1
|
De Cicco T, Pęziński M, Wójcicka O, Pradhan BS, Jabłońska M, Rottner K, Prószyński TJ. Cortactin interacts with αDystrobrevin-1 and regulates murine neuromuscular junction morphology. Eur J Cell Biol 2024; 103:151409. [PMID: 38579603 DOI: 10.1016/j.ejcb.2024.151409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/24/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024] Open
Abstract
Neuromuscular junctions transmit signals from the nervous system to skeletal muscles, triggering their contraction, and their proper organization is essential for breathing and voluntary movements. αDystrobrevin-1 is a cytoplasmic component of the dystrophin-glycoprotein complex and has pivotal functions in regulating the integrity of muscle fibers and neuromuscular junctions. Previous studies identified that αDystrobrevin-1 functions in the organization of the neuromuscular junction and that its phosphorylation in the C-terminus is required in this process. Our proteomic screen identified several putative αDystrobrevin-1 interactors recruited to the Y730 site in phosphorylated and unphosphorylated states. Amongst various actin-modulating proteins, we identified the Arp2/3 complex regulator cortactin. We showed that similarly to αDystrobrevin-1, cortactin is strongly enriched at the neuromuscular postsynaptic machinery and obtained results suggesting that these two proteins interact in cell homogenates and at the neuromuscular junctions. Analysis of synaptic morphology in cortactin knockout mice showed abnormalities in the slow-twitching soleus muscle and not in the fast-twitching tibialis anterior. However, muscle strength examination did not reveal apparent deficits in knockout animals.
Collapse
Affiliation(s)
- Teresa De Cicco
- Łukasiewicz Research Network - PORT Polish Center for Technology Development, Stabłowicka 147, Wrocław 54-066, Poland; Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw 02-093, Poland
| | - Marcin Pęziński
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw 02-093, Poland
| | - Olga Wójcicka
- Łukasiewicz Research Network - PORT Polish Center for Technology Development, Stabłowicka 147, Wrocław 54-066, Poland
| | - Bhola Shankar Pradhan
- Łukasiewicz Research Network - PORT Polish Center for Technology Development, Stabłowicka 147, Wrocław 54-066, Poland
| | - Margareta Jabłońska
- Łukasiewicz Research Network - PORT Polish Center for Technology Development, Stabłowicka 147, Wrocław 54-066, Poland
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Germany; Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, Braunschweig 38124, Germany
| | - Tomasz J Prószyński
- Łukasiewicz Research Network - PORT Polish Center for Technology Development, Stabłowicka 147, Wrocław 54-066, Poland; Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw 02-093, Poland.
| |
Collapse
|
2
|
Valenzuela IMPY, Chen PJ, Barden J, Kosloski O, Akaaboune M. Distinct roles of the dystrophin-glycoprotein complex: α-dystrobrevin and α-syntrophin in the maintenance of the postsynaptic apparatus of the neuromuscular synapse. Hum Mol Genet 2022; 31:2370-2385. [PMID: 35157076 PMCID: PMC9307313 DOI: 10.1093/hmg/ddac041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 02/02/2023] Open
Abstract
α-syntrophin (α-syn) and α-dystrobrevin (α-dbn), two components of the dystrophin-glycoprotein complex, are essential for the maturation and maintenance of the neuromuscular junction (NMJ) and mice deficient in either α-syn or α-dbn exhibit similar synaptic defects. However, the functional link between these two proteins and whether they exert distinct or redundant functions in the postsynaptic organization of the NMJ remain largely unknown. We generated and analyzed the synaptic phenotype of double heterozygote (α-dbn+/-, α-syn+/-), and double homozygote knockout (α-dbn-/-; α-syn-/-) mice and examined the ability of individual molecules to restore their defects in the synaptic phenotype. We showed that in double heterozygote mice, NMJs have normal synaptic phenotypes and no signs of muscular dystrophy. However, in double knockout mice (α-dbn-/-; α-syn-/-), the synaptic phenotype (the density, the turnover and the distribution of AChRs within synaptic branches) is more severely impaired than in single α-dbn-/- or α-syn-/- mutants. Furthermore, double mutant and single α-dbn-/- mutant mice showed more severe exercise-induced fatigue and more significant reductions in grip strength than single α-syn-/- mutant and wild-type. Finally, we showed that the overexpression of the transgene α-syn-GFP in muscles of double mutant restores primarily the abnormal extensions of membrane containing AChRs that extend beyond synaptic gutters and lack synaptic folds, whereas the overexpression of α-dbn essentially restores the abnormal dispersion of patchy AChR aggregates in the crests of synaptic folds. Altogether, these data suggest that α-syn and α-dbn act in parallel pathways and exert distinct functions on the postsynaptic structural organization of NMJs.
Collapse
Affiliation(s)
| | - Po-Ju Chen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Joseph Barden
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Olivia Kosloski
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Mohammed Akaaboune
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Program in Neuroscience, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
An Overview of Alternative Splicing Defects Implicated in Myotonic Dystrophy Type I. Genes (Basel) 2020; 11:genes11091109. [PMID: 32971903 PMCID: PMC7564762 DOI: 10.3390/genes11091109] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 01/02/2023] Open
Abstract
Myotonic dystrophy type I (DM1) is the most common form of adult muscular dystrophy, caused by expansion of a CTG triplet repeat in the 3′ untranslated region (3′UTR) of the myotonic dystrophy protein kinase (DMPK) gene. The pathological CTG repeats result in protein trapping by expanded transcripts, a decreased DMPK translation and the disruption of the chromatin structure, affecting neighboring genes expression. The muscleblind-like (MBNL) and CUG-BP and ETR-3-like factors (CELF) are two families of tissue-specific regulators of developmentally programmed alternative splicing that act as antagonist regulators of several pre-mRNA targets, including troponin 2 (TNNT2), insulin receptor (INSR), chloride channel 1 (CLCN1) and MBNL2. Sequestration of MBNL proteins and up-regulation of CELF1 are key to DM1 pathology, inducing a spliceopathy that leads to a developmental remodelling of the transcriptome due to an adult-to-foetal splicing switch, which results in the loss of cell function and viability. Moreover, recent studies indicate that additional pathogenic mechanisms may also contribute to disease pathology, including a misregulation of cellular mRNA translation, localization and stability. This review focuses on the cause and effects of MBNL and CELF1 deregulation in DM1, describing the molecular mechanisms underlying alternative splicing misregulation for a deeper understanding of DM1 complexity. To contribute to this analysis, we have prepared a comprehensive list of transcript alterations involved in DM1 pathogenesis, as well as other deregulated mRNA processing pathways implications.
Collapse
|
4
|
Hildyard JCW, Crawford AH, Rawson F, Riddell DO, Harron RCM, Piercy RJ. Single-transcript multiplex in situ hybridisation reveals unique patterns of dystrophin isoform expression in the developing mammalian embryo. Wellcome Open Res 2020; 5:76. [PMID: 32724863 PMCID: PMC7372313 DOI: 10.12688/wellcomeopenres.15762.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2020] [Indexed: 12/24/2022] Open
Abstract
Background: The dystrophin gene has multiple isoforms: full-length dystrophin (dp427) is principally known for its expression in skeletal and cardiac muscle, but is also expressed in the brain, and several internal promoters give rise to shorter, N-terminally truncated isoforms with wider tissue expression patterns (dp260 in the retina, dp140 in the brain and dp71 in many tissues). These isoforms are believed to play unique cellular roles both during embryogenesis and in adulthood, but their shared sequence identity at both mRNA and protein levels makes study of distinct isoforms challenging by conventional methods. Methods: RNAscope is a novel in-situ hybridisation technique that offers single-transcript resolution and the ability to multiplex, with different target sequences assigned to distinct fluorophores. Using probes designed to different regions of the dystrophin transcript (targeting 5', central and 3' sequences of the long dp427 mRNA), we can simultaneously detect and distinguish multiple dystrophin mRNA isoforms at sub-cellular histological levels. We have used these probes in healthy and dystrophic canine embryos to gain unique insights into isoform expression and distribution in the developing mammal. Results: Dp427 is found in developing muscle as expected, apparently enriched at nascent myotendinous junctions. Endothelial and epithelial surfaces express dp71 only. Within the brain and spinal cord, all three isoforms are expressed in spatially distinct regions: dp71 predominates within proliferating germinal layer cells, dp140 within maturing, migrating cells and dp427 appears within more established cell populations. Dystrophin is also found within developing bones and teeth, something previously unreported, and our data suggests orchestrated involvement of multiple isoforms in formation of these tissues. Conclusions: Overall, shorter isoforms appear associated with proliferation and migration, and longer isoforms with terminal lineage commitment: we discuss the distinct structural contributions and transcriptional demands suggested by these findings.
Collapse
Affiliation(s)
- John C. W. Hildyard
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Abbe H. Crawford
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Faye Rawson
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Dominique O. Riddell
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Rachel C. M. Harron
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Richard J. Piercy
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| |
Collapse
|
5
|
Chen PJ, Zelada D, Belhasan DC, Akaaboune M. Phosphorylation of α-dystrobrevin is essential for αkap accumulation and acetylcholine receptor stability. J Biol Chem 2020; 295:10677-10688. [PMID: 32532815 DOI: 10.1074/jbc.ra120.013952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/08/2020] [Indexed: 01/26/2023] Open
Abstract
The maintenance of a high density of the acetylcholine receptor (AChR) is the hallmark of the neuromuscular junction. Muscle-specific anchoring protein (αkap) encoded within the calcium/calmodulin-dependent protein kinase IIα (CAMK2A) gene is essential for the maintenance of AChR clusters both in vivo and in cultured muscle cells. The underlying mechanism by which αkap is maintained and regulated remains unknown. Here, using human cell lines, fluorescence microscopy, and pulldown and immunoblotting assays, we show that α-dystrobrevin (α-dbn), an intracellular component of the dystrophin glycoprotein complex, directly and robustly promotes the stability of αkap in a concentration-dependent manner. Mechanistically, we found that the phosphorylatable tyrosine residues of α-dbn are essential for the stability of α-dbn itself and its interaction with αkap, with substitution of three tyrosine residues in the α-dbn C terminus with phenylalanine compromising the αkap-α-dbn interaction and significantly reducing both αkap and α-dbn accumulation. Moreover, the αkap-α-dbn interaction was critical for αkap accumulation and stability. We also found that the absence of either αkap or α-dbn markedly reduces AChRα accumulation and that overexpression of α-dbn or αkap in cultured muscle cells promotes the formation of large agrin-induced AChR clusters. Collectively, these results indicate that the stability of αkap and α-dbn complex plays an important role in the maintenance of high-level expression of AChRs.
