1
|
Chen Y, Cui H, Han Z, Xu L, Wang L, Zhang Y, Liu L. LINC00894 Regulates Cerebral Ischemia/Reperfusion Injury by Stabilizing EIF5 and Facilitating ATF4-Mediated Induction of FGF21 and ACOD1 Expression. Neurochem Res 2024; 49:2910-2925. [PMID: 39060766 PMCID: PMC11365926 DOI: 10.1007/s11064-024-04213-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
The non-coding RNA LINC00894 modulates tumor proliferation and drug resistance. However, its role in brain is still unclear. Using RNA-pull down combined with mass spectrometry and RNA binding protein immunoprecipitation, EIF5 was identified to interact with LINC00894. Furthermore, LINC00894 knockdown decreased EIF5 protein expression, whereas LINC00894 overexpression increased EIF5 protein expression in SH-SY5Y and BE(2)-M17 (M17) neuroblastoma cells. Additionally, LINC00894 affected the ubiquitination modification of EIF5. Adeno-associated virus (AAV) mediated LINC00894 overexpression in the brain inhibited the expression of activated Caspase-3, while increased EIF5 protein level in rats and mice subjected to transient middle cerebral artery occlusion reperfusion (MCAO/R). Meanwhile, LINC00894 knockdown increased the number of apoptotic cells and expression of activated Caspase-3, and its overexpression decreased them in the oxygen-glucose deprivation and reoxygenation (OGD/R) in vitro models. Further, LINC00894 was revealed to regulated ATF4 protein expression in condition of OGD/R and normoxia. LINC00894 knockdown also decreased the expression of glutamate-cysteine ligase catalytic subunit (GCLC) and ATF4, downregulated glutathione (GSH), and the ratio of GSH to oxidized GSH (GSH: GSSG) in vitro. By using RNA-seq combined with qRT-PCR and immunoblot, we identified that fibroblast growth factor 21 (FGF21) and aconitate decarboxylase 1 (ACOD1), as the ATF4 target genes were regulated by LINC00894 in the MCAO/R model. Finally, we revealed that ATF4 transcriptionally regulated FGF21 and ACOD1 expression; ectopic overexpression of FGF21 or ACOD1 in LINC00894 knockdown cells decreased activated Caspase-3 expression in the OGD/R model. Our results demonstrated that LINC00894 regulated cerebral ischemia injury by stabilizing EIF5 and facilitating EIF5-ATF4-dependent induction of FGF21 and ACOD1.
Collapse
Affiliation(s)
- Yifei Chen
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, No.1055, San Xiang Road, Suzhou, Jiangsu, 215004, China
- Department of Emergency Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, 225012, China
| | - Hengxiang Cui
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, Shanghai Mental Health Center, National Center for Mental Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhuanzhuan Han
- Department of Emergency Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, 225012, China
| | - Lei Xu
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Lin Wang
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, 225012, China
| | - Yuefei Zhang
- Department of Emergency Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, 225012, China
| | - Lijun Liu
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, No.1055, San Xiang Road, Suzhou, Jiangsu, 215004, China.
| |
Collapse
|
2
|
Gotoh S, Mori K, Fujino Y, Kawabe Y, Yamashita T, Omi T, Nagata K, Tagami S, Nagai Y, Ikeda M. eIF5 stimulates the CUG initiation of RAN translation of poly-GA dipeptide repeat protein (DPR) in C9orf72 FTLD/ALS. J Biol Chem 2024; 300:105703. [PMID: 38301895 PMCID: PMC10904283 DOI: 10.1016/j.jbc.2024.105703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024] Open
Abstract
Tandem GGGGCC repeat expansion in C9orf72 is a genetic cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Transcribed repeats are translated into dipeptide repeat proteins via repeat-associated non-AUG (RAN) translation. However, the regulatory mechanism of RAN translation remains unclear. Here, we reveal a GTPase-activating protein, eukaryotic initiation factor 5 (eIF5), which allosterically facilitates the conversion of eIF2-bound GTP into GDP upon start codon recognition, as a novel modifier of C9orf72 RAN translation. Compared to global translation, eIF5, but not its inactive mutants, preferentially stimulates poly-GA RAN translation. RAN translation is increased during integrated stress response, but the stimulatory effect of eIF5 on poly-GA RAN translation was additive to the increase of RAN translation during integrated stress response, with no further increase in phosphorylated eIF2α. Moreover, an alteration of the CUG near cognate codon to CCG or AUG in the poly-GA reading frame abolished the stimulatory effects, indicating that eIF5 primarily acts through the CUG-dependent initiation. Lastly, in a Drosophila model of C9orf72 FTLD/ALS that expresses GGGGCC repeats in the eye, knockdown of endogenous eIF5 by two independent RNAi strains significantly reduced poly-GA expressions, confirming in vivo effect of eIF5 on poly-GA RAN translation. Together, eIF5 stimulates the CUG initiation of poly-GA RAN translation in cellular and Drosophila disease models of C9orf72 FTLD/ALS.
Collapse
Affiliation(s)
- Shiho Gotoh
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kohji Mori
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Yuzo Fujino
- Department of Neurology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan; Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuya Kawabe
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomoko Yamashita
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tsubasa Omi
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kenichi Nagata
- Department of Precision Medicine for Dementia, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shinji Tagami
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshitaka Nagai
- Department of Neurology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
3
|
Anisimova AS, Kolyupanova NM, Makarova NE, Egorov AA, Kulakovskiy IV, Dmitriev SE. Human Tissues Exhibit Diverse Composition of Translation Machinery. Int J Mol Sci 2023; 24:8361. [PMID: 37176068 PMCID: PMC10179197 DOI: 10.3390/ijms24098361] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
While protein synthesis is vital for the majority of cell types of the human body, diversely differentiated cells require specific translation regulation. This suggests the specialization of translation machinery across tissues and organs. Using transcriptomic data from GTEx, FANTOM, and Gene Atlas, we systematically explored the abundance of transcripts encoding translation factors and aminoacyl-tRNA synthetases (ARSases) in human tissues. We revised a few known and identified several novel translation-related genes exhibiting strict tissue-specific expression. The proteins they encode include eEF1A1, eEF1A2, PABPC1L, PABPC3, eIF1B, eIF4E1B, eIF4ENIF1, and eIF5AL1. Furthermore, our analysis revealed a pervasive tissue-specific relative abundance of translation machinery components (e.g., PABP and eRF3 paralogs, eIF2B and eIF3 subunits, eIF5MPs, and some ARSases), suggesting presumptive variance in the composition of translation initiation, elongation, and termination complexes. These conclusions were largely confirmed by the analysis of proteomic data. Finally, we paid attention to sexual dimorphism in the repertoire of translation factors encoded in sex chromosomes (eIF1A, eIF2γ, and DDX3), and identified the testis and brain as organs with the most diverged expression of translation-associated genes.
