1
|
Nakajima S, Watashi K, Kato T, Muramatsu M, Wakita T, Tamura N, Hattori SI, Maeda K, Mitsuya H, Yasutake Y, Toyoda T. Biochemical and Structural Properties of Entecavir-Resistant Hepatitis B Virus Polymerase with L180M/M204V Mutations. J Virol 2021; 95:e0240120. [PMID: 34076480 PMCID: PMC8312879 DOI: 10.1128/jvi.02401-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Entecavir (ETV) is a widely used anti-hepatitis B virus (HBV) drug. However, the emergence of resistant mutations in HBV reverse transcriptase (RT) results in treatment failure. To understand the mechanism underlying the development of ETV resistance by HBV RT, we analyzed the L180M, M204V, and L180M/M204V mutants using a combination of biochemical and structural techniques. ETV-triphosphate (ETV-TP) exhibited competitive inhibition with dGTP in both wild-type (wt) RT and M204V RT, as observed using Lineweaver-Burk plots. In contrast, RT L180M or L180M/M204V did not fit either competitive, uncompetitive, noncompetitive, or typical mixed inhibition, although ETV-TP was a competitive inhibitor of dGTP. Crystallography of HIV RTY115F/F116Y/Q151M/F160M/M184V, mimicking HBV RT L180M/M204V, showed that the F115 bulge (F88 in HBV RT) caused by the F160M mutation induced deviated binding of dCTP from its normal tight binding position. Modeling of ETV-TP on the deviated dCTP indicated that a steric clash could occur between ETV-TP methylene and the 3'-end nucleoside ribose. ETV-TP is likely to interact primarily with HBV RT M171 prior to final accommodation at the deoxynucleoside triphosphate (dNTP) binding site (Y. Yasutake, S. Hattori, H. Hayashi, K. Matsuda, et al., Sci Rep 8:1624, 2018, https://doi.org/10.1038/s41598-018-19602-9). Therefore, in HBV RT L180M/M204V, ETV-TP may be stuck at M171, a residue that is conserved in almost all HBV isolates, leading to the strange inhibition pattern observed in the kinetic analysis. Collectively, our results provide novel insights into the mechanism of ETV resistance of HBV RT caused by L180M and M204V mutations. IMPORTANCE HBV infects 257 million people in the world, who suffer from elevated risks of liver cirrhosis and cancer. ETV is one of the most potent anti-HBV drugs, and ETV resistance mutations in HBV RT have been extensively studied. Nevertheless, the mechanisms underlying ETV resistance have remained elusive. We propose an attractive hypothesis to explain ETV resistance and effectiveness using a combination of kinetic and structural analyses. ETV is likely to have an additional interaction site, M171, beside the dNTP pocket of HBV RT; this finding indicates that nucleos(t)ide analogues (NAs) recognizing multiple interaction sites within RT may effectively inhibit the enzyme. Modification of ETV may render it more effective and enable the rational design of efficient NA inhibitors.
Collapse
Affiliation(s)
- Shogo Nakajima
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
- Choju Medical Institute, Toyohashi, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
- MIRAI, Japan Science and Technology Agency, Saitama, Japan
| | - Takanobu Kato
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Noriko Tamura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo, Japan
| | - Shin-Ichiro Hattori
- National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Kenji Maeda
- National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Hiroaki Mitsuya
- National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yoshiaki Yasutake
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo, Japan
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | | |
Collapse
|
2
|
Hung M, Tokarsky EJ, Lagpacan L, Zhang L, Suo Z, Lansdon EB. Elucidating molecular interactions of L-nucleotides with HIV-1 reverse transcriptase and mechanism of M184V-caused drug resistance. Commun Biol 2019; 2:469. [PMID: 31872074 PMCID: PMC6910994 DOI: 10.1038/s42003-019-0706-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/11/2019] [Indexed: 01/22/2023] Open
Abstract
Emtricitabine (FTC) and lamivudine (3TC), containing an oxathiolane ring with unnatural (-)-stereochemistry, are widely used nucleoside reverse transcriptase inhibitors (NRTIs) in anti-HIV therapy. Treatment with FTC or 3TC primarily selects for the HIV-1 RT M184V/I resistance mutations. Here we provide a comprehensive kinetic and structural basis for inhibiting HIV-1 RT by (-)-FTC-TP and (-)-3TC-TP and drug resistance by M184V. (-)-FTC-TP and (-)-3TC-TP have higher binding affinities (1/Kd) for wild-type RT but slower incorporation rates than dCTP. HIV-1 RT ternary crystal structures with (-)-FTC-TP and (-)-3TC-TP corroborate kinetic results demonstrating that their oxathiolane sulfur orients toward the DNA primer 3'-terminus and their triphosphate exists in two different binding conformations. M184V RT displays greater (>200-fold) Kd for the L-nucleotides and moderately higher (>9-fold) Kd for the D-isomers compared to dCTP. The M184V RT structure illustrates how the mutation repositions the oxathiolane of (-)-FTC-TP and shifts its triphosphate into a non-productive conformation.
Collapse
Affiliation(s)
- Magdeleine Hung
- Gilead Sciences, Inc., 333 Lakeside Dr., Foster City, CA 94404 USA
| | - E. John Tokarsky
- The Ohio State Biophysics Program, The Ohio State University, Columbus, OH 43210 USA
| | - Leanna Lagpacan
- Gilead Sciences, Inc., 333 Lakeside Dr., Foster City, CA 94404 USA
| | - Lijun Zhang
- Gilead Sciences, Inc., 333 Lakeside Dr., Foster City, CA 94404 USA
| | - Zucai Suo
- The Ohio State Biophysics Program, The Ohio State University, Columbus, OH 43210 USA
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306 USA
| | - Eric B. Lansdon
- Gilead Sciences, Inc., 333 Lakeside Dr., Foster City, CA 94404 USA
| |
Collapse
|
3
|
Wöhrl BM. Structural and Functional Aspects of Foamy Virus Protease-Reverse Transcriptase. Viruses 2019; 11:v11070598. [PMID: 31269675 PMCID: PMC6669543 DOI: 10.3390/v11070598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/15/2022] Open
Abstract
Reverse transcription describes the process of the transformation of single-stranded RNA into double-stranded DNA via an RNA/DNA duplex intermediate, and is catalyzed by the viral enzyme reverse transcriptase (RT). This event is a pivotal step in the life cycle of all retroviruses. In contrast to orthoretroviruses, the domain structure of the mature RT of foamy viruses is different, i.e., it harbors the protease (PR) domain at its N-terminus, thus being a PR-RT. This structural feature has consequences on PR activation, since the enzyme is monomeric in solution and retroviral PRs are only active as dimers. This review focuses on the structural and functional aspects of simian and prototype foamy virus reverse transcription and reverse transcriptase, as well as special features of reverse transcription that deviate from orthoretroviral processes, e.g., PR activation.
Collapse
Affiliation(s)
- Birgitta M Wöhrl
- Lehrstuhl Biopolymere, Universität Bayreuth, D-95440 Bayreuth, Germany.
| |
Collapse
|
4
|
Twenty-Five Years of Lamivudine: Current and Future Use for the Treatment of HIV-1 Infection. J Acquir Immune Defic Syndr 2019; 78:125-135. [PMID: 29474268 PMCID: PMC5959256 DOI: 10.1097/qai.0000000000001660] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Supplemental Digital Content is Available in the Text. Innovation in medicine is a dynamic, complex, and continuous process that cannot be isolated to a single moment in time. Anniversaries offer opportunities to commemorate crucial discoveries of modern medicine, such as penicillin (1928), polio vaccination (inactivated, 1955; oral, 1961), the surface antigen of the hepatitis B virus (1967), monoclonal antibodies (1975), and the first HIV antiretroviral drugs (zidovudine, 1987). The advent of antiretroviral drugs has had a profound effect on the progress of the epidemiology of HIV infection, transforming a terminal, irreversible disease that caused a global health crisis into a treatable but chronic disease. This result has been driven by the success of antiretroviral drug combinations that include nucleoside reverse transcriptase inhibitors such as lamivudine. Lamivudine, an L-enantiomeric analog of cytosine, potently affects HIV replication by inhibiting viral reverse transcriptase enzymes at concentrations without toxicity against human polymerases. Although lamivudine was approved more than 2 decades ago, it remains a key component of first-line therapy for HIV because of its virological efficacy and ability to be partnered with other antiretroviral agents in traditional and novel combination therapies. The prominence of lamivudine in HIV therapy is highlighted by its incorporation in recent innovative treatment strategies, such as single-tablet regimens that address challenges associated with regimen complexity and treatment adherence and 2-drug regimens being developed to mitigate cumulative drug exposure and toxicities. This review summarizes how the pharmacologic and virologic properties of lamivudine have solidified its role in contemporary HIV therapy and continue to support its use in emerging therapies.
Collapse
|
5
|
Bari A, Ali SS, Alanazi AM, Mashwani MA, Al-Obaid AM. Synthesis, Antiviral, and Antimicrobial Evaluation of Benzyl Protected Diversified C-nucleosides. Front Chem 2018; 6:294. [PMID: 30073161 PMCID: PMC6060234 DOI: 10.3389/fchem.2018.00294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/26/2018] [Indexed: 12/03/2022] Open
Abstract
Formyl glycals are the versatile synthetic intermediates and can serves as precursor for the synthesis of various C and N-nucleosides. Due to the presence of electron donating and electron withdrawing character on formyl sugars which makes the molecule more susceptible to nucleophilic attack. Utilizing same strategy, we propose the synthesis of diversified C-nucleosides (3-14) by reaction with N,N dinucleophiles. These nucleoside analogs were than tested against viral, bacterial and fungal strains.
Collapse
Affiliation(s)
- Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Research Centre, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Syed S. Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Research Centre, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amer M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad A. Mashwani
- Department of Pathology and Microbiology, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman M. Al-Obaid
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Sharma PL, Nurpeisov V, Schinazi RF. Retrovirus Reverse Transcriptases Containing a Modified YXDD Motif. ACTA ACUST UNITED AC 2016; 16:169-82. [PMID: 16004080 DOI: 10.1177/095632020501600303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The YXDD motif, where X is a variable amino acid, is highly conserved among various viral RNA-dependent DNA polymerases. Mutations in the YXDD motif can abolish enzymatic activity, alter the processivity and fidelity of enzymes and decrease virus infectivity. This review provides a summary of the significant documented studies on the YXDD motif of HIV-1, simian immunodeficiency virus, feline immunodeficiency virus and murine leukaemia virus and the impact of mutation that this motif has had on viral pathogenesis and drug treatment.
Collapse
Affiliation(s)
- Prem L Sharma
- Laboratory of Biochemical Pharmacology and Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | | | | |
Collapse
|
7
|
The lysine 65 residue in HIV-1 reverse transcriptase function and in nucleoside analog drug resistance. Viruses 2014; 6:4080-94. [PMID: 25341667 PMCID: PMC4213578 DOI: 10.3390/v6104080] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/19/2014] [Accepted: 10/20/2014] [Indexed: 12/04/2022] Open
Abstract
Mutations in HIV-1 reverse transcriptase (RT) that confer nucleoside analog RT inhibitor resistance have highlighted the functional importance of several active site residues (M184, Q151 and K65) in RT catalytic function. Of these, K65 residue is notable due to its pivotal position in the dNTP-binding pocket, its involvement in nucleoside analog resistance and polymerase fidelity. This review focuses on K65 residue and summarizes a substantial body of biochemical and structural studies of its role in RT function and the functional consequences of the K65R mutation.