Collapse
Affiliation(s)
- Po-Ju Chen
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Diego Zelada
- Department of Cell Biology, Universidad de Concepción, Concepción, Chile
| | - Dina Cheryne Belhasan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Mohammed Akaaboune
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA .,Program in Neuroscience, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Hildyard JCW, Crawford AH, Rawson F, Riddell DO, Harron RCM, Piercy RJ. Single-transcript multiplex in situ hybridisation reveals unique patterns of dystrophin isoform expression in the developing mammalian embryo. Wellcome Open Res 2020; 5:76. [PMID: 32724863 PMCID: PMC7372313 DOI: 10.12688/wellcomeopenres.15762.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2020] [Indexed: 07/30/2023] Open
Abstract
Background: The dystrophin gene has multiple isoforms: full-length dystrophin (dp427) is principally known for its expression in skeletal and cardiac muscle, but is also expressed in the brain, and several internal promoters give rise to shorter, N-terminally truncated isoforms with wider tissue expression patterns (dp260 in the retina, dp140 in the brain and dp71 in many tissues). These isoforms are believed to play unique cellular roles both during embryogenesis and in adulthood, but their shared sequence identity at both mRNA and protein levels makes study of distinct isoforms challenging by conventional methods. Methods: RNAscope is a novel in-situ hybridisation technique that offers single-transcript resolution and the ability to multiplex, with different target sequences assigned to distinct fluorophores. Using probes designed to different regions of the dystrophin transcript (targeting 5', central and 3' sequences of the long dp427 mRNA), we can simultaneously detect and distinguish multiple dystrophin mRNA isoforms at sub-cellular histological levels. We have used these probes in healthy and dystrophic canine embryos to gain unique insights into isoform expression and distribution in the developing mammal. Results: Dp427 is found in developing muscle as expected, apparently enriched at nascent myotendinous junctions. Endothelial and epithelial surfaces express dp71 only. Within the brain and spinal cord, all three isoforms are expressed in spatially distinct regions: dp71 predominates within proliferating germinal layer cells, dp140 within maturing, migrating cells and dp427 appears within more established cell populations. Dystrophin is also found within developing bones and teeth, something previously unreported, and our data suggests orchestrated involvement of multiple isoforms in formation of these tissues. Conclusions: Overall, shorter isoforms appear associated with proliferation and migration, and longer isoforms with terminal lineage commitment: we discuss the distinct structural contributions and transcriptional demands suggested by these findings.
Collapse
Affiliation(s)
- John C. W. Hildyard
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Abbe H. Crawford
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Faye Rawson
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Dominique O. Riddell
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Rachel C. M. Harron
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Richard J. Piercy
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| |
Collapse
|
7
|
The role of the dystrophin glycoprotein complex on the neuromuscular system. Neurosci Lett 2020; 722:134833. [DOI: 10.1016/j.neulet.2020.134833] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 12/26/2022]
|
8
|
Martínez-Vieyra I, Pacheco-Tapia G, Reyes-López C, Méndez-Méndez JV, Cerecedo D. Role of α-Dystrobrevin in the differentiation process of HL-60 cells. Exp Cell Res 2018; 370:591-600. [PMID: 30026031 DOI: 10.1016/j.yexcr.2018.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/28/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
Abstract
The α-Dystrobrevin gene encodes at least five different protein isoforms, expressed in diverse tissues. The α-Dystrobrevin-1 isoform (α-Db-1) is a member of the cytoplasmic dystrophin-associated protein complex, which has a C-terminal extension comprising at least three tyrosine residues susceptible to phosphorylation in vivo. We previously described α-Db in stem-progenitor cells and blood neutrophils as playing a scaffolding role and, in association with kinesin and microtubules, α-Db promotes platelet-granule trafficking. Additionally, the microtubules must establish a balanced interaction with the lamina A/C network for appropriate nuclear morphology. Considering that the most outstanding feature during neutrophil differentiation is nuclei lobulation, we hypothesized that α-Db might possess a pivotal function during the neutrophil differentiation process. Western Blot (WB) and confocal microscope assays evidenced a differential pattern expression and a subcellular redistribution of α-Db in neutrophils derived from HL-60 cells. At the end of the differentiation process, we detected an important diminution in the expression of tubulin, kinesin, and α-Db-1. Knockdown of α-Db prevented nuclei lobulation, increased Lamin A/C and syne1 expression and augmented the roughness of derived neutrophil membrane and disturbed filopodia assembly. Our results suggest that HL-60 cells undergo extensive cytoskeletal reorganization including α-Db in order to possess lobulated nuclei when they further differentiate into neutrophils.
Collapse
Affiliation(s)
- Ivette Martínez-Vieyra
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía (ENMH), Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Giselle Pacheco-Tapia
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía (ENMH), Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - César Reyes-López
- Laboratorio de Bioquímica Estructural, Escuela Nacional de Medicina y Homeopatía (ENMH), Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Juan Vicente Méndez-Méndez
- Centro de Nanociencias y Micro y Nanotecnología, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Doris Cerecedo
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía (ENMH), Instituto Politécnico Nacional (IPN), Mexico City, Mexico.
| |
Collapse
|
9
|
Abstract
Cardiac and skeletal striated muscles are intricately designed machines responsible for muscle contraction. Coordination of the basic contractile unit, the sarcomere, and the complex cytoskeletal networks are critical for contractile activity. The sarcomere is comprised of precisely organized individual filament systems that include thin (actin), thick (myosin), titin, and nebulin. Connecting the sarcomere to other organelles (e.g., mitochondria and nucleus) and serving as the scaffold to maintain cellular integrity are the intermediate filaments. The costamere, on the other hand, tethers the sarcomere to the cell membrane. Unique structures like the intercalated disc in cardiac muscle and the myotendinous junction in skeletal muscle help synchronize and transmit force. Intense investigation has been done on many of the proteins that make up these cytoskeletal assemblies. Yet the details of their function and how they interconnect have just started to be elucidated. A vast number of human myopathies are contributed to mutations in muscle proteins; thus understanding their basic function provides a mechanistic understanding of muscle disorders. In this review, we highlight the components of striated muscle with respect to their interactions, signaling pathways, functions, and connections to disease. © 2017 American Physiological Society. Compr Physiol 7:891-944, 2017.
Collapse
Affiliation(s)
- Christine A Henderson
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Christopher G Gomez
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Stefanie M Novak
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Lei Mi-Mi
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA.,Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
10
|
Hernández-Ibarra JA, Laredo-Cisneros MS, Mondragón-González R, Santamaría-Guayasamín N, Cisneros B. Localization of α-Dystrobrevin in Cajal Bodies and Nucleoli: A New Role for α-Dystrobrevin in the Structure/Stability of the Nucleolus. J Cell Biochem 2016; 116:2755-65. [PMID: 25959029 DOI: 10.1002/jcb.25218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/05/2015] [Indexed: 11/11/2022]
Abstract
α-Dystrobrevin (α-DB) is a cytoplasmic component of the dystrophin-associated complex involved in cell signaling; however, its recently revealed nuclear localization implies a role for this protein in the nucleus. Consistent with this, we demonstrated, in a previous work that α-DB1 isoform associates with the nuclear lamin to maintain nuclei morphology. In this study, we show the distribution of the α-DB2 isoform in different subnuclear compartments of N1E115 neuronal cells, including nucleoli and Cajal bodies, where it colocalizes with B23/nucleophosmin and Nopp140 and with coilin, respectively. Recovery in a pure nucleoli fraction undoubtedly confirms the presence of α-DB2 in the nucleolus. α-DB2 redistributes in a similar fashion to that of fibrillarin and Nopp140 upon actinomycin-mediated disruption of nucleoli and to that of coilin after disorganization of Cajal bodies through ultraviolet-irradiation, with relocalization of the proteins to the corresponding reassembled structures after cessation of the insults, which implies α-DB2 in the plasticity of these nuclear bodies. That localization of α-DB2 in the nucleolus is physiologically relevant is demonstrated by the fact that downregulation of α-DB2 resulted in both altered nucleoli structure and decreased levels of B23/nucleophosmin, fibrillarin, and Nopp140. Since α-DB2 interacts with B23/nucleophosmin and overexpression of the latter protein favors nucleolar accumulation of α-DB2, it appears that targeting of α-DB2 to the nucleolus is dependent on B23/nucleophosmin. In conclusion, we show for the first time localization of α-DB2 in nucleoli and Cajal bodies and provide evidence that α-DB2 is involved in the structure of nucleoli and might modulate nucleolar functions.
Collapse
Affiliation(s)
- Jose Anselmo Hernández-Ibarra
- Departamento de Gen, é, tica y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV- IPN), Mexico City, Mexico
| | - Marco Samuel Laredo-Cisneros
- Departamento de Gen, é, tica y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV- IPN), Mexico City, Mexico
| | - Ricardo Mondragón-González
- Departamento de Gen, é, tica y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV- IPN), Mexico City, Mexico
| | - Natalie Santamaría-Guayasamín
- Departamento de Ciencias de la Vida, Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
| | - Bulmaro Cisneros
- Departamento de Gen, é, tica y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV- IPN), Mexico City, Mexico
| |
Collapse
|
11
|
Allen DG, Whitehead NP, Froehner SC. Absence of Dystrophin Disrupts Skeletal Muscle Signaling: Roles of Ca2+, Reactive Oxygen Species, and Nitric Oxide in the Development of Muscular Dystrophy. Physiol Rev 2016; 96:253-305. [PMID: 26676145 DOI: 10.1152/physrev.00007.2015] [Citation(s) in RCA: 301] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Dystrophin is a long rod-shaped protein that connects the subsarcolemmal cytoskeleton to a complex of proteins in the surface membrane (dystrophin protein complex, DPC), with further connections via laminin to other extracellular matrix proteins. Initially considered a structural complex that protected the sarcolemma from mechanical damage, the DPC is now known to serve as a scaffold for numerous signaling proteins. Absence or reduced expression of dystrophin or many of the DPC components cause the muscular dystrophies, a group of inherited diseases in which repeated bouts of muscle damage lead to atrophy and fibrosis, and eventually muscle degeneration. The normal function of dystrophin is poorly defined. In its absence a complex series of changes occur with multiple muscle proteins showing reduced or increased expression or being modified in various ways. In this review, we will consider the various proteins whose expression and function is changed in muscular dystrophies, focusing on Ca(2+)-permeable channels, nitric oxide synthase, NADPH oxidase, and caveolins. Excessive Ca(2+) entry, increased membrane permeability, disordered caveolar function, and increased levels of reactive oxygen species are early changes in the disease, and the hypotheses for these phenomena will be critically considered. The aim of the review is to define the early damage pathways in muscular dystrophy which might be appropriate targets for therapy designed to minimize the muscle degeneration and slow the progression of the disease.
Collapse
Affiliation(s)
- David G Allen
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Nicholas P Whitehead
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Stanley C Froehner
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| |
Collapse
|
12
|
Gingras J, Gawor M, Bernadzki KM, Grady RM, Hallock P, Glass DJ, Sanes JR, Proszynski TJ. Α-Dystrobrevin-1 recruits Grb2 and α-catulin to organize neurotransmitter receptors at the neuromuscular junction. J Cell Sci 2016; 129:898-911. [PMID: 26769899 DOI: 10.1242/jcs.181180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/11/2016] [Indexed: 12/17/2022] Open
Abstract
Neuromuscular junctions (NMJs), the synapses made by motor neurons on muscle fibers, form during embryonic development but undergo substantial remodeling postnatally. Several lines of evidence suggest that α-dystrobrevin, a component of the dystrophin-associated glycoprotein complex (DGC), is a crucial regulator of the remodeling process and that tyrosine phosphorylation of one isoform, α-dystrobrevin-1, is required for its function at synapses. We identified a functionally important phosphorylation site on α-dystrobrevin-1, generated phosphorylation-specific antibodies to it and used them to demonstrate dramatic increases in phosphorylation during the remodeling period, as well as in nerve-dependent regulation in adults. We then identified proteins that bind to this site in a phosphorylation-dependent manner and others that bind to α-dystrobrevin-1 in a phosphorylation-independent manner. They include multiple members of the DGC, as well as α-catulin, liprin-α1, Usp9x, PI3K, Arhgef5 and Grb2. Finally, we show that two interactors, α-catulin (phosphorylation independent) and Grb2 (phosphorylation dependent) are localized to NMJs in vivo, and that they are required for proper organization of neurotransmitter receptors on myotubes.