Collapse
Affiliation(s)
- Aleksandra S. Anisimova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Natalia M. Kolyupanova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Nadezhda E. Makarova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Artyom A. Egorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ivan V. Kulakovskiy
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 117971 Moscow, Russia;
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Laboratory of Regulatory Genomics, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Sergey E. Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
4
|
Uddin R, Singh SM. Gene Network Construction from Microarray Data Identifies a Key Network Module and Several Candidate Hub Genes in Age-Associated Spatial Learning Impairment. Front Syst Neurosci 2017; 11:75. [PMID: 29066959 PMCID: PMC5641338 DOI: 10.3389/fnsys.2017.00075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/22/2017] [Indexed: 01/06/2023] Open
Abstract
As humans age many suffer from a decrease in normal brain functions including spatial learning impairments. This study aimed to better understand the molecular mechanisms in age-associated spatial learning impairment (ASLI). We used a mathematical modeling approach implemented in Weighted Gene Co-expression Network Analysis (WGCNA) to create and compare gene network models of young (learning unimpaired) and aged (predominantly learning impaired) brains from a set of exploratory datasets in rats in the context of ASLI. The major goal was to overcome some of the limitations previously observed in the traditional meta- and pathway analysis using these data, and identify novel ASLI related genes and their networks based on co-expression relationship of genes. This analysis identified a set of network modules in the young, each of which is highly enriched with genes functioning in broad but distinct GO functional categories or biological pathways. Interestingly, the analysis pointed to a single module that was highly enriched with genes functioning in “learning and memory” related functions and pathways. Subsequent differential network analysis of this “learning and memory” module in the aged (predominantly learning impaired) rats compared to the young learning unimpaired rats allowed us to identify a set of novel ASLI candidate hub genes. Some of these genes show significant repeatability in networks generated from independent young and aged validation datasets. These hub genes are highly co-expressed with other genes in the network, which not only show differential expression but also differential co-expression and differential connectivity across age and learning impairment. The known function of these hub genes indicate that they play key roles in critical pathways, including kinase and phosphatase signaling, in functions related to various ion channels, and in maintaining neuronal integrity relating to synaptic plasticity and memory formation. Taken together, they provide a new insight and generate new hypotheses into the molecular mechanisms responsible for age associated learning impairment, including spatial learning.
Collapse
Affiliation(s)
- Raihan Uddin
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Shiva M Singh
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
5
|
Terenin IM, Akulich KA, Andreev DE, Polyanskaya SA, Shatsky IN, Dmitriev SE. Sliding of a 43S ribosomal complex from the recognized AUG codon triggered by a delay in eIF2-bound GTP hydrolysis. Nucleic Acids Res 2016; 44:1882-93. [PMID: 26717981 PMCID: PMC4770231 DOI: 10.1093/nar/gkv1514] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 02/05/2023] Open
Abstract
During eukaryotic translation initiation, 43S ribosomal complex scans mRNA leader unless an AUG codon in an appropriate context is found. Establishing the stable codon-anticodon base-pairing traps the ribosome on the initiator codon and triggers structural rearrangements, which lead to Pi release from the eIF2-bound GTP. It is generally accepted that AUG recognition by the scanning 43S complex sets the final point in the process of start codon selection, while latter stages do not contribute to this process. Here we use translation reconstitution approach and kinetic toe-printing assay to show that after the 48S complex is formed on an AUG codon, in case GTP hydrolysis is impaired, the ribosomal subunit is capable to resume scanning and slides downstream to the next AUG. In contrast to leaky scanning, this sliding is not limited to AUGs in poor nucleotide contexts and occurs after a relatively long pause at the recognized AUG. Thus, recognition of an AUG per se does not inevitably lead to this codon being selected for initiation of protein synthesis. Instead, it is eIF5-induced GTP hydrolysis and Pi release that irreversibly trap the 48S complex, and this complex is further stabilized by eIF5B and 60S joining.
Collapse
Affiliation(s)
- Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Kseniya A Akulich
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Dmitry E Andreev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Sofya A Polyanskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia Department of Molecular Biology, Biological Faculty, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow 119234, Russia
| |
Collapse
|
6
|
Song N, Ma X, Li H, Zhang Y, Wang X, Zhou P, Zhang X. microRNA-107 functions as a candidate tumor suppressor gene in renal clear cell carcinoma involving multiple genes. Urol Oncol 2015; 33:205.e1-11. [DOI: 10.1016/j.urolonc.2015.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 01/09/2015] [Accepted: 02/03/2015] [Indexed: 11/28/2022]
|
7
|
Ubiquitin-activating enzyme activity contributes to differential accumulation of mutant huntingtin in brain and peripheral tissues. J Neurosci 2014; 34:8411-22. [PMID: 24948797 DOI: 10.1523/jneurosci.0775-14.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Huntington's disease (HD) belongs to a family of neurodegenerative diseases caused by misfolded proteins and shares the pathological hallmark of selective accumulation of misfolded proteins in neuronal cells. Polyglutamine expansion in the HD protein, huntingtin (Htt), causes selective neurodegeneration that is more severe in the striatum and cortex than in other brain regions, but the mechanism behind this selectivity is unknown. Here we report that in HD knock-in mice, the expression levels of mutant Htt (mHtt) are higher in brain tissues than in peripheral tissues. However, the expression of N-terminal mHtt via stereotaxic injection of viral vectors in mice also results in greater accumulation of mHtt in the striatum than in muscle. We developed an in vitro assay that revealed that extracts from the striatum and cortex promote the formation of high-molecular weight (HMW) mHtt compared with the relatively unaffected cerebellar and peripheral tissue extracts. Inhibition of ubiquitin-activating enzyme E1 (Ube1) increased the levels of HMW mHtt in the relatively unaffected tissues. Importantly, the expression levels of Ube1 are lower in brain tissues than peripheral tissues and decline in the nuclear fraction with age, which is correlated with the increased accumulation of mHtt in the brain and neuronal nuclei during aging. Our findings suggest that decreased targeting of misfolded Htt to the proteasome for degradation via Ube1 may underlie the preferential accumulation of toxic forms of mHtt in the brain and its selective neurodegeneration.
