLA-5 (5β1) integrin fibronectin (FN) receptors, are relatively resistant to the apoptotic effects of doxorubicin and melphalan when pre-adhered to FN and compared with cells grown in suspension. This cell adhesion mediated drug resistance, or CAM-DR, was not due to reduced drug accumulation or upregulation of anti-apoptotic Bcl-2 family members. As determined by flow cytometry, myeloma cell lines selected for drug resistance, with either doxorubicin or melphalan, overexpress VLA-4. Functional assays revealed a significant increase in 4-mediated cell adhesion in both drug-resistant variants compared with the drug-sensitive parent line. When removed from selection pressure, drug-resistant cell lines reverted to a drug sensitive and 4-low phenotype. Whether VLA-4–mediated FN adhesion offers a survival advantage over VLA-5–mediated adhesion remains to be determined. In conclusion, we have demonstrated that FN-mediated adhesion confers a survival advantage for myeloma cells acutely exposed to cytotoxic drugs by inhibiting drug-induced apoptosis. This finding may explain how some cells survive initial drug exposure and eventually express classical mechanisms of drug resistance such as MDR1 overexpression.
Collapse
|
10
|
Cell Adhesion Mediated Drug Resistance (CAM-DR): Role of Integrins and Resistance to Apoptosis in Human Myeloma Cell Lines. Blood 1999. [DOI: 10.1182/blood.v93.5.1658] [Citation(s) in RCA: 629] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AbstractIntegrin-mediated adhesion influences cell survival and may prevent programmed cell death. Little is known about how drug-sensitive tumor cell lines survive initial exposures to cytotoxic drugs and eventually select for drug-resistant populations. Factors that allow for cell survival following acute cytotoxic drug exposure may differ from drug resistance mechanisms selected for by chronic drug exposure. We show here that drug-sensitive 8226 human myeloma cells, demonstrated to express both VLA-4 (4β1) and VLA-5 (5β1) integrin fibronectin (FN) receptors, are relatively resistant to the apoptotic effects of doxorubicin and melphalan when pre-adhered to FN and compared with cells grown in suspension. This cell adhesion mediated drug resistance, or CAM-DR, was not due to reduced drug accumulation or upregulation of anti-apoptotic Bcl-2 family members. As determined by flow cytometry, myeloma cell lines selected for drug resistance, with either doxorubicin or melphalan, overexpress VLA-4. Functional assays revealed a significant increase in 4-mediated cell adhesion in both drug-resistant variants compared with the drug-sensitive parent line. When removed from selection pressure, drug-resistant cell lines reverted to a drug sensitive and 4-low phenotype. Whether VLA-4–mediated FN adhesion offers a survival advantage over VLA-5–mediated adhesion remains to be determined. In conclusion, we have demonstrated that FN-mediated adhesion confers a survival advantage for myeloma cells acutely exposed to cytotoxic drugs by inhibiting drug-induced apoptosis. This finding may explain how some cells survive initial drug exposure and eventually express classical mechanisms of drug resistance such as MDR1 overexpression.