Collapse
|
8
|
Singh K, Marchand B, Rai DK, Sharma B, Michailidis E, Ryan EM, Matzek KB, Leslie MD, Hagedorn AN, Li Z, Norden PR, Hachiya A, Parniak MA, Xu HT, Wainberg MA, Sarafianos SG. Biochemical mechanism of HIV-1 resistance to rilpivirine. J Biol Chem 2012; 287:38110-23. [PMID: 22955279 DOI: 10.1074/jbc.m112.398180] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rilpivirine (RPV) is a second generation nonnucleoside reverse transcriptase (RT) inhibitor (NNRTI) that efficiently inhibits HIV-1 resistant to first generation NNRTIs. Virological failure during therapy with RPV and emtricitabine is associated with the appearance of E138K and M184I mutations in RT. Here we investigate the biochemical mechanism of RT inhibition and resistance to RPV. We used two transient kinetics approaches (quench-flow and stopped-flow) to determine how subunit-specific mutations in RT p66 or p51 affect association and dissociation of RPV to RT as well as their impact on binding of dNTP and DNA and the catalytic incorporation of nucleotide. We compared WT with four subunit-specific RT mutants, p66(M184I)/p51(WT), p66(E138K)/p51(E138K), p66(E138K/M184I)/p51(E138K), and p66(M184I)/p51(E138K). Ile-184 in p66 (p66(184I)) decreased the catalytic efficiency of RT (k(pol)/K(d)(.dNTP)), primarily through a decrease in dNTP binding (K(d)(.dNTP)). Lys-138 either in both subunits or in p51 alone abrogated the negative effect of p66(184I) by restoring dNTP binding. Furthermore, p51(138K) reduced RPV susceptibility by altering the ratio of RPV dissociation to RPV association, resulting in a net reduction in RPV equilibrium binding affinity (K(d)(.RPV) = k(off.RPV)/k(on.RPV)). Quantum mechanics/molecular mechanics hybrid molecular modeling revealed that p51(E138K) affects access to the RPV binding site by disrupting the salt bridge between p51(E138) and p66(K101). p66(184I) caused repositioning of the Tyr-183 active site residue and decreased the efficiency of RT, whereas the addition of p51(138K) restored Tyr-183 to a WT-like conformation, thus abrogating the Ile-184-induced functional defects.
Collapse
Affiliation(s)
- Kamalendra Singh
- Christopher Bond Life Sciences Center, University of Missouri School of Medicine, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
A role of template cleavage in reduced excision of chain-terminating nucleotides by human immunodeficiency virus type 1 reverse transcriptase containing the M184V mutation. J Virol 2012; 86:5122-33. [PMID: 22379084 DOI: 10.1128/jvi.05767-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Resistance to nucleoside reverse transcriptase (RT) inhibitors is conferred on human immunodeficiency virus type 1 through thymidine analogue resistance mutations (TAMs) that increase the ability of RT to excise chain-terminating nucleotides after they have been incorporated. The RT mutation M184V is a potent suppressor of TAMs. In RT containing TAMs, the addition of M184V suppressed the excision of 3'-deoxy-3'-azidothymidine monophosphate (AZTMP) to a greater extent on an RNA template than on a DNA template with the same sequence. The catalytically inactive RNase H mutation E478Q abolished this difference. The reduction in excision activity was similar with either ATP or pyrophosphate as the acceptor substrate. Decreased excision of AZTMP was associated with increased cleavage of the RNA template at position -7 relative to the primer terminus, which led to increased primer-template dissociation. Whether M184V was present or not, RT did not initially bind at the -7 cleavage site. Cleavage at the initial site was followed by RT dissociation and rebinding at the -7 cleavage site, and the dissociation and rebinding were enhanced when the M184V mutation was present. In contrast to the effect of M184V, the K65R mutation suppressed the excision activity of RT to the same extent on either an RNA or a DNA template and did not alter the RNase H cleavage pattern. Based on these results, we propose that enhanced RNase H cleavage near the primer terminus plays a role in M184V suppression of AZT resistance, while K65R suppression occurs through a different mechanism.
Collapse
|
10
|
Pandey N, Mishra CA, Manvar D, Upadhyay AK, Talele TT, Comollo TW, Kaushik-Basu N, Pandey VN. The glutamine side chain at position 91 on the β5a-β5b loop of human immunodeficiency virus type 1 reverse transcriptase is required for stabilizing the dNTP binding pocket. Biochemistry 2011; 50:8067-77. [PMID: 21800837 PMCID: PMC3204787 DOI: 10.1021/bi200815e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Earlier, we postulated that Gln91 of human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) stabilizes the side chain of Tyr183 via hydrogen bonding interaction between O(H) of Tyr183 and CO of Q91 [Harris, D., et al. (1998) Biochemistry 37, 9630-9640]. To test this hypothesis, we generated mutant derivatives of Gln91 and analyzed their biochemical properties. The efficiency of reverse transcription was severely impaired by nonconservative substitution of Gln with Ala, while conservative substitution of Gln with Asn resulted in an approximately 70% loss of activity, a value similar to that observed with the Y183F mutation. The loss of polymerase activity from both Q91A and Q91N was significantly improved by a Met to Val substitution at position 184. Curiously, the Q91N mutant exhibited stringency in discriminating between correct and incorrect nucleotides, suggesting its possible interaction with residues influencing the flexibility of the dNTP binding pocket. In contrast, both double mutants, Q91A/M184V and Q91N/M184V, are found to be as error prone as the wild-type enzyme. We propose a model that suggests that subtle structural changes in the region due to mutation at position 91 may influence the stability of the side chain of Tyr183 in the catalytic YMDD motif of the enzyme, thus altering the active site geometry that may interfere in substrate recognition.
Collapse
Affiliation(s)
- Nootan Pandey
- Department of Biochemistry and Molecular Biology, UMD-New Jersey Medical School 185 South Orange Ave Newark, NJ 07103
| | - Chaturbhuj A. Mishra
- Department of Biochemistry and Molecular Biology, UMD-New Jersey Medical School 185 South Orange Ave Newark, NJ 07103
| | - Dinesh Manvar
- Department of Biochemistry and Molecular Biology, UMD-New Jersey Medical School 185 South Orange Ave Newark, NJ 07103
| | - Alok K. Upadhyay
- Department of Biochemistry and Molecular Biology, UMD-New Jersey Medical School 185 South Orange Ave Newark, NJ 07103
| | - Tanaji T. Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439
| | - Thomas W. Comollo
- Department of Biochemistry and Molecular Biology, UMD-New Jersey Medical School 185 South Orange Ave Newark, NJ 07103
| | - Neerja Kaushik-Basu
- Department of Biochemistry and Molecular Biology, UMD-New Jersey Medical School 185 South Orange Ave Newark, NJ 07103
| | - Virendra N. Pandey
- Department of Biochemistry and Molecular Biology, UMD-New Jersey Medical School 185 South Orange Ave Newark, NJ 07103
| |
Collapse
|
11
|
Ibe S, Sugiura W. Clinical significance of HIV reverse-transcriptase inhibitor-resistance mutations. Future Microbiol 2011; 6:295-315. [PMID: 21449841 DOI: 10.2217/fmb.11.7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this article, we summarize recent knowledge on drug-resistance mutations within HIV reverse transcriptase (RT). Several large-scale HIV-1 genotypic analyses have revealed that the most prevalent nucleos(t)ide analog RT inhibitor (NRTI)-resistance mutation is M184V/I followed by a series of thymidine analog-associated mutations: M41L, D67N, K70R, L210W, T215Y/F and K219Q/E. Among non-nucleoside RT inhibitor (NNRTI)-resistance mutations, K103N was frequently observed, followed by Y181C and G190A. Interestingly, V106M was identified in HIV-1 subtype C as a subtype-specific multi-NNRTI-resistance mutation. Regarding mutations in the HIV-1 RT C-terminal region, including the connection subdomain and RNase H domain, their clinical impacts are still controversial, although their effects on NRTI and NNRTI resistance have been confirmed in vitro. In HIV-2 infections, the high prevalence of the Q151M mutation associated with multi-NRTI resistance has been frequently observed.
Collapse
Affiliation(s)
- Shiro Ibe
- Department of Infection & Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | | |
Collapse
|
12
|
Walsh AW, Langley DR, Colonno RJ, Tenney DJ. Mechanistic characterization and molecular modeling of hepatitis B virus polymerase resistance to entecavir. PLoS One 2010; 5:e9195. [PMID: 20169198 PMCID: PMC2820545 DOI: 10.1371/journal.pone.0009195] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 01/06/2010] [Indexed: 01/25/2023] Open
Abstract
Background Entecavir (ETV) is a deoxyguanosine analog competitive inhibitor of hepatitis B virus (HBV) polymerase that exhibits delayed chain termination of HBV DNA. A high barrier to entecavir-resistance (ETVr) is observed clinically, likely due to its potency and a requirement for multiple resistance changes to overcome suppression. Changes in the HBV polymerase reverse-transcriptase (RT) domain involve lamivudine-resistance (LVDr) substitutions in the conserved YMDD motif (M204V/I ± L180M), plus an additional ETV-specific change at residues T184, S202 or M250. These substitutions surround the putative dNTP binding site or primer grip regions of the HBV RT. Methods/Principal Findings To determine the mechanistic basis for ETVr, wildtype, lamivudine-resistant (M204V, L180M) and ETVr HBVs were studied using in vitro RT enzyme and cell culture assays, as well as molecular modeling. Resistance substitutions significantly reduced ETV incorporation and chain termination in HBV DNA and increased the ETV-TP inhibition constant (Ki) for HBV RT. Resistant HBVs exhibited impaired replication in culture and reduced enzyme activity (kcat) in vitro. Molecular modeling of the HBV RT suggested that ETVr residue T184 was adjacent to and stabilized S202 within the LVDr YMDD loop. ETVr arose through steric changes at T184 or S202 or by disruption of hydrogen-bonding between the two, both of which repositioned the loop and reduced the ETV-triphosphate (ETV-TP) binding pocket. In contrast to T184 and S202 changes, ETVr at primer grip residue M250 was observed during RNA-directed DNA synthesis only. Experimentally, M250 changes also impacted the dNTP-binding site. Modeling suggested a novel mechanism for M250 resistance, whereby repositioning of the primer-template component of the dNTP-binding site shifted the ETV-TP binding pocket. No structural data are available to confirm the HBV RT modeling, however, results were consistent with phenotypic analysis of comprehensive substitutions of each ETVr position. Conclusions Altogether, ETVr occurred through exclusion of ETV-TP from the dNTP-binding site, through different, novel mechanisms that involved lamivudine-resistance, ETV-specific substitutions, and the primer-template.