Collapse
|
8
|
Norris-Mullins B, VanderKolk K, Vacchina P, Joyce MV, Morales MA. LmaPA2G4, a homolog of human Ebp1, is an essential gene and inhibits cell proliferation in L. major. PLoS Negl Trop Dis 2014; 8:e2646. [PMID: 24421916 PMCID: PMC3888471 DOI: 10.1371/journal.pntd.0002646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 12/03/2013] [Indexed: 11/18/2022] Open
Abstract
We have identified LmaPA2G4, a homolog of the human proliferation-associated 2G4 protein (also termed Ebp1), in a phosphoproteomic screening. Multiple sequence alignment and cluster analysis revealed that LmaPA2G4 is a non-peptidase member of the M24 family of metallopeptidases. This pseudoenzyme is structurally related to methionine aminopeptidases. A null mutant system based on negative selection allowed us to demonstrate that LmaPA2G4 is an essential gene in Leishmania major. Over-expression of LmaPA2G4 did not alter cell morphology or the ability to differentiate into metacyclic and amastigote stages. Interestingly, the over-expression affected cell proliferation and virulence in mouse footpad analysis. LmaPA2G4 binds a synthetic double-stranded RNA polyriboinosinic polyribocytidylic acid [poly(I∶C)] as shown in an electrophoretic mobility shift assay (EMSA). Quantitative proteomics revealed that the over-expression of LmaPA2G4 led to accumulation of factors involved in translation initiation and elongation. Significantly, we found a strong reduction of de novo protein biosynthesis in transgenic parasites using a non-radioactive metabolic labeling assay. In conclusion, LmaPA2G4 is an essential gene and is potentially implicated in fundamental biological mechanisms, such as translation, making it an attractive target for therapeutic intervention.
Collapse
Affiliation(s)
- Brianna Norris-Mullins
- Eck Institute for Global Health. Department of Biological Sciences. University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Kaitlin VanderKolk
- Eck Institute for Global Health. Department of Biological Sciences. University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Paola Vacchina
- Eck Institute for Global Health. Department of Biological Sciences. University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Michelle V. Joyce
- Mass Spectrometry and Proteomics Facility, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Miguel A. Morales
- Eck Institute for Global Health. Department of Biological Sciences. University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| |
Collapse
|
9
|
Marchini FK, de Godoy LMF, Batista M, Kugeratski FG, Krieger MA. Towards the phosphoproteome of trypanosomatids. Subcell Biochem 2014; 74:351-378. [PMID: 24264253 DOI: 10.1007/978-94-007-7305-9_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The identification and localization of protein phosphorylation sites provide clues to what proteins or pathways might be activated in a given condition, helping to improve our understanding about signaling networks. Advances in strategies for enrichment of phosphorylated peptides/proteins, mass spectrometry (MS) instrumentation, and specific MS techniques for identification and quantification of post-translational modifications have allowed for large-scale mapping of phosphorylation sites, promoting the field of phosphoproteomics. The great promise of phosphoproteomics is to unravel the dynamics of signaling networks, a layer of the emerging field of systems biology. Until a few years ago only a small number of phosphorylation sites had been described. Following large-scale trends, recent phosphoproteomic studies have reported the mapping of thousands of phosphorylation sites in trypanosomatids. However, quantitative information about the regulation of such sites in different conditions is still lacking. In this chapter, we provide a historical overview of phosphoproteomic studies for trypanosomatids and discuss some challenges and perspectives in the field.
Collapse
|
10
|
Palmieri V, Maulucci G, Maiorana A, Papi M, De Spirito M. α-Crystallin Modulates its Chaperone Activity by Varying the Exposed Surface. Chembiochem 2013; 14:2362-70. [DOI: 10.1002/cbic.201300447] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Indexed: 11/10/2022]
|
11
|
Chowdhury A, Mojumdar SS, Choudhury A, Banerjee R, Das KP, Sasmal DK, Bhattacharyya K. Deoxycholate induced tetramer of αA-crystallin and sites of phosphorylation: Fluorescence correlation spectroscopy and femtosecond solvation dynamics. J Chem Phys 2012; 136:155101. [DOI: 10.1063/1.3702810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
12
|
Mendoza JA, Correa MD, Zardeneta G. GTP binds to α-crystallin and causes a significant conformational change. Int J Biol Macromol 2012; 50:895-8. [PMID: 22387076 DOI: 10.1016/j.ijbiomac.2012.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/14/2012] [Accepted: 02/14/2012] [Indexed: 12/01/2022]
Abstract
ATP was previously reported to bind to the chaperone α-crystallin resulting in a significant effect on the protein's ability to suppress the aggregation of a thermally denatured protein. Here, we have investigated the binding of GTP to α-crystallin. Unlike ATP, binding of GTP to α-crystallin did not affect its ability to suppress the aggregation of thermally denatured rhodanese. GTP binding induced a conformational change on α-crystallin, however the degree of exposed hydrophobic surfaces, which are believed to be involved in the binding of the chaperone to denaturing proteins did not change. Here, we report that GTP binds to α-crystallin and this results in a decreased stability of the chaperone as indicated by urea denaturation.
Collapse
Affiliation(s)
- Jose A Mendoza
- Department of Chemistry and Biochemistry, California State University San Marcos, CA 92096-0001, United States.
| | | | | |
Collapse
|
13
|
Yu M, Sha H, Gao Y, Zeng H, Zhu M, Gao X. Alternative 3′ UTR polyadenylation of Bzw1 transcripts display differential translation efficiency and tissue-specific expression. Biochem Biophys Res Commun 2006; 345:479-85. [PMID: 16690031 DOI: 10.1016/j.bbrc.2006.04.113] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 04/21/2006] [Indexed: 11/23/2022]
Abstract
BZW1 is a conserved regulatory factor for transcriptional control of histone H4 gene at the G1/S transition. In this study, three Bzw1 transcripts were identified in mice with two long forms (approximately 2.9 kb) expressed ubiquitously at low level, and a short transcript of 1.8 kb expressed at high level exclusively in testis. These different transcripts share the same 5' UTR and coding sequence, but differ in the length of 3' UTR by utilizing alternative polyadenylation sites. Different translation efficiencies were observed in the cells transfected with chimeric EGFP-Bzw1 genes tailed with different 3' UTRs. Our results demonstrate that Bzw1 transcripts are alternatively polyadenylated and expressed in tissue-specific pattern.
