1
|
Latoscha A, Wörmann ME, Tschowri N. Nucleotide second messengers in Streptomyces. MICROBIOLOGY-SGM 2020; 165:1153-1165. [PMID: 31535967 DOI: 10.1099/mic.0.000846] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antibiotic producing Streptomyces sense and respond to environmental signals by using nucleotide second messengers, including (p)ppGpp, cAMP, c-di-GMP and c-di-AMP. As summarized in this review, these molecules are important message carriers that coordinate the complex Streptomyces morphological transition from filamentous growth to sporulation along with the secondary metabolite production. Here, we provide an overview of the enzymes that make and break these second messengers and suggest candidates for (p)ppGpp and cAMP enzymes to be studied. We highlight the target molecules that bind these signalling molecules and elaborate individual functions that they control in the context of Streptomyces development. Finally, we discuss open questions in the field, which may guide future studies in this exciting research area.
Collapse
Affiliation(s)
- Andreas Latoscha
- Department of Biology / Microbiology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Mirka E Wörmann
- Department of Biology / Microbiology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Natalia Tschowri
- Department of Biology / Microbiology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| |
Collapse
|
2
|
Xu Z, You D, Tang LY, Zhou Y, Ye BC. Metabolic Engineering Strategies Based on Secondary Messengers (p)ppGpp and C-di-GMP To Increase Erythromycin Yield in Saccharopolyspora erythraea. ACS Synth Biol 2019; 8:332-345. [PMID: 30632732 DOI: 10.1021/acssynbio.8b00372] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Secondary messengers (such as (p)ppGpp and c-di-GMP) were proved to play important roles in antibiotic biosynthesis in actinobacteria. In this study, we found that transcription levels of erythromycin-biosynthetic ( ery) genes were upregulated in nutrient limitation, which depended on (p)ppGpp in Saccharopolyspora erythraea. Further study demonstrated that the expression of ery genes and intracellular concentrations of (p)ppGpp showed synchronization during culture process. The erythromycin yield was significantly improved (about 200%) by increasing intracellular concentration of (p)ppGpp through introduction of C-terminally truncated (p)ppGpp synthetase RelA (1.43 kb of the N-terminal segment) from Streptomyces coelicolor into S. erythraea strain NRRL2338 (named as WT/pIB-P BAD- relA1-489). As the intracellular concentration of (p)ppGpp in an industrial erythromycin-high-producing strain E3 was greatly higher (about 10- to 100-fold) than WT strain, the applications of the above-described strategy did not work in E3 strain. Further research revealed that low concentration of 2-oxoglutarate in E3 strain exerted a "nitrogen-rich" pseudosignal, leading to the downregulation of nitrogen metabolism genes, which limited the use of nitrogen sources and thus the high intracellular (p)ppGpp concentration. Furthermore, the secondary messenger, c-di-GMP, was proved to be able to activate ery genes transcription by enhancing binding of BldD to promoters of ery genes. Overexpressing the diguanylate cyclase CdgB from S. coelicolor in S. erythraea increased the intracellular c-di-GMP concentration, and improved erythromycin production. These findings demonstrated that increasing the concentration of intracellular secondary messengers can activate ery genes transcription, and provided new strategies for designing metabolic engineering based on secondary messengers to improve antibiotics yield in actinobacteria.
Collapse
Affiliation(s)
- Zhen Xu
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Di You
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Li-Ya Tang
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ying Zhou
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Baral B, Akhgari A, Metsä-Ketelä M. Activation of microbial secondary metabolic pathways: Avenues and challenges. Synth Syst Biotechnol 2018; 3:163-178. [PMID: 30345402 PMCID: PMC6190515 DOI: 10.1016/j.synbio.2018.09.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/28/2018] [Accepted: 09/04/2018] [Indexed: 12/21/2022] Open
Abstract
Microbial natural products are a tremendous source of new bioactive chemical entities for drug discovery. Next generation sequencing has revealed an unprecedented genomic potential for production of secondary metabolites by diverse micro-organisms found in the environment and in the microbiota. Genome mining has further led to the discovery of numerous uncharacterized 'cryptic' metabolic pathways in the classical producers of natural products such as Actinobacteria and fungi. These biosynthetic gene clusters may code for improved biologically active metabolites, but harnessing the full genetic potential has been hindered by the observation that many of the pathways are 'silent' under laboratory conditions. Here we provide an overview of the various biotechnological methodologies, which can be divided to pleiotropic, biosynthetic gene cluster specific, and targeted genome-wide approaches that have been developed for the awakening of microbial secondary metabolic pathways.
Collapse
Affiliation(s)
| | | | - Mikko Metsä-Ketelä
- Department of Biochemistry, University of Turku, FIN-20014, Turku, Finland
| |
Collapse
|
4
|
Gullón S, Marín S, Mellado RP. Overproduction of a Model Sec- and Tat-Dependent Secretory Protein Elicits Different Cellular Responses in Streptomyces lividans. PLoS One 2015. [PMID: 26200356 PMCID: PMC4511581 DOI: 10.1371/journal.pone.0133645] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Streptomyces lividans is considered an efficient host for the secretory production of homologous and heterologous proteins. To identify possible bottlenecks in the protein production process, a comparative transcriptomic approach was adopted to study cellular responses during the overproduction of a Sec-dependent model protein (alpha-amylase) and a Tat-dependent model protein (agarase) in Streptomyces lividans. The overproduction of the model secretory proteins via the Sec or the Tat route in S. lividans does elicit a different major cell response in the bacterium. The stringent response is a bacterial response to nutrients’ depletion, which naturally occurs at late times of the bacterial cell growth. While the induction of the stringent response at the exponential phase of growth may limit overall productivity in the case of the Tat route, the induction of that response does not take place in the case of the Sec route, which comparatively is an advantage in secretory protein production processes. Hence, this study identifies a potential major drawback in the secretory protein production process depending on the secretory route, and provides clues to improving S. lividans as a protein production host.
Collapse
Affiliation(s)
- Sonia Gullón
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin 3, 28049, Madrid, Spain
| | - Silvia Marín
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin 3, 28049, Madrid, Spain
| | - Rafael P. Mellado
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB-CSIC), c/Darwin 3, 28049, Madrid, Spain
- * E-mail:
| |
Collapse
|
5
|
Rifampicin-resistance, rpoB polymorphism and RNA polymerase genetic engineering. J Biotechnol 2015; 202:60-77. [DOI: 10.1016/j.jbiotec.2014.11.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/22/2014] [Accepted: 11/26/2014] [Indexed: 01/22/2023]
|
6
|
He P, Deng C, Liu B, Zeng L, Zhao W, Zhang Y, Jiang X, Guo X, Qin J. Characterization of a bifunctional enzyme with (p)ppGpp-hydrolase/synthase activity in Leptospira interrogans. FEMS Microbiol Lett 2013; 348:133-42. [PMID: 24111633 DOI: 10.1111/1574-6968.12279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/05/2013] [Accepted: 09/17/2013] [Indexed: 12/01/2022] Open
Abstract
Alarmone Guanosine 5'-diphosphate (or 5'-triphosphate) 3'-diphosphate [(p)ppGpp] is the key component that globally regulates stringent control in bacteria. There are two homologous enzymes, RelA and SpoT in Escherichia coli, which are responsible for fluctuations in (p)ppGpp concentration inside the cell, whereas there exists only a single RelA/SpoT enzyme in Gram-positive bacteria. We have identified a bifunctional enzyme with (p)ppGpp-hydrolase/synthase activity in Leptospira interrogans. We show that the relLin gene (LA_3085) encodes a protein that fully complements the relA/spoT double mutants in E. coli. The protein functions as a (p)ppGpp degradase as well as a (p)ppGpp synthase when the cells encounter amino acid stress and deprivation of carbon sources. N-terminus HD and RSD domains of relLin (relLinN ) were observed to restore growth of double mutants of E. coli. Finally, We demonstrate that purified RelLin and RelLinN show high (p)ppGpp synthesis activity in vitro. Taken together, our results suggest that L. interrogans contain a single Rel-like bifunctional protein, RelLin , which plays an important role in maintaining the basal level of (p)ppGpp in the cell potentially contributing to the regulation of bacterial stress response.
Collapse
Affiliation(s)
- Ping He
- Department of Microbiology and Parasitology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Transcriptional characterisation of the negative effect exerted by a deficiency in type II signal peptidase on extracellular protein secretion in Streptomyces lividans. Appl Microbiol Biotechnol 2013; 97:10069-80. [DOI: 10.1007/s00253-013-5219-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 10/26/2022]
|
8
|
High-throughput screening for Streptomyces antibiotic biosynthesis activators. Appl Environ Microbiol 2012; 78:4526-8. [PMID: 22504805 DOI: 10.1128/aem.00348-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A genomic cosmid library of Streptomyces clavuligerus was constructed and transferred efficiently by conjugation to Streptomyces lividans, and 12 distinct groups of overlapping cosmid clones that activated the silent actinorhodin biosynthesis gene cluster were identified. This generally applicable high-throughput screening procedure greatly facilitates the identification of antibiotic biosynthesis activators.