Collapse
Affiliation(s)
- Ann W. Walsh
- Research and Development, Bristol-Myers Squibb Inc., Wallingford, Connecticut, United States of America
| | - David R. Langley
- Research and Development, Bristol-Myers Squibb Inc., Wallingford, Connecticut, United States of America
- * E-mail: (DRL); (DJT)
| | - Richard J. Colonno
- Research and Development, Bristol-Myers Squibb Inc., Wallingford, Connecticut, United States of America
| | - Daniel J. Tenney
- Research and Development, Bristol-Myers Squibb Inc., Wallingford, Connecticut, United States of America
- * E-mail: (DRL); (DJT)
| |
Collapse
|
13
|
Hartl MJ, Mayr F, Rethwilm A, Wöhrl BM. Biophysical and enzymatic properties of the simian and prototype foamy virus reverse transcriptases. Retrovirology 2010; 7:5. [PMID: 20113504 PMCID: PMC2835651 DOI: 10.1186/1742-4690-7-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 01/29/2010] [Indexed: 11/28/2022] Open
Abstract
Background The foamy virus Pol protein is translated independently from Gag using a separate mRNA. Thus, in contrast to orthoretroviruses no Gag-Pol precursor protein is synthesized. Only the integrase domain is cleaved off from Pol resulting in a mature reverse transcriptase harboring the protease domain at the N-terminus (PR-RT). Although the homology between the PR-RTs from simian foamy virus from macaques (SFVmac) and the prototype foamy virus (PFV), probably originating from chimpanzee, exceeds 90%, several differences in the biophysical and biochemical properties of the two enzymes have been reported (i.e. SFVmac develops resistance to the nucleoside inhibitor azidothymidine (AZT) whereas PFV remains AZT sensitive even if the resistance mutations from SFVmac PR-RT are introduced into the PFV PR-RT gene). Moreover, contradictory data on the monomer/dimer status of the foamy virus protease have been published. Results We set out to purify and directly compare the monomer/dimer status and the enzymatic behavior of the two wild type PR-RT enzymes from SFVmac and PFV in order to get a better understanding of the protein and enzyme functions. We determined kinetic parameters for the two enzymes, and we show that PFV PR-RT is also a monomeric protein. Conclusions Our data show that the PR-RTs from SFV and PFV are monomeric proteins with similar biochemical and biophysical properties that are in some aspects comparable with MLV RT, but differ from those of HIV-1 RT. These differences might be due to the different conditions the viruses are confronted with in dividing and non-dividing cells.
Collapse
Affiliation(s)
- Maximilian J Hartl
- Universität Bayreuth, Lehrstuhl für Struktur und Chemie der Biopolymere & Research, Center for Biomacromolecules, 95440 Bayreuth, Germany
| | | | | | | |
Collapse
|
14
|
Ly JK, Margot NA, MacArthur HL, Hung M, Miller MD, White KL. The balance between NRTI discrimination and excision drives the susceptibility of HIV-1 RT mutants K65R, M184V and K65r+M184V. Antivir Chem Chemother 2008; 18:307-16. [PMID: 18320935 DOI: 10.1177/095632020701800603] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The HIV-1 reverse transcriptase (RT) resistance mutations K65R and M184V occur individually and in combination, and can contribute to decreased treatment responses in patients. In order to understand how these mutations interact with one another to confer drug resistance, the susceptibilities and underlying resistance mechanisms of these mutants to nucleoside RT inhibitors (NRTIs) were determined. Virus carrying K65R have reduced susceptibility to most NRTIs, but retain full susceptibility to zidovudine (AZT). M184V mutants have reduced susceptibility to lamivudine (3TC), emtricitabine (FTC) and didanosine (ddl), and contribute to reduced susceptibility to abacavir; however, they remain fully susceptible to tenofovir (TFV), AZT and stavudine (d4T). In cell culture, the K65R+M184V virus showed slightly increased susceptibility to TFV, AZT and d4T compared with K65R alone, but showed further decreases in susceptibility to 3TC, FTC, ddl and abacavir. There are two major biochemical mechanisms of resistance: altered NRTI binding/incorporation and altered NRTI excision after incorporation. For most NRTIs, the primary mechanism of resistance by K65R, M184V and K65R+M184V mutant RTs is to disrupt the NRTI-binding/incorporation steps. In the case of AZT, however, decreased binding/incorporation by K65R and K65R+M184V was counteracted by decreased AZT excision resulting in wild-type susceptibility. For TFV, decreased excision by K65R and K65R+M184V may partially counteract the K65R-driven decrease in incorporation relative to wild-type resulting in only low levels of TFV resistance. The K65R-mediated effect on decreasing NRTI excision was stronger than for M184V. These studies show that both mechanisms of resistance (binding/incorporation and excision) must be considered when defining resistance mechanisms.
Collapse
Affiliation(s)
- John K Ly
- Gilead Sciences, Inc, Foster City, CA, USA
| | | | | | | | | | | |
Collapse
|
15
|
Gao L, Hanson MN, Balakrishnan M, Boyer PL, Roques BP, Hughes SH, Kim B, Bambara RA. Apparent defects in processive DNA synthesis, strand transfer, and primer elongation of Met-184 mutants of HIV-1 reverse transcriptase derive solely from a dNTP utilization defect. J Biol Chem 2008; 283:9196-205. [PMID: 18218634 DOI: 10.1074/jbc.m710148200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The 2',3'-dideoxy-3'-thiacytidine drug-resistant M184I HIV-1 reverse transcriptase (RT) has been shown to synthesize DNA with decreased processivity compared with the wild-type RT. M184A displays an even more severe processivity defect. However, the basis of this decreased processivity has been unclear, and both primer-template binding and dNTP interaction defects have been proposed to account for it. In this study, we show that the altered properties of the M184I and M184A RT mutants that we have measured, including decreased processivity, a slower rate of primer extension, and increased strand transfer activity, can all be explained by a defect in dNTP utilization. These alterations are observed only at low dNTP concentration and vanish as the dNTP concentration is raised. The mutant RTs exhibit a normal dissociation rate from a DNA primer-RNA template while paused during synthesis. Slower than normal synthesis at physiological dNTP concentration, coupled with normal dissociation from the primer-template, results in the lowered processivity. The mutant RTs exhibit normal DNA 3'-end-directed and RNA 5'-end-directed ribonuclease H activity. The reduced rate of DNA synthesis causes an increase in the ratio of ribonuclease H to polymerase activity thereby promoting increased strand transfer. These latter results are consistent with an observed higher rate of recombination by HIV-1 strains with Met-184 mutations.
Collapse
Affiliation(s)
- Lu Gao
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Matamoros T, Kim B, Menéndez-Arias L. Mechanistic insights into the role of Val75 of HIV-1 reverse transcriptase in misinsertion and mispair extension fidelity of DNA synthesis. J Mol Biol 2007; 375:1234-48. [PMID: 18155043 DOI: 10.1016/j.jmb.2007.11.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 11/06/2007] [Accepted: 11/07/2007] [Indexed: 10/22/2022]
Abstract
The side chain of Val75 stabilizes the fingers subdomain of the human immunodeficiency virus type 1 reverse transcriptase (RT), while its peptide backbone interacts with the single-stranded DNA template (at nucleotide +1) and with the peptide backbone of Gln151. Specific DNA polymerase activities of mutant RTs bearing amino acid substitutions at position 75 (i.e., V75A, V75F, V75I, V75L, V75M, V75S and V75T) were relatively high. Primer extension experiments carried out in the absence of one deoxyribonucleoside-triphosphate suggested that mutations did not affect the accuracy of the RT, except for V75A, V75F, V75I, and to a lesser extent V75T. The fidelity of RTs bearing mutations V75F and V75I increased 1.8- and 3-fold, respectively, as measured by the M13 lacZ alpha forward mutation assay, while V75A showed 1.4-fold decreased accuracy. Steady- and pre-steady-state kinetics demonstrated that the increased fidelity of V75I and V75F was related to their decreased ability to extend mismatched template-primers, while misincorporation efficiencies were not significantly affected by mutations. The increased mispair extension fidelity of mutant V75I RT could be attributed to the nucleotide affinity loss, observed in reactions with mismatched template-primers. Altogether, these data suggest that Val75 interactions with the 5' template overhang are important determinants of fidelity.
Collapse
Affiliation(s)
- Tania Matamoros
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | |
Collapse
|
17
|
Feng JY, Myrick FT, Margot NA, Mulamba GB, Rimsky L, Borroto-Esoda K, Selmi B, Canard B. Virologic and enzymatic studies revealing the mechanism of K65R- and Q151M-associated HIV-1 drug resistance towards emtricitabine and lamivudine. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2006; 25:89-107. [PMID: 16440988 DOI: 10.1080/15257770500379157] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Emtricitabine (FTC) and lamivudine (3TC) are deoxycytidine analogues with potent and selective inhibition of human immunodeficiency virus (HIV) and hepatitis B virus (HBV) replication. The K65R mutation in the HIV reverse transcriptase (RT) confers reduced susceptibility to 3TC, ddC, ddI, abacavir, and tenofovir in vitro. The Q151M mutation confers reduced susceptibility to many of the approved anti-HIV nucleoside analogues with the exception of 3TC and tenofovir. The double mutation K65R/Q151M has been shown to be more resistant to many NRTIs than either of the single mutations alone. In this study, we measured the antiviral activity of FTC and 3TC against HIV-1 containing K65R, Q151M, and K65R/Q151M mutations. We also studied the steady-state kinetic properties for the inhibition of dCTP incorporation by FTC 5'-triphosphate (TP) and 3TC-TP In addition, we measured the incorporation of dCTP, FTC-TP, and 3TC-TP into a random sequence DNA/DNA primer/template by the HIV-1 RTs using pre-steady-state kinetic analysis. Finally, we studied the incorporation of these deoxycytidine analogues into a HIV-1 genomic DNA/DNA primer/template by K65R HIV-1 RT to address certain concerns associated with DNA sequence specificity. Overall, this study demonstrated that K65R and K65R/Q151M related drug resistance to FTC and 3TC was mainly due to a significant decrease in the rate of incorporation. There was little to no effect on the binding affinities of the mutant HIV-1 RTs for the deoxycytidine analogues. The Q151M mutation remained sensitive to both FTC and 3TC in both cell culture and enzymatic assays. At a molecular level, FTC-TP was incorporated at least as efficiently as 3TC-TP for all of the HIV-1 RT and primer/templates tested.
Collapse
Affiliation(s)
- Joy Y Feng
- Gilead Sciences, Inc., Durham, North Carolina, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Saag MS. Emtricitabine, a new antiretroviral agent with activity against HIV and hepatitis B virus. Clin Infect Dis 2005; 42:126-31. [PMID: 16323102 DOI: 10.1086/498348] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 08/02/2005] [Indexed: 11/04/2022] Open
Abstract
Emtricitabine (FTC) is a new nucleoside agent that has activity against both human immunodeficiency virus (HIV) and hepatitis B virus. It is very similar to lamivudine (3TC) with respect to its activity, convenience, and safety and resistance profile. Indeed, with the exception of the longer intracellular half-life of triphosphate FTC, there is little to distinguish between the 2 drugs. Clinical trials comparing FTC with 3TC as part of a triple-drug regimen have demonstrated their equivalence, whereas a study comparing activity of FTC with that of stavudine demonstrated FTC's superiority. In clinical practice, the choice of 3TC versus FTC will most likely be made in the context of drugs coformulated with them. Although FTC is not formally approved for use in patients coinfected with HIV and hepatitis B virus, it is often a preferred choice for such patients when combined with tenofovir, which also has anti-hepatitis B virus activity. Recent treatment guidelines for the treatment of HIV infection by both the International AIDS Society-USA and US Department of Health and Human Services have placed FTC in combination with tenofovir, didanosine, or zidovudine in the preferred category of nucleoside backbone regimens for patients receiving antiretroviral therapy.