Collapse
Affiliation(s)
- Mingyan Yu
- Model Animal Research Center and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, PR China
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Eukaryotic translation initiation factor 5A (eIF5A) is the only cellular protein that contains the unusual amino acid hypusine [N(epsilon)-(4-amino-2-hydroxybutyl)lysine]. Vertebrates carry two genes that encode two eIF5A isoforms, eIF5A-1 and eIF5A-2, which, in humans, are 84% identical. eIF5A-1 mRNA (1.3 kb) and protein (18 kDa) are constitutively expressed in human cells. In contrast, expression of eIF5A-2 mRNA (0.7-5.6 kb) and eIF5A-2 protein (20 kDa) varies widely. Whereas eIF5A-2 mRNA was demonstrable in most cells, eIF5A-2 protein was detectable only in the colorectal and ovarian cancer-derived cell lines SW-480 and UACC-1598, which showed high overexpression of eIF5A-2 mRNA. Multiple forms of eIF5A-2 mRNA (5.6, 3.8, 1.6 and 0.7 kb) were identified as the products of one gene with various lengths of 3'-UTR, resulting from the use of different polyadenylation (AAUAAA) signals. The eIF5A-1 and eIF5A-2 precursor proteins were modified comparably in UACC-1598 cells and both were similarly stable. When eIF5A-1 and eIF5A-2 coding sequences were expressed from mammalian vectors in 293T cells, eIF5A-2 precursor was synthesized at a level comparable to that of eIF5A-1 precursor, indicating that the elements causing inefficient translation of eIF5A-2 mRNA reside outside of the open reading frame. On sucrose gradient separation of cytoplasmic RNA, only a small portion of total eIF5A-2 mRNA was associated with the polysomal fraction, compared with a much larger portion of eIF5A-1 mRNA in the polysomes. These findings suggest that the failure to detect eIF5A-2 protein even in eIF5A-2 mRNA positive cells is, at least in part, due to inefficient translation.
Collapse
Affiliation(s)
- Paul M J Clement
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4340, USA
| | | | | | | |
Collapse
|
15
|
García-Salcedo JA, Nolan DP, Gijón P, Gómez-Rodriguez J, Pays E. A protein kinase specifically associated with proliferative forms of Trypanosoma brucei is functionally related to a yeast kinase involved in the co-ordination of cell shape and division. Mol Microbiol 2002; 45:307-19. [PMID: 12123446 DOI: 10.1046/j.1365-2958.2002.03019.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The life cycle of African trypanosomes is characterized by the alternation of proliferative and quiescent stages but the molecular details of this process remain unknown. Here, we describe a new cytoplasmic protein kinase from Trypanosoma brucei, termed TBPK50, that belongs to a family of protein kinases involved in the regulation of the cell cycle, cell shape and proliferation. TBPK50 is expressed only in proliferative forms but is totally absent in quiescent cells despite the fact that the gene is constitutively transcribed at the same level throughout the life cycle. It is probable that TBPK50 has very specific substrate requirements as it was unable to transphosphorylate a range of classical phosphoacceptor substrates in vitro, although an autophosphorylation activity was readily detectable in the same assays. Complementation studies using a fission yeast mutant demonstrated that TBPK50 is a functional homologue of Orb6, a protein kinase involved in the regulation of cellular morphology and cell cycle progression in yeast. These results link the expression of TBPK50 and the growth status of trypanosomes and support the view that this protein kinase is likely to be involved in the control of life cycle progression and cell division of these parasites.
Collapse
Affiliation(s)
- José A García-Salcedo
- Laboratory of Molecular Parasitology, ULB - Institute of Molecular Biology and Medicine, 12 Rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium.
| | | | | | | | | |
Collapse
|
16
|
Leroux MR. Protein folding and molecular chaperones in archaea. ADVANCES IN APPLIED MICROBIOLOGY 2002; 50:219-77. [PMID: 11677685 DOI: 10.1016/s0065-2164(01)50007-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- M R Leroux
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
17
|
Majumdar R, Bandyopadhyay A, Deng H, Maitra U. Phosphorylation of mammalian translation initiation factor 5 (eIF5) in vitro and in vivo. Nucleic Acids Res 2002; 30:1154-62. [PMID: 11861906 PMCID: PMC101238 DOI: 10.1093/nar/30.5.1154] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Eukaryotic translation initiation factor 5 (eIF5) interacts with the 40S initiation complex (40S*eIF3*AUG*Met-tRNA(f)*eIF2*GTP) and, acting as a GTPase activating protein, promotes the hydrolysis of bound GTP. We isolated a protein kinase from rabbit reticulocyte lysates on the basis of its ability to phosphorylate purified bacterially expressed recombinant rat eIF5. Physical, biochemical and antigenic properties of this kinase identify it as casein kinase II (CK II). Mass spectrometric analysis of maximally in vitro phosphorylated eIF5 localized the major phosphorylation sites at Ser-387 and Ser-388 near the C-terminus of eIF5. These serine residues are embedded within a cluster of acidic amino acid residues and account for nearly 90% of the total in vitro eIF5 phosphorylation. A minor phosphorylation site at Ser-174 was also observed. Alanine substitution mutagenesis at Ser-387 and Ser-388 of eIF5 abolishes phosphorylation by the purified kinase as well as by crude reticulocyte lysates. The same mutations also abolish phosphorylation of eIF5 when transfected into mammalian cells suggesting that CK II phosphorylates eIF5 at these two serine residues in vivo as well.
Collapse
Affiliation(s)
- Romit Majumdar
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine of Yeshiva University, Jack and Pearl Resnick Campus, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
18
|
Das S, Maitra U. Functional significance and mechanism of eIF5-promoted GTP hydrolysis in eukaryotic translation initiation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 70:207-31. [PMID: 11642363 DOI: 10.1016/s0079-6603(01)70018-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Eukaryotic translation initiation factor 5 (eIF5), a monomeric protein of about 49 kDa in mammals and 46 kDa in the yeast Saccharomyces cerevisiae, in conjunction with GTP and other initiation factors plays an essential role in initiation of protein synthesis in eukaryotic cells. Following formation of the 40S initiation complex (40S . eIF3 . mRNA . Met-tRNAf . eIF2 . GTP) at the AUG codon of an mRNA, eIF5 interacts with the 40S initiation complex to promote the hydrolysis of bound GTP. Hydrolysis of GTP causes the release of bound initiation factors from the 40S subunit, an event that is essential for the subsequent joining of the 60S ribosomal subunit to the 40S complex to form the functional 80S initiation complex. Detailed characterization of the eIF5-promoted GTP hydrolysis reaction shows that eIF5 functions as a GTPase-activating protein (GAP) in translation initiation. First, eIF5 promotes hydrolysis of GTP only when the nucleotide is bound to eIF2 in the 40S initiation complex. eIF5, by itself, does not hydrolyze either free GTP or GTP bound to the Met-tRNAf . eIF2 . GTP ternary complex in the absence of 40S ribosomal subunits. Second, as with typical GAPs, eIF5 forms a complex with eIF2, the GTP-binding protein. This interaction, which occurs between the lysine-rich N-terminal region of the beta subunit of eIF2 and the glutamic acid-rich C-terminal region of eIF5, is essential for eIF5 function both in vitro and in vivo in yeast cells. Finally, like typical GAPs, eIF5 also contains an arginine-finger motif consisting of an invariant arginine residue at its N-terminus that is also essential for its function. This invariant arginine residue is presumably involved in the stabilization of the transition state of the GTP hydrolysis reaction catalyzed by initiation factor eIF2.
