1
|
Varela MF, Kumar S. Strategies for discovery of new molecular targets for anti-infective drugs. Curr Opin Pharmacol 2019; 48:57-68. [PMID: 31146204 DOI: 10.1016/j.coph.2019.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 12/29/2022]
Abstract
Multidrug resistant bacterial pathogens as causative agents of infectious disease are a primary public health concern. Clinical efficacy of antimicrobial chemotherapy toward bacterial infection has been compromised in cases where causative agents are resistant to multiple structurally distinct antimicrobial agents. Modification of extant antimicrobial agents that exploit conventional bacterial targets have been developed since the advent of the antimicrobial era. This approach, while successful in certain cases, nonetheless suffers overall from the costs of development and rapid emergence of bacterial variants with confounding resistances to modified agents. Thus, additional strategies toward discovery of new molecular targets have been developed based on bioinformatics analyses and comparative genomics. These and other strategies meant to identify new molecular targets represent promising avenues for reducing emergence of bacterial infections. This short review considers these strategies for discovery of new molecular targets within bacterial pathogens.
Collapse
Affiliation(s)
- Manuel F Varela
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Sanath Kumar
- Post Harvest Technology, ICAR-Central Institute of Fisheries Education, Seven Bungalows, Andheri (W), Mumbai, 400016, India
| |
Collapse
|
2
|
Uptake dynamics in the Lactose permease (LacY) membrane protein transporter. Sci Rep 2018; 8:14324. [PMID: 30254312 PMCID: PMC6156506 DOI: 10.1038/s41598-018-32624-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 09/12/2018] [Indexed: 11/08/2022] Open
Abstract
The sugar transporter Lactose permease (LacY) of Escherichia coli has become a prototype to understand the underlying molecular details of membrane transport. Crystal structures have trapped the protein in sugar-bound states facing the periplasm, but with narrow openings unable to accommodate sugar. Therefore, the molecular details of sugar uptake remain elusive. In this work, we have used extended simulations and metadynamics sampling to explore a putative sugar-uptake pathway and associated free energy landscape. We found an entrance at helix-pair 2 and 11, which involved lipid head groups and residues Gln 241 and Gln 359. Furthermore, the protein displayed high flexibility on the periplasmic side of Phe 27, which is located at the narrowest section of the pathway. Interactions to Phe 27 enabled passage into the binding site, which was associated with a 24 ± 4 kJ/mol binding free energy in excellent agreement with an independent binding free energy calculation and experimental data. Two free energy minima corresponding to the two possible binding poses of the lactose analog β-D-galactopyranosyl-1-thio-β-D-galactopyranoside (TDG) were aligned with the crystal structure-binding pocket. This work outlines the chemical environment of a putative periplasmic sugar pathway and paves way for understanding substrate affinity and specificity in LacY.
Collapse
|
3
|
Suárez-Germà C, Hernández-Borrell J, Prieto M, Loura LMS. Modeling FRET to investigate the selectivity of lactose permease ofEscherichia colifor lipids. Mol Membr Biol 2014; 31:120-30. [DOI: 10.3109/09687688.2014.915351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Structure of the YajR transporter suggests a transport mechanism based on the conserved motif A. Proc Natl Acad Sci U S A 2013; 110:14664-9. [PMID: 23950222 DOI: 10.1073/pnas.1308127110] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The major facilitator superfamily (MFS) is the largest family of secondary active transporters and is present in all life kingdoms. Detailed structural basis of the substrate transport and energy-coupling mechanisms of these proteins remain to be elucidated. YajR is a putative proton-driven MFS transporter found in many Gram-negative bacteria. Here we report the crystal structure of Escherichia coli YajR at 3.15 Å resolution in an outward-facing conformation. In addition to having the 12 canonical transmembrane helices, the YajR structure includes a unique 65-residue C-terminal domain which is independently stable. The structure is unique in illustrating the functional role of "sequence motif A." This highly conserved element is seen to stabilize the outward conformation of YajR and suggests a general mechanism for the conformational change between the inward and outward states of the MFS transporters.