Collapse
Affiliation(s)
- Jacinthe Gingras
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Marta Gawor
- Laboratory of Synaptogenesis, Dept. of Cell Biology, Nencki Institute of Experimental Biology, Warsaw 02-093, Poland
| | - Krzysztof M Bernadzki
- Laboratory of Synaptogenesis, Dept. of Cell Biology, Nencki Institute of Experimental Biology, Warsaw 02-093, Poland
| | - R Mark Grady
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Peter Hallock
- Novartis Biomedical Institute, Cambridge, MA 02139, USA
| | - David J Glass
- Novartis Biomedical Institute, Cambridge, MA 02139, USA
| | - Joshua R Sanes
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Tomasz J Proszynski
- Laboratory of Synaptogenesis, Dept. of Cell Biology, Nencki Institute of Experimental Biology, Warsaw 02-093, Poland
| |
Collapse
|
13
|
Guiraud S, Squire SE, Edwards B, Chen H, Burns DT, Shah N, Babbs A, Davies SG, Wynne GM, Russell AJ, Elsey D, Wilson FX, Tinsley JM, Davies KE. Second-generation compound for the modulation of utrophin in the therapy of DMD. Hum Mol Genet 2015; 24:4212-24. [PMID: 25935002 PMCID: PMC4492389 DOI: 10.1093/hmg/ddv154] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/27/2015] [Indexed: 01/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal, X-linked muscle-wasting disease caused by lack of the cytoskeletal protein dystrophin. There is currently no cure for DMD although various promising approaches are progressing through human clinical trials. By pharmacologically modulating the expression of the dystrophin-related protein utrophin, we have previously demonstrated in dystrophin-deficient mdx studies, daily SMT C1100 treatment significantly reduced muscle degeneration leading to improved muscle function. This manuscript describes the significant disease modifying benefits associated with daily dosing of SMT022357, a second-generation compound in this drug series with improved physicochemical properties and a more robust metabolism profile. These studies in the mdx mouse demonstrate that oral administration of SMT022357 leads to increased utrophin expression in skeletal, respiratory and cardiac muscles. Significantly, utrophin expression is localized along the length of the muscle fibre, not just at the synapse, and is fibre-type independent, suggesting that drug treatment is modulating utrophin transcription in extra-synaptic myonuclei. This results in improved sarcolemmal stability and prevents dystrophic pathology through a significant reduction of regeneration, necrosis and fibrosis. All these improvements combine to protect the mdx muscle from contraction induced damage and enhance physiological function. This detailed evaluation of the SMT C1100 drug series strongly endorses the therapeutic potential of utrophin modulation as a disease modifying therapeutic strategy for all DMD patients irrespective of their dystrophin mutation.
Collapse
Affiliation(s)
- Simon Guiraud
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK,
| | - Sarah E Squire
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Benjamin Edwards
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Huijia Chen
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - David T Burns
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Nandini Shah
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Arran Babbs
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Stephen G Davies
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Graham M Wynne
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK
| | - Angela J Russell
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3PT, UK and
| | - David Elsey
- Summit Therapeutics plc, 85b Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, UK
| | - Francis X Wilson
- Summit Therapeutics plc, 85b Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, UK
| | - Jon M Tinsley
- Summit Therapeutics plc, 85b Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, UK
| | - Kay E Davies
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK,
| |
Collapse
|
14
|
Aguilar A, Wagstaff KM, Suárez-Sánchez R, Zinker S, Jans DA, Cisneros B. Nuclear localization of the dystrophin-associated protein α-dystrobrevin through importin α2/β1 is critical for interaction with the nuclear lamina/maintenance of nuclear integrity. FASEB J 2015; 29:1842-58. [PMID: 25636738 DOI: 10.1096/fj.14-257147] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 12/31/2014] [Indexed: 01/06/2023]
Abstract
Although α-dystrobrevin (DB) is assembled into the dystrophin-associated protein complex, which is central to cytoskeletal organization, it has also been found in the nucleus. Here we delineate the nuclear import pathway responsible for nuclear targeting of α-DB for the first time, together with the importance of nuclear α-DB in determining nuclear morphology. We map key residues of the nuclear localization signal of α-DB within the zinc finger domain (ZZ) using various truncated versions of the protein, and site-directed mutagenesis. Pulldown, immunoprecipitation, and AlphaScreen assays showed that the importin (IMP) α2/β1 heterodimer interacts with high affinity with the ZZ domain of α-DB. In vitro nuclear import assays using antibodies to specific importins, as well as in vivo studies using siRNA or a dominant negative importin construct, confirmed the key role of IMPα2/β1 in α-DB nuclear translocation. Knockdown of α-DB expression perturbed cell cycle progression in C2C12 myoblasts, with decreased accumulation of cells in S phase and, significantly, altered localization of lamins A/C, B1, and B2 with accompanying gross nuclear morphology defects. Because α-DB interacts specifically with lamin B1 in vivo and in vitro, nuclear α-DB would appear to play a key role in nuclear shape maintenance through association with the nuclear lamina.
Collapse
Affiliation(s)
- Areli Aguilar
- *Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico; Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; and Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación, México City, Mexico
| | - Kylie M Wagstaff
- *Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico; Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; and Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación, México City, Mexico
| | - Rocío Suárez-Sánchez
- *Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico; Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; and Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación, México City, Mexico
| | - Samuel Zinker
- *Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico; Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; and Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación, México City, Mexico
| | - David A Jans
- *Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico; Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; and Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación, México City, Mexico
| | - Bulmaro Cisneros
- *Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico; Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia; and Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación, México City, Mexico
| |
Collapse
|
15
|
Strakova J, Dean JD, Sharpe KM, Meyers TA, Odom GL, Townsend D. Dystrobrevin increases dystrophin's binding to the dystrophin-glycoprotein complex and provides protection during cardiac stress. J Mol Cell Cardiol 2014; 76:106-15. [PMID: 25158611 DOI: 10.1016/j.yjmcc.2014.08.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/14/2014] [Accepted: 08/16/2014] [Indexed: 01/05/2023]
Abstract
Duchenne muscular dystrophy is a fatal progressive disease of both cardiac and skeletal muscle resulting from the mutations in the DMD gene and loss of the protein dystrophin. Alpha-dystrobrevin (α-DB) tightly associates with dystrophin but the significance of this interaction within cardiac myocytes is poorly understood. In the current study, the functional role of α-DB in cardiomyocytes and its implications for dystrophin function are examined. Cardiac stress testing demonstrated significant heart disease in α-DB null (adbn(-/-)) mice, which displayed mortality and lesion sizes that were equivalent to those seen in dystrophin-deficient mdx mice. Despite normal expression and subcellular localization of dystrophin in the adbn(-/-) heart, there is a significant decrease in the strength of dystrophin's interaction with the membrane-bound dystrophin-associated glycoprotein complex (DGC). A similar weakening of the dystrophin-membrane interface was observed in mice lacking the sarcoglycan complex. Cardiomyocytes from adbn(-/-) mice were smaller and responded less to adrenergic receptor induced hypertrophy. The basal decrease in size could not be attributed to aberrant Akt activation. In addition, the organization of the microtubule network was significantly altered in adbn(-/-) cardiac myocytes, while the total expression of tubulin was unchanged in adbn(-/-) hearts. These studies demonstrate that α-DB is a multifunctional protein that increases dystrophin's binding to the dystrophin-glycoprotein complex, and is critical for the full functionality of dystrophin.
Collapse
Affiliation(s)
- Jana Strakova
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Jon D Dean
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Katharine M Sharpe
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Tatyana A Meyers
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Guy L Odom
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - DeWayne Townsend
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
16
|
|
17
|
Fratini F, Macchia G, Torreri P, Matteucci A, Salzano AM, Crescenzi M, Macioce P, Petrucci TC, Ceccarini M. Phosphorylation on threonine 11 of β-dystrobrevin alters its interaction with kinesin heavy chain. FEBS J 2012; 279:4131-44. [PMID: 22978324 DOI: 10.1111/febs.12006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/07/2012] [Accepted: 09/11/2012] [Indexed: 11/30/2022]
Abstract
Dystrobrevin family members (α and β) are cytoplasmic components of the dystrophin-associated glycoprotein complex, a multimeric protein complex first isolated from skeletal muscle, which links the extracellular matrix to the actin cytoskeleton. Dystrobrevin shares high homology with the cysteine-rich and C-terminal domains of dystrophin and a common domain organization. The β-dystrobrevin isoform is restricted to nonmuscle tissues, serves as a scaffold for signaling complexes, and may participate in intracellular transport through its interaction with kinesin heavy chain. We have previously characterized the molecular determinants affecting the β-dystrobrevin-kinesin heavy chain interaction, among which is cAMP-dependent protein kinase [protein kinase A (PKA)] phosphorylation of β-dystrobrevin. In this study, we have identified β-dystrobrevin residues phosphorylated in vitro by PKA with pull-down assays, surface plasmon resonance measurements, and MS analysis. Among the identified phosphorylated residues, we demonstrated, by site-directed mutagenesis, that Thr11 is the regulatory site for the β-dystrobrevin-kinesin interaction. As dystrobrevin may function as a signaling scaffold for kinases/phosphatases, we also investigated whether β-dystrobrevin is phosphorylated in vitro by kinases other than PKA. Thr11 was phosphorylated by protein kinase C, suggesting that this represents a key residue modified by the activation of different signaling pathways.
Collapse
Affiliation(s)
- Federica Fratini
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Proteomic analysis reveals new cardiac-specific dystrophin-associated proteins. PLoS One 2012; 7:e43515. [PMID: 22937058 PMCID: PMC3427372 DOI: 10.1371/journal.pone.0043515] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/23/2012] [Indexed: 12/27/2022] Open
Abstract
Mutations affecting the expression of dystrophin result in progressive loss of skeletal muscle function and cardiomyopathy leading to early mortality. Interestingly, clinical studies revealed no correlation in disease severity or age of onset between cardiac and skeletal muscles, suggesting that dystrophin may play overlapping yet different roles in these two striated muscles. Since dystrophin serves as a structural and signaling scaffold, functional differences likely arise from tissue-specific protein interactions. To test this, we optimized a proteomics-based approach to purify, identify and compare the interactome of dystrophin between cardiac and skeletal muscles from as little as 50 mg of starting material. We found selective tissue-specific differences in the protein associations of cardiac and skeletal muscle full length dystrophin to syntrophins and dystrobrevins that couple dystrophin to signaling pathways. Importantly, we identified novel cardiac-specific interactions of dystrophin with proteins known to regulate cardiac contraction and to be involved in cardiac disease. Our approach overcomes a major challenge in the muscular dystrophy field of rapidly and consistently identifying bona fide dystrophin-interacting proteins in tissues. In addition, our findings support the existence of cardiac-specific functions of dystrophin and may guide studies into early triggers of cardiac disease in Duchenne and Becker muscular dystrophies.
Collapse
|
19
|
Alpha-Dystrobrevin and its associated proteins in human promyelocytic leukemia cells induced to apoptosis. J Proteomics 2012; 75:3291-303. [PMID: 22507200 DOI: 10.1016/j.jprot.2012.03.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 03/19/2012] [Accepted: 03/25/2012] [Indexed: 12/13/2022]
Abstract
Dystrobrevin is a dystrophin-related component of the dystrophin-associated protein complex (DAPC). Using alpha-dystrobrevin as indicator, we aimed to elucidate the interaction network of the DAPC with other proteins during apoptosis of promyelocytic HL-60 cells. The precise role(s) of DBs are not known, but we and others have shown that they play a role in intracellular signal transduction and cellular organization. Apoptosis was induced with etoposide in the absence or presence of Z-VAD to block caspase activity, and we then followed the cellular distribution of α-DB and its association with other proteins, using confocal imaging and cell fractions analyses after immune-precipitation with anti-α-DB and mass spectrometry. Confocal imaging revealed distinct spatial relocalizations of α-DB between the cell membrane, cytosol and nucleus after induction of apoptosis. The expression levels of the identified proteins were evaluated with computer-assisted image analysis of the gels. We thus identified associations with structural and transport proteins (tropomyosin, myosin), membrane (ADAM21, syntrophin), ER-Golgi (TGN51, eIF38) and nuclear (Lamins, ribonucleoprotein C1/C2) proteins. These results suggest that apoptosis-induction in HL-60 cells involves not only classical markers of apoptosis but also a network α-DB-associated proteins at the cell membrane, the cytoplasm and nucleus, affecting key cellular transport processes and cellular structure.