Collapse
|
9
|
Comparative genomics and transcriptional profiles of Saccharopolyspora erythraea NRRL 2338 and a classically improved erythromycin over-producing strain. Microb Cell Fact 2012; 11:32. [PMID: 22401291 PMCID: PMC3359211 DOI: 10.1186/1475-2859-11-32] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 03/08/2012] [Indexed: 11/10/2022] Open
Abstract
Background The molecular mechanisms altered by the traditional mutation and screening approach during the improvement of antibiotic-producing microorganisms are still poorly understood although this information is essential to design rational strategies for industrial strain improvement. In this study, we applied comparative genomics to identify all genetic changes occurring during the development of an erythromycin overproducer obtained using the traditional mutate-and- screen method. Results Compared with the parental Saccharopolyspora erythraea NRRL 2338, the genome of the overproducing strain presents 117 deletion, 78 insertion and 12 transposition sites, with 71 insertion/deletion sites mapping within coding sequences (CDSs) and generating frame-shift mutations. Single nucleotide variations are present in 144 CDSs. Overall, the genomic variations affect 227 proteins of the overproducing strain and a considerable number of mutations alter genes of key enzymes in the central carbon and nitrogen metabolism and in the biosynthesis of secondary metabolites, resulting in the redirection of common precursors toward erythromycin biosynthesis. Interestingly, several mutations inactivate genes coding for proteins that play fundamental roles in basic transcription and translation machineries including the transcription anti-termination factor NusB and the transcription elongation factor Efp. These mutations, along with those affecting genes coding for pleiotropic or pathway-specific regulators, affect global expression profile as demonstrated by a comparative analysis of the parental and overproducer expression profiles. Genomic data, finally, suggest that the mutate-and-screen process might have been accelerated by mutations in DNA repair genes. Conclusions This study helps to clarify the mechanisms underlying antibiotic overproduction providing valuable information about new possible molecular targets for rationale strain improvement.
Collapse
|
10
|
Rozas D, Gullón S, Mellado RP. A novel two-component system involved in the transition to secondary metabolism in Streptomyces coelicolor. PLoS One 2012; 7:e31760. [PMID: 22347508 PMCID: PMC3276577 DOI: 10.1371/journal.pone.0031760] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/18/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Bacterial two-component signal transduction regulatory systems are the major set of signalling proteins frequently mediating responses to changes in the environment. They typically consist of a sensor, a membrane-associated histidine kinase and a cytoplasmic response regulator. The membrane-associated sensor detects the environmental signal or stress, whereas the cytoplasmic regulatory protein controls the cellular response usually by gene transcription modulation. METHODOLOGY/PRINCIPALFINDINGS: The Streptomyces coelicolor two genes operon SCO5784-SCO5785 encodes a two-component system, where SCO5784 encodes a histidine-kinase sensor and SCO5785 encodes a response regulator protein. When the expression level of the regulator gene decreases, the antibiotic synthesis and sporulation is delayed temporarily in addition to some ribosomal genes became up regulated, whereas the propagation of the regulatory gene in high copy number results in the earlier synthesis of antibiotics and sporulation, as well as the down regulation of some ribosomal genes and, moreover, in the overproduction of several extracellular proteins. Therefore, this two-component system in S. coelicolor seems to influence various processes characterised by the transition from primary to secondary metabolism, as determined by proteomic and transcriptomic analyses. CONCLUSIONS/SIGNIFICANCE Propagation of SCO5785 in multicopy enhances the production of antibiotics as well as secretory proteins. In particular, the increase in the expression level of secretory protein encoding genes, either as an artefactual or real effect of the regulator, could be of potential usefulness when using Streptomyces strains as hosts for homologous or heterologous extracellular protein production.
Collapse
Affiliation(s)
- Daniel Rozas
- Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Sonia Gullón
- Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | | |
Collapse
|
11
|
Atkinson GC, Tenson T, Hauryliuk V. The RelA/SpoT homolog (RSH) superfamily: distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of life. PLoS One 2011; 6:e23479. [PMID: 21858139 PMCID: PMC3153485 DOI: 10.1371/journal.pone.0023479] [Citation(s) in RCA: 333] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/18/2011] [Indexed: 12/01/2022] Open
Abstract
RelA/SpoT Homologue (RSH) proteins, named for their sequence similarity to the RelA and SpoT enzymes of Escherichia coli, comprise a superfamily of enzymes that synthesize and/or hydrolyze the alarmone ppGpp, activator of the “stringent” response and regulator of cellular metabolism. The classical “long” RSHs Rel, RelA and SpoT with the ppGpp hydrolase, synthetase, TGS and ACT domain architecture have been found across diverse bacteria and plant chloroplasts, while dedicated single domain ppGpp-synthesizing and -hydrolyzing RSHs have also been discovered in disparate bacteria and animals respectively. However, there is considerable confusion in terms of nomenclature and no comprehensive phylogenetic and sequence analyses have previously been carried out to classify RSHs on a genomic scale. We have performed high-throughput sensitive sequence searching of over 1000 genomes from across the tree of life, in combination with phylogenetic analyses to consolidate previous ad hoc identification of diverse RSHs in different organisms and provide a much-needed unifying terminology for the field. We classify RSHs into 30 subgroups comprising three groups: long RSHs, small alarmone synthetases (SASs), and small alarmone hydrolases (SAHs). Members of nineteen previously unidentified RSH subgroups can now be studied experimentally, including previously unknown RSHs in archaea, expanding the “stringent response” to this domain of life. We have analyzed possible combinations of RSH proteins and their domains in bacterial genomes and compared RSH content with available RSH knock-out data for various organisms to determine the rules of combining RSHs. Through comparative sequence analysis of long and small RSHs, we find exposed sites limited in conservation to the long RSHs that we propose are involved in transmitting regulatory signals. Such signals may be transmitted via NTD to CTD intra-molecular interactions, or inter-molecular interactions either among individual RSH molecules or among long RSHs and other binding partners such as the ribosome.
Collapse
|
12
|
(p)ppGpp inhibits polynucleotide phosphorylase from streptomyces but not from Escherichia coli and increases the stability of bulk mRNA in Streptomyces coelicolor. J Bacteriol 2010; 192:4275-80. [PMID: 20581211 DOI: 10.1128/jb.00367-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ppGpp regulates gene expression in a variety of bacteria and in plants. We proposed previously that ppGpp or its precursor, pppGpp [referred to collectively as (p)ppGpp], or both might regulate the activity of the enzyme polynucleotide phosphorylase in Streptomyces species. We have examined the effects of (p)ppGpp on the polymerization and phosphorolysis activities of PNPase from Streptomyces coelicolor, Streptomyces antibioticus, and Escherichia coli. We have shown that (p)ppGpp inhibits the activities of both Streptomyces PNPases but not the E. coli enzyme. The inhibition kinetics for polymerization using the Streptomyces enzymes are of the mixed noncompetitive type, suggesting that (p)ppGpp binds to a region other than the active site of the enzyme. ppGpp also inhibited the phosphorolysis of a model RNA substrate derived from the rpsO-pnp operon of S. coelicolor. We have shown further that the chemical stability of mRNA increases during the stationary phase in S. coelicolor and that induction of a plasmid-borne copy of relA in a relA-null mutant increases the chemical stability of bulk mRNA as well. We speculate that the observed inhibition in vitro may reflect a role of ppGpp in the regulation of antibiotic production in vivo.
Collapse
|
13
|
Siculella L, Damiano F, di Summa R, Tredici SM, Alduina R, Gnoni GV, Alifano P. Guanosine 5'-diphosphate 3'-diphosphate (ppGpp) as a negative modulator of polynucleotide phosphorylase activity in a 'rare' actinomycete. Mol Microbiol 2010; 77:716-29. [PMID: 20545843 DOI: 10.1111/j.1365-2958.2010.07240.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
With the beginning of the idiophase the highly phosphorylated guanylic nucleotides guanosine 5'-diphosphate 3'-diphosphate (ppGpp) and guanosine 5'-triphosphate 3'-diphosphate (pppGpp), collectively referred to as (p)ppGpp, activate stress survival adaptation programmes and trigger secondary metabolism in actinomycetes. The major target of (p)ppGpp is the RNA polymerase, where it binds altering the enzyme activity. In this study analysis of the polynucleotide phosphorylase (PNPase)-encoding gene pnp mRNA, in Nonomuraea sp. ATCC 39727 wild-type, constitutively stringent and relaxed strains, led us to hypothesize that in actinomycetes (p)ppGpp may modulate gene expression at the level of RNA decay also. This hypothesis was supported by: (i) in vitro evidence that ppGpp, at physiological levels, inhibited both polynucleotide polymerase and phosphorolytic activities of PNPase in Nonomuraea sp., but not in Escherichia coli, (ii) in vivo data showing that the pnp mRNA and the A40926 antibiotic cluster-specific dpgA mRNA were stabilized during the idiophase in the wild-type strain but not in a relaxed mutant and (iii) measurement of chemical decay of pulse-labelled bulk mRNA. The results of biochemical tests suggest competitive inhibition of ppGpp with respect to nucleoside diphosphates in polynucleotide polymerase assays and mixed inhibition with respect to inorganic phosphate when the RNA phosphorolytic activity was determined.
Collapse
Affiliation(s)
- Luisa Siculella
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Monteroni, 73100 Lecce, Italy
| | | | | | | | | | | | | |
Collapse
|
14
|
Activated Antibiotic Production by Inducing Resistance to Capreomycin in Streptomyces lividans and Streptomyces coelicolor. Chin J Nat Med 2009. [DOI: 10.3724/sp.j.1009.2008.00057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Carata E, Peano C, Tredici SM, Ferrari F, Talà A, Corti G, Bicciato S, De Bellis G, Alifano P. Phenotypes and gene expression profiles of Saccharopolyspora erythraea rifampicin-resistant (rif) mutants affected in erythromycin production. Microb Cell Fact 2009; 8:18. [PMID: 19331655 PMCID: PMC2667423 DOI: 10.1186/1475-2859-8-18] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Accepted: 03/30/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is evidence from previous works that bacterial secondary metabolism may be stimulated by genetic manipulation of RNA polymerase (RNAP). In this study we have used rifampicin selection as a strategy to genetically improve the erythromycin producer Saccharopolyspora erythraea. RESULTS Spontaneous rifampicin-resistant (rif) mutants were isolated from the parental strain NRRL2338 and two rif mutations mapping within rpoB, S444F and Q426R, were characterized. With respect to the parental strain, S444F mutants exhibited higher respiratory performance and up to four-fold higher final erythromycin yields; in contrast, Q426R mutants were slow-growing, developmental-defective and severely impaired in erythromycin production. DNA microarray analysis demonstrated that these rif mutations deeply changed the transcriptional profile of S. erythraea. The expression of genes coding for key enzymes of carbon (and energy) and nitrogen central metabolism was dramatically altered in turn affecting the flux of metabolites through erythromycin feeder pathways. In particular, the valine catabolic pathway that supplies propionyl-CoA for biosynthesis of the erythromycin precursor 6-deoxyerythronolide B was strongly up-regulated in the S444F mutants, while the expression of the biosynthetic gene cluster of erythromycin (ery) was not significantly affected. In contrast, the ery cluster was down-regulated (<2-fold) in the Q426R mutants. These strains also exhibited an impressive stimulation of the nitrogen regulon, which may contribute to lower erythromycin yields as erythromycin production was strongly inhibited by ammonium. CONCLUSION Rifampicin selection is a simple and reliable tool to investigate novel links between primary and secondary metabolism and morphological differentiation in S. erythraea and to improve erythromycin production. At the same time genome-wide analysis of expression profiles using DNA microarrays allowed information to be gained about the mechanisms underlying the stimulatory/inhibitory effects of the rif mutations on erythromycin production.