Collapse
|
5
|
Suárez-Germà C, Loura LMS, Domènech O, Montero MT, Vázquez-Ibar JL, Hernández-Borrell J. Phosphatidylethanolamine-lactose permease interaction: a comparative study based on FRET. J Phys Chem B 2012; 116:14023-8. [PMID: 23137163 DOI: 10.1021/jp309726v] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work we have investigated the selectivity of lactose permease (LacY) of Escherichia coli (E. coli) for its surrounding phospholipids when reconstituted in binary mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), 1,2-Palmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) with 1-palmitoyl-2-oleoyl-sn-glycero-3-(phospho-rac-(1-glycerol)) (POPG). Förster resonance energy transfer (FRET) measurements have been performed to investigate the selectivity between a single tryptophan mutant of LacY used as donor (D), and two analogues of POPE and POPG labeled with pyrene in the acyl chains (Pyr-PE and Pyr-PG) used as acceptors. As a difference from previous works, now the donor has been single-W151/C154G/D68C LacY. It has been reported that the replacement of the aspartic acid in position 68 by cysteine inhibits active transport in LacY. The objectives of this work were to elucidate the phospholipid composition of the annular region of this mutant and to determine whether the mutation performed, D68C, induced changes in the protein-lipid selectivity. FRET efficiencies for Pyr-PE were always higher than for Pyr-PG. The values of the probability of each site in the annular ring being occupied by a label (μ) were similar at the studied temperatures (24 °C and 37 °C), suggesting that the lipid environment is not significantly affected when increasing the temperature. By comparing the results with those obtained for single-W151/C154G LacY, we observe that the mutation in the 68 residue indeed changes the selectivity of the protein for the phospholipids. This might be probably due to a change in the conformational dynamics of LacY.
Collapse
Affiliation(s)
- Carme Suárez-Germà
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
6
|
Haemig HAH, Moen PJ, Brooker RJ. Evidence that highly conserved residues of transmembrane segment 6 of Escherichia coli MntH are important for transport activity. Biochemistry 2010; 49:4662-71. [PMID: 20441230 DOI: 10.1021/bi100320y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nramp (natural resistance-associated macrophage protein) family members have been characterized in mammals, yeast, and bacteria as divalent metal ion/H(+) symporters. In previous work, a bioinformatic approach was used for the identification of residues that are conserved within the Nramp family [Haemig, H. A., and Brooker, R. J. (2004) J. Membr. Biol. 201 (2), 97-107]. On the basis of site-directed mutagenesis of highly conserved negatively charged residues, a model was proposed for the metal binding site of the Escherichia coli homologue, MntH. In this study, we have focused on the highly conserved residues, including two histidines, of transmembrane segment 6 (TMS-6). Multiple mutants were made at the eight conserved sites (i.e., Gly-205, Ala-206, Met-209, Pro-210, His-211, Leu-215, His-216, and Ser-217) in TMS-6 of E. coli MntH. Double mutants involving His-211 and His-216 were also created. The results indicate the side chain volume of these residues is critically important for function. In most cases, only substitutions that are closest in side chain volume still permit transport. In addition, the K(m) for metal binding is largely unaffected by mutations in TMS-6, whereas V(max) values were decreased in all mutants characterized kinetically. Thus, these residues do not appear to play a role in metal binding. Instead, they may comprise an important face on TMS-6 that is critical for protein conformational changes during transport. Also, in contrast to other studies, our data do not strongly indicate that the conserved histidine residues play a role in the pH regulation of metal transport.
Collapse
Affiliation(s)
- Heather A H Haemig
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 321 Church Street, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
7
|
Gloor GB, Tyagi G, Abrassart DM, Kingston AJ, Fernandes AD, Dunn SD, Brandl CJ. Functionally compensating coevolving positions are neither homoplasic nor conserved in clades. Mol Biol Evol 2010; 27:1181-91. [PMID: 20065119 DOI: 10.1093/molbev/msq004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We demonstrated that a pair of positions in phosphoglycerate kinase that score highly by three nonparametric covariation measures are important for function even though the positions can be occupied by aliphatic, aromatic, or charged residues. Examination of these pairs suggested that the majority of the covariation scores could be explained by within-clade conservation. However, an analysis of diversity showed that the conservation within clades of covarying pairs was indistinguishable from pairs of positions that do not covary, thus ruling out both clade conservation and extensive homoplasy as means to identify covarying positions. Mutagenesis showed that the residues in the covarying pair were epistatic, with the type of epistasis being dependent on the initial pair. The results show that nonconserved covarying positions that affect protein function can be identified with high precision.