Collapse
|
20
|
Yokota T, Duddy W, Echigoya Y, Kolski H. Exon skipping for nonsense mutations in Duchenne muscular dystrophy: too many mutations, too few patients? Expert Opin Biol Ther 2012; 12:1141-52. [PMID: 22650324 DOI: 10.1517/14712598.2012.693469] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD), one of the most common and lethal genetic disorders, is caused by mutations of the dystrophin gene. Removal of an exon or of multiple exons using antisense molecules has been demonstrated to allow synthesis of truncated 'Becker muscular dystrophy-like' dystrophin. AREAS COVERED Approximately 15% of DMD cases are caused by a nonsense mutation. Although patient databases have previously been surveyed for applicability to each deletion mutation pattern, this is not so for nonsense mutations. Here, we examine the world-wide database containing notations for more than 1200 patients with nonsense mutations. Approximately 47% of nonsense mutations can be potentially treated with single exon skipping, rising to 90% with double exon skipping, but to reach this proportion requires the development of exon skipping molecules targeting some 68 of dystrophin's 79 exons, with patient numbers spread thinly across those exons. In this review, we discuss progress and remaining hurdles in exon skipping and an alternative strategy, stop-codon readthrough. EXPERT OPINION Antisense-mediated exon skipping therapy is targeted highly at the individual patient and is a clear example of personalized medicine. An efficient regulatory path for drug approval will be a key to success.
Collapse
Affiliation(s)
- Toshifumi Yokota
- University of Alberta, Department of Medical Genetics, School of Human Development, Faculty of Medicine and Dentistry, 829 Medical Sciences Building, Edmonton, AB T6G 2H7, Canada.
| | | | | | | |
Collapse
|
21
|
Nakamori M, Takahashi MP. The role of α-dystrobrevin in striated muscle. Int J Mol Sci 2011; 12:1660-71. [PMID: 21673914 PMCID: PMC3111625 DOI: 10.3390/ijms12031660] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 01/29/2011] [Accepted: 02/23/2011] [Indexed: 12/29/2022] Open
Abstract
Muscular dystrophies are a group of diseases that primarily affect striated muscle and are characterized by the progressive loss of muscle strength and integrity. Major forms of muscular dystrophies are caused by the abnormalities of the dystrophin glycoprotein complex (DGC) that plays crucial roles as a structural unit and scaffolds for signaling molecules at the sarcolemma. α-Dystrobrevin is a component of the DGC and directly associates with dystrophin. α-Dystrobrevin also binds to intermediate filaments as well as syntrophin, a modular adaptor protein thought to be involved in signaling. Although no muscular dystrophy has been associated within mutations of the α-dystrobrevin gene, emerging findings suggest potential significance of α-dystrobrevin in striated muscle. This review addresses the functional role of α-dystrobrevin in muscle as well as its possible implication for muscular dystrophy.
Collapse
Affiliation(s)
- Masayuki Nakamori
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2, D-4, Yamadaoka, Suita, Osaka 565-0871, Japan; E-Mail:
- Department of Neurology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 645 URMC, Rochester, NY 14642, USA
| | - Masanori P. Takahashi
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2, D-4, Yamadaoka, Suita, Osaka 565-0871, Japan; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-6-6879-3571; Fax: +81-6-6879-3579
| |
Collapse
|
22
|
Abstract
Dystrophin and the alpha-dystrobrevins bind directly to the adapter protein syntrophin to form membrane-associated scaffolds. At the blood-brain barrier, alpha-syntrophin colocalizes with dystrophin and the alpha-dystrobrevins in perivascular glial endfeet and is required for localization of the water channel aquaporin-4. Earlier we have shown that localization of the scaffolding proteins gamma2-syntrophin, alpha-dystrobrevin-2, and dystrophin to glial endfeet is also dependent on the presence of alpha-syntrophin. In this study, we show that the expression levels of alpha-syntrophin, gamma2-syntrophin, and dystrophin at the blood-brain barrier are reduced in alpha-dystrobrevin-null mice. This is the first demonstration in which assembly of an astroglial protein scaffold containing syntrophin and dystrophin in perivascular astrocytes is dependent on the presence of alpha-dystrobrevin.
Collapse
|
23
|
Dystrophins, utrophins, and associated scaffolding complexes: role in mammalian brain and implications for therapeutic strategies. J Biomed Biotechnol 2010; 2010:849426. [PMID: 20625423 PMCID: PMC2896903 DOI: 10.1155/2010/849426] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 03/14/2010] [Indexed: 12/23/2022] Open
Abstract
Two decades of molecular, cellular, and functional studies considerably increased our understanding of dystrophins function and unveiled the complex etiology of the cognitive deficits in Duchenne muscular dystrophy (DMD), which involves altered expression of several dystrophin-gene products in brain. Dystrophins are normally part of critical cytoskeleton-associated membrane-bound molecular scaffolds involved in the clustering of receptors, ion channels, and signaling proteins that contribute to synapse physiology and blood-brain barrier function. The utrophin gene also drives brain expression of several paralogs proteins, which cellular expression and biological roles remain to be elucidated. Here we review the structural and functional properties of dystrophins and utrophins in brain, the consequences of dystrophins loss-of-function as revealed by numerous studies in mouse models of DMD, and we discuss future challenges and putative therapeutic strategies that may compensate for the cognitive impairment in DMD based on experimental manipulation of dystrophins and/or utrophins brain expression.
Collapse
|
24
|
Artegiani B, Labbaye C, Sferra A, Quaranta MT, Torreri P, Macchia G, Ceccarini M, Petrucci TC, Macioce P. The interaction with HMG20a/b proteins suggests a potential role for beta-dystrobrevin in neuronal differentiation. J Biol Chem 2010; 285:24740-50. [PMID: 20530487 DOI: 10.1074/jbc.m109.090654] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
alpha and beta dystrobrevins are cytoplasmic components of the dystrophin-associated protein complex that are thought to play a role as scaffold proteins in signal transduction and intracellular transport. In the search of new insights into the functions of beta-dystrobrevin, the isoform restricted to non-muscle tissues, we performed a two-hybrid screen of a mouse cDNA library to look for interacting proteins. Among the positive clones, one encodes iBRAF/HMG20a, a high mobility group (HMG)-domain protein that activates REST (RE-1 silencing transcription factor)-responsive genes, playing a key role in the initiation of neuronal differentiation. We characterized the beta-dystrobrevin-iBRAF interaction by in vitro and in vivo association assays, localized the binding region of one protein to the other, and assessed the kinetics of the interaction as one of high affinity. We also found that beta-dystrobrevin directly binds to BRAF35/HMG20b, a close homologue of iBRAF and a member of a co-repressor complex required for the repression of neural specific genes in neuronal progenitors. In vitro assays indicated that beta-dystrobrevin binds to RE-1 and represses the promoter activity of synapsin I, a REST-responsive gene that is a marker for neuronal differentiation. Altogether, our data demonstrate a direct interaction of beta-dystrobrevin with the HMG20 proteins iBRAF and BRAF35 and suggest that beta-dystrobrevin may be involved in regulating chromatin dynamics, possibly playing a role in neuronal differentiation.
Collapse
Affiliation(s)
- Benedetta Artegiani
- Department of Cell Biology and Neuroscience, National Center for Rare Diseases, Istituto Superiore di Sanità, Rome 00161, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wakayama Y, Matsuzaki Y, Yamashita S, Inoue M, Jimi T, Hara H, Unaki A, Iijima S, Masaki H. Dysbindin, syncoilin, and beta-synemin mRNA levels in dystrophic muscles. Int J Neurosci 2010; 120:144-9. [PMID: 20199207 DOI: 10.3109/00207450903279717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Progressive muscular dystrophies are genetic diseases with various modes of transmission. Duchenne muscular dystrophy (DMD) is caused by the defect of dystrophin, and Fukuyama congenital muscular dystrophy (FCMD) is caused by an abnormal fukutin gene leading to the glycosylation defect of alpha-dystroglycan. Dystrobrevin is one member of the dystrophin glycoprotein complex and its binding partners include dysbindin, syncoilin, and beta-synemin (desmuslin). Dysbindin is reported to be upregulated at the protein level in mdx mouse muscles, and syncoilin protein is also reported to be upregulated in biopsied muscles with neuromuscular disorders. In the present study we measured mRNA levels of dysbindin, syncoilin, and beta-synemin in biopsied muscles with DMD and FCMD. Upregulation of human dysbindin mRNA was observed in DMD muscles in comparison with normal muscles (p < .05). The differences in human syncoilin and beta-synemin mRNA ratios between DMD and normal muscles were not statistically significant, although upregulation tendency of human syncoilin mRNA was noted in DMD muscles (.05 < p < .1). Furthermore, the differences of human dysbindin, syncoilin, and beta-synemin mRNA ratios between FCMD and normal muscles were not statistically significant. These data provide insight into the pathophysiology of these muscular dystrophies.
Collapse
Affiliation(s)
- Yoshihiro Wakayama
- Department of Neurology, Showa University Fujigaoka Hospital, Yokohama, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Aquaporin expression in normal and pathological skeletal muscles: a brief review with focus on AQP4. J Biomed Biotechnol 2010; 2010:731569. [PMID: 20339523 PMCID: PMC2842974 DOI: 10.1155/2010/731569] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 01/12/2010] [Accepted: 01/17/2010] [Indexed: 11/30/2022] Open
Abstract
Freeze-fracture electron microscopy enabled us to observe the molecular architecture of the biological membranes. We were studying the myofiber plasma membranes of health and disease by using this technique and were interested in the special assembly called orthogonal arrays (OAs). OAs were present in normal myofiber plasma membranes and were especially numerous in fast twitch type 2 myofibers; while OAs were lost from sarcolemmal plasma membranes of severely affected muscles with dystrophinopathy and dysferlinopathy but not with caveolinopathy. In the mid nineties of the last century, the OAs turned out to be a water channel named aquaporin 4 (AQP4). Since this discovery, several groups of investigators have been studying AQP4 expression in diseased muscles. This review summarizes the papers which describe the expression of OAs, AQP4, and other AQPs at the sarcolemma of healthy and diseased muscle and discusses the possible role of AQPs, especially that of AQP4, in normal and pathological skeletal muscles.
Collapse
|
27
|
Böhm SV, Constantinou P, Tan S, Jin H, Roberts RG. Profound human/mouse differences in alpha-dystrobrevin isoforms: a novel syntrophin-binding site and promoter missing in mouse and rat. BMC Biol 2009; 7:85. [PMID: 19961569 PMCID: PMC2796648 DOI: 10.1186/1741-7007-7-85] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 12/04/2009] [Indexed: 11/29/2022] Open
Abstract
Background The dystrophin glycoprotein complex is disrupted in Duchenne muscular dystrophy and many other neuromuscular diseases. The principal heterodimeric partner of dystrophin at the heart of the dystrophin glycoprotein complex in the main clinically affected tissues (skeletal muscle, heart and brain) is its distant relative, α-dystrobrevin. The α-dystrobrevin gene is subject to complex transcriptional and post-transcriptional regulation, generating a substantial range of isoforms by alternative promoter use, alternative polyadenylation and alternative splicing. The choice of isoform is understood, amongst other things, to determine the stoichiometry of syntrophins (and their ligands) in the dystrophin glycoprotein complex. Results We show here that, contrary to the literature, most α-dystrobrevin genes, including that of humans, encode three distinct syntrophin-binding sites, rather than two, resulting in a greatly enhanced isoform repertoire. We compare in detail the quantitative tissue-specific expression pattern of human and mouse α-dystrobrevin isoforms, and show that two major gene features (the novel syntrophin-binding site-encoding exon and the internal promoter and first exon of brain-specific isoforms α-dystrobrevin-4 and -5) are present in most mammals but specifically ablated in mouse and rat. Conclusion Lineage-specific mutations in the murids mean that the mouse brain has fewer than half of the α-dystrobrevin isoforms found in the human brain. Our finding that there are likely to be fundamental functional differences between the α-dystrobrevins (and therefore the dystrophin glycoprotein complexes) of mice and humans raises questions about the current use of the mouse as the principal model animal for studying Duchenne muscular dystrophy and other related disorders, especially the neurological aspects thereof.