Collapse
Affiliation(s)
- Elisabetta Carata
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Activation of dormant bacterial genes by Nonomuraea sp. strain ATCC 39727 mutant-type RNA polymerase. J Bacteriol 2008; 191:805-14. [PMID: 19047343 DOI: 10.1128/jb.01311-08] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is accumulating evidence that the ability of actinomycetes to produce antibiotics and other bioactive secondary metabolites has been underestimated due to the presence of cryptic gene clusters. The activation of dormant genes is therefore one of the most important areas of experimental research for the discovery of drugs in these organisms. The recent observation that several actinomycetes possess two RNA polymerase beta-chain genes (rpoB) has opened up the possibility, explored in this study, of developing a new strategy to activate dormant gene expression in bacteria. Two rpoB paralogs, rpoB(S) and rpoB(R), provide Nonomuraea sp. strain ATCC 39727 with two functionally distinct and developmentally regulated RNA polymerases. The product of rpoB(R), the expression of which increases after transition to stationary phase, is characterized by five amino acid substitutions located within or close to the so-called rifampin resistance clusters that play a key role in fundamental activities of RNA polymerase. Here, we report that rpoB(R) markedly activated antibiotic biosynthesis in the wild-type Streptomyces lividans strain 1326 and also in strain KO-421, a relaxed (rel) mutant unable to produce ppGpp. Site-directed mutagenesis demonstrated that the rpoB(R)-specific missense H426N mutation was essential for the activation of secondary metabolism. Our observations also indicated that mutant-type or duplicated, rpoB often exists in nature among rare actinomycetes and will thus provide a basis for further basic and applied research.
Collapse
|
17
|
Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep 2008; 9:670-5. [PMID: 18511939 DOI: 10.1038/embor.2008.83] [Citation(s) in RCA: 303] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 03/25/2008] [Accepted: 04/14/2008] [Indexed: 11/09/2022] Open
Abstract
Members of the soil-dwelling prokaryotic genus Streptomyces produce many secondary metabolites, including antibiotics and anti-tumour agents. Their formation is coupled with the onset of development, which is triggered by the nutrient status of the habitat. We propose the first complete signalling cascade from nutrient sensing to development and antibiotic biosynthesis. We show that a high concentration of N-acetylglucosamine-perhaps mimicking the accumulation of N-acetylglucosamine after autolytic degradation of the vegetative mycelium-is a major checkpoint for the onset of secondary metabolism. The response is transmitted to antibiotic pathway-specific activators through the pleiotropic transcriptional repressor DasR, the regulon of which also includes all N-acetylglucosamine-related catabolic genes. The results allowed us to devise a new strategy for activating pathways for secondary metabolite biosynthesis. Such 'cryptic' pathways are abundant in actinomycete genomes, thereby offering new prospects in the fight against multiple drug-resistant pathogens and cancers.
Collapse
|
18
|
Gomez-Escribano JP, Martín JF, Hesketh A, Bibb MJ, Liras P. Streptomyces clavuligerus relA-null mutants overproduce clavulanic acid and cephamycin C: negative regulation of secondary metabolism by (p)ppGpp. MICROBIOLOGY-SGM 2008; 154:744-755. [PMID: 18310021 DOI: 10.1099/mic.0.2007/011890-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The (p)ppGpp synthetase gene, relA, of Streptomyces clavuligerus was cloned, sequenced and shown to be located in a genomic region that is highly conserved in other Streptomyces species. relA-disrupted and relA-deleted mutants of S. clavuligerus were constructed, and both were unable to form aerial mycelium or to sporulate, but regained these abilities when complemented with wild-type relA. Neither ppGpp nor pppGpp was detected in the S. clavuligerus relA-deletion mutant. In contrast to another study, clavulanic acid and cephamycin C production increased markedly in the mutants compared to the wild-type strain; clavulanic acid production increased three- to fourfold, while that of cephamycin C increased about 2.5-fold. Complementation of the relA-null mutants with wild-type relA decreased antibiotic yields to approximately wild-type levels. Consistent with these observations, transcription of genes involved in clavulanic acid (ceaS2) or cephamycin C (cefD) production increased dramatically in the relA-deleted mutant when compared to the wild-type strain. These results are entirely consistent with the growth-associated production of both cephamycin C and clavulanic acid, and demonstrate, apparently for the first time, negative regulation of secondary metabolite biosynthesis by (p)ppGpp in a Streptomyces species of industrial interest.
Collapse
Affiliation(s)
- Juan P Gomez-Escribano
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Juan F Martín
- Instituto de Biotecnología (INBIOTEC), Parque Científico de León, Av. Real 1, 24006 León, Spain.,Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - A Hesketh
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - M J Bibb
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - P Liras
- Instituto de Biotecnología (INBIOTEC), Parque Científico de León, Av. Real 1, 24006 León, Spain.,Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|
19
|
Activated Antibiotic Production by Inducing Resistance to Capreomycin in Streptomyces lividans and Streptomyces coelicolor. Chin J Nat Med 2008. [DOI: 10.1016/s1875-5364(09)60006-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Genay M, Decaris B, Dary A. Implication of stringent response in the increase of mutability of the whiG and whiH genes during Streptomyces coelicolor development. Mutat Res 2007; 624:49-60. [PMID: 17532011 DOI: 10.1016/j.mrfmmm.2007.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 03/05/2007] [Accepted: 03/28/2007] [Indexed: 11/30/2022]
Abstract
In Streptomyces ambofaciens, genetic instability occurring during aerial mycelium development gives rise to white mutant papillae on colonies. Pig-pap mutants deriving from such papillae are unable to sporulate and devoid of the large genome rearrangement usually observed in the other Streptomyces mutants that genetic instability generated. Pig-pap mutants frequently harboured discrete mutations affecting the whiG gene. Furthermore, it has been established that the production of papillae dramatically increased when S. ambofaciens was grown under an amino acid limitation. In this work, we tested the implication of the stringent response, induced during an amino acid limitation, in the production of white papillae in Streptomyces coelicolor, a species which is phylogenetically close to S. ambofaciens. First, we showed that S. coelicolor produced mutant papillae and that this production was increased under an amino acid limitation. Secondly, we showed that the Pig-pap mutants generated both with and without amino acid limitation frequently exhibited mutations in whiH or whiG genes. Finally, we observed that a relA mutant of S. coelicolor, which was unable to elicit the stringent response under an amino acid limitation, was also unable to produce papillae. The restoration of the ability to elicit the stringent response also restored the papillae production. These papillae gave rise to Pig-pap mutants displaying the same characteristics as Pig-pap mutants spontaneously appearing on wild-type colonies. Altogether, these results show that whatever the underlying mechanism, the stringent response is involved in the production of white papillae in S. coelicolor.
Collapse
Affiliation(s)
- M Genay
- Laboratoire de Génétique et Microbiologie (UMR INRA/UHP 1128), IFR 110, Faculté des Sciences et Techniques Nancy-Université, BP239, 54506 Vandoeuvre-lès-Nancy, France
| | | | | |
Collapse
|
21
|
Williamson NR, Fineran PC, Leeper FJ, Salmond GPC. The biosynthesis and regulation of bacterial prodiginines. Nat Rev Microbiol 2006; 4:887-99. [PMID: 17109029 DOI: 10.1038/nrmicro1531] [Citation(s) in RCA: 373] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The red-pigmented prodiginines are bioactive secondary metabolites produced by both Gram-negative and Gram-positive bacteria. Recently, these tripyrrole molecules have received renewed attention owing to reported immunosuppressive and anticancer properties. The enzymes involved in the biosynthetic pathways for the production of two of these molecules, prodigiosin and undecylprodigiosin, are now known. However, the biochemistry of some of the reactions is still poorly understood. The physiology and regulation of prodiginine production in Serratia and Streptomyces are now well understood, although the biological role of these pigments in the producer organisms remains unclear. However, research into the biology of pigment production will stimulate interest in the bioengineering of strains to synthesize useful prodiginine derivatives.