Collapse
Affiliation(s)
- S Das
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
19
|
Das S, Ghosh R, Maitra U. Eukaryotic translation initiation factor 5 functions as a GTPase-activating protein. J Biol Chem 2001; 276:6720-6. [PMID: 11092890 DOI: 10.1074/jbc.m008863200] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic translation initiation factor 5 (eIF5) forms a complex with eIF2 by interacting with the beta subunit of eIF2. This interaction is essential for eIF5-promoted hydrolysis of GTP bound to the 40 S initiation complex. In this work, we show that, in addition to the eIF2 beta-binding region at the C terminus of eIF5, the N-terminal region of eIF5 is also required for eIF5-dependent GTP hydrolysis. Like other GTPase-activating proteins, eIF5 contains an invariant arginine residue (Arg-15) at its N terminus that is essential for its function. Mutation of this arginine residue to alanine or even to conservative lysine caused a severe defect in the ability of eIF5 to promote GTP hydrolysis from the 40 S initiation complex, although the ability of these mutant proteins to bind to eIF2 beta remained unchanged. These mutants were also defective in overall protein synthesis as well as in their ability to support cell growth of a Delta TIF5 yeast strain. Additionally, alanine substitution mutagenesis of eIF5 defined Lys-33 and Lys-55 as also critical for eIF5 function in vitro and in vivo. The implications of these results in relation to other well characterized GAPs are discussed and provide additional evidence that eIF5 functions as a GTPase-activating protein.
Collapse
Affiliation(s)
- S Das
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA
| | | | | |
Collapse
|
20
|
Del Fierro D, Zardeneta G, Mendoza JA. alpha-Crystallin facilitates the reactivation of hydrogen peroxide-inactivated rhodanese. Biochem Biophys Res Commun 2000; 274:461-6. [PMID: 10913360 DOI: 10.1006/bbrc.2000.3165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It was previously shown that rhodanese, inactivated with hydrogen peroxide, could only be reactivated in the presence of a reductant or the substrate thiosulfate if these reagents were added soon after inactivation and if the oxidant was removed. Here, we report on the facilitated reactivation (75%) of hydrogen peroxide-inactivated rhodanese by the chaperone alpha-crystallin. Reactivation by the chaperone still required a reductant and thiosulfate. Without alpha-crystallin, but in the presence of the reductant and thiosulfate, the inactivated enzyme regained about 39% of its original activity. The alpha-crystallin-assisted reactivation of hydrogen peroxide-inactivated rhodanese was independent of ATP. Further, we found, that alpha-crystallin interacted transiently, but could not form a stable complex with hydrogen peroxide-inactivated rhodanese. Unlike in prior studies that involved denaturation of rhodanese through chemical or thermal means, we have clearly shown that alpha-crystallin can function as a molecular chaperone in the reactivation of an oxidatively inactivated protein.
Collapse
Affiliation(s)
- D Del Fierro
- Department of Chemistry, California State University at San Marcos, San Marcos, California, 92096-0001, USA
| | | | | |
Collapse
|
21
|
Das S, Maitra U. Mutational analysis of mammalian translation initiation factor 5 (eIF5): role of interaction between the beta subunit of eIF2 and eIF5 in eIF5 function in vitro and in vivo. Mol Cell Biol 2000; 20:3942-50. [PMID: 10805737 PMCID: PMC85746 DOI: 10.1128/mcb.20.11.3942-3950.2000] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic translation initiation factor 5 (eIF5) interacts with the 40S initiation complex (40S-eIF3-AUG-Met-tRNA(f)-eIF2-GTP) to promote the hydrolysis of ribosome-bound GTP. eIF5 also forms a complex with eIF2 by interacting with the beta subunit of eIF2. In this work, we have used a mutational approach to investigate the importance of eIF5-eIF2beta interaction in eIF5 function. Binding analyses with recombinant rat eIF5 deletion mutants identified the C terminus of eIF5 as the eIF2beta-binding region. Alanine substitution mutagenesis at sites within this region defined several conserved glutamic acid residues in a bipartite motif as critical for eIF5 function. The E346A,E347A and E384A,E385A double-point mutations each caused a severe defect in the binding of eIF5 to eIF2beta but not to eIF3-Nip1p, while a eIF5 hexamutant (E345A,E346A, E347A,E384A,E385A,E386A) showed negligible binding to eIF2beta. These mutants were also severely defective in eIF5-dependent GTP hydrolysis, in 80S initiation complex formation, and in the ability to stimulate translation of mRNAs in an eIF5-dependent yeast cell-free translation system. Furthermore, unlike wild-type rat eIF5, which can functionally substitute for yeast eIF5 in complementing in vivo a genetic disruption of the chromosomal copy of the TIF5 gene, the eIF5 double-point mutants allowed only slow growth of this DeltaTIF5 yeast strain, while the eIF5 hexamutant was unable to support cell growth and viability of this strain. These findings suggest that eIF5-eIF2beta interaction plays an essential role in eIF5 function in eukaryotic cells.
Collapse
Affiliation(s)
- S Das
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA
| | | |
Collapse
|
22
|
López Ribera I, Puigdomènech P. Structure, organization and expression of the eukaryotic translation initiation factor 5, eIF-5, gene in Zea mays. Gene 1999; 240:355-9. [PMID: 10580155 DOI: 10.1016/s0378-1119(99)00438-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The maize genomic DNA sequence encoding the eukaryotic translation initiation factor 5 (eIF-5) has been isolated from genomic library of maize seedlings and the exon-intron structure determined (accession number AJ132240). The length of genomic DNA sequenced was about 7kb and contained two exons with the translation start site in exon 2. The only intron is located in the non-coding 5' region and it is 1298bp long with the splice acceptor and donor sites conforming to the AG/GT rules. Repetitive sequence fragments are located in the 5' and 3' intergenic region. The accumulation of eIF-5 mRNA was studied by RNA blot and in situ hybridization. The observed distribution of mRNA may correlate with the function of the protein, as it appears to be highly abundant in tissues where the proportion of cells actively dividing is very high, such as meristematic regions.