Collapse
Affiliation(s)
- Sabrina V Böhm
- Division of Medical & Molecular Genetics, King's College London, London, UK.
| | | | | | | | | |
Collapse
|
28
|
Mizuno Y, Guyon JR, Okamoto K, Kunkel LM. Expression of synemin in the mouse spinal cord. Muscle Nerve 2009; 39:634-41. [PMID: 19229966 PMCID: PMC2868828 DOI: 10.1002/mus.21221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
beta-Synemin was previously identified as an alpha-dystrobrevin-interacting protein in muscle. To better understand its function in neural tissue, in situ and immunohistochemical analyses were performed to identify where the synemin isoforms are expressed in the spinal cord of C57BL/6 and dystrophin-deficient (mdx) C57BL/10 mice. These analyses show that synemin transcript and its encoded protein colocalize in the anterior horn cells and that no differences in synemin expression were found in nerve tissue from C57BL/6 or mdx mice. The expression of synemin mRNA and protein predominantly in the anterior horn cells suggests that synemin performs an essential function in those cells. Because synemin is more highly expressed in the midbrain and pons, its function in neurological cells was further pursued by identifying coexpressed proteins in cells from those regions of the brain. These results show that neurons that express synemin also express tryptophan hydroxylase-1, a marker of serotoninergic nerve fibers. Muscle Nerve, 2009.
Collapse
Affiliation(s)
- Yuji Mizuno
- Department of Neurology, Gunma University Graduate School of Medicine, 3-39-22 Showa, Maebashi, Gunma 371-8511, Japan.
| | | | | | | |
Collapse
|
29
|
Pawlikowski BT, Maimone MM. alpha-Dystrobrevin isoforms differ in their colocalization with and stabilization of agrin-induced acetylcholine receptor clusters. Neuroscience 2008; 154:582-94. [PMID: 18468804 DOI: 10.1016/j.neuroscience.2008.01.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 12/21/2007] [Accepted: 01/12/2008] [Indexed: 11/19/2022]
Abstract
In skeletal muscle, alpha-dystrobrevin (alphaDB) is expressed throughout the sarcolemma with high concentrations at the neuromuscular junction. Mice lacking alphaDB display a mild muscular dystrophy and perturbations at the neuromuscular junction that include disruptions to acetylcholine receptor (AChR) cluster stability and patterning. In adult skeletal muscle, three alternatively spliced isoforms (alphaDB1, alphaDB2, alphaDB3) are expressed, while two other splice variants (alphaDB1(-) and alphaDB2(-)) are expressed only during early development. alphaDB is clearly important in AChR stabilization; however, the degree to which individual alphaDB isoforms and their specific functional domains contribute to AChR cluster stability is not fully understood. To investigate this, we established a primary muscle cell culture system from alphaDB knockout mice and stably expressed individual alphaDB isoforms using retroviral infection. A comparison between wild-type and alphaDB knockout muscle cells showed that in the absence of alphaDB, fewer AChR clusters formed in response to agrin treatment, and these AChR clusters were very unstable. Retroviral expression studies revealed that the largest isoforms (alphaDB1, alphaDB1(-), alphaDB2, alphaDB2(-)) colocalized with agrin-induced AChR clusters and rescued the AChR cluster formation defects back to wild-type levels, while only the first three isoforms fully rescued AChR cluster stability back to wild-type levels. alphaDB2(-) conferred an intermediate level of stability to the AChR clusters. In contrast, alphaDB3 showed no specific colocalization with AChR clusters and little effect on AChR cluster formation or stabilization. Twice as much syntrophin was found associated with alphaDB2 compared with alphaDB2(-) in myotubes suggesting that increased recruitment of syntrophin by alphaDB may enhance the stability of AChR clusters. Taken together, these data demonstrate that different alphaDB isoforms have different functional capabilities in the formation and maintenance of AChR clusters in muscle cells, and that these differences are likely due to the presence of different functional domains in each isoform.
Collapse
MESH Headings
- Agrin/pharmacology
- Animals
- Cells, Cultured
- DNA, Complementary/biosynthesis
- DNA, Complementary/genetics
- Dystrophin-Associated Proteins/genetics
- Dystrophin-Associated Proteins/metabolism
- Genetic Vectors
- Isomerism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Confocal
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Myoblasts/drug effects
- Myoblasts/enzymology
- Plasmids/genetics
- Receptors, Cholinergic/drug effects
- Receptors, Cholinergic/metabolism
- Retroviridae/genetics
Collapse
Affiliation(s)
- B T Pawlikowski
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | |
Collapse
|
30
|
Synaptic alpha-dystrobrevin: localization of a short alpha-dystrobrevin isoform in melanin-concentrating hormone neurons of the hypothalamus. Brain Res 2008; 1201:52-9. [PMID: 18314094 DOI: 10.1016/j.brainres.2008.01.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 12/23/2007] [Accepted: 01/05/2008] [Indexed: 10/22/2022]
Abstract
The expression of the two members of the dystrobrevin (DB) family in the adult brain was thought to be highly specific for the two main cell types: alpha-dystrobrevin (alpha-DB) and beta-dystrobrevin (beta-DB) has been identified as glial and neuronal proteins, respectively. In the present work we show that a subset of neurons in the hypothalamus contains alpha-DB. Comparative immunohistochemical studies with two alpha-DB antibodies of different specificity indicate that the neurons contain short alpha-DB isoform(s) alpha-DB-2 and/or alpha-DB-4. Immunoreactive multipolar or spindle-shaped neurons form clusters with bilateral symmetry, localized predominantly in the lateral hypothalamic area, with extensions into the zona incerta and the dorso-medial and ventro-medial hypothalamic region. alpha-DB immunoreactivity was localized in cell processes and at postsynaptic densities, furthermore in the endoplasmic reticulum within the perikarya. alpha-DB-positive neurons are beta-dystrobrevin immunoreactive, but alpha- and beta-DB do not co-localize with their usual molecular anchors like dystrophins or high molecular weight forms of utrophin. Colocalization with nNOS was also not observed. The pattern of alpha-DB immunoreactive neurons gave a perfect colocalization with melanin-concentrating hormone (MCH) neurons throughout the whole region studied. We propose that alpha-DB plays a role in a structure or regulation mechanism unique to MCH-expressing neurons.
Collapse
|
31
|
Adams ME, Tesch Y, Percival JM, Albrecht DE, Conhaim JI, Anderson K, Froehner SC. Differential targeting of nNOS and AQP4 to dystrophin-deficient sarcolemma by membrane-directed α-dystrobrevin. J Cell Sci 2008; 121:48-54. [DOI: 10.1242/jcs.020701] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
α-Dystrobrevin associates with and is a homologue of dystrophin, the protein linked to Duchenne and Becker muscular dystrophies. We used a transgenic approach to restore α-dystrobrevin to the sarcolemma in mice that lack dystrophin (mdx mice) to study two interrelated functions: (1) the ability of α-dystrobrevin to rescue components of the dystrophin complex in the absence of dystrophin and (2) the ability of sarcolemmal α-dystrobrevin to ameliorate the dystrophic phenotype. We generated transgenic mice expressing α-dystrobrevin-2a linked to a palmitoylation signal sequence and bred them onto the α-dystrobrevin-null and mdx backgrounds. Expression of palmitoylated α-dystrobrevin prevented the muscular dystrophy observed in the α-dystrobrevin-null mice, demonstrating that the altered form of α-dystrobrevin was functional. On the mdx background, the palmitoylated form of α-dystrobrevin was expressed on the sarcolemma but did not significantly ameliorate the muscular dystrophy phenotype. Palmitoylated dystrobrevin restored α-syntrophin and aquaporin-4 (AQP4) to the mdx sarcolemma but was unable to recruit β-dystroglycan or the sarcoglycans. Despite restoration of sarcolemmal α-syntrophin, neuronal nitric oxide synthase (nNOS) was not localized to the sarcolemma, suggesting that nNOS requires both dystrophin and α-syntrophin for correct localization. Thus, although nNOS and AQP4 both require interaction with the PDZ domain of α-syntrophin for sarcolemmal association, their localization is regulated differentially.
Collapse
Affiliation(s)
- Marvin E. Adams
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Yan Tesch
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Justin M. Percival
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Douglas E. Albrecht
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Jay I. Conhaim
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Kendra Anderson
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Stanley C. Froehner
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
32
|
Ervasti JM, Sonnemann KJ. Biology of the striated muscle dystrophin-glycoprotein complex. INTERNATIONAL REVIEW OF CYTOLOGY 2008; 265:191-225. [PMID: 18275889 DOI: 10.1016/s0074-7696(07)65005-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Since its first description in 1990, the dystrophin-glycoprotein complex has emerged as a critical nexus for human muscular dystrophies arising from defects in a variety of distinct genes. Studies in mammals widely support a primary role for the dystrophin-glycoprotein complex in mechanical stabilization of the plasma membrane in striated muscle and provide hints for secondary functions in organizing molecules involved in cellular signaling. Studies in model organisms confirm the importance of the dystrophin-glycoprotein complex for muscle cell viability and have provided new leads toward a full understanding of its secondary roles in muscle biology.
Collapse
Affiliation(s)
- James M Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
33
|
Ceccarini M, Grasso M, Veroni C, Gambara G, Artegiani B, Macchia G, Ramoni C, Torreri P, Mallozzi C, Petrucci TC, Macioce P. Association of Dystrobrevin and Regulatory Subunit of Protein Kinase A: A New Role for Dystrobrevin as a Scaffold for Signaling Proteins. J Mol Biol 2007; 371:1174-87. [PMID: 17610895 DOI: 10.1016/j.jmb.2007.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 06/06/2007] [Accepted: 06/07/2007] [Indexed: 11/15/2022]
Abstract
The dystrophin-related and -associated protein dystrobrevin is a component of the dystrophin-associated protein complex, which directly links the cytoskeleton to the extracellular matrix. It is now thought that this complex also serves as a dynamic scaffold for signaling proteins, and dystrobrevin may play a role in this context. Since dystrobrevin involvement in signaling pathways seems to be dependent on its interaction with other proteins, we sought new insights and performed a two-hybrid screen of a mouse brain cDNA library using beta-dystrobrevin, the isoform expressed in non-muscle tissues, as bait. Among the positive clones characterized after the screen, one encodes the regulatory subunit RIalpha of the cAMP-dependent protein kinase A (PKA). We confirmed the interaction by in vitro and in vivo association assays, and mapped the binding site of beta-dystrobrevin on RIalpha to the amino-terminal region encompassing the dimerization/docking domain of PKA regulatory subunit. We also found that the domain of interaction for RIalpha is contained in the amino-terminal region of beta-dystrobrevin. We obtained evidence that beta-dystrobrevin also interacts directly with RIIbeta, and that not only beta-dystrobrevin but also alpha-dystrobrevin interacts with PKA regulatory subunits. We show that both alpha and beta-dystrobrevin are specific phosphorylation substrates for PKA and that protein phosphatase 2A (PP2A) is associated with dystrobrevins. Our results suggest a new role for dystrobrevin as a scaffold protein that may play a role in different cellular processes involving PKA signaling.