Collapse
Affiliation(s)
- Gregory B Gloor
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
8
|
Liu Z, Madej MG, Kaback HR. Helix dynamics in LacY: helices II and IV. J Mol Biol 2010; 396:617-26. [PMID: 20043916 DOI: 10.1016/j.jmb.2009.12.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 12/18/2009] [Accepted: 12/20/2009] [Indexed: 11/25/2022]
Abstract
Biochemical and biophysical studies based upon crystal structures of both a mutant and wild-type lactose permease from Escherichia coli (LacY) in an inward-facing conformation have led to a model for the symport mechanism in which both sugar and H+ binding sites are alternatively accessible to both sides of the membrane. Previous findings indicate that the face of helix II with Asp68 is important for the conformational changes that occur during turnover. As shown here, replacement of Asp68 at the cytoplasmic end of helix II, particularly with Glu, abolishes active transport but the mutants retain the ability to bind galactopyranoside. In the x-ray structure, Asp68 and Lys131 (helix IV) lie within approximately 4.2 A of each other. Although a double mutant with Cys replacements at both position 68 and position 131 cross-links efficiently, single replacements for Lys131 exhibit very significant transport activity. Site-directed alkylation studies show that sugar binding by the Asp68 mutants causes closure of the cytoplasmic cavity, similar to wild-type LacY; however, strikingly, the probability of opening the periplasmic pathway upon sugar binding is markedly reduced. Taken together with results from previous mutagenesis and cross-linking studies, these findings lead to a model in which replacement of Asp68 blocks a conformational transition involving helices II and IV that is important for opening the periplasmic cavity. Evidence suggesting that movements of helices II and IV are coupled functionally with movements in the pseudo-symmetrically paired helices VIII and X is also presented.
Collapse
Affiliation(s)
- Zhenyu Liu
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA 90095-1662, USA
| | | | | |
Collapse
|
9
|
Analysis of tryptophan residues in the staphylococcal multidrug transporter QacA reveals long-distance functional associations of residues on opposite sides of the membrane. J Bacteriol 2008; 190:2441-9. [PMID: 18223078 DOI: 10.1128/jb.01864-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tryptophan residues can possess a multitude of functions within a multidrug transport protein, e.g., mediating interactions with substrates or distal parts of the protein, or fulfilling a structural requirement, such as guiding the depth of membrane insertion. In this study, the nine tryptophan residues of the staphylococcal QacA multidrug efflux protein were individually mutated to alanine and phenylalanine, and the functional consequences of these changes were determined. Phenylalanine substitutions for each tryptophan residue were functionally tolerated. However, alanine modifications revealed an important functional role for three tryptophan residues, W58, W149, and W173, each of which is well conserved among QacA-related transport proteins in the major facilitator superfamily. The most functionally compromising mutation, an alanine substitution for W58, likely to be located at the extracellular interface of transmembrane segment 2, abolished all detectable QacA-mediated resistance and transport function. Second-site suppressor analyses identified several mutations that rescued the function of the W58A QacA mutant. Remarkably, all of these suppressor mutations were shown to be located in cytoplasmic loops between transmembrane helices 2 and 3 or 12 and 13, demonstrating novel functional associations between amino acid positions on opposite sides of the membrane and in distal N- and C-terminal regions of the QacA protein.
Collapse
|
10
|
Franco PJ, Matzke EA, Johnson JL, Wiczer BM, Brooker RJ. A suppressor analysis of residues involved in cation transport in the lactose permease: identification of a coupling sensor. J Membr Biol 2006; 211:101-13. [PMID: 16988863 DOI: 10.1007/s00232-005-7020-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 05/05/2006] [Indexed: 11/26/2022]
Abstract
Four amino acids critical for lactose permease function were altered using site-directed mutagenesis. The resulting Quad mutant (E269Q/R302L/H322Q/E325Q) was expressed at 60% of wild-type levels but found to have negligible transport activity. The Quad mutant was used as a parental strain to isolate suppressors that regained the ability to ferment the alpha-galactoside melibiose. Six different suppressors were identified involving five discrete amino acid changes and one amino acid deletion (Q60L, V229G, Y236D, S306L, K319N and DeltaI298). All of the suppressors transported alpha-galactosides at substantial rates. In addition, the Q60L, DeltaI298 and K319N suppressors regained a small but detectable amount of lactose transport. Assays of sugar-driven cation transport showed that both the Q60L and K319N suppressors couple the influx of melibiose with cations (H(+) or H(3)O(+)). Taken together, the data show that the cation-binding domain in the lactose permease is not a fixed structure as proposed in previous models. Rather, the data are consistent with a model in which several ionizable residues form a dynamic coupling sensor that also may interact directly with the cation and lactose.