Collapse
Affiliation(s)
- Michael S Saag
- Division of Infectious Disease, Department of Medicine, University of Alabama, Birmingham, AL 39294-2050, USA.
| |
Collapse
|
19
|
Miranda LR, Götte M, Liang F, Kuritzkes DR. The L74V mutation in human immunodeficiency virus type 1 reverse transcriptase counteracts enhanced excision of zidovudine monophosphate associated with thymidine analog resistance mutations. Antimicrob Agents Chemother 2005; 49:2648-56. [PMID: 15980332 PMCID: PMC1168711 DOI: 10.1128/aac.49.7.2648-2656.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thymidine analog mutations (TAMs) in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) confer resistance to zidovudine (AZT) by increasing the rate of ATP-dependent phosphorolysis of the terminal nucleotide monophosphate (primer unblocking). By contrast, the L74V mutation, which confers resistance to didanosine, sensitizes HIV-1 to AZT and partially restores AZT susceptibility when present together with one or more TAMs. To compare rates of primer unblocking in RTs carrying different clusters of TAMs and to explore the biochemical mechanism by which L74V affects AZT susceptibility, ATP-mediated rescue of AZT-blocked DNA synthesis was assayed using a series of purified recombinant RTs. Rates of primer unblocking were higher in the 67N/70R/219Q RT than in the 41L/210W/215Y enzyme and were similar to rates observed with an RT carrying six TAMs (41L/67N/70R/210W/215Y/219Q). The presence of 74V in an otherwise wild-type RT reduced the rate of primer unblocking to a degree similar to that observed with the M184V mutation for lamivudine resistance, which also sensitizes HIV-1 to AZT. Introduction of 74V into RTs carrying TAMs partially counteracted the effect of TAMs on the rate of primer unblocking. The effect of 74V was less marked than that of the 184V mutation in the 67N/70R/219Q and 41L/210W/215Y RTs but similar in the RT carrying six TAMs. These results demonstrate that L74V enhances AZT susceptibility by reducing the extent of its removal by ATP-dependent phosphorolysis and provides further evidence for a common mechanism by which mutations conferring resistance to didanosine and lamivudine sensitize HIV-1 to AZT.
Collapse
Affiliation(s)
- Luis R Miranda
- Section of Retroviral Therapeutics, Brigham and Women's Hospital, and Division of AIDS, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
20
|
Zhang W, Mauldin JK, Schmiedt CW, Brockus CW, Boudinot FD, McCrackin SMA. Pharmacokinetics of lamivudine in cats. Am J Vet Res 2004; 65:841-6. [PMID: 15198226 DOI: 10.2460/ajvr.2004.65.841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Objective—To characterize the pharmacokinetics of
lamivudine (3TC) in cats.
Animals—6 sexually intact 9-month-old barrier-reared
domestic shorthair cats.
Procedure—Cats were randomly alloted into 3
groups, and lamivudine (25 mg/kg) was administered
IV, intragastrically (IG), and PO in a 3-way crossover
study design with 2-week washout periods between
experiments. Plasma samples were collected for 12
hours after drug administration, and lamivudine concentrations
were determined by high-performance liquid
chromatography. Maximum plasma concentrations
(Cmax), time to reach Cmax (Tmax), and bioavailability
were compared between IG and PO routes.
Area under the curve (AUC) and terminal phase halflife
(t½) among the 3 administration routes were also
compared.
Results—Plasma concentrations of lamivudine
declined rapidly with a t½ of 1.9 ± 0.21 hours, 2.6 ±
0.66 hours, and 2.7 ± 1.50 hours after IV, IG, and PO
administration, respectively. Total body clearance and
steady-state volume of distribution were 0.22 ± 0.09
L/h/kg and 0.60 ± 0.22 L/kg, respectively. Mean Tmax
for IG administration (0.5 hours) was significantly
shorter than Tmax for PO administration (1.1 hours).
The AUC after IV, IG, and PO administration was 130
± 55.2 mg·h/L, 115 ± 97.5 mg·h/L, and 106 ± 94.9
mg·h/L, respectively. Lamivudine was well absorbed
after IG and PO administration with bioavailability values
of 88 ± 45% and 80 ± 52%, respectively.
Conclusions and Clinical Relevance—Cats had a
shorter t½ but slower total clearance of lamivudine,
compared with humans. Plasma concentrations of
lamivudine were maintained above the minimum
effective concentration for inhibiting FIV replication by
50% (0.14µM [0.032 µg/mL] for wild-type FIV clinical
isolate) for at least 12 hours after IV, IG, or PO administration.
(Am J Vet Res 2004;65:841–846)
Collapse
Affiliation(s)
- Weijiang Zhang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602-7390, USA
| | | | | | | | | | | |
Collapse
|
21
|
Selmi B, Deval J, Boretto J, Canard B. Nucleotide Analogue Binding, Catalysis and Primer Unblocking in the Mechanisms of HIV-1 Reverse Transcriptase-Mediated Resistance to Nucleoside Analogues. Antivir Ther 2003. [DOI: 10.1177/135965350300800209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nucleoside analogues play a key role in the fight against HIV-1. Unfortunately, under therapeutic pressure, HIV-1 inevitably develops resistance to these inhibitors. This resistance correlates with specific pol gene mutations giving rise to specific substitutions in reverse transcriptase that are responsible for the loss of efficacy of the corresponding analogue. This work is an overview of the molecular mechanisms of HIV-1 drug resistance as judged by the analysis of chemical reactions at play at the reverse transcriptase active site. One class of mechanism involves nucleotide analogue discrimination either at the binding step or at the catalytic step, the latter being by far the most common mechanism. The other class of mechanism involves repair of the analogue-terminated DNA chain. The mechanisms were elucidated using purified reverse transcriptase and biochemical assays aimed at correlating resistant HIV-1 phenotypes to enzymatic data. The elucidation of these molecular mechanisms of drug-resistant reverse transcriptase is important for effective and rational combination therapies as well as for the conception of second-generation drugs that do not confer nucleotide resistance to reverse transcriptase or are active against pre-existing resistant viruses.
Collapse
Affiliation(s)
- Boulbaba Selmi
- Centre National de la Recherche Scientifique et Université d'Aix-Marseille I and II, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, ESIL-Case 925, 163 avenue de Luminy, 13288 Marseille cedex 9, France
| | - Jérôme Deval
- Centre National de la Recherche Scientifique et Université d'Aix-Marseille I and II, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, ESIL-Case 925, 163 avenue de Luminy, 13288 Marseille cedex 9, France
| | - Joëlle Boretto
- Centre National de la Recherche Scientifique et Université d'Aix-Marseille I and II, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, ESIL-Case 925, 163 avenue de Luminy, 13288 Marseille cedex 9, France
| | - Bruno Canard
- Centre National de la Recherche Scientifique et Université d'Aix-Marseille I and II, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, ESIL-Case 925, 163 avenue de Luminy, 13288 Marseille cedex 9, France
| |
Collapse
|
22
|
Menéndez-Arias L. Molecular basis of fidelity of DNA synthesis and nucleotide specificity of retroviral reverse transcriptases. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 71:91-147. [PMID: 12102562 DOI: 10.1016/s0079-6603(02)71042-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Reverse transcription involves the conversion of viral genomic RNAinto proviral double-stranded DNA that integrates into the host cell genome. Cellular DNA polymerases replicate the integrated viral DNA and RNA polymerase II transcribes the proviral DNA into RNA genomes that are packaged into virions. Although mutations can be introduced at any of these replication steps, reverse transcriptase (RT) errors play a major role in retroviral mutation. This review summarizes our current knowledge on fidelity of reverse transcriptases. Estimates of retroviral mutation rates or fidelity of retroviral RTs are discussed in the context of the different techniques used for this purpose (i.e., retroviral vectors replicated in culture, misinsertion and mispair extension fidelity assay, etc.). In vitro fidelity assays provide information on the RT's accuracy during the elongation reaction of DNA synthesis. In addition, other steps such as initiation of reverse transcription, or strand transfer, and factors including viral proteins such as Vpr [in the case of the human immunodeficiency virus type 1 (HIV-1)] have been shown to influence fidelity. A comprehensive description of the effect of amino acid substitutions on the fidelity of HIV-1 RT is presented. Published data point to certain dNTP-binding residues, as well as to various amino acids involved in interactions with the template or the primer strand, and to residues in the minor groove-binding track as major components of the fidelity center of retroviral RTs. Implications of these studies include the design of novel therapeutic strategies leading to virus extinction, by increasing the viral mutation rate beyond a tolerable threshold.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Spain
| |
Collapse
|
23
|
Preclinical and clinical development of the anti-HIV, anti-HBV oxathiolane nucleoside analog emtricitabine. FRONTIERS IN VIRAL HEPATITIS 2003. [PMCID: PMC7155727 DOI: 10.1016/b978-044450986-4/50088-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three classes of drugs are available to treat patients infected with human immunodeficiency virus (HIV) : the nucleoside reverse transcriptase inhibitors (NRTI), the nonnucleoside reverse transcriptase inhibitors (NNRTI), and the protease inhibitors (PI). Emtricitabine represents one of the most potent anti-HIV agents identified to date, producing two log10 drop in viral load as monotherapy at a 200 mg qd dose as the affected individual became susceptible to opportunistic infections and specific immune deficiency resulting from the depletion of CD4+ lymphocytes. The clinical profile of emtricitabine discussed in this chapter demonstrated (1) a plasma half-life of 8-10 hours with linear kinetics, (2) an intracellular emtricitabine 5’-triphosphate half-life greater than 39 hours that supports daily dosing, (3) no significant drug–drug interactions that limits the use of emtricitabine in combination therapy, (4) comparable safety and efficacy to lamivudine, and (5) low incidence of Ml84V mutations. This important observation suggests that emtricitabine can increase the durability of oxathiolane nucleoside analog-containing drug regimens. Hepatitis B virus (HBV) constitutes a major worldwide health threat, as the clinical development program is just entering the pivotal phase. Emtricitabine can be an extremely important drug for the treatment of patients coinfected with HIV and HBV.