Collapse
Affiliation(s)
- Marina Ceccarini
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, 00161 Roma, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Rees MLJ, Lien CF, Górecki DC. Dystrobrevins in muscle and non-muscle tissues. Neuromuscul Disord 2007; 17:123-34. [PMID: 17251025 DOI: 10.1016/j.nmd.2006.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 10/26/2006] [Accepted: 11/20/2006] [Indexed: 01/23/2023]
Abstract
The alpha- and beta-dystrobrevins belong to the family of dystrophin-related and dystrophin-associated proteins. As constituents of the dystrophin-associated protein complex, alpha-dystrobrevin was believed to have a role predominantly in muscles and beta-dystrobrevin in non-muscle tissues. Recent reports described novel localisations and molecular characteristics of alpha-dystrobrevin isoforms in non-muscle tissues (developing and adult). While single and double knockout studies have revealed distinct functions of dystrobrevin in some tissues, these also suggested a strong compensatory mechanism, where dystrobrevins displaying overlapping tissue expression pattern and structure/function similarity can substitute each other. No human disease has been unequivocally associated within mutations of dystrobrevin genes. However, some significant exceptions to these overlapping expression patterns, mainly in the brain, suggest that dystrobrevin mutations might underlie some specific motor, behavioural or cognitive defects. Dystrobrevin binding partner DTNBP1 (dysbindin) is a probable susceptibility gene for schizophrenia and bipolar affective disorder in some populations. As dysbindin abnormality is linked to Hermansky-Pudlak syndrome, dystrobrevins and/or their binding partners may also be required for proper function of other non-muscle tissues.
Collapse
Affiliation(s)
- Melissa L J Rees
- Department of Molecular Medicine, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, UK
| | | | | |
Collapse
|
35
|
Veroni C, Grasso M, Macchia G, Ramoni C, Ceccarini M, Petrucci TC, Macioce P. β-dystrobrevin, a kinesin-binding receptor, interacts with the extracellular matrix components pancortins. J Neurosci Res 2007; 85:2631-9. [PMID: 17265465 DOI: 10.1002/jnr.21186] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The dystrobrevins (alpha and beta) are components of the dystrophin-associated protein complex (DPC), which links the cytoskeleton to the extracellular matrix and serves as a scaffold for signaling proteins. The precise functions of the beta-dystrobrevin isoform, which is expressed in nonmuscle tissues, have not yet been determined. To gain further insights into the role of beta-dystrobrevin in brain, we performed a yeast two-hybrid screen and identified pancortin-2 as a novel beta-dystrobrevin-binding partner. Pancortins-1-4 are neuron-specific olfactomedin-related glycoproteins, highly expressed during brain development and widely distributed in the mature cerebral cortex of the mouse. Pancortins are important constituents of the extracellular matrix and are thought to play an essential role in neuronal differentiation. We characterized the interaction between pancortin-2 and beta-dystrobrevin by in vitro and in vivo association assays and mapped the binding site of pancortin-2 on beta-dystrobrevin to amino acids 202-236 of the beta-dystrobrevin molecule. We also found that the domain of interaction for beta-dystrobrevin is contained in the B part of pancortin-2, a central region that is common to all four pancortins. Our results indicate that beta-dystrobrevin could interact with all members of the pancortin family, implying that beta-dystrobrevin may be involved in brain development. We suggest that dystrobrevin, a motor protein receptor that binds kinesin heavy chain, might play a role in intracellular transport of pancortin to specific sites in the cell.
Collapse
Affiliation(s)
- Caterina Veroni
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
36
|
Peter AK, Crosbie RH. Hypertrophic response of Duchenne and limb-girdle muscular dystrophies is associated with activation of Akt pathway. Exp Cell Res 2006; 312:2580-91. [PMID: 16797529 DOI: 10.1016/j.yexcr.2006.04.024] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 03/23/2006] [Accepted: 04/27/2006] [Indexed: 12/19/2022]
Abstract
Dystrophic muscle undergoes repeated cycles of degeneration/regeneration, characterized by the presence of hypertrophic fibers. In order to elucidate the signaling pathways that govern these events, we investigated Akt activation in normal and dystrophic muscle. Akt is activated in neonatal muscle and in actively dividing myoblasts, supporting a developmental role for Akt signaling. Akt activation was detected at very early, prenecrotic stages of disease pathogenesis, and maximal activation was observed during peak stages of muscle hypertrophy. Duchenne muscular dystrophy patients exhibit a similar pattern of Akt activation. Mice with sarcoglycan-deficient muscular dystrophy possess more severe muscle pathology and display elevated Akt signaling. However, the highest levels of Akt activation were found in dystrophin-utrophin-deficient muscle with very advanced dystrophy. We propose that Akt may serve as an early biomarker of disease and that Akt activation mediates hypertrophy in muscular dystrophy. Current investigations are focused on introducing constitutively active and dominant-negative Akt into prenecrotic mdx mice to determine how early modification of Akt activity influences disease pathogenesis.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Child, Preschool
- Cricetinae
- Cytosol/metabolism
- Disease Models, Animal
- Dystrophin/deficiency
- Enzyme Activation
- Humans
- Hypertrophy/pathology
- Infant
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Muscle, Skeletal/cytology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/pathology
- Muscular Dystrophies, Limb-Girdle/enzymology
- Muscular Dystrophy, Duchenne/enzymology
- Proto-Oncogene Proteins c-akt/metabolism
- Sarcoglycans/deficiency
- Signal Transduction
Collapse
Affiliation(s)
- Angela K Peter
- Department of Physiological Science, University of California Los Angeles, CA 90095, USA
| | | |
Collapse
|
37
|
Lien CF, Hazai D, Yeung D, Tan J, Füchtbauer EM, Jancsik V, Górecki DC. Expression of alpha-dystrobrevin in blood-tissue barriers: sub-cellular localisation and molecular characterisation in normal and dystrophic mice. Cell Tissue Res 2006; 327:67-82. [PMID: 16868787 DOI: 10.1007/s00441-006-0241-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 05/09/2006] [Indexed: 11/30/2022]
Abstract
The alpha- and beta-dystrobrevins (DBs) belong to a family of dystrophin-related and dystrophin-associated proteins that are members of the dystrophin-associated protein complex (DAPC). This complex provides a link between the cytoskeleton and the extracellular matrix or other cells. However, specific functions of the two dystrobrevins remain largely unknown, with alpha-DB being believed to have a role mainly in skeletal muscle. Here, we describe previously unknown expression patterns and the localisation and molecular characteristics of alpha-DB isoforms in non-muscle mouse tissues. We demonstrate a highly specific sub-cellular distribution of alpha-DB in organs forming blood-tissue barriers. We show alpha-DB expression and localisation in testicular Sertoli cells, stomach and respiratory epithelia and provide electron-microscopic evidence for its immunolocalisation in these cells and in the central nervous system. Moreover, we present the molecular characterisation of alpha-DB transcript in these tissues and provide evidence for a distinct heterogeneity of associations between alpha-DB and dystrophins and utrophin in normal and dystrophic non-muscle tissues. Together, our results indicate that alpha-DB, in addition to its role in skeletal muscle, may also be required for the proper function of specific non-muscle tissues and that disruption of DAPC might lead to tissue-blood barrier abnormalities.
Collapse
Affiliation(s)
- Chun Fu Lien
- Molecular Medicine, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, St. Michael's Building, White Swan Road, Portsmouth, UK
| | | | | | | | | | | | | |
Collapse
|
38
|
Dudley RWR, Danialou G, Govindaraju K, Lands L, Eidelman DE, Petrof BJ. Sarcolemmal damage in dystrophin deficiency is modulated by synergistic interactions between mechanical and oxidative/nitrosative stresses. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:1276-87; quiz 1404-5. [PMID: 16565501 PMCID: PMC1606574 DOI: 10.2353/ajpath.2006.050683] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dystrophin deficiency is the cause of Duchenne muscular dystrophy, but the precise physiological basis for muscle necrosis remains unclear. To determine whether dystrophin-deficient muscles are abnormally susceptible to oxidative and nitric oxide (NO)-driven tissue stress, a hindlimb ischemia/reperfusion (I/R) model was used. Dystrophic mdx mice exhibited abnormally high levels of lipid peroxidation and protein nitration, which were preceded by exaggerated NO production during ischemia. Visualization of NO with the fluorescent probe 4,5-diaminofluorescein diacetate suggested that excess NO production during ischemia occurred within a subset of mdx fibers. In mdx muscles only, prior exposure to I/R dramatically increased the level of sarcolemmal damage resulting from stretch-mediated mechanical stress, indicating greatly exacerbated hyperfragility of the dystrophic fiber membrane. Treatment with NO synthase inhibitors (l-N(G)-nitroarginine methyl ester hydrochloride or 7-nitroindazol) effectively blocked the synergistic interaction between I/R and mechanical stress-mediated sarcolemmal damage under these conditions. Taken together, our findings provide direct ex-perimental evidence that several prevailing hy-potheses regarding the cause of muscle fiber damage in dystrophin-deficient muscle can be integrated into a common pathophysiological framework involving interactions between oxidative stress, ab-normal NO regulation, and hyperfragility of the sarcolemma.
Collapse
Affiliation(s)
- Roy W R Dudley
- Royal Victoria Hospital, Room L411, 687 Pine Ave. West, Montreal, Quebec H3A 1A1, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Grady RM, Wozniak DF, Ohlemiller KK, Sanes JR. Cerebellar synaptic defects and abnormal motor behavior in mice lacking alpha- and beta-dystrobrevin. J Neurosci 2006; 26:2841-51. [PMID: 16540561 PMCID: PMC6673965 DOI: 10.1523/jneurosci.4823-05.2006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The dystrobrevins (alphaDB and betaDB) bind directly to dystrophin and are components of a transmembrane dystrophin-glycoprotein complex (DGC) that links the cytoskeleton to extracellular proteins in many tissues. We show here that alphaDB, betaDB, and dystrophin are all concentrated at a discrete subset of inhibitory synapses on the somata and dendrites of cerebellar Purkinje cells. Dystrophin is depleted from these synapses in mice lacking both alphaDB and betaDB, and DBs are depleted from these synapses in mice lacking dystrophin. In dystrophin mutants and alphaDB,betaDB double mutants, the size and number of GABA receptor clusters are decreased at cerebellar inhibitory synapses, and sensorimotor behaviors that reflect cerebellar function are perturbed. Synaptic and behavioral abnormalities are minimal in mice lacking either alphaDB or betaDB. Together, our results show that the DGC is required for proper maturation and function of a subset of inhibitory synapses, that DB is a key component of this DGC, and that interference with this DGC leads to behavioral abnormalities. We suggest that motor deficits in muscular dystrophy patients, which are their cardinal symptoms, may reflect not only peripheral derangements but also CNS defects.