Collapse
Affiliation(s)
- Peter J Franco
- Department of Genetics, Cell Biology and Development and the Biotechnology Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
11
|
Ermolova NV, Smirnova IN, Kasho VN, Kaback HR. Interhelical packing modulates conformational flexibility in the lactose permease of Escherichia coli. Biochemistry 2005; 44:7669-77. [PMID: 15909981 DOI: 10.1021/bi0502801] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A key to obtaining an X-ray structure of the lactose permease of Escherichia coli (LacY) (Abramson, J., Smirnova, I., Kasho, V., Verner, G., Kaback, H. R., and Iwata, S. (2003) Science 301, 549-716) was the use of a mutant in which Cys154 (helix V) is replaced with Gly. LacY containing this mutation strongly favors an inward-facing conformation, which binds ligand with high affinity, but catalyzes little transport and exhibits few if any of the ligand-dependent conformational changes observed with wild-type LacY. The X-ray structure demonstrates that helix V crosses helix I in the approximate middle of the membrane in such a manner that Cys154 lies close to Gly24 (helix I). Therefore, it seems likely that replacing Cys154 with Gly may lead to tighter packing between helices I and V, thereby resulting in the phenotype observed. Consistently, replacement of Gly24 with Cys in the C154G mutant rescues significant transport activity, and the mutant exhibits properties similar to wild-type LacY with respect to substrate binding and thermostability. However, the only other replacements that rescue transport to any extent whatsoever are Val and Asp, both of which are much less effective than Cys. The results suggest that, although helix packing probably plays an important role with respect to the properties of the C154G mutant, the ability of Cys at position 24 to rescue transport activity of C154G is more complicated than simple replacement of bulk between positions 24 and 154. Rather, activity is dependent on more subtle interactions between the helices, and mutations that disrupt interactions between helix IV and loop 6-7 or between helices II and IV also rescue transport in the C154G mutant.
Collapse
Affiliation(s)
- Natalia V Ermolova
- Department of Physiology, University of California-Los Angeles, Los Angeles, California 90095-1662, USA
| | | | | | | |
Collapse
|
12
|
Mazurkiewicz P, Poelarends GJ, Driessen AJM, Konings WN. Facilitated Drug Influx by an Energy-uncoupled Secondary Multidrug Transporter. J Biol Chem 2004; 279:103-8. [PMID: 14561761 DOI: 10.1074/jbc.m306579200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The majority of bacterial multidrug resistance transporters belong to the class of secondary transporters. LmrP is a proton/drug antiporter of Lactococcus lactis that extrudes positively charged lipophilic substrates from the inner leaflet of the membrane to the external medium. This study shows that LmrP is a true secondary transporter. In the absence of a proton motive force, LmrP facilitates downhill fluxes of ethidium in both directions. These fluxes are inhibited by other substrates of LmrP. The cysteine-reactive agent p-chloromercuri-benzene sulfonate inhibits these fluxes in wild type LmrP but not in the cysteine-less LmrP C270A mutant. Cysteine mutagenesis of LmrP resulted in three mutants, D68C/C270A, D128C/C270A, and E327C/C270A, with an energy-uncoupled phenotype. Asp68 is located in the conserved motif GXXX(D/E)(R/K)XGRK for the major facilitator superfamily of secondary transporters and was found to play an important role in energy coupling, whereas the negatively charged residues Asp128 and Glu327 have indirect effects on the transport process. L. lactis strains expressing these uncoupled mutants of LmrP show an increased rate of ethidium influx and an increased drug susceptibility compared with cells harboring an empty vector. The rate of influx in these mutants is enhanced by a transmembrane electrical potential, inside negative. These observations suggest a new strategy for eliminating drug-resistant microbial pathogens, i.e. the design and use of modulators of secondary multidrug resistance transporters that uncouple drug efflux from proton influx, thereby allowing transmembrane electrical potential-driven influx of cationic drugs.