Collapse
|
11
|
Horváth G, Serru V, Clay D, Billard M, Boucheix C, Rubinstein E. CD19 is linked to the integrin-associated tetraspans CD9, CD81, and CD82. J Biol Chem 1998; 273:30537-43. [PMID: 9804823 DOI: 10.1074/jbc.273.46.30537] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CD19-CD21-CD81 complex regulates signal transduction events critical for B lymphocyte development and humoral immunity. CD81, a molecule with 4 transmembrane domains, member of the tetraspan superfamily, is engaged, together with other tetraspans such as CD9, CD53, CD63, and CD82, in multimolecular complexes containing beta1 integrins and major histocompatibility complex antigens. Here we demonstrate that two other tetraspans, CD82 and the early B cell marker CD9, are coimmunoprecipitated with CD19 from Brij97 lysates of B cell lines. Moreover, CD9 was coprecipitated from lysates of purified CD10(+) early B cells. These associations were confirmed by the cocapping of CD19 with CD9 or CD82. The CD9/CD19 association was disrupted in the presence of digitonin, contrary to the CD81/CD19 association, indicating that CD9 and CD81 interact with CD19 in different ways. The CD9/CD81 association is also disrupted in the presence of digitonin, suggesting that CD9 associates with CD19 only through CD81. To characterize the regions involved in the CD81/CD19 association, two reciprocal CD9/CD81 chimeric molecules were tested for the association with CD19, but none of them could be coprecipitated with CD19 in digitonin, indicating that the domain of CD81 responsible for its association with CD19 is complex. Finally, engagement of CD9 could induce the tyrosine phosphorylation of different proteins, including CD19 itself, suggesting that the CD9/CD19 association is functionally relevant. Thus, a physical and functional link is formed between the CD19-CD21-CD81 complex and the integrin-tetraspan complexes, which is dynamically modulated in the process of B cell differentiation.
Collapse
Affiliation(s)
- G Horváth
- INSERM U268, Hôpital Paul Brousse, 94807 Villejuif Cedex, France
| | | | | | | | | | | |
Collapse
|
12
|
Contact Between Human Bone Marrow Stromal Cells and B Lymphocytes Enhances Very Late Antigen-4/Vascular Cell Adhesion Molecule-1–Independent Tyrosine Phosphorylation of Focal Adhesion Kinase, Paxillin, and ERK2 in Stromal Cells. Blood 1997. [DOI: 10.1182/blood.v90.4.1626] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AbstractContact with bone marrow stromal cells is crucial for the normal growth and development of B-cell precursors. We have previously shown that human bone marrow stromal cell tyrosine kinase activity can be activated by direct contact with B-lymphoid cells (J Immunol 155:2359, 1995). In the present study, we show that increased tyrosine phosphorylation of focal adhesion kinase, paxillin, and extracellular-related kinase 2 (or p42 MAP kinase) accounted for the major changes occurring in stromal cell tyrosine phosphorylation after 5 to 10 minutes of contact with the RAMOS B-lymphoma cell line. Although adhesion of B-cell precursors to stromal cells is primarily mediated by very late antigen-4 (VLA-4) and vascular cell adhesion molecule-1 (VCAM-1), VLA-4–deficient and adhesion-deficient RAMOS cells were equally capable of stimulating stromal cell tyrosine phosphorylation. Similar changes in the tyrosine phosphorylation pattern of stromal cells were induced by contact with normal human B-cell precursors and several other B-lineage cell lines. After 5 to 30 minutes of contact with stromal cells, no change in protein tyrosine phosphorylation was detected in RAMOS or normal human B-cell precursors removed from stromal cells. Pretreatment of stromal cells with cytochalasin D abrogated contact-mediated enhancement of stromal cell tyrosine phosphorylation, suggesting that an intact cytoskeleton was essential. These results suggest that B-cell contact activates stromal cell signaling cascades that regulate cytoskeletal organization and transcription, independent of the interaction mediated by VLA-4 and VCAM-1.