Collapse
|
24
|
White KL, Margot NA, Wrin T, Petropoulos CJ, Miller MD, Naeger LK. Molecular mechanisms of resistance to human immunodeficiency virus type 1 with reverse transcriptase mutations K65R and K65R+M184V and their effects on enzyme function and viral replication capacity. Antimicrob Agents Chemother 2002; 46:3437-46. [PMID: 12384348 PMCID: PMC128721 DOI: 10.1128/aac.46.11.3437-3446.2002] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) resistance mutations K65R and M184V result in changes in susceptibility to several nucleoside and nucleotide RT inhibitors. K65R-containing viruses showed decreases in susceptibility to tenofovir, didanosine (ddI), abacavir, and (-)-beta-D-dioxolane guanosine (DXG; the active metabolite of amdoxovir) but appeared to be fully susceptible to zidovudine and stavudine in vitro. Viruses containing the K65R and M184V mutations showed further decreases in susceptibility to ddI and abacavir but increased susceptibility to tenofovir compared to the susceptibilities of viruses with the K65R mutation. Enzymatic and viral replication analyses were undertaken to elucidate the mechanisms of altered drug susceptibilities and potential fitness defects for the K65R and K65R+M184V mutants. The relative inhibitory capacities (K(i)/K(m)) of the active metabolites of tenofovir, ddI, and DXG were increased for the RT containing the K65R mutation compared to that for the wild-type RT, but the relative inhibitory capacity of abacavir was only minimally increased. For the mutant viruses with the K65R and M184V mutations, the increase in tenofovir susceptibility compared to that of the mutants with K65R correlated with a decrease in the tenofovir inhibitory capacity that was mediated primarily by an increased K(m) of dATP. The decrease in susceptibility to ddI by mutants with the K65R and M184V mutations correlated with an increase in the inhibitory capacity mediated by an increased K(i). ATP-mediated removal of carbovir as well as small increases in the inhibitory capacity of carbovir appear to contribute to the resistance of mutants with the K65R mutation and the mutants with the K65R and M184V mutations to abacavir. Finally, both the HIV-1 K65R mutant and, more notably, the HIV-1 K65R+M184V double mutant showed reduced replication capacities and reduced RT processivities in vitro, consistent with a potential fitness defect in vivo and the low prevalence of the K65R mutation among isolates from antiretroviral agent-experienced patients.
Collapse
Affiliation(s)
- Kirsten L White
- Gilead Sciences, Foster City, California 94404. ViroLogic, Inc., South San Francisco, California 94080, USA
| | | | | | | | | | | |
Collapse
|
25
|
Isel C, Ehresmann C, Walter P, Ehresmann B, Marquet R. The emergence of different resistance mechanisms toward nucleoside inhibitors is explained by the properties of the wild type HIV-1 reverse transcriptase. J Biol Chem 2001; 276:48725-32. [PMID: 11668180 DOI: 10.1074/jbc.m108352200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleoside reverse transcriptase inhibitors (NRTIs) represent one of the main drug families used against AIDS. Once incorporated in DNA, they act as chain terminators, due to the lack of a 3'-hydroxyl group. As for the other anti-human immunodeficiency virus type 1 drugs, their efficiency is limited by the emergence of resistant viral strains. Unexpectedly, previous studies indicated that resistance toward NRTIs is achieved via two distinct and generally exclusive mechanisms. Resistance mutations either decrease the efficiency of NRTIs incorporation or increase their excision from the extended primer. To understand the emergence of different resistance mechanisms toward a single inhibitor class, we compared the incorporation and the pyrophosphorolysis of several NRTIs using wild type reverse transcriptase (WT RT). We found that the efficiency of discrimination or excision by pyrophosphorolysis in the presence of nucleotides of a given NRTI is a key determinant in the emergence of one or the other resistance pathway. Indeed, our results suggest that the pathway by which RT become resistant toward a given NRTI can be predicted by studying the inhibition of WT RT, because the resistance mutations do not confer new properties to the mutant enzyme, but rather exacerbate pre-existing properties of the WT enzyme. They also help to understand the low cross-resistance toward d4T observed with the 3'-azido-3'-deoxythymidine (AZT or zidovudine)-resistant RT.
Collapse
Affiliation(s)
- C Isel
- UPR9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, Strasbourg 67084 cedex, France.
| | | | | | | | | |
Collapse
|
26
|
Boyer PL, Gao HQ, Clark PK, Sarafianos SG, Arnold E, Hughes SH. YADD mutants of human immunodeficiency virus type 1 and Moloney murine leukemia virus reverse transcriptase are resistant to lamivudine triphosphate (3TCTP) in vitro. J Virol 2001; 75:6321-8. [PMID: 11413298 PMCID: PMC114354 DOI: 10.1128/jvi.75.14.6321-6328.2001] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When human immunodeficiency virus type 1 (HIV-1) is selected for resistance to 3TC, the methionine normally present at position 184 is replaced by valine or isoleucine. Position 184 is the X of the conserved YXDD motif; positions 185 and 186 form part of the triad of aspartic acids at the polymerase active site. Structural and biochemical analysis of 3TC-resistant HIV-1 reverse transcriptase (RT) led to a model in which a beta-branched amino acid at position 184 would act as a steric gate. Normal deoxynucleoside triphosphates (dNTPs) could still be incorporated; the oxathiolane ring of 3TCTP would clash with the beta branch of the amino acid at position 184. This model can also explain 3TC resistance in feline immunodeficiency virus and human hepatitis B virus. However, it has been reported (14) that murine leukemia viruses (MLVs) with valine (the amino acid present in the wild type), isoleucine, alanine, serine, or methionine at the X position of the YXDD motif are all resistant to 3TC. We prepared purified wild-type MLV RT and mutant MLV RTs with methionine, isoleucine, and alanine at the X position. The behavior of these RTs was compared to those of wild-type HIV-1 RT and of HIV-1 RT with alanine at the X position. If alanine is present at the X position, both MLV RT and HIV-1 RT are relatively resistant to 3TCTP in vitro. However, the mutant enzymes were impaired relative to their wild-type counterparts; there appears to be steric hindrance for both 3TCTP and normal dNTPs.
Collapse
Affiliation(s)
- P L Boyer
- HIV Drug Resistance Program, National Cancer Institute-FCRDC, Building 539, Frederick, MD 21702-1201, USA
| | | | | | | | | | | |
Collapse
|
27
|
McCrackin Stevenson MA, McBroom DG. In vitro characterization of FIV-pPPR, a pathogenic molecular clone of feline immunodeficiency virus, and two drug-resistant pol gene mutants. Am J Vet Res 2001; 62:588-94. [PMID: 11327469 DOI: 10.2460/ajvr.2001.62.588] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To compare in vitro replication kinetics and nucleoside analog susceptibilities of a natural feline immunodeficiency virus (FIV) isolate (FIV-Maxam), a molecular clone of FIV (FIV-pPPR), and two (-)-beta-L-2',3'-dideoxy-3'-thiacytidine- (3TC-) resistant mutants of FIV-pPPR. SAMPLE POPULATION Peripheral blood mononuclear cells (PBMC) from 4 specific-pathogenfree cats. PROCEDURE Two point mutations corresponding to mutations of human immunodeficiency virus type 1 (HIV-1) were engineered into the highly conserved YMDD motif of the reverse transcriptase- (RT-) encoding region of the FIV-pPPR pol gene. Replication kinetics and nucleoside analog susceptibilities of FIV-Maxam, FIV-pPPR, and the 2 mutant viruses were measured in vitro, using feline PBMC. RESULTS Replication kinetics and nucleoside analog susceptibilities were similar between FIV-Maxam and FIV-pPPR. However, FIV-Maxam was significantly more susceptible to 3TC. A methionine-to-valine mutation at codon 183 (M183V) of the RT-encoding region of the pol gene of FIV-pPPR conferred high-level phenotypic resistance to 3TC and cross-resistance to the related compound (-)-beta-L-2',3'-dideoxy-5-fluoro-3'-thiacytidine. CONCLUSIONS AND CLINICAL RELEVANCE Similarities between FIV-Maxam and FIV-pPPR suggest that results of studies performed using FIV-pPPR will have relevance to natural FIV infection in cats. In vitro evaluation of nucleoside analog susceptibilities of FIV-Maxam may help determine concentrations of nucleoside analogs required for effective treatment of FIV-infected cats. IMPACT FOR HUMAN MEDICINE 3TC resistance of FIV-pPPR M183V was similar in magnitude to that of HIV-1 M184V, a mutant described in infected humans treated with 3TC. Thus, FIV-pPPR M183V may be a useful model for studying the in vivo effects of 3TC resistance on lentivirus pathogenesis.
Collapse
MESH Headings
- Animals
- Antigens, Viral/analysis
- Antigens, Viral/biosynthesis
- Cats
- Cloning, Molecular
- DNA, Viral/chemistry
- Drug Resistance, Microbial/genetics
- Feline Acquired Immunodeficiency Syndrome/drug therapy
- Feline Acquired Immunodeficiency Syndrome/virology
- Female
- Genes, pol/genetics
- Immunodeficiency Virus, Feline/drug effects
- Immunodeficiency Virus, Feline/genetics
- Immunodeficiency Virus, Feline/physiology
- Kinetics
- Lamivudine/pharmacology
- Male
- Mutagenesis, Site-Directed
- Point Mutation
- Polymerase Chain Reaction/veterinary
- RNA-Directed DNA Polymerase/drug effects
- RNA-Directed DNA Polymerase/genetics
- RNA-Directed DNA Polymerase/metabolism
- Reverse Transcriptase Inhibitors/pharmacology
- Specific Pathogen-Free Organisms
- Virus Replication/physiology
Collapse
Affiliation(s)
- M A McCrackin Stevenson
- Division of Biological Sciences, College of Arts and Sciences, University of Montana, Missoula 59812, USA
| | | |
Collapse
|
28
|
Gao HQ, Boyer PL, Sarafianos SG, Arnold E, Hughes SH. The role of steric hindrance in 3TC resistance of human immunodeficiency virus type-1 reverse transcriptase. J Mol Biol 2000; 300:403-18. [PMID: 10873473 DOI: 10.1006/jmbi.2000.3823] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Treating HIV infections with drugs that block viral replication selects for drug-resistant strains of the virus. Particular inhibitors select characteristic resistance mutations. In the case of the nucleoside analogs 3TC and FTC, resistant viruses are selected with mutations at amino acid residue 184 of reverse transcriptase (RT). The initial change is usually to M184I; this virus is rapidly replaced by a variant carrying the mutation M184V. 3TC and FTC are taken up by cells and converted into 3TCTP and FTCTP. The triphosphate forms of these nucleoside analogs are incorporated into DNA by HIV-1 RT and act as chain terminators. Both of the mutations, M184I and M184V, provide very high levels of resistance in vivo; purified HIV-1 RT carrying M184V and M184I also shows resistance to 3TCTP and FTCTP in in vitro polymerase assays. Amino acid M184 is part of the dNTP binding site of HIV-1 RT. Structural studies suggest that the mechanism of resistance of HIV-1 RTs carrying the M184V or M184I mutation involves steric hindrance, which could either completely block the binding of 3TCTP and FTCTP or allow binding of these nucleoside triphosphate molecules but only in a configuration that would prevent incorporation. The available kinetic data are ambiguous: one group has reported that the primary effect of the mutations is at the level of 3TCTP binding; another, at the level of incorporation. We have approached this problem using assays that monitor the ability of HIV-1 RT to undergo a conformational change upon binding a dNTP. These studies show that both wild-type RT and the drug-resistant variants can bind 3TCTP at the polymerase active site; however, the binding to M184V and M184I is somewhat weaker and is sensitive to salt. We propose that the drug-resistant variants bind 3TCTP in a strained configuration that is salt-sensitive and is not catalytically competent.