Collapse
Affiliation(s)
- Neil R Williamson
- Department of Biochemistry, Tennis Court Road, University of Cambridge, UK
| | | | | | | |
Collapse
|
22
|
Kasai K, Nishizawa T, Takahashi K, Hosaka T, Aoki H, Ochi K. Physiological analysis of the stringent response elicited in an extreme thermophilic bacterium, Thermus thermophilus. J Bacteriol 2006; 188:7111-22. [PMID: 17015650 PMCID: PMC1636220 DOI: 10.1128/jb.00574-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Guanosine tetraphosphate (ppGpp) is a key mediator of stringent control, an adaptive response of bacteria to amino acid starvation, and has thus been termed a bacterial alarmone. Previous X-ray crystallographic analysis has provided a structural basis for the transcriptional regulation of RNA polymerase activity by ppGpp in the thermophilic bacterium Thermus thermophilus. Here we investigated the physiological basis of the stringent response by comparing the changes in intracellular ppGpp levels and the rate of RNA synthesis in stringent (rel(+); wild type) and relaxed (relA and relC; mutant) strains of T. thermophilus. We found that in wild-type T. thermophilus, as in other bacteria, serine hydroxamate, an amino acid analogue that inhibits tRNA(Ser) aminoacylation, elicited a stringent response characterized in part by intracellular accumulation of ppGpp and that this response was completely blocked in a relA-null mutant and partially blocked in a relC mutant harboring a mutation in the ribosomal protein L11. Subsequent in vitro assays using ribosomes isolated from wild-type and relA and relC mutant strains confirmed that (p)ppGpp is synthesized by ribosomes and that mutation of RelA or L11 blocks that activity. This conclusion was further confirmed in vitro by demonstrating that thiostrepton or tetracycline inhibits (p)ppGpp synthesis. In an in vitro system, (p)ppGpp acted by inhibiting RNA polymerase-catalyzed 23S/5S rRNA gene transcription but at a concentration much higher than that of the observed intracellular ppGpp pool size. On the other hand, changes in the rRNA gene promoter activity tightly correlated with changes in the GTP but not ATP concentration. Also, (p)ppGpp exerted a potent inhibitory effect on IMP dehydrogenase activity. The present data thus complement the earlier structural analysis by providing physiological evidence that T. thermophilus does produce ppGpp in response to amino acid starvation in a ribosome-dependent (i.e., RelA-dependent) manner. However, it appears that in T. thermophilus, rRNA promoter activity is controlled directly by the GTP pool size, which is modulated by ppGpp via inhibition of IMP dehydrogenase activity. Thus, unlike the case of Escherichia coli, ppGpp may not inhibit T. thermophilus RNA polymerase activity directly in vivo, as recently proposed for Bacillus subtilis rRNA transcription (L. Krasny and R. L. Gourse, EMBO J. 23:4473-4483, 2004).
Collapse
MESH Headings
- Adaptation, Physiological
- Adenosine Triphosphate/metabolism
- Amino Acid Sequence
- Anti-Bacterial Agents/pharmacology
- Bacterial Proteins/genetics
- DNA-Directed RNA Polymerases/antagonists & inhibitors
- DNA-Directed RNA Polymerases/metabolism
- Gene Expression Regulation, Bacterial
- Guanosine Tetraphosphate/metabolism
- Guanosine Triphosphate/physiology
- IMP Dehydrogenase/antagonists & inhibitors
- IMP Dehydrogenase/metabolism
- Ligases/genetics
- Ligases/metabolism
- Molecular Sequence Data
- Mutation
- Promoter Regions, Genetic
- RNA, Bacterial/biosynthesis
- RNA, Bacterial/genetics
- RNA, Ribosomal, 23S/biosynthesis
- RNA, Ribosomal, 5S/biosynthesis
- Ribosomal Proteins/genetics
- Ribosomes/physiology
- Sequence Alignment
- Serine/analogs & derivatives
- Serine/pharmacology
- Tetracycline/pharmacology
- Thermus thermophilus/genetics
- Thermus thermophilus/growth & development
- Thermus thermophilus/metabolism
- Thermus thermophilus/physiology
- Thiostrepton/pharmacology
- Transcription, Genetic
- Uracil/metabolism
Collapse
Affiliation(s)
- Koji Kasai
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Uguru GC, Stephens KE, Stead JA, Towle JE, Baumberg S, McDowall KJ. Transcriptional activation of the pathway-specific regulator of the actinorhodin biosynthetic genes in Streptomyces coelicolor. Mol Microbiol 2006; 58:131-50. [PMID: 16164554 DOI: 10.1111/j.1365-2958.2005.04817.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Streptomyces produce a plethora of secondary metabolites including antibiotics and undergo a complex developmental cycle. As a means of establishing the pathways that regulate secondary metabolite production by this important bacterial genus, the model species Streptomyces coelicolor and its relatives have been the subject of several genetic screens. However, despite the identification and characterization of numerous genes that affect antibiotic production, there is still no overall understanding of the network that integrates the various environmental and growth signals to bring about changes in the expression of biosynthetic genes. To establish new links, we are taking a biochemical approach to identify transcription factors that regulate antibiotic production in S. coelicolor. Here we describe the identification and characterization of a transcription factor, designated AtrA, that regulates transcription of actII-ORF4, the pathway-specific activator of the actinorhodin biosynthetic gene cluster in S. coelicolor. Disruption of the corresponding atrA gene, which is not associated with any antibiotic gene cluster, reduced the production of actinorhodin, but had no detectable effect on the production of undecylprodigiosin or the calcium-dependent antibiotic. These results indicate that atrA has specificity with regard to the biosynthetic genes it influences. An orthologue of atrA is present in the genome of Streptomyces avermitilis, the only other streptomycete for which there is a publicly available complete sequence. We also show that S. coelicolor AtrA can bind in vitro to the promoter of strR, a transcriptional activator unrelated to actII-ORF4 that is the final regulator of streptomycin production in Streptomyces griseus. These findings provide further evidence that the path leading to the expression of pathway-specific activators of antibiotic biosynthesis genes in disparate Streptomyces may share evolutionarily conserved components in at least some cases, even though the final activators are not related, and suggests that the regulation of streptomycin production, which serves an important paradigm, may be more complex than represented by current models.
Collapse
Affiliation(s)
- Gabriel C Uguru
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | |
Collapse
|
24
|
Proteomics-driven identification of putative AfsR2-target proteins stimulating antibiotic biosynthesis inStreptomyces lividans. BIOTECHNOL BIOPROC E 2005. [DOI: 10.1007/bf02932021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Wout P, Pu K, Sullivan SM, Reese V, Zhou S, Lin B, Maddock JR. The Escherichia coli GTPase CgtAE cofractionates with the 50S ribosomal subunit and interacts with SpoT, a ppGpp synthetase/hydrolase. J Bacteriol 2004; 186:5249-57. [PMID: 15292126 PMCID: PMC490892 DOI: 10.1128/jb.186.16.5249-5257.2004] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CgtA(E)/Obg(E)/YhbZ is an Escherichia coli guanine nucleotide binding protein of the Obg/GTP1 subfamily whose members have been implicated in a number of cellular functions including GTP-GDP sensing, sporulation initiation, and translation. Here we describe a kinetic analysis of CgtA(E) with guanine nucleotides and show that its properties are similar to those of the Caulobacter crescentus homolog CgtA(C). CgtA(E) binds both GTP and GDP with moderate affinity, shows high guanine nucleotide exchange rate constants for both nucleotides, and has a relatively low GTP hydrolysis rate. We show that CgtA(E) is associated predominantly with the 50S ribosomal subunit. Interestingly, CgtA(E) copurifies with SpoT, a ribosome-associated ppGpp hydrolase/synthetase involved in the stress response. The interaction between CgtA(E) and SpoT was confirmed by reciprocal coprecipitation experiments and by two-hybrid assays. These studies raise the possibility that the ribosome-associated CgtA(E) is involved in the SpoT-mediated stress response.
Collapse
Affiliation(s)
- P Wout
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, 48109, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Okamoto-Hosoya Y, Hosaka T, Ochi K. An aberrant protein synthesis activity is linked with antibiotic overproduction in rpsL mutants of Streptomyces coelicolor A3(2). MICROBIOLOGY-SGM 2004; 149:3299-3309. [PMID: 14600242 DOI: 10.1099/mic.0.26490-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Certain mutations in the rpsL gene (encoding the ribosomal protein S12) activate or enhance antibiotic production in various bacteria. K88E and P91S rpsL mutants of Streptomyces coelicolor A3(2), with an enhanced actinorhodin production, were found to exhibit an aberrant protein synthesis activity. While a high level of this activity (as determined by the incorporation of labelled leucine) was detected at the late stationary phase in the mutants, it decreased with age of the cells in the wild-type strain. In addition, the aberrant protein synthesis was particularly pronounced when cells were subjected to amino acid shift-down, and was independent of their ability to accumulate ppGpp. Ribosomes of K88E and P91S mutants displayed an increased accuracy in protein synthesis as demonstrated by the poly(U)-directed cell-free translation system, but so did K43N, K43T, K43R and K88R mutants, which were streptomycin resistant but showed no effect on actinorhodin production. This eliminates the possibility that the increased accuracy level is a cause of the antibiotic overproduction in the K88E and P91S mutants. The K88E and P91S mutant ribosomes exhibited an increased stability of the 70S complex under low concentrations of magnesium. The authors propose that the aberrant activation of protein synthesis caused by the increased stability of the ribosome is responsible for the remarkable enhancement of antibiotic production in the K88E and P91S mutants.
Collapse
Affiliation(s)
| | - Takeshi Hosaka
- National Food Research Institute, Tsukuba, Ibaraki 305-8642, Japan
| | - Kozo Ochi
- National Food Research Institute, Tsukuba, Ibaraki 305-8642, Japan
| |
Collapse
|
27
|
Ochi K, Okamoto S, Tozawa Y, Inaoka T, Hosaka T, Xu J, Kurosawa K. Ribosome Engineering and Secondary Metabolite Production. ADVANCES IN APPLIED MICROBIOLOGY 2004; 56:155-84. [PMID: 15566979 DOI: 10.1016/s0065-2164(04)56005-7] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Kozo Ochi
- National Food Research Institute Ibaraki 305-8642, Japan.
| | | | | | | | | | | | | |
Collapse
|
28
|
Transcriptional and Translational Control in Streptomyces Secondary Metabolism. ACTA ACUST UNITED AC 2004. [DOI: 10.3209/saj.18_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Martínez-Costa OH, Zalacaín M, Holmes DJ, Malpartida F. The promoter of a cold-shock-like gene has pleiotropic effects on Streptomyces antibiotic biosynthesis. FEMS Microbiol Lett 2003; 220:215-21. [PMID: 12670683 DOI: 10.1016/s0378-1097(03)00101-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have isolated a Streptomyces hygroscopicus chromosomal DNA fragment able to induce production of the blue-pigmented antibiotic actinorhodin in Streptomyces lividans. The 1.9-kb fragment contains four orfs (orf1-4) of which only orf2 and orf3 were complete. The minimal region involved in activation of actinorhodin production is limited to 165 bp corresponding to the promoter region of orf3. The truncated Orf1 show homologies with threonine synthases, Orf2 is similar to other proteins of unknown function, Orf3 (here named Csp1) is homologous to cold-shock-induced proteins of the Csp family, and Orf4 encodes the N-terminal region of GroEL2. Transcription of csp1 seems to be subjected to temporal control but is not obviously induced by cold shock. Interestingly, the csp1-groEL2 region pleiotropically regulates the production of antibiotics from Streptomyces coelicolor and Streptomyces nodosus.