Collapse
MESH Headings
- Animals
- Ataxia/genetics
- Behavior, Animal
- Cerebellum/physiopathology
- Dystrophin/deficiency
- Dystrophin/genetics
- Dystrophin/physiology
- Dystrophin-Associated Proteins/deficiency
- Dystrophin-Associated Proteins/genetics
- Dystrophin-Associated Proteins/physiology
- Genotype
- Hippocampus/chemistry
- Hippocampus/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Mice, Knockout
- Multiprotein Complexes
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/physiopathology
- Muscular Dystrophy, Animal/psychology
- Neuromuscular Junction/chemistry
- Neuromuscular Junction/pathology
- Prosencephalon/chemistry
- Prosencephalon/pathology
- Psychomotor Performance
- Purkinje Cells/chemistry
- Purkinje Cells/physiology
- Receptor Aggregation
- Receptors, GABA-A/deficiency
- Receptors, GABA-A/physiology
- Retina/chemistry
- Retina/physiopathology
- Retina/ultrastructure
- Synapses/physiology
Collapse
Affiliation(s)
- R Mark Grady
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|
40
|
Hnia K, Tuffery-Giraud S, Vermaelen M, Hugon G, Chazalette D, Masmoudi A, Rivier F, Mornet D. Pathological pattern of Mdx mice diaphragm correlates with gradual expression of the short utrophin isoform Up71. Biochim Biophys Acta Mol Basis Dis 2006; 1762:362-72. [PMID: 16457992 PMCID: PMC1974843 DOI: 10.1016/j.bbadis.2005.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 11/16/2005] [Accepted: 11/18/2005] [Indexed: 12/22/2022]
Abstract
Utrophin gene is transcribed in a large mRNA of 13 kb that codes for a protein of 395 kDa. It shows amino acid identity with dystrophin of up to 73% and is widely expressed in muscle and non-muscle tissues. Up71 is a short utrophin product of the utrophin gene with the same cysteine-rich and C-terminal domains as full-length utrophin (Up395). Using RT-PCR, Western blots analysis, we demonstrated that Up71 is overexpressed in the mdx diaphragm, the most pathological muscle in dystrophin-deficient mdx mice, compared to wild-type C57BL/10 or other mdx skeletal muscles. Subsequently, we demonstrated that this isoform displayed an increased expression level up to 12 months, whereas full-length utrophin (Up395) decreased. In addition, beta-dystroglycan, the transmembrane glycoprotein that anchors the cytoplasmic C-terminal domain of utrophin, showed similar increase expression in mdx diaphragm, as opposed to other components of the dystrophin-associated protein complex (DAPC) such as alpha-dystrobrevin1 and alpha-sarcoglycan. We demonstrated that Up71 and beta-dystroglycan were progressively accumulated along the extrasynaptic region of regenerating clusters in mdx diaphragm. Our data provide novel functional insights into the pathological role of the Up71 isoform in dystrophinopathies.
Collapse
Affiliation(s)
- Karim Hnia
- Laboratoire de Physiologie des Interactions
EA 701Université Montpellier 1Institut de Biologie
Boulevard Henri IV
34060 Montpellier,FR
- Institut Supérieur de Biotechnologie
Faculté de MédecineMonastir,TN
| | - Sylvie Tuffery-Giraud
- Laboratoire de génétique des maladies rares. Pathologie moléculaire, études fonctionnelles et banque de données génétiques
INSERM : U827 IFR3Université Montpellier IIURC
CHU de Montpellier
34093 MONTPELLIER ,FR
| | - Marianne Vermaelen
- Laboratoire de Physiologie des Interactions
EA 701Université Montpellier 1Institut de Biologie
Boulevard Henri IV
34060 Montpellier,FR
| | - Gerald Hugon
- Laboratoire de Physiologie des Interactions
EA 701Université Montpellier 1Institut de Biologie
Boulevard Henri IV
34060 Montpellier,FR
| | - Delphine Chazalette
- Laboratoire de Physiologie des Interactions
EA 701Université Montpellier 1Institut de Biologie
Boulevard Henri IV
34060 Montpellier,FR
| | - Ahmed Masmoudi
- Institut Supérieur de Biotechnologie
Faculté de MédecineMonastir,TN
| | - François Rivier
- Laboratoire de Physiologie des Interactions
EA 701Université Montpellier 1Institut de Biologie
Boulevard Henri IV
34060 Montpellier,FR
| | - Dominique Mornet
- Laboratoire de Physiologie des Interactions
EA 701Université Montpellier 1Institut de Biologie
Boulevard Henri IV
34060 Montpellier,FR
- * Correspondence should be adressed to: Dominique Mornet
| |
Collapse
|
41
|
Ceccarini M, Torreri P, Lombardi DG, Macchia G, Macioce P, Petrucci TC. Molecular Basis of Dystrobrevin Interaction with Kinesin Heavy Chain: Structural Determinants of their Binding. J Mol Biol 2005; 354:872-82. [PMID: 16288919 DOI: 10.1016/j.jmb.2005.09.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Accepted: 09/22/2005] [Indexed: 11/19/2022]
Abstract
Dystrobrevins are a family of widely expressed dystrophin-associated proteins that comprises alpha and beta isoforms and displays significant sequence homology with several protein-binding domains of the dystrophin C-terminal region. The complex distribution of the multiple dystrobrevin isoforms suggests that the variability of their composition may be important in mediating their function. We have recently identified kinesin as a novel dystrobrevin-interacting protein and localized the dystrobrevin-binding site on the cargo-binding domain of neuronal kinesin heavy chain (Kif5A). In the present study, we assessed the kinetics of the dystrobrevin-Kif5A interaction by quantitative pull-down assay and surface plasmon resonance (SPR) analysis and found that beta-dystrobrevin binds to kinesin with high affinity (K(D) approximately 40 nM). Comparison of the sensorgrams obtained with alpha and beta-dystrobrevin at the same concentration of analyte showed a lower affinity of alpha compared to that of beta-dystrobrevin, despite their functional domain homology and about 70% sequence identity. Analysis of the contribution of single dystrobrevin domains to the interaction revealed that the deletion of either the ZZ domain or the coiled-coil region decreased the kinetics of the interaction, suggesting that the tertiary structure of dystrobrevin may play a role in regulating the interaction of dystrobrevin with kinesin. In order to understand if structural changes induced by post-translational modifications could affect dystrobrevin affinity for kinesin, we phosphorylated beta-dystrobrevin in vitro and found that it showed reduced binding capacity towards kinesin. The interaction between the adaptor/scaffolding protein dystrobrevin and the motor protein kinesin may play a role in the transport and targeting of components of the dystrophin-associated protein complex to specific sites in the cell, with the differences in the binding properties of dystrobrevin isoforms reflecting their functional diversity within the same cell type. Phosphorylation events could have a regulatory role in this context.
Collapse
Affiliation(s)
- Marina Ceccarini
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
42
|
Turk R, Sterrenburg E, de Meijer EJ, van Ommen GJB, den Dunnen JT, 't Hoen PAC. Muscle regeneration in dystrophin-deficient mdx mice studied by gene expression profiling. BMC Genomics 2005; 6:98. [PMID: 16011810 PMCID: PMC1190170 DOI: 10.1186/1471-2164-6-98] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Accepted: 07/13/2005] [Indexed: 01/19/2023] Open
Abstract
Background Duchenne muscular dystrophy (DMD), caused by mutations in the dystrophin gene, is lethal. In contrast, dystrophin-deficient mdx mice recover due to effective regeneration of affected muscle tissue. To characterize the molecular processes associated with regeneration, we compared gene expression levels in hindlimb muscle tissue of mdx and control mice at 9 timepoints, ranging from 1–20 weeks of age. Results Out of 7776 genes, 1735 were differentially expressed between mdx and control muscle at at least one timepoint (p < 0.05 after Bonferroni correction). We found that genes coding for components of the dystrophin-associated glycoprotein complex are generally downregulated in the mdx mouse. Based on functional characteristics such as membrane localization, signal transduction, and transcriptional activation, 166 differentially expressed genes with possible functions in regeneration were analyzed in more detail. The majority of these genes peak at the age of 8 weeks, where the regeneration activity is maximal. The following pathways are activated, as shown by upregulation of multiple members per signalling pathway: the Notch-Delta pathway that plays a role in the activation of satellite cells, and the Bmp15 and Neuregulin 3 signalling pathways that may regulate proliferation and differentiation of satellite cells. In DMD patients, only few of the identified regeneration-associated genes were found activated, indicating less efficient regeneration processes in humans. Conclusion Based on the observed expression profiles, we describe a model for muscle regeneration in mdx mice, which may provide new leads for development of DMD therapies based on the improvement of muscle regeneration efficacy.
Collapse
Affiliation(s)
- R Turk
- Center for Human and Clinical Genetics, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, Nederland
- Department of Physiology and Biophysics, Howard Hughes Medical Institute, University of Iowa, 400 Eckstein Medical Research Building, Iowa City, IA52240-1101, U.S.A
| | - E Sterrenburg
- Center for Human and Clinical Genetics, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, Nederland
| | - EJ de Meijer
- Center for Human and Clinical Genetics, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, Nederland
| | - G-JB van Ommen
- Center for Human and Clinical Genetics, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, Nederland
| | - JT den Dunnen
- Center for Human and Clinical Genetics, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, Nederland
- Leiden Genome Technology Center, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, Nederland
| | - PAC 't Hoen
- Center for Human and Clinical Genetics, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, Nederland
| |
Collapse
|
43
|
Compton AG, Cooper ST, Hill PM, Yang N, Froehner SC, North KN. The syntrophin-dystrobrevin subcomplex in human neuromuscular disorders. J Neuropathol Exp Neurol 2005; 64:350-61. [PMID: 15835271 DOI: 10.1093/jnen/64.4.350] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The syntrophins and alpha-dystrobrevin form a subcomplex with dystrophin at the skeletal muscle membrane, and are also highly concentrated at the neuromuscular synapse. Here we demonstrate that the different syntrophins and alpha-dystrobrevin isoforms have distinct expression patterns during human skeletal muscle development, and are differentially affected by loss of dystrophin anchorage and denervation in human neuromuscular disease. During normal fetal development, and in Duchenne muscular dystrophy and denervation disorders, alpha1-syntrophin and alpha-dystrobrevin are absent or markedly reduced at the sarcolemmal membrane. beta1-Syntrophin is the predominant syntrophin isoform expressed at the muscle membrane during development, and it undergoes upregulation in response to loss of alpha1-syntrophin in Duchenne muscular dystrophy and in denervation. Upregulation of beta1-syntrophin in neuromuscular disorders is associated with re-expression of the fetal nicotinic acetylcholine receptor gamma-subunit, cardiac actin, and neonatal myosin, suggesting reversion of muscle fibers to an immature phenotype. We show that denervation specifically affects expression of the syntrophin-dystrobrevin subcomplex and does not affect levels or localization of other members of the dystrophin-associated protein complex. Our results confirm that dystrophin is required for anchorage of the syntrophin-dystrobrevin subcomplex and suggest that expression of the syntrophin-dystrobrevin complex may be independently regulated through neuromuscular transmission.
Collapse
Affiliation(s)
- Alison G Compton
- Institute for Neuromuscular Research, Children's Hospital at Westmead, NSW, Australia
| | | | | | | | | | | |
Collapse
|
44
|
Association of ?-Dystrobrevin with Reorganizing Tight Junctions. J Membr Biol 2005; 203:21-30. [DOI: 10.1007/s00232-004-0728-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Accepted: 12/06/2004] [Indexed: 10/25/2022]
|
45
|
Haenggi T, Schaub MC, Fritschy JM. Molecular heterogeneity of the dystrophin-associated protein complex in the mouse kidney nephron: differential alterations in the absence of utrophin and dystrophin. Cell Tissue Res 2004; 319:299-313. [PMID: 15565469 DOI: 10.1007/s00441-004-0999-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Accepted: 09/08/2004] [Indexed: 11/24/2022]
Abstract
The dystrophin-associated protein complex (DPC) consisting of syntrophin, dystrobrevin, and dystroglycan isoforms is associated either with dystrophin or its homolog utrophin. It is present not only in muscle cells, but also in numerous tissues, including kidney, liver, and brain. Using high-resolution immunofluorescence imaging and Western blotting, we have investigated the effects of utrophin and dystrophin gene deletion on the formation and membrane anchoring of the DPC in kidney epithelial cells, which co-express utrophin and low levels of the C-terminal dystrophin isoform Dp71. We show that multiple, molecularly distinct DPCs co-exist in the nephron; these DPCs have a segment-specific distribution and are only partially associated with utrophin in the basal membrane of tubular epithelial cells. In utrophin-deficient mice, a selective reduction of beta2-syntrophin has been observed in medullary tubular segments, whereas alpha1-syntrophin and beta1-syntrophin are retained, concomintant with an upregulation of beta-dystroglycan, beta-dystrobrevin, and Dp71. These findings suggest that beta2-syntrophin is dependent on utrophin for association with the DPC, and that loss of utrophin is partially compensated by Dp71, allowing the preservation of the DPC in kidney epithelial cells. This hypothesis is confirmed by the almost complete loss of all DPC proteins examined in mice lacking full-length utrophin and all C-terminal dystrophin isoforms (utrophin(0/0)/mdx(3Cv)). The DPC thus critically depends on these proteins for assembly and/or membrane localization in kidney epithelial cells.