Collapse
|
13
|
Contact Between Human Bone Marrow Stromal Cells and B Lymphocytes Enhances Very Late Antigen-4/Vascular Cell Adhesion Molecule-1–Independent Tyrosine Phosphorylation of Focal Adhesion Kinase, Paxillin, and ERK2 in Stromal Cells. Blood 1997. [DOI: 10.1182/blood.v90.4.1626.1626_1626_1635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Contact with bone marrow stromal cells is crucial for the normal growth and development of B-cell precursors. We have previously shown that human bone marrow stromal cell tyrosine kinase activity can be activated by direct contact with B-lymphoid cells (J Immunol 155:2359, 1995). In the present study, we show that increased tyrosine phosphorylation of focal adhesion kinase, paxillin, and extracellular-related kinase 2 (or p42 MAP kinase) accounted for the major changes occurring in stromal cell tyrosine phosphorylation after 5 to 10 minutes of contact with the RAMOS B-lymphoma cell line. Although adhesion of B-cell precursors to stromal cells is primarily mediated by very late antigen-4 (VLA-4) and vascular cell adhesion molecule-1 (VCAM-1), VLA-4–deficient and adhesion-deficient RAMOS cells were equally capable of stimulating stromal cell tyrosine phosphorylation. Similar changes in the tyrosine phosphorylation pattern of stromal cells were induced by contact with normal human B-cell precursors and several other B-lineage cell lines. After 5 to 30 minutes of contact with stromal cells, no change in protein tyrosine phosphorylation was detected in RAMOS or normal human B-cell precursors removed from stromal cells. Pretreatment of stromal cells with cytochalasin D abrogated contact-mediated enhancement of stromal cell tyrosine phosphorylation, suggesting that an intact cytoskeleton was essential. These results suggest that B-cell contact activates stromal cell signaling cascades that regulate cytoskeletal organization and transcription, independent of the interaction mediated by VLA-4 and VCAM-1.
Collapse
|
14
|
Li HL, Forman MS, Kurosaki T, Puré E. Syk is required for BCR-mediated activation of p90Rsk, but not p70S6k, via a mitogen-activated protein kinase-independent pathway in B cells. J Biol Chem 1997; 272:18200-8. [PMID: 9218456 DOI: 10.1074/jbc.272.29.18200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The tyrosine kinases Syk and Lyn are activated in B lymphocytes following antibody induced cross-linking of the B cell receptor for antigen (BCR). It has been suggested that activation of Syk is dependent on Lyn. We tested this hypothesis by comparing the phosphorylation and activation of several downstream effector molecules in parental DT40, DT40Syk- and DT40Lyn- B cells. The phosphorylation and activation of p90Rsk was ablated in Syk-deficient B cells but unaffected in Lyn-deficient B cells while the phosphorylation/activation of Ras GTPase activating protein (Ras GAP) and mitogen activated protein (MAP) kinase required both Syk and Lyn. Thus, these data indicate that Syk can be activated in the absence of Lyn after BCR cross-linking and results in the activation of p90Rsk via a MAP kinase-independent pathway in DT40Lyn- cells. We also demonstrated that BCR mediates the activation of p70S6k. However, activation of p70S6k in DT40Syk- and DT40Lyn- cells was comparable with that observed in parental cells. Thus, either Syk or Lyn may be sufficient for activation of p70S6k, or activation of p70S6k occurs independently of both Syk and Lyn. The kinase activity of Syk was required for the phosphorylation/activation of each of these downstream effector molecules but only the phosphorylation of Ras GAP was affected in cells expressing a mutant of Syk in which tyrosines 525 and 526 were substituted to phenlyalanines.
Collapse
Affiliation(s)
- H L Li
- Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
15
|
Abstract
The past year has seen advances in our understanding of accessory membrane proteins that modulate the B cell response to antigen-receptor stimulation. The generation of complement receptor deficient mice has reinforced our appreciation of the importance of complement receptors in the B cell response to antigen. The association of inositol polyphosphate 5-phosphatase with FcgammaRIIB suggests another mechanism, in addition to recruitment of the phosphotyrosine phosphatase SHP-1, by which secreted immunoglobulin can limit further response to antigen. The in vivo function of CD22 in regulating the threshold of antigen-receptor signalling has been shown using CD22-deficient mice. Lastly, B cell receptor signalling in the B-1 subset of B lymphocytes has been demonstrated to be negatively regulated by CD5.
Collapse
Affiliation(s)
- L O'Rourke
- Wellcome Trust Immunology Unit, University of Cambridge School of Clinical Medicine, Cambridge, CB2 2SP, UK
| | | | | |
Collapse
|