Collapse
Affiliation(s)
- Oscar H Martínez-Costa
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
30
|
Inaoka T, Takahashi K, Ohnishi-Kameyama M, Yoshida M, Ochi K. Guanine nucleotides guanosine 5'-diphosphate 3'-diphosphate and GTP co-operatively regulate the production of an antibiotic bacilysin in Bacillus subtilis. J Biol Chem 2003; 278:2169-76. [PMID: 12372825 DOI: 10.1074/jbc.m208722200] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We found that a polycistronic operon (ywfBCDEFG) and a monocistronic gene (ywfH) are required for the biosynthesis of bacilysin in Bacillus subtilis. The disruption of these genes by plasmid integration caused loss of the ability to produce bacilysin, accompanied by a lack of bacilysin synthetase activity in the crude extract. We investigated the regulatory mechanism for bacilysin biosynthesis using the transcriptional lacZ fusion system. The transcription of these genes was found to be induced at the transition from exponential to stationary phase. Induction of transcription was accelerated by depleting a required amino acid, which was done by transferring the wild-type (rel(+)) cells to an amino acid-limited medium. In contrast, no enhancement of the gene expression was detected in relA mutant cells. In wild-type (rel(+)) cells, a forced reduction of intracellular GTP, brought about by addition of decoyinine, which is a GMP synthetase inhibitor, enhanced the expression of both the ywfBCDEFG operon and the ywfH gene, resulting in a 2.5-fold increase in bacilysin production. Disruption of the codY gene, which regulates stationary phase genes by detecting the level of GTP, also induced transcription of these genes. In contrast, the expression of ywfBCDEFG in relA cells was not activated either by decoyinine addition or codY disruption, although the expression of ywfH was induced. Moreover, the codY disruption resulted in an increase of bacilysin production only in rel(+) cells. These results indicate that guanosine 5'-diphosphate 3'-diphosphate (ppGpp) plays a crucial role in transcription of the ywfBCDEFG operon and that the transcription of these genes are dependent upon the level of intracellular GTP which is transmitted as a signal via the CodY-mediated repression system. We propose that, unlike antibiotic production in Streptomyces spp., bacilysin production in B. subtilis is controlled by a dual regulation system composed of the guanine nucleotides ppGpp and GTP.
Collapse
Affiliation(s)
- Takashi Inaoka
- Microbial Function Laboratory, National Food Research Institute, Tsukuba, Ibaraki 305-8642, Japan
| | | | | | | | | |
Collapse
|
31
|
Mechold U, Murphy H, Brown L, Cashel M. Intramolecular regulation of the opposing (p)ppGpp catalytic activities of Rel(Seq), the Rel/Spo enzyme from Streptococcus equisimilis. J Bacteriol 2002; 184:2878-88. [PMID: 12003927 PMCID: PMC135074 DOI: 10.1128/jb.184.11.2878-2888.2002] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Catalytic and regulatory domains of the Rel/Spo homolog of Streptococcus equisimilis affecting (p)ppGpp synthesis and degradation activities have been defined, and opposing activities of the purified protein and its fragments have been compared. Two major domains of the 739-residue Rel(Seq) protein are defined by limited proteolytic digestion. In vitro assays of the purified N-terminal half-protein reveal synthesis of (p)ppGpp by an ATP-GTP 3'-pyrophosphotransferase as well as an ability to degrade (p)ppGpp by a Mn(2+)-dependent 3'-pyrophosphohydrolase. Removal of the C-terminal half-protein has reciprocal regulatory effects on the activities of the N-terminal half-protein. Compared to the full-length protein, deletion activates (p)ppGpp synthesis specific activity about 12-fold and simultaneously inhibits (p)ppGpp degradation specific activity about 150-fold to shift the balance of the two activities in favor of synthesis. Cellular (p)ppGpp accumulation behavior is consistent with these changes. The bifunctional N-terminal half-protein can be further dissected into overlapping monofunctional subdomains, since purified peptides display either degradation activity (residues 1 to 224) or synthetic activity (residues 79 to 385) in vitro. These assignments can also apply to RelA and SpoT. The ability of Rel(Seq) to mediate (p)ppGpp accumulation during amino acid starvation in S. equisimilis is absent when the protein is expressed ectopically in Escherichia coli. Fusing the N-terminal half of Rel(Seq) with the C-terminal domain of RelA creates a chimeric protein that restores the stringent response in E. coli by inhibiting unregulated degradation and restoring regulated synthetic activity. Reciprocal intramolecular regulation of the dual activities may be a general intrinsic feature of Rel/Spo homolog proteins.
Collapse
Affiliation(s)
- Undine Mechold
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-2785, USA
| | | | | | | |
Collapse
|
32
|
Chouayekh H, Virolle MJ. The polyphosphate kinase plays a negative role in the control of antibiotic production in Streptomyces lividans. Mol Microbiol 2002; 43:919-30. [PMID: 11929542 DOI: 10.1046/j.1365-2958.2002.02557.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The polyphosphate kinase gene (ppk) from Streptomyces lividans, which encodes a 774-amino-acid protein (86.4 kDa) showing extensive homology to other bacterial polyphosphate kinases, was cloned by polymerase chain reaction (PCR) using oligonucleotides derived from the putative ppk gene from the closely related species, Streptomyces coelicolor. In vitro, the purified Ppk was shown to be able to synthesize the polyphosphate [poly(P)] from ATP (forward reaction) as well as to regenerate ATP from the poly(P) in the presence of an excess of ADP (reverse reaction). In conditions of poly(P) synthesis, a phosphoenzyme intermediate was detected, indicating an autophosphorylation of the enzyme in the presence of ATP. The ppk gene was shown to be transcribed as a monocistronic mRNA from a unique promoter. Its transcription was only detectable during the late stages of growth in liquid minimal medium. A mutant strain interrupted for ppk was characterized by increased production of the antibiotic actinorhodin on rich R2YE solid medium (0.37 mM KH2PO4 added). This production was enhanced on the same medium with no KH2PO4 added but was completely abolished by the addition of 1.48 mM KH2PO4. In the ppk mutant strain, this increased production correlated with enhanced transcription of actII-ORF4 encoding the specific activator of the actinorhodin pathway. In that strain, the transcription of redD and cdaR, encoding the specific activators of the undecylprodigiosin and calcium-dependent antibiotic biosynthetic pathways, respectively, was also increased but to a lesser extent. The enhanced expression of these regulators did not seem to be related to increased relA-dependent ppGpp synthesis, as no obvious increase in relA expression was observed in the ppk mutant strain. These results suggested that the negative regulatory effect exerted by Ppk on antibiotic biosynthesis was most probably caused by the repression exerted by the endogenous Pi, resulting from the hydrolysis of the poly(P) synthesized by Ppk, on the expression of the specific activators of the antibiotic biosynthetic pathways.
Collapse
Affiliation(s)
- Hichem Chouayekh
- Laboratoire de Biologie et Génétique Moléculaire de l'Institut de Génétique et Microbiologie, UMR CNRS 8621, Bâtiment 400 de l'Université Paris Sud, 91405 Orsay, France
| | | |
Collapse
|
33
|
Colombo V, Fernández-de-Heredia M, Malpartida F. A polyketide biosynthetic gene cluster from Streptomyces antibioticus includes a LysR-type transcriptional regulator. MICROBIOLOGY (READING, ENGLAND) 2001; 147:3083-92. [PMID: 11700358 DOI: 10.1099/00221287-147-11-3083] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the search for Type II polyketide synthases (PKSs) a DNA fragment was isolated from Streptomyces antibioticus ATCC 11891 (a producer of oleandomycin). DNA sequencing of the cloned fragment revealed six complete ORFs whose deduced products showed similarities to those of other genes known to be involved in polyketide biosynthesis. Several S. coelicolor strains mutated in different steps of actinorhodin biosynthesis (actI, actIII, actV(A) and actVII) were complemented by the cloned genes, suggesting that the isolated genes encode an aromatic polyketide of unknown structure and function. The cluster also contains a putative LysR-type transcriptional regulator (ORF0), which controls PKS gene expression in a heterologous host. DNA binding assays and transcriptional analysis suggest that the pathway-specific regulator for actinorhodin biosynthesis (actII-ORF4) is also involved in the expression of the cloned PKS in the host strain.
Collapse
Affiliation(s)
- V Colombo
- Centro Nacional de Biotecnologia, Campus de la Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain
| | | | | |
Collapse
|
34
|
Kawamoto S, Watanabe M, Saito N, Hesketh A, Vachalova K, Matsubara K, Ochi K. Molecular and functional analyses of the gene (eshA) encoding the 52-kilodalton protein of Streptomyces coelicolor A3(2) required for antibiotic production. J Bacteriol 2001; 183:6009-16. [PMID: 11567001 PMCID: PMC99680 DOI: 10.1128/jb.183.20.6009-6016.2001] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analysis of proteins recovered in the S100 precipitate fraction of Streptomyces griseus after ultracentrifugation led to the identification of a 52-kDa protein which is produced during the late growth phase. The gene (eshA) which codes for this protein was cloned from S. griseus, and then its homologue was cloned from Streptomyces coelicolor A3(2). The protein was deduced to be 471 amino acids in length. The protein EshA is characterized by a central region that shows homology to the eukaryotic-type cyclic nucleotide-binding domains. Significant homology was also found to MMPI in Mycobacterium leprae, a major antigenic protein to humans. The eshA gene mapped near the chromosome end and was not essential for viability, as demonstrated by gene disruption experiments, but its disruption resulted in the abolishment of an antibiotic (actinorhodin but not undecylprodigiosin) production. Aerial mycelium was produced as abundantly as by the parent strain. Expression analysis of the EshA protein by Western blotting revealed that EshA is present only in late-growth-phase cells. The eshA gene was transcribed just preceding intracellular accumulation of the EshA protein, as determined by S1 nuclease protection, indicating that EshA expression is regulated at the transcription level. The expression of EshA was unaffected by introduction of the relA mutation, which blocks ppGpp synthesis.