Collapse
Affiliation(s)
- I López Ribera
- Departament de Genètica Molecular, Institut de Biologia Molecular de Barcelona, CID-CSIC, Jordi Girona, 18, 08034, Barcelona, Spain
| | | |
Collapse
|
23
|
Thiele BJ, Berger M, Huth A, Reimann I, Schwarz K, Thiele H. Tissue-specific translational regulation of alternative rabbit 15-lipoxygenase mRNAs differing in their 3'-untranslated regions. Nucleic Acids Res 1999; 27:1828-36. [PMID: 10101190 PMCID: PMC148390 DOI: 10.1093/nar/27.8.1828] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
By screening a rabbit reticulocyte library, an alternative 15-LOX transcript of 3.6 kb (15-LOX mRNA2) was detected containing a 1019 nt longer 3'-untranslated region (UTR2) than the main 2.6 kb mRNA (15-LOX mRNA1). In anaemic animals, northern blotting showed that 15-LOX mRNA2 was predominantly expressed in non-erythroid tissues, whereas 15-LOX mRNA1 was exclusively expressed in red blood cells and bone marrow. The 15-LOX 3'-UTR2 mRNA2 contained a novel 8-fold repetitive CU-rich motif, 23 nt in length (DICE2). This motif is related but not identical to the 10-fold repetitive differentiation control element (DICE1) of 19 nt residing in the 15-LOX UTR1 mRNA1. DICE1 was shown to interact with human hnRNP proteins E1 and K, thereby inhibiting translation. From tissues expressing the long 15-LOX mRNA2, two to three unidentified polypeptides with molecular weights of 53-55 and 90-93 kDa which bound to DICE2 were isolated by RNA affinity chromatography. A 93 kDa protein from lung cytosol, which was selected by DICE2 binding, was able to suppress translational inhibition of 15-LOX mRNA2, but not of 15-LOX mRNA1, by hnRNP E1. A possible interaction between DICE1/DICE2 cis / trans factors in translational control of 15-LOX synthesis is discussed. Furthermore, the 3'-terminal part of the highly related rabbit leukocyte-type 12-LOX gene was analysed. Very similar repetitive CU-rich elements of the type DICE1 (20 repeats) and DICE2 (nine repeats) were found in the part corresponding to the 3'-UTR of the mRNA.
Collapse
Affiliation(s)
- B J Thiele
- Institute of Biochemistry, University Clinics Charité, Humboldt-University Berlin, Hessische Strasse 3-4, D-10115 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Mano S, Hayashi M, Nishimura M. Light regulates alternative splicing of hydroxypyruvate reductase in pumpkin. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 17:309-20. [PMID: 10097389 DOI: 10.1046/j.1365-313x.1999.00378.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Hydroxypyruvate reductase (HPR) is a leaf peroxisomal enzyme that functions in the glycolate pathway of photorespiration in plants. We have obtained two highly similar cDNAs for pumpkin HPR (HPR1 and HPR2). It has been revealed that two HPR mRNAs might be produced by alternative splicing from a single type of pre-mRNA. The HPR1 protein, but not the HPR2 protein, was found to have a targeting sequence into leaf peroxisomes at the C-terminus, suggesting that alternative splicing controls the subcellular localization of the two HPR proteins. Immunoblot analysis and subcellular fractionation experiments showed that HPR1 and HPR2 proteins are localized in leaf peroxisomes and the cytosol, respectively. Moreover, indirect fluorescence microscopy and analyses of transgenic tobacco cultured cells and Arabidopsis thaliana expressing fusion proteins with green fluorescent protein (GFP) revealed the different subcellular localizations of the two HPR proteins. Both mRNAs were induced developmentally and by light, but with quantitative differences. Almost equal amounts of the mRNAs were detected in pumpkin cotyledons grown in darkness, but treatment with light greatly enhanced the production of HPR2 mRNA. These findings indicate that light regulates alternative splicing of HPR mRNA, suggesting the presence of a novel mechanism of mRNA maturation, namely light-regulated alternative splicing, in higher plants.
Collapse
Affiliation(s)
- S Mano
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan
| | | | | |
Collapse
|
25
|
Rajaraman K, Raman B, Ramakrishna T, Rao CM. The chaperone-like alpha-crystallin forms a complex only with the aggregation-prone molten globule state of alpha-lactalbumin. Biochem Biophys Res Commun 1998; 249:917-21. [PMID: 9731236 DOI: 10.1006/bbrc.1998.9242] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The chaperone-like alpha-crystallin prevents aggregation of several proteins by interacting with their non-native states. Alpha-Lactalbumin adopts different non-native states under different experimental conditions. We have investigated the interaction of alpha-crystallin with three non-identical non-native states, using fluorescence, circular dichroism, and gel filtration chromatography. The compact molten globule state of apo-alpha-lactalbumin in tris buffer does not interact with alpha-crystallin. The expanded, flexible molten globule-like state of reduced apo-alpha-lactalbumin (formed at pH 7.2) also does not interact with alpha-crystallin. Only the aggregation-prone non-native state of reduced apo-alpha-lactalbumin formed at pH 6.0 interacts with alpha-crystallin to form a stable complex. The alpha-crystallin bound reduced apo-alpha-lactalbumin exhibits properties similar to those of a molten globule. Our results show that alpha-crystallin interacts only with the aggregation prone molten globule state of reduced apo-alpha-lactalbumin but not with the other non-aggregating molten globule states of the protein.
Collapse
Affiliation(s)
- K Rajaraman
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | | |
Collapse
|
26
|
Ehrnsperger M, Hergersberg C, Wienhues U, Nichtl A, Buchner J. Stabilization of proteins and peptides in diagnostic immunological assays by the molecular chaperone Hsp25. Anal Biochem 1998; 259:218-25. [PMID: 9618200 DOI: 10.1006/abio.1998.2630] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diagnostic assays for proteins devoid of enzymatic activity are becoming increasingly important. Antibodies generated against the respective proteins are used for their detection in enzyme-linked immunosorbent assay or patient sera are used to monitor disease-related antibodies against recombinantly produced antigens. A problem frequently encountered with these assays is that the proteins or fragments thereof used as standards have a limited shelf life. A similar problem arises when activities of labile enzymes are used for diagnostic detection. Here, we present a novel approach to 'stabilizing' enzymatic activity and antigenicity of proteins used for immunogenic detection by molecular chaperones. We have exploited the ability of molecular chaperones to keep proteins in their active conformation to overcome the biotechnological problems encountered in protein-based diagnostics of heart attack, stroke, and viral infections such as hepatitis C. We show that Hsp25, a member of the family of small heat shock proteins, known to act as a molecular chaperone in protein folding reactions, can stably bind labile standard proteins. Complex formation does not interfere with immunogenic detection and, importantly, antigenic as well as enzymatic activity remains constant for weeks. This strategy seems to be applicable to a wide range of assays involving unstable proteins, including the generation of vaccines.