Collapse
Affiliation(s)
- H Q Gao
- ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Frederick, MD 21702-1201, USA
| | | | | | | | | |
Collapse
|
29
|
Halvas EK, Svarovskaia ES, Freed EO, Pathak VK. Wild-type and YMDD mutant murine leukemia virus reverse transcriptases are resistant to 2',3'-dideoxy-3'-thiacytidine. J Virol 2000; 74:6669-74. [PMID: 10864683 PMCID: PMC112179 DOI: 10.1128/jvi.74.14.6669-6674.2000] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antiretroviral nucleoside analog 2',3'-dideoxy-3'-thiacytidine (3TC) is a potent inhibitor of wild-type human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT). A methionine-to-valine or methionine-to-isoleucine substitution at residue 184 in the HIV-1 YMDD motif, which is located at the RT active site, leads to a high level of resistance to 3TC. We sought to determine whether 3TC can inhibit the replication of wild-type murine leukemia virus (MLV), which contains V223 at the YVDD active site motif of the MLV RT, and of the V223M, V223I, V223A, and V223S mutant RTs. Surprisingly, the wild type and all four of the V223 mutants of MLV RT were highly resistant to 3TC. These results indicate that determinants outside the YVDD motif of MLV RT confer a high level of resistance to 3TC. Therefore, structural differences among similar RTs might result in widely divergent sensitivities to antiretroviral nucleoside analogs.
Collapse
Affiliation(s)
- E K Halvas
- Mary Babb Randolph Cancer Center and Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, USA
| | | | | | | |
Collapse
|
30
|
Cases-Gonzalez CE, Gutierrez-Rivas M, Ménendez-Arias L. Coupling ribose selection to fidelity of DNA synthesis. The role of Tyr-115 of human immunodeficiency virus type 1 reverse transcriptase. J Biol Chem 2000; 275:19759-67. [PMID: 10748215 DOI: 10.1074/jbc.m910361199] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The catalytic efficiency of incorporation of deoxyribonucleotides by wild-type human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) was around 100-fold higher than for dideoxyribonucleotides, in Mg(2+)-catalyzed reactions, and more than 10,000-fold higher than for nucleotides having a 2'-hydroxyl group in Mg(2+)- and Mn(2+)-catalyzed reactions. Mutant RTs with nonconservative substitutions affecting Tyr-115 (Y115V, Y115A, and Y115G) showed a dramatic reduction in their ability to discriminate against ribonucleotides in the presence of both cations. However, selectivity of deoxyribonucleotides versus ribonucleotides was not affected in mutants Y115W and F160W. The substitution of Tyr-115 with Val or Gly had no effect on discrimination against dideoxyribonucleotides, but these mutants were less efficient than the wild-type RT in discriminating against cordycepin 5'-triphosphate. We also show that Tyr-115 is involved in fidelity of DNA synthesis, but substitutions at this position have different effects depending on the metal cofactor used in the assays. In Mg(2+)-catalyzed reactions, removal of the side chain of Tyr-115 reduced misinsertion and mispair extension fidelity, while opposite effects were observed in Mn(2+)-catalyzed reactions. Our results indicate that the aromatic side chain of Tyr-115 plays a role as a "steric gate" preventing the incorporation of nucleotides with a 2'-hydroxyl group in a cation-independent manner, while its influence on fidelity could be modulated by Mg(2+) or Mn(2+).
Collapse
Affiliation(s)
- C E Cases-Gonzalez
- Centro de Biologia Molecular "Severo Ochoa," Consejo Superior de Investigaciones Cientificas-Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
31
|
Maury G. The enantioselectivity of enzymes involved in current antiviral therapy using nucleoside analogues: a new strategy? Antivir Chem Chemother 2000; 11:165-89. [PMID: 10901289 DOI: 10.1177/095632020001100301] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This review is primarily intended for synthetic bio-organic chemists and enzymologists who are interested in new strategies in the design of virus inhibitors. It is an attempt to assess the importance of the enzymatic properties of L-nucleosides and their analogues, particularly those that are active against viruses such as human immunodeficiency virus (HIV), hepatitis B virus (HBV), herpes simplex virus (HSV), etc. Only data obtained with purified enzymes have been considered and discussed. The examined enzymes include nucleoside- or nucleotide-phosphorylating enzymes, catabolic enzymes, viral target enzymes and cellular polymerases. The enantioselectivities of these enzymes were determined from existing data and are significant only when a sufficient number of enantiomeric pairs of substrates could be examined. The reported data emphasize the weak enantioselectivities of cellular or viral nucleoside kinases and some viral DNA polymerases. Thus, cellular deoxycytidine kinase has a considerably relaxed enantioselectivity with respect to a large number of nucleosides or their analogues, and it occupies a strategic position in the intracellular activation of the compounds. Similarly, HIV-1 reverse transcriptase often has a relatively weak enantioselectivity and can be inhibited by the 5-triphosphates of a large series of L-nucleosides and analogues. In contrast, degradation enzymes, such as adenosine or cytidine deaminases, generally demonstrate strict enantioselectivities favouring D-enantiomers and are used by chemists in asymmetric syntheses. The weak enantioselectivities of some enzymes involved in nucleoside metabolism are more or less pronounced, and one enantiomer or the other is favoured depending on the substrate. This suggests that the low enantioselectivity is fortuitous and does not result from evolutionary pressure, since these enzymes do not create or modify asymmetric centres in substrates. The combined enantioselectivities of the enzymes examined in this review strongly suggest that the field of L-nucleosides and their analogues should be systematically explored in the search for new virus inhibitors.
Collapse
Affiliation(s)
- G Maury
- UMR 5625 du CNRS, Université Montpellier II, France.
| |
Collapse
|
32
|
Abstract
Since the Human Immunodeficiency Virus Type 1 (HIV-1) was identified as the etiologic agent of the Acquired Immune Deficiency Syndrome (AIDS), the HIV-1 reverse transcriptase (RT) has been the subject of intensive study. The reverse transcription entails the transition of the single-stranded viral RNA into double-stranded proviral DNA, which is then integrated into the host chromosome. Therefore, the HIV-1 reverse transcriptase plays a pivotal role in the life cycle of the virus and is consequently an interesting target for anti-HIV drug therapy. In the first section, we describe the complex process of reverse transcription and the different activities involved in this process. We then highlight the structure-function relationship of the HIV-1 reverse transcriptase, which is of great importance for a better understanding of resistance development, a major problem in anti-AIDS therapies. Finally, we summarize the mechanisms of HIV resistance toward various RT inhibitors and the implications thereof for the current anti-HIV drug therapies.
Collapse
Affiliation(s)
- H Jonckheere
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
33
|
Klarmann GJ, Smith RA, Schinazi RF, North TW, Preston BD. Site-specific incorporation of nucleoside analogs by HIV-1 reverse transcriptase and the template grip mutant P157S. Template interactions influence substrate recognition at the polymerase active site. J Biol Chem 2000; 275:359-66. [PMID: 10617626 DOI: 10.1074/jbc.275.1.359] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studies of drug-resistant reverse transcriptases (RTs) reveal the roles of specific structural elements and amino acids in polymerase function. To characterize better the effects of RT/template interactions on dNTP substrate recognition, we examined the sensitivity of human immunodeficiency virus type 1 (HIV-1) RT containing a new mutation in a "template grip" residue (P157S) to the 5'-triphosphates of (-)-beta-2',3'-dideoxy-3'-thiacytidine (3TC), (-)-beta-2',3'-dideoxy-5-fluoro-3'-thiacytidine (FTC), and 3'-azido-3'-deoxythymidine (AZT). A primer extension assay was used to monitor quantitatively drug monophosphate incorporation opposite each of multiple target sites. Wild-type and P157S RTs had similar catalytic activities and processivities on heteropolymeric RNA and DNA templates. When averaged over multiple template sites, P157S RT was 2-7-fold resistant to the 5'-triphosphates of 3TC, FTC, and AZT. Each drug triphosphate inhibited polymerization more efficiently on the DNA template compared with an RNA template of identical sequence. Moreover, chain termination by 3TC and FTC was strongly influenced by template sequence context. Incorporation of FTC and 3TC monophosphate varied up to 10-fold opposite 7 different G residues in the DNA template, and the P157S mutation altered this site specificity. In summary, these data identify Pro(157) as an important residue affecting nucleoside analog resistance and suggest that interactions between RT and the template strand influence dNTP substrate recognition at the RT active site. Our findings are discussed within the context of the HIV-1 RT structure.
Collapse
Affiliation(s)
- G J Klarmann
- Department of Biochemistry, Eccles Institute of Human Genetics, Salt Lake City, Utah 84112, USA
| | | | | | | | | |
Collapse
|
34
|
Sarafianos SG, Das K, Clark AD, Ding J, Boyer PL, Hughes SH, Arnold E. Lamivudine (3TC) resistance in HIV-1 reverse transcriptase involves steric hindrance with beta-branched amino acids. Proc Natl Acad Sci U S A 1999; 96:10027-32. [PMID: 10468556 PMCID: PMC17836 DOI: 10.1073/pnas.96.18.10027] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
An important component of triple-drug anti-AIDS therapy is 2', 3'-dideoxy-3'-thiacytidine (3TC, lamivudine). Single mutations at residue 184 of the reverse transcriptase (RT) in HIV cause high-level resistance to 3TC and contribute to the failure of anti-AIDS combination therapy. We have determined crystal structures of the 3TC-resistant mutant HIV-1 RT (M184I) in both the presence and absence of a DNA/DNA template-primer. In the absence of a DNA substrate, the wild-type and mutant structures are very similar. However, comparison of crystal structures of M184I mutant and wild-type HIV-1 RT with and without DNA reveals repositioning of the template-primer in the M184I/DNA binary complex and other smaller changes in residues in the dNTP-binding site. On the basis of these structural results, we developed a model that explains the ability of the 3TC-resistant mutant M184I to incorporate dNTPs but not the nucleotide analog 3TCTP. In this model, steric hindrance is expected for NRTIs with beta- or L- ring configurations, as with the enantiomer of 3TC that is used in therapy. Steric conflict between the oxathiolane ring of 3TCTP and the side chain of beta-branched amino acids (Val, Ile, Thr) at position 184 perturbs inhibitor binding, leading to a reduction in incorporation of the analog. The model can also explain the 3TC resistance of analogous hepatitis B polymerase mutants. Repositioning of the template-primer as observed in the binary complex (M184I/DNA) may also occur in the catalytic ternary complex (M184I/DNA/3TCTP) and contribute to 3TC resistance by interfering with the formation of a catalytically competent closed complex.
Collapse
Affiliation(s)
- S G Sarafianos
- Center for Advanced Biotechnology and Medicine (CABM) and Rutgers University Chemistry Department, 679 Hoes Lane, Piscataway, NJ 08854-5638, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Smith RA, Klarmann GJ, Stray KM, von Schwedler UK, Schinazi RF, Preston BD, North TW. A new point mutation (P157S) in the reverse transcriptase of human immunodeficiency virus type 1 confers low-level resistance to (-)-beta-2',3'-dideoxy-3'-thiacytidine. Antimicrob Agents Chemother 1999; 43:2077-80. [PMID: 10428942 PMCID: PMC89420 DOI: 10.1128/aac.43.8.2077] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A P157S mutation in the reverse transcriptase (RT) of human immunodeficiency virus type 1 conferred fivefold resistance to (-)-beta-2',3'-dideoxy-3'-thiacytidine in cell culture. Interestingly, the P157S mutation resulted in increased sensitivity (two- to threefold) to 3'-azido-3'-deoxythymidine (AZT) and to (R)-9-(2-phosphonylmethoxypropyl)adenine (PMPA). A similar increase in susceptibility to AZT and to PMPA was also conferred by the M184V mutation in RT.