Collapse
Affiliation(s)
- S Kawamoto
- National Food Research Institute, Tsukuba, Ibaraki 305-8642, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Hu H, Ochi K. Novel approach for improving the productivity of antibiotic-producing strains by inducing combined resistant mutations. Appl Environ Microbiol 2001; 67:1885-92. [PMID: 11282646 PMCID: PMC92810 DOI: 10.1128/aem.67.4.1885-1892.2001] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2000] [Accepted: 02/05/2001] [Indexed: 11/20/2022] Open
Abstract
We developed a novel approach for improving the production of antibiotic from Streptomyces coelicolor A3(2) by inducing combined drug-resistant mutations. Mutants with enhanced (1.6- to 3-fold-higher) actinorhodin production were detected at a high frequency (5 to 10%) among isolates resistant to streptomycin (Str(r)), gentamicin (Gen(r)), or rifampin (Rif(r)), which developed spontaneously on agar plates which contained one of the three drugs. Construction of double mutants (str gen and str rif) by introducing gentamicin or rifampin resistance into an str mutant resulted in further increased (1.7- to 2.5-fold-higher) actinorhodin productivity. Likewise, triple mutants (str gen rif) thus constructed were found to have an even greater ability for producing the antibiotic, eventually generating a mutant able to produce 48 times more actinorhodin than the wild-type strain. Analysis of str mutants revealed that a point mutation occurred within the rpsL gene, which encodes the ribosomal protein S12. rif mutants were found to have a point mutation in the rpoB gene, which encodes the beta-subunit of RNA polymerase. Mutation points in gen mutants still remain unknown. These single, double, and triple mutants displayed in hierarchical order a remarkable increase in the production of ActII-ORF4, a pathway-specific regulatory protein, as determined by Western blotting analysis. This reflects the same hierarchical order observed for the increase in actinorhodin production. The superior ability of the triple mutants was demonstrated by physiological analyses under various cultural conditions. We conclude that by inducing combined drug-resistant mutations we can continuously increase the production of antibiotic in a stepwise manner. This new breeding approach could be especially effective for initially improving the production of antibiotics from wild-type strains.
Collapse
Affiliation(s)
- H Hu
- National Food Research Institute, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | | |
Collapse
|
36
|
Hodgson DA. Primary metabolism and its control in streptomycetes: a most unusual group of bacteria. Adv Microb Physiol 2001; 42:47-238. [PMID: 10907551 DOI: 10.1016/s0065-2911(00)42003-5] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Streptomycetes are Gram-positive bacteria with a unique capacity for the production of a multitude of varied and complex secondary metabolites. They also have a complex life cycle including differentiation into at least three distinct cell types. Whilst much attention has been paid to the pathways and regulation of secondary metabolism, less has been paid to the pathways and the regulation of primary metabolism, which supplies the precursors. With the imminent completion of the total genome sequence of Streptomyces coelicolor A3(2), we need to understand the pathways of primary metabolism if we are to understand the role of newly discovered genes. This review is written as a contribution to supplying these wants. Streptomycetes inhabit soil, which, because of the high numbers of microbial competitors, is an oligotrophic environment. Soil nutrient levels reflect the fact that plant-derived material is the main nutrient input; i.e. it is carbon-rich and nitrogen- and phosphate-poor. Control of streptomycete primary metabolism reflects the nutrient availability. The variety and multiplicity of carbohydrate catabolic pathways reflects the variety and multiplicity of carbohydrates in the soil. This multiplicity of pathways has led to investment by streptomycetes in pathway-specific and global regulatory networks such as glucose repression. The mechanism of glucose repression is clearly different from that in other bacteria. Streptomycetes feed by secreting complexes of extracellular enzymes that break down plant cell walls to release nutrients. The induction of these enzyme complexes is often coordinated by inducers that bear no structural relation to the substrate or product of any particular enzyme in the complex; e.g. a product of xylan breakdown may induce cellulase production. Control of amino acid catabolism reflects the relative absence of nitrogen catabolites in soil. The cognate amino acid induces about half of the catabolic pathways and half are constitutive. There are reduced instances of global carbon and nitrogen catabolite control of amino acid catabolism, which again presumably reflects the relative rarity of the catabolites. There are few examples of feedback repression of amino acid biosynthesis. Again this is taken as a reflection of the oligotrophic nature of the streptomycete ecological niche. As amino acids are not present in the environment, streptomycetes have rarely invested in feedback repression. Exceptions to this generalization are the arginine and branched-chain amino acid pathways and some parts of the aromatic amino acid pathways which have regulatory systems similar to Escherichia coli and Bacillus subtilis and other copiotrophic bacteria.
Collapse
Affiliation(s)
- D A Hodgson
- Department of Biological Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
37
|
Anderson TB, Brian P, Champness WC. Genetic and transcriptional analysis of absA, an antibiotic gene cluster-linked two-component system that regulates multiple antibiotics in Streptomyces coelicolor. Mol Microbiol 2001; 39:553-66. [PMID: 11169098 DOI: 10.1046/j.1365-2958.2001.02240.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Streptomyces coelicolor, the AbsA1-AbsA2 two-component system regulates the expression of multiple antibiotic gene clusters. Here, we show that the response regulator encoded by the absA2 gene is a negative regulator of these antibiotic gene clusters. A genetic analysis shows that the phosphorylated form of the AbsA2 response regulator (phospho-AbsA2), generated by the cognate AbsA1 sensor histidine kinase, is required for normal growth phase regulation of antibiotic synthesis. In the absence of phospho-AbsA2, antibiotics are produced earlier and more abundantly. Overexpression of AbsA1 also deregulates antibiotic synthesis, apparently shifting the AbsA1 protein from a kinase-active to a phospho-AbsA2 phosphatase-active form. The absA1 and absA2 genes, which are adjacent, are located in one of the antibiotic gene clusters that they regulate, the cluster for the calcium-dependent antibiotic (CDA). The absA genes themselves are growth phase regulated, with phospho-AbsA2 responsible for growth phase-related positive autoregulation. We discuss the possible role and mechanism of AbsA-mediated regulation of antibiotic synthesis in the S. coelicolor life cycle.
Collapse
Affiliation(s)
- T B Anderson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824-1101, USA
| | | | | |
Collapse
|
38
|
Gropp M, Strausz Y, Gross M, Glaser G. Regulation of Escherichia coli RelA requires oligomerization of the C-terminal domain. J Bacteriol 2001; 183:570-9. [PMID: 11133950 PMCID: PMC94912 DOI: 10.1128/jb.183.2.570-579.2001] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The E. coli RelA protein is a ribosome-dependent (p)ppGpp synthetase that is activated in response to amino acid starvation. RelA can be dissected both functionally and physically into two domains: The N-terminal domain (NTD) (amino acids [aa] 1 to 455) contains the catalytic domain of RelA, and the C-terminal domain (CTD) (aa 455 to 744) is involved in regulating RelA activity. We used mutational analysis to localize sites important for RelA activity and control in these two domains. We inserted two separate mutations into the NTD, which resulted in mutated RelA proteins that were impaired in their ability to synthesize (p)ppGpp. When we caused the CTD in relA(+) cells to be overexpressed, (p)ppGpp accumulation during amino acid starvation was negatively affected. Mutational analysis showed that Cys-612, Asp-637, and Cys-638, found in a conserved amino acid sequence (aa 612 to 638), are essential for this negative effect of the CTD. When mutations corresponding to these residues were inserted into the full-length relA gene, the mutated RelA proteins were impaired in their regulation. In attempting to clarify the mechanism through which the CTD regulates RelA activity, we found no evidence for competition for ribosomal binding between the normal RelA and the overexpressed CTD. Results from CyaA complementation experiments of the bacterial two-hybrid system fusion plasmids (G. Karimova, J. Pidoux, A. Ullmann, and D. Ladant, Proc. Natl. Acad. Sci. USA 95:5752-5756, 1998) indicated that the CTD (aa 564 to 744) is involved in RelA-RelA interactions. Our findings support a model in which RelA activation is regulated by its oligomerization state.
Collapse
Affiliation(s)
- M Gropp
- Department of Cellular Biochemistry, The Hebrew University-Hadassah Medical School, Jerusalem 90101, Israel
| | | | | | | |
Collapse
|
39
|
Hesketh A, Sun J, Bibb M. Induction of ppGpp synthesis in Streptomyces coelicolor A3(2) grown under conditions of nutritional sufficiency elicits actII-ORF4 transcription and actinorhodin biosynthesis. Mol Microbiol 2001; 39:136-44. [PMID: 11123695 DOI: 10.1046/j.1365-2958.2001.02221.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Production of ppGpp in Streptomyces coelicolor A3(2) was achieved independently of amino acid limitation by placing N-terminal segments of the ppGpp synthetase gene, relA, under the control of a thiostrepton-inducible promoter (tipAp). S1 nuclease protection experiments indicated that induced ppGpp concentrations of 6-12 pmol mg(-1) dry weight in late-exponential phase cultures caused activation of transcription of actII-ORF4, the pathway-specific activator gene for actinorhodin production. This level of ppGpp had no effect on growth rate, implying a causal role for ppGpp in activating actII-ORF4 transcription. No effect was observed on the transcription of the corresponding and homologous activator gene for undecylprodigiosin production, redD, reflecting a requirement for additional regulatory factors for activation of its transcription. This work provides the most compelling evidence yet for the activation of an antibiotic biosynthetic pathway by the stringent factor ppGpp.