Collapse
Affiliation(s)
- M Ehrnsperger
- Institut für Biophysik & Physikalische Biochemie, Universität Regensburg, Regensburg, 93040, Germany
| | | | | | | | | |
Collapse
|
27
|
Mornon JP, Halaby D, Malfois M, Durand P, Callebaut I, Tardieu A. alpha-Crystallin C-terminal domain: on the track of an Ig fold. Int J Biol Macromol 1998; 22:219-27. [PMID: 9650076 DOI: 10.1016/s0141-8130(98)00019-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
New results obtained from a two-dimensional sequence analysis of the small heat shock protein (shsp) family are described. It is confirmed that the conserved C-terminal alpha-crystallin domain is essentially made of beta-strands, most probably two groups of beta-strands separated by a large loop. A direct correspondence between the putative beta-strands that have been identified in shsps and the seven beta-strands of a classical immunoglobulin-like fold is proposed. The hypothesis that the shsp family could belong to the immunoglobulin superfamily (IgSF) is consistent with the ubiquitous distribution and the multifunctional properties of the crystallins that are now emerging.
Collapse
Affiliation(s)
- J P Mornon
- Systèmes Moléculaires et Biologie Structurale, LMCP, URA 09 CNRS-Universités Paris 6 et 7, France
| | | | | | | | | | | |
Collapse
|
28
|
Smulders RH, van Boekel MA, de Jong WW. Mutations and modifications support a 'pitted-flexiball' model for alpha-crystallin. Int J Biol Macromol 1998; 22:187-96. [PMID: 9650073 DOI: 10.1016/s0141-8130(98)00016-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
alpha-Crystallin is renown for resisting crystallization and electron microscopic image analysis. The spatial conformation thus remaining elusive, the authors explored the structure and chaperone functioning by analyzing the effects of site-directed mutagenesis, the properties of naturally occurring aberrant forms of alpha-crystallin and the influence of chemical modifications. The authors observed that the globular multimeric structure, as well as the chaperoning capacity are remarkably tolerant towards changes and modifications in the primary structure. The essential features of the quaternary structure--globular shape, flexibility, highly polar exterior and accessible hydrophobic surface pockets--support a 'pitted-flexiball' model, which combines tetrameric subunit building blocks in an open micelle-like arrangement.
Collapse
Affiliation(s)
- R H Smulders
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | |
Collapse
|
29
|
Rao CM, Raman B, Ramakrishna T, Rajaraman K, Ghosh D, Datta S, Trivedi VD, Sukhaswami MB. Structural perturbation of alpha-crystallin and its chaperone-like activity. Int J Biol Macromol 1998; 22:271-81. [PMID: 9650082 DOI: 10.1016/s0141-8130(98)00025-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
alpha-Crystallin is a multimeric lenticular protein that has recently been shown to be expressed in several non-lenticular tissues as well. It is shown to prevent aggregation of non-native proteins as a molecular chaperone. By using a non-thermal aggregation model, we could show that this process is temperature-dependent. We investigated the chaperone-like activity of alpha-crystallin towards photo-induced aggregation of gamma-crystallin, aggregation of insulin and on the refolding induced aggregation of beta- and gamma-crystallins. We observed that alpha-crystallin could prevent photo-aggregation of gamma-crystallin and this chaperone-like activity of alpha-crystallin is enhanced several fold at temperatures above 30 degrees C. This enhancement parallels the exposure of its hydrophobic surfaces as a function of temperature, probed using hydrophobic fluorescent probes such as pyrene and 8-anilinonaphthalene-1-sulfonate. We, therefore, concluded that alpha-crystallin prevents the aggregation of other proteins by providing appropriately placed hydrophobic surfaces; a structural transition above 30 degrees C involving enhanced or re-organized hydrophobic surfaces of alpha-crystallin is important for its chaperone-like activity. We also addressed the issue of conformational aspects of target proteins and found that their aggregation prone molten globule states bind to alpha-crystallin. We trace these developments and discuss some new lines that suggest the role of tertiary structural aspects in the chaperone process.
Collapse
Affiliation(s)
- C M Rao
- Centre for Cellular and Molecular Biology, Hyderabad, India.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Buchner J, Ehrnsperger M, Gaestel M, Walke S. Purification and characterization of small heat shock proteins. Methods Enzymol 1998; 290:339-49. [PMID: 9534174 DOI: 10.1016/s0076-6879(98)90030-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- J Buchner
- Institüt für Biophysik und Physikalische Biochemie, Universität Regensburg, Germany
| | | | | | | |
Collapse
|
31
|
Si K, Chaudhuri J, Chevesich J, Maitra U. Molecular cloning and functional expression of a human cDNA encoding translation initiation factor 6. Proc Natl Acad Sci U S A 1997; 94:14285-90. [PMID: 9405604 PMCID: PMC24943 DOI: 10.1073/pnas.94.26.14285] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Eukaryotic translation initiation factor 6 (eIF6) binds to the 60S ribosomal subunit and prevents its association with the 40S ribosomal subunit. In this paper, we devised a procedure for purifying eIF6 from rabbit reticulocyte lysates and immunochemically characterized the protein by using antibodies isolated from egg yolks of laying hens immunized with rabbit eIF6. By using these monospecific antibodies, a 1.096-kb human cDNA that encodes an eIF6 of 245 amino acids (calculated Mr 26,558) has been cloned and expressed in Escherichia coli. The purified recombinant human protein exhibits biochemical properties that are similar to eIF6 isolated from mammalian cell extracts. Database searches identified amino acid sequences from Saccharomyces cerevisiae, Drosophila, and the nematode Caenorhabditis elegans with significant identity to the deduced amino acid sequence of human eIF6, suggesting the presence of homologues of human eIF6 in these organisms.