Collapse
Affiliation(s)
- R A Smith
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Gutiérrez-Rivas M, Ibáñez A, Martínez MA, Domingo E, Menéndez-Arias L. Mutational analysis of Phe160 within the "palm" subdomain of human immunodeficiency virus type 1 reverse transcriptase. J Mol Biol 1999; 290:615-25. [PMID: 10395818 DOI: 10.1006/jmbi.1999.2880] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The highly conserved Phe160 residue is located in the "palm" subdomain of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT), and makes contact with Tyr115, a residue which is involved in deoxynucleoside triphosphate (dNTP) binding and fidelity of DNA synthesis. Five mutant RTs having Tyr, Trp, Ile, Ala or Gln instead of Phe160 were obtained by site-directed mutagenesis. F160Y and F160W retained substantial DNA polymerase activity, whereas the catalytic efficiency of nucleotide incorporation of mutants F160I, F160A and F160Q was less than 10 % that of the wild-type RT, using poly(rA).oligo(dT)20 as the template-primer. The low catalytic efficiency of mutants F160I, F160A and F160Q was due to their lower affinity for the dNTP substrate. F160Y displayed similar kinetic parameters as the wild-type RT in nucleotide insertion assays carried out with heteropolymeric DNA/DNA template-primers. However, nucleotide affinity was two- to sixfold reduced in the case of mutant F160W. Fidelity assays revealed similar misinsertion and mispair extension ratios for the three enzymes, although F160W showed a slightly higher accuracy of DNA synthesis, particularly in the presence of high concentrations of dNTP. When introduced in an infectious proviral clone, mutations F160I, F160A and F160Q rendered non-viable virus. The importance of Phe160 for polymerase function and viral replication could be mediated by its interaction with Tyr115, as suggested by the analysis of the available crystal structures of HIV-1 RT.
Collapse
Affiliation(s)
- M Gutiérrez-Rivas
- Centro de Biología Molecular "Severo Ochoa", CSIC-Universidad Autónoma de Madrid, Cantoblanco 28049, Spain
| | | | | | | | | |
Collapse
|
37
|
Vandamme AM, Van Laethem K, De Clercq E. Managing resistance to anti-HIV drugs: an important consideration for effective disease management. Drugs 1999; 57:337-61. [PMID: 10193687 DOI: 10.2165/00003495-199957030-00006] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Current recommendations for the treatment of HIV-infected patients advise highly active antiretroviral therapy (HAART) consisting of combinations of 3 or more drugs to provide long-term clinical benefit. This is because only a complete suppression of virus replication will be able to prevent virus drug resistance, the main cause of drug failure. Virus drug resistance may remain a cause of concern in patients who have already received suboptimal mono- or bitherapy, or for patients who do not experience complete shut-down of virus replication under HAART. For these patients, replacement of one combination therapy regimen by another at drug failure, taking into account the existing resistance profile, will be needed. The development of new drugs will remain necessary for those patients who have failed to respond to all currently available drugs, as will be the institution of more effective and less toxic HAART regimens.
Collapse
Affiliation(s)
- A M Vandamme
- Rega Institute for Medical Research and University Hospitals, Katholieke Universiteit Leuven, Belgium.
| | | | | |
Collapse
|
38
|
Marx A, Spichty M, Amacker M, Schwitter U, Hübscher U, Bickle TA, Maga G, Giese B. Probing interactions between HIV-1 reverse transcriptase and its DNA substrate with backbone-modified nucleotides. CHEMISTRY & BIOLOGY 1999; 6:111-6. [PMID: 10021419 DOI: 10.1016/s1074-5521(99)80007-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND To gain a molecular understanding of a biochemical process, the crystal structure of enzymes that catalyze the reactions involved is extremely helpful. Often the question arises whether conformations obtained in this way appropriately reflect the reactivity of enzymes, however. Rates that characterize transitions are therefore compulsory experiments for the elucidation of the reaction mechanism. Such experiments have been performed for the reverse transcriptase of the type 1 human immunodeficiency virus (HIV-1 RT). RESULTS We have developed a methodology to monitor the interplay between HIV-1 RT and its DNA substrate. To probe the protein-DNA interactions, the sugar backbone of one nucleotide was modified by a substituent that influenced the efficiency of the chain elongation in a characteristic way. We found that strand elongation after incorporation of the modified nucleotide follows a discontinuous efficiency for the first four nucleotides. The reaction efficiencies could be correlated with the distance between the sugar substituent and the enzyme. The model was confirmed by kinetic experiments with HIV-1 RT mutants. CONCLUSIONS Experiments with HIV-1 RT demonstrate that strand-elongation efficiency using a modified nucleotide correlates well with distances between the DNA substrate and the enzyme. The functional group at the modified nucleotides acts as an 'antenna' for steric interactions that changes the optimal transition state. Kinetic experiments in combination with backbone-modified nucleotides can therefore be used to gain structural information about reverse transcriptases and DNA polymerases.
Collapse
Affiliation(s)
- A Marx
- Department of Chemistry, University of Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Tramontano E, Piras G, Mellors JW, Putzolu M, Bazmi HZ, La Colla P. Biochemical characterization of HIV-1 reverse transcriptases encoding mutations at amino acid residues 161 and 208 involved in resistance to phosphonoformate. Biochem Pharmacol 1998; 56:1583-9. [PMID: 9973178 DOI: 10.1016/s0006-2952(98)00206-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mutations at amino acid residues 161 (Q161L) and 208 (H208Y) of the reverse transcriptase (RT) have been identified in HIV-1 variants which are resistant to phosphonoformate (PFA). In the present study, we report on the biochemical properties of recombinant RTs (rRTs) carrying either one or both of the above mutations. We also report on their susceptibility to PFA and to nucleoside (NRTI) and non-nucleoside (NNRTI) RT inhibitors. Like the wild-type (wt) enzyme, mutant rRTs H208Y and Q161L/H208Y showed a preference for Mg2+ over Mn2+, whereas the Q161L rRT preferred Mn2+. The three mutant rRTs showed degrees of PFA resistance which differed according to the template-primer used, and steady-state kinetic studies revealed an inverse correlation between their degree of PFA resistance, affinity for deoxynucleoside triphosphates (dNTPs) and catalytic efficiency (kcat/Km ratio). These results indicated that HIV-1 rRTs bearing mutations at codons 161 and/or 208 had altered dNTP binding sites which led to a PFA-resistant phenotype. However, unlike the corresponding mutant viruses, which are hypersensitive to 3'-azido-3'-deoxythymidine (AZT), 11-cyclopropyl-5,-11-dihydro-4-methyl-6H-dipyridol[3,2-b:2',3',-e] diazepin-6-one (Nevirapine) and (+)-(5S)-4,5,6,7-tetrahydro-5-methyl-6-(3-methyl-2-butenyl)-imidazo[4,5, 1-jk][1,4]benzodiazepin-2(1H)-thione. (TIBO R82150), the mutant RTs Q161L and Q161L/H208Y were resistant to 3'-azido-3'-deoxythymidine triphosphate (AZTTP) and as susceptible as the wt enzyme to Nevirapine and TIBO R82150. Overall, these results suggest that codons 161 and 208 of the HIV-1 RT gene are involved in substrate binding as well as in NRTI recognition, and provide more insights into the mechanism by which HIV-1 becomes resistant to PFA.
Collapse
Affiliation(s)
- E Tramontano
- Dipartimento di Biologia Sperimentale, Sezione di Microbiologia, Universita di Cagliari, Italy.
| | | | | | | | | | | |
Collapse
|
40
|
Drosopoulos WC, Prasad VR. Increased misincorporation fidelity observed for nucleoside analog resistance mutations M184V and E89G in human immunodeficiency virus type 1 reverse transcriptase does not correlate with the overall error rate measured in vitro. J Virol 1998; 72:4224-30. [PMID: 9557711 PMCID: PMC109651 DOI: 10.1128/jvi.72.5.4224-4230.1998] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nucleoside analog-resistant variants of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) that displayed higher in vitro polymerase fidelity were previously identified via nucleotide insertion and mispair extension assays. To evaluate the contribution of increased nucleotide insertion and primer extension fidelities on the overall error rate of HIV-1 RT, we have measured the impact of two such mutations, E89G and M184V, on DNA copying fidelity in an M13 phage-based forward mutation assay. Using this assay, we observed mutation frequencies of 8.60 x 10(-3), 6.26 x 10(-3), 5.53 x 10(-3), and 12.30 x 10(-3) for wild-type, E89G, M184V, and double-mutant E89G/M184V HIV-1 RTs, respectively. Therefore, the overall polymerase fidelities of wild-type, E89G, M184V, and E89G/M184V HIV-1 RTs are similar (less than twofold differences) for DNA-dependent DNA synthesis. Thus, rather large increases in fidelity of deoxynucleoside triphosphate insertion and mispair extension observed previously appear not to influence the overall error rate of these mutants. However, a qualitative analysis of the mutations induced revealed significant differences in the mutational spectra between the wild-type and mutant enzymes.
Collapse
Affiliation(s)
- W C Drosopoulos
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
41
|
Vandamme AM, Van Vaerenbergh K, De Clercq E. Anti-human immunodeficiency virus drug combination strategies. Antivir Chem Chemother 1998; 9:187-203. [PMID: 9875399 DOI: 10.1177/095632029800900301] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
It is now generally accepted that mono- and bitherapy for human immunodeficiency virus type 1 (HIV-1) infection are only transiently efficient mainly due to virus drug resistance. To obtain a sustained benefit from antiviral therapy, current guidelines recommend at least triple-drug combinations, or the so-called highly active antiretroviral therapy (HAART). In some patients, HAART can be problematic, either because it is difficult to remain compliant or because previous suboptimum therapies have limited the choice of drugs. For compliant drug-naive patients, HAART should be able to offer long-term virus suppression, when changing from first- to second- to third-line HAART at drug failure. Long-term treatment might ultimately result in multi-drug resistant virus leaving few options for salvage therapy. HIV drug resistance testing to guide this salvage therapy and the development of new drugs to allow new options will therefore remain priorities in anti-HIV drug research.
Collapse
Affiliation(s)
- A M Vandamme
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Belgium.
| | | | | |
Collapse
|
42
|
Smith RA, Remington KM, Preston BD, Schinazi RF, North TW. A novel point mutation at position 156 of reverse transcriptase from feline immunodeficiency virus confers resistance to the combination of (-)-beta-2',3'-dideoxy-3'-thiacytidine and 3'-azido-3'-deoxythymidine. J Virol 1998; 72:2335-40. [PMID: 9499094 PMCID: PMC109533 DOI: 10.1128/jvi.72.3.2335-2340.1998] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mutants of feline immunodeficiency virus (FIV) resistant to (-)-beta-2',3'-dideoxy-3'-thiacytidine (3TC) were selected by culturing virus in the presence of increasing stepwise concentrations of 3TC. Two plaque-purified variants were isolated from the original mutant population, and both of these mutants were resistant to 3TC. Surprisingly, these mutants were also phenotypically resistant to 3'-azido-3'-deoxythymidine (AZT) and to the combination of 3TC and AZT. Purified reverse transcriptase (RT) from one of these plaque-purified mutants was resistant to the 5'-triphosphates of 3TC and AZT. DNA sequence analysis of the RT-encoding region of the pol gene amplified from the plaque-purified mutants revealed a Pro-to-Ser mutation at position 156 of RT. A site-directed mutant of FIV engineered to contain this Pro-156-Ser mutation was resistant to 3TC, AZT, and the combination of 3TC and AZT, confirming the role of the Pro-156-Ser mutation in the resistance of FIV to these two nucleoside analogs. This represents the first report of a lentiviral mutant resistant to the combination of AZT and 3TC due to a single, unique point mutation.