Collapse
Affiliation(s)
- A Hesketh
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | | | | |
Collapse
|
40
|
Avarbock D, Avarbock A, Rubin H. Differential regulation of opposing RelMtb activities by the aminoacylation state of a tRNA.ribosome.mRNA.RelMtb complex. Biochemistry 2000; 39:11640-8. [PMID: 10995231 DOI: 10.1021/bi001256k] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rel(Mtb) of Mycobacterium tuberculosis is responsible for the intracellular regulation of (p)ppGpp and the consequent ability of the organism to survive long-term starvation, indicating a possible role in the pathogenesis of tuberculosis. Purified Rel(Mtb) is a dual-function enzyme carrying out ATP: GTP/GDP/ITP 3'-pyrophosphoryltransferase and (p)ppGpp 3'-pyrophosphohydrolase reactions. Here we show that in the absence of biological regulators, Rel(Mtb) simultaneously catalyzes both transferase and hydrolysis at the maximal rate for each reaction, indicating the existence of two distinct active sites. The differential regulation of the opposing activities of Rel(Mtb) is dependent on the ratio of uncharged to charged tRNA and the association of Rel(Mtb) with a complex containing tRNA, ribosomes, and mRNA. A 20-fold increase in the k(cat) and a 4-fold decrease in K(ATP) and K(GTP) from basal levels for transferase activity occur when Rel(Mtb) binds to a complex containing uncharged tRNA, ribosomes, and mRNA (Rel(Mtb) activating complex or RAC). The k(cat) for hydrolysis, however, is reduced 2-fold and K(m) for pppGpp increased 2-fold from basal levels in the presence of the Rel(Mtb) activating complex. The addition of charged tRNA to this complex has the opposite effect by inhibiting transferase activity and activating hydrolysis activity. Differential control of Rel(Mtb) gives the Mtb ribosomal complex a new regulatory role in controlling cellular metabolism in response to stringent growth conditions that may be present in the dormant Mtb lesion.
Collapse
Affiliation(s)
- D Avarbock
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
41
|
Abstract
SUMMARY
Profound changes are occurring in the strategies that biotechnology-based industries are deploying in the search for exploitable biology and to discover new products and develop new or improved processes. The advances that have been made in the past decade in areas such as combinatorial chemistry, combinatorial biosynthesis, metabolic pathway engineering, gene shuffling, and directed evolution of proteins have caused some companies to consider withdrawing from natural product screening. In this review we examine the paradigm shift from traditional biology to bioinformatics that is revolutionizing exploitable biology. We conclude that the reinvigorated means of detecting novel organisms, novel chemical structures, and novel biocatalytic activities will ensure that natural products will continue to be a primary resource for biotechnology. The paradigm shift has been driven by a convergence of complementary technologies, exemplified by DNA sequencing and amplification, genome sequencing and annotation, proteome analysis, and phenotypic inventorying, resulting in the establishment of huge databases that can be mined in order to generate useful knowledge such as the identity and characterization of organisms and the identity of biotechnology targets. Concurrently there have been major advances in understanding the extent of microbial diversity, how uncultured organisms might be grown, and how expression of the metabolic potential of microorganisms can be maximized. The integration of information from complementary databases presents a significant challenge. Such integration should facilitate answers to complex questions involving sequence, biochemical, physiological, taxonomic, and ecological information of the sort posed in exploitable biology. The paradigm shift which we discuss is not absolute in the sense that it will replace established microbiology; rather, it reinforces our view that innovative microbiology is essential for releasing the potential of microbial diversity for biotechnology penetration throughout industry. Various of these issues are considered with reference to deep-sea microbiology and biotechnology.
Collapse
|
42
|
Primm TP, Andersen SJ, Mizrahi V, Avarbock D, Rubin H, Barry CE. The stringent response of Mycobacterium tuberculosis is required for long-term survival. J Bacteriol 2000; 182:4889-98. [PMID: 10940033 PMCID: PMC111369 DOI: 10.1128/jb.182.17.4889-4898.2000] [Citation(s) in RCA: 256] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stringent response utilizes hyperphosphorylated guanine [(p)ppGpp] as a signaling molecule to control bacterial gene expression involved in long-term survival under starvation conditions. In gram-negative bacteria, (p)ppGpp is produced by the activity of the related RelA and SpoT proteins. Mycobacterium tuberculosis contains a single homolog of these proteins (Rel(Mtb)) and responds to nutrient starvation by producing (p)ppGpp. A rel(Mtb) knockout strain was constructed in a virulent strain of M. tuberculosis, H37Rv, by allelic replacement. The rel(Mtb) mutant displayed a significantly slower aerobic growth rate than the wild type in synthetic liquid media, whether rich or minimal. The growth rate of the wild type was equivalent to that of the mutant when citrate or phospholipid was employed as the sole carbon source. These two organisms also showed identical growth rates within a human macrophage-like cell line. These results suggest that the in vivo carbon source does not represent a stressful condition for the bacilli, since it appears to be utilized in a similar Rel(Mtb)-independent manner. In vitro growth in liquid media represents a condition that benefits from Rel(Mtb)-mediated adaptation. Long-term survival of the rel(Mtb) mutant during in vitro starvation or nutrient run out in normal media was significantly impaired compared to that in the wild type. In addition, the mutant was significantly less able to survive extended anaerobic incubation than the wild-type virulent organism. Thus, the Rel(Mtb) protein is required for long-term survival of pathogenic mycobacteria under starvation conditions.
Collapse
Affiliation(s)
- T P Primm
- Tuberculosis Research Section, Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20852, USA
| | | | | | | | | | | |
Collapse
|
43
|
Bull AT, Ward AC, Goodfellow M. Search and discovery strategies for biotechnology: the paradigm shift. Microbiol Mol Biol Rev 2000; 64:573-606. [PMID: 10974127 PMCID: PMC99005 DOI: 10.1128/mmbr.64.3.573-606.2000] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Profound changes are occurring in the strategies that biotechnology-based industries are deploying in the search for exploitable biology and to discover new products and develop new or improved processes. The advances that have been made in the past decade in areas such as combinatorial chemistry, combinatorial biosynthesis, metabolic pathway engineering, gene shuffling, and directed evolution of proteins have caused some companies to consider withdrawing from natural product screening. In this review we examine the paradigm shift from traditional biology to bioinformatics that is revolutionizing exploitable biology. We conclude that the reinvigorated means of detecting novel organisms, novel chemical structures, and novel biocatalytic activities will ensure that natural products will continue to be a primary resource for biotechnology. The paradigm shift has been driven by a convergence of complementary technologies, exemplified by DNA sequencing and amplification, genome sequencing and annotation, proteome analysis, and phenotypic inventorying, resulting in the establishment of huge databases that can be mined in order to generate useful knowledge such as the identity and characterization of organisms and the identity of biotechnology targets. Concurrently there have been major advances in understanding the extent of microbial diversity, how uncultured organisms might be grown, and how expression of the metabolic potential of microorganisms can be maximized. The integration of information from complementary databases presents a significant challenge. Such integration should facilitate answers to complex questions involving sequence, biochemical, physiological, taxonomic, and ecological information of the sort posed in exploitable biology. The paradigm shift which we discuss is not absolute in the sense that it will replace established microbiology; rather, it reinforces our view that innovative microbiology is essential for releasing the potential of microbial diversity for biotechnology penetration throughout industry. Various of these issues are considered with reference to deep-sea microbiology and biotechnology.
Collapse
Affiliation(s)
- A T Bull
- Research School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom.
| | | | | |
Collapse
|
44
|
Arias P, Fernández-Moreno MA, Malpartida F. Characterization of the pathway-specific positive transcriptional regulator for actinorhodin biosynthesis in Streptomyces coelicolor A3(2) as a DNA-binding protein. J Bacteriol 1999; 181:6958-68. [PMID: 10559161 PMCID: PMC94170 DOI: 10.1128/jb.181.22.6958-6968.1999] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ActII-ORF4 protein has been characterized as a DNA-binding protein that positively regulates the transcription of the actinorhodin biosynthetic genes. The target regions for the ActII-ORF4 protein were located within the act cluster. These regions, at high copy number, generate a nonproducer strain by in vivo titration of the regulator. The mutant phenotype could be made to revert with extra copies of the wild-type actII-ORF4 gene but not with the actII-ORF4-177 mutant. His-tagged recombinant wild-type ActII-ORF4 and mutant ActII-ORF4-177 proteins were purified from Escherichia coli cultures; both showed specific DNA-binding activity for the actVI-ORF1-ORFA and actIII-actI intergenic regions. DNase I footprinting assays clearly located the DNA-binding sites within the -35 regions of the corresponding promoters, showing the consensus sequence 5'-TCGAG-3'. Although both gene products (wild-type and mutant ActII-ORF4) showed DNA-binding activity, only the wild-type gene was capable of activating transcription of the act genes; thus, two basic functions can be differentiated within the regulatory protein: a specific DNA-binding activity and a transcriptional activation of the act biosynthetic genes.