Collapse
Affiliation(s)
- K Si
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine of Yeshiva University, Jack and Pearl Resnick Campus, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
32
|
Das S, Maiti T, Das K, Maitra U. Specific interaction of eukaryotic translation initiation factor 5 (eIF5) with the beta-subunit of eIF2. J Biol Chem 1997; 272:31712-8. [PMID: 9395514 DOI: 10.1074/jbc.272.50.31712] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Eukaryotic translation initiation factor 5 (eIF5) interacts with the 40 S initiation complex (40 S.mRNA. eIF3.Met-tRNAf.eIF2.GTP) and mediates hydrolysis of the bound GTP. To characterize the molecular interactions involved in eIF5 function, we have used 32P-labeled recombinant rat eIF5 as a probe in filter overlay assay to identify eIF5-interacting proteins in crude initiation factor preparations. We observed that eIF5 specifically interacted with the beta subunit of initiation factor eIF2. No other initiation factors including the gamma subunit of eIF2 tested positive in this assay. Furthermore, both yeast and mammalian eIF5 bind to the beta subunit of either mammalian or yeast eIF2. Binding analysis with human eIF2beta deletion mutants expressed in Escherichia coli identified a 22-amino acid domain, between amino acids 68 and 89, as the primary eIF5-binding region of eIF2beta. These results along with our earlier observations that (a) eIF5 neither binds nor hydrolyzes free GTP or GTP bound as Met-tRNAf.eIF2.GTP ternary complex, and (b) eIF5 forms a specific complex with eIF2 suggests that the specific interaction between eIF5 and the beta subunit of eIF2 may be critical for the hydrolysis of GTP during translation initiation.
Collapse
Affiliation(s)
- S Das
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
33
|
Lee JS, Satoh T, Shinoda H, Samejima T, Wu SH, Chiou SH. Effect of heat-induced structural perturbation of secondary and tertiary structures on the chaperone activity of alpha-crystallin. Biochem Biophys Res Commun 1997; 237:277-82. [PMID: 9268700 DOI: 10.1006/bbrc.1997.7131] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
alpha-Crystallin, a major protein of the lens, is known to have chaperone activity to protect other proteins against thermal aggregation. Heat-induced structural change of alpha-crystallin was previously shown to increase its chaperone activity. In this report, we studied the thermal reversibility of alpha-crystallin and the effect of change in secondary structure on its chaperone function in vitro. The heat-induced conformational changes in the aromatic region of near-UV CD spectra showed only a small degree of reversibility. The structural transitions from 50 to 70 degrees C were largely reversible if the incubation time was short. However, the protective ability to inhibit thermal aggregation of alcohol dehydrogenase by alpha-crystallin was essentially similar at 48 and 70 degrees C. Under long-term heating at high temperatures, there was a time-dependent irreversibility of structural change in alpha-crystallin as revealed by CD spectroscopy. Such denatured alpha-crystallin by long-term heating can still preserve its ability to prevent UV-induced aggregation of gamma-crystallin at room temperature, indicating relatively little effect of heat-induced changes in secondary structure on the chaperone activity of alpha-crystallin.
Collapse
Affiliation(s)
- J S Lee
- Institute of Biochemical Sciences, Chang-Gung Memorial Hospital, Taipei, Academia, Taiwan
| | | | | | | | | | | |
Collapse
|
34
|
Maiti T, Maitra U. Characterization of translation initiation factor 5 (eIF5) from Saccharomyces cerevisiae. Functional homology with mammalian eIF5 and the effect of depletion of eIF5 on protein synthesis in vivo and in vitro. J Biol Chem 1997; 272:18333-40. [PMID: 9218474 DOI: 10.1074/jbc.272.29.18333] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Eukaryotic translation initiation factor 5 (eIF5) interacts in vitro with the 40 S initiation complex (40 S.AUG.Met-tRNAf.eIF2.GTP) to mediate the hydrolysis of ribosome-bound GTP. In Saccharomyces cerevisiae, eIF5 is encoded by a single copy essential gene, TIF5, that encodes a protein of 45,346 daltons. To understand the function of eIF5 in vivo, we constructed a conditional mutant yeast strain in which a functional but a rapidly degradable form of eIF5 fusion protein was synthesized from the repressible GAL promoter. Depletion of eIF5 from this mutant yeast strain resulted in inhibition of both cell growth and the rate of in vivo protein synthesis. Analysis of the polysome profiles of eIF5-depleted cells showed greatly diminished polysomes with simultaneous increase in free ribosomes. Furthermore, lysates of cells depleted of eIF5 were dependent on exogenously added yeast eIF5 for efficient translation of mRNAs in vitro. This is the first demonstration that the TIF5 gene encodes a protein involved in initiation of translation in eukaryotic cells. Additionally, we show that rat eIF5 can functionally substitute yeast eIF5 in translation of mRNAs in vitro as well as in complementing in vivo a genetic disruption in the chromosomal copy of TIF5.
Collapse
Affiliation(s)
- T Maiti
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine of Yeshiva University, Jack and Pearl Resnick Campus, Bronx, New York 10461, USA
| | | |
Collapse
|
35
|
Edwalds-Gilbert G, Veraldi KL, Milcarek C. Alternative poly(A) site selection in complex transcription units: means to an end? Nucleic Acids Res 1997; 25:2547-61. [PMID: 9185563 PMCID: PMC146782 DOI: 10.1093/nar/25.13.2547] [Citation(s) in RCA: 410] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Many genes have been described and characterized which result in alternative polyadenylation site use at the 3'-end of their mRNAs based on the cellular environment. In this survey and summary article 95 genes are discussed in which alternative polyadenylation is a consequence of tandem arrays of poly(A) signals within a single 3'-untranslated region. An additional 31 genes are described in which polyadenylation at a promoter-proximal site competes with a splicing reaction to influence expression of multiple mRNAs. Some have a composite internal/terminal exon which can be differentially processed. Others contain alternative 3'-terminal exons, the first of which can be skipped in some cells. In some cases the mRNAs formed from these three classes of genes are differentially processed from the primary transcript during the cell cycle or in a tissue-specific or developmentally specific pattern. Immunoglobulin heavy chain genes have composite exons; regulated production of two different Ig mRNAs has been shown to involve B cell stage-specific changes in trans -acting factors involved in formation of the active polyadenylation complex. Changes in the activity of some of these same factors occur during viral infection and take-over of the cellular machinery, suggesting the potential applicability of at least some aspects of the Ig model. The differential expression of a number of genes that undergo alternative poly(A) site choice or polyadenylation/splicing competition could be regulated at the level of amounts and activities of either generic or tissue-specific polyadenylation factors and/or splicing factors.
Collapse
Affiliation(s)
- G Edwalds-Gilbert
- Department of Molecular Genetics and Biochemistry and the Graduate Program in Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261-2072, USA
| | | | | |
Collapse
|