Collapse
Affiliation(s)
- R A Smith
- Division of Biological Sciences, the University of Montana, Missoula 59812, USA
| | | | | | | | | |
Collapse
|
43
|
Huang Y, Zhang L, Ho DD. Characterization of gag and pol sequences from long-term survivors of human immunodeficiency virus type 1 infection. Virology 1998; 240:36-49. [PMID: 9448687 DOI: 10.1006/viro.1997.8913] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We previously identified a group of 10 long-term survivors (LTS) of human immunodeficiency virus type 1 (HIV-1) infection. Extensive biological analysis revealed that some of these individuals do well, at least in part, because they possess weakened or attenuated viruses. Also, previously, to determine the genotype associated with the attenuated phenotype in vivo, we characterized nef, vif, vpr, vpu, env, and LTR in our cohort of LTS. In this study, we analyzed gag and pol genes derived from eight individuals in our cohort. For each subject multiple full-length gag and pol clones were obtained for analysis. In most cases, the sequences derived from the LTS had an intact open reading frame. At the protein level, there were no discernible differences between the sequences derived from LTS and those derived from patients with AIDS. Thus, no common defect in gag and pol was found in our cohort. One individual (subject SF), however, had only Gag-defective proviral sequences (10 of 10) in his peripheral blood mononuclear cells. Furthermore, longitudinal studies of the samples collected from SF over a 2-year period showed that all p17 gag clones sequenced (24 of 24) were defective due to G-to-A hypermutations. This viral defect in Gag may provide the molecular basis for this individual's extremely low viral load and long-term asymptomatic state. These results, together with previous findings in our LTS cohort, reinforce the notion that it is unlikely that a single common viral genetic determinant accounts for the lack of disease progression in all cases. Multiple host and viral factors undoubtedly contribute to the well-being of LTS of HIV-1 infection.
Collapse
MESH Headings
- Acquired Immunodeficiency Syndrome/physiopathology
- Acquired Immunodeficiency Syndrome/virology
- Amino Acid Sequence
- Base Sequence
- Cloning, Molecular
- DNA Primers
- Gene Products, gag/biosynthesis
- Gene Products, gag/chemistry
- Gene Products, gag/genetics
- Gene Products, pol/biosynthesis
- Gene Products, pol/chemistry
- Gene Products, pol/genetics
- Genes, gag
- Genes, pol
- Genotype
- HIV Antigens/biosynthesis
- HIV Antigens/chemistry
- HIV Antigens/genetics
- HIV-1/genetics
- HIV-1/isolation & purification
- Humans
- Leukocytes, Mononuclear/virology
- Molecular Sequence Data
- Phenotype
- Phylogeny
- Polymerase Chain Reaction
- Sequence Alignment
- Survivors
- Viral Proteins
- gag Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Y Huang
- Aaron Diamond AIDS Research Center, New York, New York, USA
| | | | | |
Collapse
|
44
|
Li Y, Zhang Z, Kang SM, Buescher JL, Morrow CD. Insights into the interaction between tRNA and primer binding site from characterization of a unique HIV-1 virus which stably maintains dual PBS complementary to tRNA(Gly) and tRNA(His). Virology 1997; 238:273-82. [PMID: 9400600 DOI: 10.1006/viro.1997.8837] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Previously our laboratory constructed an HIV-1 which stably maintained a primer binding site (PBS) complementary to tRNA(His) by mutating the region of the provirus within U5 postulated to interact with the anticodon of tRNA(His) (J. Wakefield, S-M Kang, and C. D. Morrow, 1996, J. Virol, 70, 966-975). From the analysis of the virus obtained after long-term culture, we identified an unusual proviral DNA in which the U5-PBS region contained a dual PBS complementary to tRNA(Gly) and tRNA(His), respectively, separated by a 21-nucleotide intervening sequence. To determine if this U5-PBS region containing the dual PBS would give rise to an infectious virus, the mutant U5-PBS containing the dual PBS was subcloned into an infectious HIV-1 proviral clone, pHXB2; the resultant proviral DNA was designated as pHXB2(Gly-His). Transfection of pHXB2(Gly-His) into cells gave rise to infectious virus. Analysis of the U5-PBS region revealed that the virus stably maintained the dual PBS rather than revert back to the wild-type PBS. In addition to genomes with the PBS complementary to tRNA(Gly) and tRNA(His), proviral genomes were identified after extended in vitro culture which contained dual PBS complementary to tRNA(Gly) and tRNA(Phe). To determine which PBS could be used for reverse transcription, we utilized an endogenous reverse transcription/PCR method which could discriminate (based on molecular size of the products) between the minus strand DNA initiated from the two PBSs. The results of this assay demonstrated that either the PBS complementary to tRNA(Gly) or tRNA(His) could be used for the initiation of reverse transcription. The results of our study highlight the complex interrelationship between U5-PBS and primer tRNA required for positioning the tRNA at the PBS and provides new insights into how the tRNA primer used to initiate reverse transcription is selected.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites
- COS Cells
- Cell Line, Transformed
- DNA, Viral/metabolism
- HIV Reverse Transcriptase/metabolism
- HIV-1/genetics
- HIV-1/metabolism
- HIV-1/pathogenicity
- HIV-1/physiology
- Humans
- Molecular Sequence Data
- Proviruses/genetics
- RNA/metabolism
- RNA, Complementary
- RNA, Transfer, Gly/metabolism
- RNA, Transfer, His/metabolism
- RNA, Viral/metabolism
- Transcription, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Y Li
- Department of Microbiology, University of Alabama at Birmingham 35294, USA
| | | | | | | | | |
Collapse
|
45
|
Li Y, Zhang Z, Wakefield JK, Kang SM, Morrow CD. Nucleotide substitutions within U5 are critical for efficient reverse transcription of human immunodeficiency virus type 1 with a primer binding site complementary to tRNA(His). J Virol 1997; 71:6315-22. [PMID: 9261348 PMCID: PMC191904 DOI: 10.1128/jvi.71.9.6315-6322.1997] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Sequence analysis of integrated proviruses of human immunodeficiency virus type 1 (HIV-1) which utilize tRNA(His) to initiate reverse transcription [virus derived from pHXB2(His-AC-TGT)] revealed five additional nucleotide substitutions in the U5 and primer binding site (PBS) regions (ATGAC for CCTGT at nucleotides 152, 160, 174, 181, and 200, respectively) (Z. Zhang et al., Virology 226:306-317, 1996). We constructed a mutant proviral genome [pHXB2(His-AC-GAC)] which contained the ATGAC substitutions to test if they represented a necessary adaptation by the virus for use of tRNA(His) to initiate reverse transcription. Viruses from pHXB2(His-AC-TGT) and pHXB2(His-AC-GAC) were infectious. Sequence analysis of the U5 and PBS regions of integrated provirus from a cell culture infected with virus derived from pHXB2(His-AC-TGT) revealed a G-to-A change in CCTGT at nucleotide 181 after limited in vitro culture, suggesting that this nucleotide change represented an adaptation by the virus to efficiently utilize tRNA(His) to initiate reverse transcription. To further address this possibility, we used a specific mutation in reverse transcriptase (RT), a methionine-to-valine change in the highly conserved YMDD amino acid motif of HIV-1 RT (M184V), which has been shown in previous studies to influence the fidelity and activity of the enzyme. The M184V RT mutation was cloned into pHXB2(His-AC-GAC) and pHXB2(His-AC-TGT). Virus derived from pHXB2(His-AC-GAC) with M184V RT had slightly delayed replication compared to the virus from pHXB2(His-AC-GAC) with wild-type RT; in contrast, virus from pHXB2(His-AC-TGT) with M184V RT was severely compromised in replication. Using an endogenous reverse transcription-PCR assay to analyze the reverse transcription of viruses obtained after transfection, we found that viruses derived from pHXB2(His-AC-GAC) with the wildtype RT were slightly faster in the initiation of reverse transcription than viruses with M184V RT. The initiation of reverse transcription was delayed in viruses derived from pHXB2(His-AC-TGT) with wild-type RT and M184V RT compared to viruses derived from pHXB2(His-AC-GAC). Finally, sequence analysis of U5 and PBS regions of proviruses from pHXB2(His-AC-GAC) with wild-type RT revealed considerably more nucleotide substitutions than in viruses derived from pHXB2(His-AC-GAC) containing the M184V mutation in RT after extended in vitro culture. Our studies point to a role for these additional nucleotide substitutions in U5 as an adaptation by the virus to utilize an alternative tRNA to initiate reverse transcription.
Collapse
Affiliation(s)
- Y Li
- Department of Microbiology, University of Alabama at Birmingham 35294, USA
| | | | | | | | | |
Collapse
|
46
|
Martín-Hernández AM, Gutiérrez-Rivas M, Domingo E, Menéndez-Arias L. Mispair extension fidelity of human immunodeficiency virus type 1 reverse transcriptases with amino acid substitutions affecting Tyr115. Nucleic Acids Res 1997; 25:1383-9. [PMID: 9060433 PMCID: PMC146587 DOI: 10.1093/nar/25.7.1383] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The role of Tyr115 of human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) in the mispair extension fidelity of DNA dependent DNA synthesis was analysed by using a series of 15 mutant enzymes with substitutions at Tyr115. Their kinetic parameters for elongation using homopolymeric RNA-DNA and heteropolymeric DNA-DNA complexes showed major effects of the amino acid substitutions on the Km value for dNTP. Enzymes with large hydrophobic residues at position 115 displayed lower Km values than enzymes with small and charged amino acids at this position. The influence of all these amino acid replacements in mispair extension fidelity assays was analyzed using three different mismatches (A:C, A:G and A:A) at the 3'-terminal position of the primer DNA. For the A:C mispair, a 2. 6-33.4-fold increase in mispair extension efficiency (fext) was observed as compared with the wild-type enzyme. Unexpectedly, all the mutants tested as well as the wild-type RT were very efficient in extending the A:G and A:A transversion mispairs. This effect was due to the template-primer sequence context and not to the buffer conditions of the assay. The data support a role of Tyr115 in accommodating the complementary nucleotide into the nascent DNA while polymerization takes place.
Collapse
Affiliation(s)
- A M Martín-Hernández
- Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain
| | | | | | | |
Collapse
|
47
|
Wilson JE, Porter DJ, Reardon JE. Inhibition of viral polymerases by chain-terminating substrates: a kinetic analysis. Methods Enzymol 1996; 275:398-424. [PMID: 9026652 DOI: 10.1016/s0076-6879(96)75024-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- J E Wilson
- Division of Biochemistry, Burroughs Wellcome Co., Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|