Collapse
Affiliation(s)
- Tatjana Haenggi
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | |
Collapse
|
46
|
Nishiyama A, Endo T, Takeda S, Imamura M. Identification and characterization of epsilon-sarcoglycans in the central nervous system. ACTA ACUST UNITED AC 2004; 125:1-12. [PMID: 15193417 DOI: 10.1016/j.molbrainres.2004.01.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2004] [Indexed: 10/26/2022]
Abstract
Alpha-, beta-, gamma-, and delta-sarcoglycans (SGs) are transmembrane glycoprotein components of the dystrophin-associated protein (DAP) complex, which is critical for the stability of the striated muscle cell membrane. Epsilon-SG was found as a homologue of alpha-SG, but unlike other SG members, it is ubiquitously expressed in various tissues as well as in striated muscle. Moreover, mutations in the epsilon-SG gene cause myoclonus-dystonia, indicating the importance of epsilon-SG for the function in the central nervous system. To gain insight into the role of epsilon-SG, its expression and subcellular distribution in mouse tissues and especially in the mouse brain were investigated. Analysis by reverse transcription-polymerase chain reaction showed four splice variants of epsilon-SG transcripts in the mouse brain, two of which are major transcript forms. One is a conventional form including exon 8 (epsilon-SG1), and the other is a novel form excluding exon 8 but including a previously unknown exon, 11b (epsilon-SG2). Immunoblot analysis using various mouse tissues indicated a broad expression pattern for epsilon-SG1, but epsilon-SG2 was expressed exclusively in the brain. Therefore, both epsilon-SG isoforms coexist in various regions of the brain. Furthermore, these isoforms were found in neuronal cells using immunohistochemical analysis. Subcellular fractionation of brain homogenates, however, indicated that epsilon-SG1 and epsilon-SG2 are relatively enriched in post- and pre-synaptic membrane fractions, respectively. These results suggest that the two epsilon-SG isoforms might play different roles in synaptic functions of the central nervous system.
Collapse
Affiliation(s)
- Akiyo Nishiyama
- Department of Molecular Therapy, National Institute of Neuroscience, Ogawahigashi-cho, Kodaira, Tokyo, Japan
| | | | | | | |
Collapse
|
47
|
Lien CF, Vlachouli C, Blake DJ, Simons JP, Górecki DC. Differential spatio-temporal expression of alpha-dystrobrevin-1 during mouse development. Gene Expr Patterns 2004; 4:583-93. [PMID: 15261837 DOI: 10.1016/j.modgep.2004.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Revised: 01/23/2004] [Accepted: 01/23/2004] [Indexed: 10/26/2022]
Abstract
Dystrobrevins are a family of dystrophin-related and dystrophin-associated proteins. alpha-dystrobrevin-1 knockout mice suffer from skeletal and cardiac myopathies. It has been suggested that the pathology is caused by the loss of signalling functions but the exact role of dystrobrevins is largely unknown. We have analysed the spatial and temporal expression of alpha-dystrobrevin-1 during mouse embryogenesis and found striking developmental regulation and distribution patterns. During development this protein was expressed not only in muscle but also in the CNS, sensory organs, epithelia and skeleton. Particularly interesting was the correlation of alpha-dystrobrevin-1 expression with the induction of various differentiation processes in the developing eye, inner ear, pituitary, blood-brain barrier, stomach epithelium and areas of the brain, dorsal root ganglia and spinal cord. In contrast, this specific expression at the induction phase decreased/disappeared at later stages of development.
Collapse
Affiliation(s)
- Chun Fu Lien
- Molecular Medicine Group, Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, St Michael's Building, White Swan Road, Portsmouth PO1 2DT, UK
| | | | | | | | | |
Collapse
|
48
|
Royuela M, Chazalette D, Hugon G, Paniagua R, Guerlavais V, Fehrentz JA, Martinez J, Labbe JP, Rivier F, Mornet D. Formation of multiple complexes between beta-dystroglycan and dystrophin family products. J Muscle Res Cell Motil 2004; 24:387-97. [PMID: 14677641 DOI: 10.1023/a:1027309822007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Beta-dystroglycan is expressed in a wide variety of tissues and has generally been reported with an Mr of 43 kDa, sometimes accompanied with a 31 kDa protein assumed to be a truncated product. This molecule was recently identified as the anomalous beta-dystroglycan expressed in various carcinoma cell lines. We produced and characterized a G5 polyclonal antibody specific to beta-dystroglycan that is directed against the C-terminal portion of the molecule. We provide evidence that beta-dystroglycan may vary in size and properties by studying different Xenopus tissues. Besides normal beta-dystroglycan with an Mr of 43 kDa in smooth and cardiac muscle and sciatic nerve extracts, we found it in skeletal muscle and brain proteins with an Mr of 38 and 65 kDa, respectively. Glycosylation properties and proteolytic susceptibilities of these different beta-dystroglycans are analysed and compared in this work. Crosslinking experiments with various beta-dystroglycan preparations obtained from skeletal and cardiac muscles and brain gave rise to specific new covalent products with Mr of 125 kDa (doublet band), or 120 and 130 kDa, or 140 and 240 kDa, respectively. We provide evidence, using various similar beta-dystroglycan preparations, that the immunoprecipitation procedure with G5 specific polyclonal antibody allows consistent pelleting of various dystrophin-family isoforms. Skeletal muscles from Xenopus reveals the presence of two distinct beta-dystroglycan complexes, one with dystrophin and another one which involves alpha-dystrobrevin. Cardiac muscle and brain from Xenopus are shown to contain three beta-dystroglycan complexes related to various dystrophin-family isoforms. Dystrophin or alpha-dystrobrevin or Dp71 were found in cardiac muscle and dystrophin or Dp180 or Up71 in brain. This variability in the relationship between beta-dystroglycan and dystrophin-family isoforms suggests that each protein--currently known as dystrophin associated protein--could not be present in each of these complexes.
Collapse
Affiliation(s)
- M Royuela
- Department of Cell Biology and Genetics, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Macioce P, Gambara G, Bernassola M, Gaddini L, Torreri P, Macchia G, Ramoni C, Ceccarini M, Petrucci TC. β-Dystrobrevin interacts directly with kinesin heavy chain in brain. J Cell Sci 2003; 116:4847-56. [PMID: 14600269 DOI: 10.1242/jcs.00805] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
β-Dystrobrevin, a member of the dystrobrevin protein family, is a dystrophin-related and -associated protein restricted to non-muscle tissues and is highly expressed in kidney, liver and brain. Dystrobrevins are now thought to play an important role in intracellular signal transduction, in addition to providing a membrane scaffold in muscle, but the precise role of β-dystrobrevin has not yet been determined. To study β-dystrobrevin's function in brain, we used the yeast two-hybrid approach to look for interacting proteins. Four overlapping clones were identified that encoded Kif5A, a neuronal member of the Kif5 family of proteins that consists of the heavy chains of conventional kinesin. A direct interaction of β-dystrobrevin with Kif5A was confirmed by in vitro and in vivo association assays. Co-immunoprecipitation with a monoclonal kinesin heavy chain antibody precipitated both α- and β-dystrobrevin, indicating that this interaction is not restricted to the β-dystrobrevin isoform. The site for Kif5A binding to β-dystrobrevin was localized in a carboxyl-terminal region that seems to be important in heavy chain-mediated kinesin interactions and is highly homologous in all three Kif5 isoforms, Kif5A, Kif5B and Kif5C. Pull-down and immunofluorescence experiments also showed a direct interaction between β-dystrobrevin and Kif5B. Our findings suggest a novel function for dystrobrevin as a motor protein receptor that might play a major role in the transport of components of the dystrophin-associated protein complex to specific sites in the cell.
Collapse
Affiliation(s)
- P Macioce
- Laboratory of Cell Biology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Albrecht DE, Froehner SC. DAMAGE, a novel alpha-dystrobrevin-associated MAGE protein in dystrophin complexes. J Biol Chem 2003; 279:7014-23. [PMID: 14623885 DOI: 10.1074/jbc.m312205200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mice rendered null for alpha-dystrobrevin, a component of the dystrophin complex, have muscular dystrophy, despite the fact that the sarcolemma remains relatively intact (Grady, R. M., Grange, R. W., Lau, K. S., Maimone, M. M., Nichol, M. C., Stull, J. T., and Sanes, J. R. (1999) Nat. Cell Biol. 1, 215-220) Thus, alpha-dystrobrevin may serve a signaling function that is important for the maintenance of muscle integrity. We have identified a new dystrobrevin-associated protein, DAMAGE, that may play a signaling role in brain, muscle, and peripheral nerve. In humans, DAMAGE is encoded by an intronless gene located at chromosome Xq13.1, a locus that contains genes involved in mental retardation. DAMAGE associates directly with alpha-dystrobrevin, as shown by yeast two-hybrid, and co-immunoprecipitates with the dystrobrevin-syntrophin complex from brain. This co-immunoprecipitation is dependent on the presence of alpha-dystrobrevin but not beta-dystrobrevin. The DAMAGE protein contains a potential nuclear localization signal, 30 12-amino acid repeats, and two MAGE homology domains. The domain structure of DAMAGE is similar to that of NRAGE, a MAGE protein that mediates p75 neurotrophin receptor signaling and neuronal apoptosis (Salehi, A. H., Roux, P. P., Kubu, C. J., Zeindler, C., Bhakar, A., Tannis, L. L., Verdi, J. M., and Barker, P. A. (2000) Neuron 27, 279-288). DAMAGE is highly expressed in brain and is present in the cell bodies and dendrites of hippocampal and Purkinje neurons. In skeletal muscle, DAMAGE is at the postsynaptic membrane and is associated with a subset of myonuclei. DAMAGE is also expressed in peripheral nerve, where it localizes along with other members of the dystrophin complex to the perineurium and myelin. These results expand the role of dystrobrevin and the dystrophin complex in membrane signaling and disease.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Apoptosis
- Blotting, Northern
- Blotting, Western
- Brain/metabolism
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Carrier Proteins/physiology
- Cloning, Molecular
- Cytoskeletal Proteins/chemistry
- Cytoskeletal Proteins/genetics
- DNA/chemistry
- DNA, Complementary/metabolism
- Dystrophin/chemistry
- Dystrophin-Associated Proteins
- Humans
- Immunohistochemistry
- Introns
- Macaca
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Mice
- Microscopy, Confocal
- Molecular Sequence Data
- Muscle, Skeletal/metabolism
- Muscles/metabolism
- Myelin Sheath/chemistry
- Nerve Tissue Proteins/chemistry
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Neurons/metabolism
- Nuclear Localization Signals
- Peripheral Nervous System/metabolism
- Precipitin Tests
- Protein Binding
- Protein Structure, Tertiary
- Receptor, Nerve Growth Factor
- Receptors, Nerve Growth Factor/metabolism
- Sequence Homology, Amino Acid
- Signal Transduction
- Tissue Distribution
- Transfection
- Two-Hybrid System Techniques
- X Chromosome
Collapse
Affiliation(s)
- Douglas E Albrecht
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195-7290, USA
| | | |
Collapse
|