Collapse
Affiliation(s)
- P Arias
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
45
|
Price B, Adamidis T, Kong R, Champness W. A Streptomyces coelicolor antibiotic regulatory gene, absB, encodes an RNase III homolog. J Bacteriol 1999; 181:6142-51. [PMID: 10498729 PMCID: PMC103644 DOI: 10.1128/jb.181.19.6142-6151.1999] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/1999] [Accepted: 07/19/1999] [Indexed: 11/20/2022] Open
Abstract
Streptomyces coelicolor produces four genetically and structurally distinct antibiotics in a growth-phase-dependent manner. S. coelicolor mutants globally deficient in antibiotic production (Abs(-) phenotype) have previously been isolated, and some of these were found to define the absB locus. In this study, we isolated absB-complementing DNA and show that it encodes the S. coelicolor homolog of RNase III (rnc). Several lines of evidence indicate that the absB mutant global defect in antibiotic synthesis is due to a deficiency in RNase III. In marker exchange experiments, the S. coelicolor rnc gene rescued absB mutants, restoring antibiotic production. Sequencing the DNA of absB mutants confirmed that the absB mutations lay in the rnc open reading frame. Constructed disruptions of rnc in both S. coelicolor 1501 and Streptomyces lividans 1326 caused an Abs(-) phenotype. An absB mutation caused accumulation of 30S rRNA precursors, as had previously been reported for E. coli rnc mutants. The absB gene is widely conserved in streptomycetes. We speculate on why an RNase III deficiency could globally affect the synthesis of antibiotics.
Collapse
Affiliation(s)
- B Price
- Department of Microbiology, Michigan State University, East Lansing, Michigan 48824-1101, USA
| | | | | | | |
Collapse
|
46
|
Avarbock D, Salem J, Li LS, Wang ZM, Rubin H. Cloning and characterization of a bifunctional RelA/SpoT homologue from Mycobacterium tuberculosis. Gene 1999; 233:261-9. [PMID: 10375643 DOI: 10.1016/s0378-1119(99)00114-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A 2.2kb relA/spoT homologue was isolated from Mycobacterium tuberculosis (Mtb) genomic DNA by PCR-amplification. The Mtb gene encodes a protein of 738 amino acid residues, and is flanked upstream by an ORF that is highly similar to the apt gene, and downstream by an ORF that is highly similar to the cypH gene. This dual function Mtb homologue belongs to the relA/spoT family of genes that mediate the stringent response by regulating the synthesis and degradation of guanosine 3',5'-bis(diphosphate) (ppGpp) and pppGpp. In vitro biochemical data indicate that purified RelMtb is a ribosome- and tRNA-independent ATP:GTP/GDP/ITP 3'-pyrophosphoryltransferase. Additionally, purified RelMtb is an Mn2+-dependent, ribosome and tRNA-independent, (p)ppGpp 3'-pyrophosphohydrolase. These reactions were also assessed in vivo in E. coli deleted in both the relA and spoT genes, which generates a (p)ppGpp0 phenotype. RelMtb can suppress this phenotype and can generate more (p)ppGpp than relA in the wild type E. coli control.
Collapse
Affiliation(s)
- D Avarbock
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
47
|
Abstract
The relA gene from Streptomyces antibioticus has been cloned and sequenced. The gene encodes a protein with an Mr of 93,653, which is 91% identical to the corresponding protein from Streptomyces coelicolor. Disruption of S. antibioticus relA produces a strain which grows significantly more slowly on actinomycin production medium than the wild type or a disruptant to which the intact relA gene was restored. Moreover, the disruptant was unable to accumulate ppGpp to the levels observed during the normal course of growth and actinomycin production in the wild type. The strain containing the disrupted relA gene did not produce actinomycin and contained significantly lower levels of the enzyme phenoxazinone synthase than the wild-type strain. Actinomycin synthetase I, a key enzyme in the actinomycin biosynthetic pathway, was undetectable in the relA disruptant. Growth of the disruptant on low-phosphate medium did not restore actinomycin production.
Collapse
Affiliation(s)
- S Hoyt
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
48
|
Hosoya Y, Okamoto S, Muramatsu H, Ochi K. Acquisition of certain streptomycin-resistant (str) mutations enhances antibiotic production in bacteria. Antimicrob Agents Chemother 1998; 42:2041-7. [PMID: 9687404 PMCID: PMC105730 DOI: 10.1128/aac.42.8.2041] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/1998] [Accepted: 06/09/1998] [Indexed: 02/08/2023] Open
Abstract
Physiological differentiation (including antibiotic production) in microorganisms usually starts when cells encounter adverse environmental conditions and is frequently accompanied by an increase in the accumulation of intracellular ppGpp. We have found that the acquisition of certain streptomycin-resistant (str) mutations enables cells to overproduce antibiotics, demonstrating an increase in productivity 5- to 50-fold greater than that of wild-type strains. The frequency of such antibiotic-overproducing strains among the str mutants was shown to range from 3 to 46%, as examined with several strains of the genera Streptomyces, Bacillus, and Pseudomonas. Analysis of str mutants from Bacillus subtilis Marburg 168 revealed that a point mutation occurred within the rpsL gene, which encodes the ribosomal protein S12, changing Lys-56 (corresponding to Lys-43 in Escherichia coli) to Asn, Arg, Thr, or Gln. Antibiotic productivity increased in a hierarchical manner depending upon which amino acid residue replaced Lys at this position. The strA1 mutation, a genetic marker frequently used for mapping, had no effect on antibiotic productivity even though it was found to result in an amino acid alteration of Lys-56 to Ile. Gene replacement experiments with the str alleles demonstrated unambiguously that the str mutation is responsible for the antibiotic overproductivity observed. These results offer a rational approach for improving the production of antibiotic (secondary metabolism) from microorganisms.
Collapse
Affiliation(s)
- Y Hosoya
- National Food Research Institute, Fujisawa Pharmaceutical Co., Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
49
|
Martínez-Costa OH, Fernández-Moreno MA, Malpartida F. The relA/spoT-homologous gene in Streptomyces coelicolor encodes both ribosome-dependent (p)ppGpp-synthesizing and -degrading activities. J Bacteriol 1998; 180:4123-32. [PMID: 9696759 PMCID: PMC107407 DOI: 10.1128/jb.180.16.4123-4132.1998] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptomyces coelicolor (p)ppGpp synthetase (Rel protein) belongs to the RelA and SpoT (RelA/SpoT) family, which is involved in (p)ppGpp metabolism and the stringent response. The potential functions of the rel gene have been examined. S. coelicolor Rel has been shown to be ribosome associated, and its activity in vitro is ribosome dependent. Analysis in vivo of the active recombinant protein in well-defined Escherichia coli relA and relA/spoT mutants provides evidence that S. coelicolor Rel, like native E. coli RelA, is functionally ribosome associated, resulting in ribosome-dependent (p)ppGpp accumulation upon amino acid deprivation. Expression of an S. coelicolor C-terminally deleted Rel, comprised of only the first 489 amino acids, catalyzes a ribosome-independent (p)ppGpp formation, in the same manner as the E. coli truncated RelA protein (1 to 455 amino acids). An E. coli relA spoT double deletion mutant transformed with S. coelicolor rel gene suppresses the phenotype associated with (p)ppGpp deficiency. However, in such a strain, a rel-mediated (p)ppGpp response apparently occurs after glucose depletion, but only in the absence of amino acids. Analysis of ppGpp decay in E. coli expressing the S. coelicolor rel gene suggests that it also encodes a (p)ppGpp-degrading activity. By deletion analysis, the catalytic domains of S. coelicolor Rel for (p)ppGpp synthesis and degradation have been located within its N terminus (amino acids 267 to 453 and 93 to 397, respectively). In addition, E. coli relA in an S. coelicolor rel deletion mutant restores actinorhodine production and shows a nearly normal morphological differentiation, as does the wild-type rel gene, which is in agreement with the proposed role of (p)ppGpp nucleotides in antibiotic biosynthesis.
Collapse
Affiliation(s)
- O H Martínez-Costa
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma de Madrid, Cantoblanco, 28049-Madrid, Spain
| | | | | |
Collapse
|
50
|
Wehmeier L, Schafer A, Burkovski A, Krmer R, Mechold U, Malke H, Phler A, Kalinowski J. The role of the Corynebacterium glutamicum rel gene in (p)ppGpp metabolism. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 7):1853-1862. [PMID: 9695918 DOI: 10.1099/00221287-144-7-1853] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To investigate the metabolism of (p)ppGpp in amino-acid-producing coryneform bacteria, a PCR-based strategy using degenerate consensus oligonucleotides was applied to isolate the rel gene of Corynebacterium glutamicum ATCC 13032. The gene consists of 2283 nucleotides and encodes a protein of 760 amino acids with a molecular mass of 84.4 kDa. The amino acid sequence revealed extensive similarities to the related proteins RelA and SpoT of Escherichia coli, which are known to be involved in (p)ppGpp biosynthesis and degradation. The C. glutamicum rel gene is located downstream of the apt gene encoding an adenine phosphoribosyltransferase, and an ORF with similarities to dciAE, which represents part of a dipeptide transport system in E. coli. A C. glutamicum mutant strain carrying a defined deletion in the rel gene was constructed. This mutant failed to accumulate (p)ppGpp in response to amino acid starvation. When overexpressed in E. coli, the C. glutamicum rel gene was able to reverse growth defects caused by an overexpressed relA gene. It is proposed that the C. glutamicum rel gene encodes a bifunctional enzyme with (p)ppGpp synthetase and (p)ppGpp-degrading activities.
Collapse
Affiliation(s)
- Lutz Wehmeier
- Lehrstuhl fr Genetik, Fakultut fr Biologie, Universitt BielefeldD-33501 BielefeldGermany
| | - Andreas Schafer
- Lehrstuhl fr Genetik, Fakultut fr Biologie, Universitt BielefeldD-33501 BielefeldGermany
| | | | - Reinhard Krmer
- Institut fr Biochemie 1, Universitt zu KlnD-50674 KlnGermany
| | - Undine Mechold
- Institut fr Molekularbiologie, Universitt JenaD-07745 JenaGermany
| | - Horst Malke
- Institut fr Molekularbiologie, Universitt JenaD-07745 JenaGermany
| | - Alfred Phler
- Lehrstuhl fr Genetik, Fakultut fr Biologie, Universitt BielefeldD-33501 BielefeldGermany
| | - Jrn Kalinowski
- Lehrstuhl fr Genetik, Fakultut fr Biologie, Universitt BielefeldD-33501 BielefeldGermany
| |
Collapse
|