Collapse
Affiliation(s)
- Piotr Mazurkiewicz
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, NL-9751 NN Haren, The Netherlands
| | | | | | | |
Collapse
|
13
|
Green AL, Hrodey HA, Brooker RJ. Evidence for structural symmetry and functional asymmetry in the lactose permease of Escherichia coli. Biochemistry 2003; 42:11226-33. [PMID: 14503872 DOI: 10.1021/bi034810+] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previous work on the lactose permease of Escherichia coli has shown that mutations along a face of predicted transmembrane segment 8 (TMS-8) play a critical role in conformational changes associated with lactose transport (Green, A. L., and Brooker, R. J. [2001] Biochemistry 40, 12220-12229). Substitutions at positions 261, 265, 268, 272, and 276, which form a continuous stripe along TMS-8, were markedly defective for lactose transport velocity. In the current study, three single mutants (F261D, N272Y, N272L) and a double mutant (T265Y/M276Y) were chosen as parental strains for the isolation of mutants that restored transport function. A total of 68 independent mutants were isolated and sequenced. Forty-four were first-site revertants in which the original mutation was changed back to the wild-type residue or to a residue with a similar side-chain volume. The other 24 mutations were second-site suppressors in TMS-2 (Q60L, Q60P), loop 2/3 (L70H), TMS-7 (V229G/A), TMS-8 (F261L), and TMS-11 (F354V, C355G). On the basis of their locations, the majority of the second-site suppressors can be interpreted as improving the putative TMS-2/TMS-7/TMS-11 interface to compensate for conformational defects imposed by mutations in TMS-8 that disrupt the putative TMS-1/TMS-5/TMS-8 interface. Overall, this paper suggests that the TMS-2/TMS-7/TMS-11 interface is more important from a functional point of view, even though there is compelling evidence for structural symmetry between the two halves of the permease.
Collapse
Affiliation(s)
- Aileen L Green
- Department of Genetics, Cell Biology and Development, and the Biotechnology Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
14
|
Huang Y, Lemieux MJ, Song J, Auer M, Wang DN. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 2003; 301:616-20. [PMID: 12893936 DOI: 10.1126/science.1087619] [Citation(s) in RCA: 781] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The major facilitator superfamily represents the largest group of secondary membrane transporters in the cell. Here we report the 3.3 angstrom resolution structure of a member of this superfamily, GlpT, which transports glycerol-3-phosphate into the cytoplasm and inorganic phosphate into the periplasm. The amino- and carboxyl-terminal halves of the protein exhibit a pseudo two-fold symmetry. Closed off to the periplasm, a centrally located substrate-translocation pore contains two arginines at its closed end, which comprise the substrate-binding site. Upon substrate binding, the protein adopts a more compact conformation. We propose that GlpT operates by a single-binding site, alternating-access mechanism through a rocker-switch type of movement.
Collapse
Affiliation(s)
- Yafei Huang
- Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
15
|
Hirai T, Heymann JAW, Maloney PC, Subramaniam S. Structural model for 12-helix transporters belonging to the major facilitator superfamily. J Bacteriol 2003; 185:1712-8. [PMID: 12591890 PMCID: PMC148079 DOI: 10.1128/jb.185.5.1712-1718.2003] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major facilitator superfamily includes a large collection of evolutionarily related proteins that have been implicated in the transport of a variety of solutes and metabolites across the membranes of organisms ranging from bacteria to humans. We have recently reported the three-dimensional structure, at 6.5 A resolution, of the oxalate transporter, OxlT, a representative member of this superfamily. In the oxalate-bound state, 12 helices surround a central cavity to form a remarkably symmetrical structure that displays a well-defined pseudo twofold axis perpendicular to the plane of the membrane as well as two less pronounced, mutually perpendicular pseudo twofold axes in the plane of the membrane. Here, we combined this structural information with sequence information from other members of this protein family to arrive at models for the arrangement of helices in this superfamily of transport proteins. Our analysis narrows down the number of helix arrangements from about a billion starting possibilities to a single probable model for the relative spatial arrangement for the 12 helices, consistent both with our structural findings and with the majority of previous biochemical studies on members of this superfamily.
Collapse
Affiliation(s)
- Teruhisa Hirai
- Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
16
|
Green AL, Brooker RJ. A face on transmembrane segment 8 of the lactose permease is important for transport activity. Biochemistry 2001; 40:12220-9. [PMID: 11580298 DOI: 10.1021/bi0109055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous work on the lactose permease of Escherichia coli has shown that mutations along a face of predicted transmembrane segment 2 (TMS-2) play a critical role in conformational changes associated with lactose transport [Green, A. L., Anderson, E. J., and Brooker, R. J. (2000) J. Biol. Chem. 275, 23240-23246]. In the current study, mutagenesis was conducted along the side of predicted TMS-8 that contains the first amino acid in the conserved loop 8/9 motif. Several substitutions at positions 261, 265, 272, and 276 were markedly defective for downhill lactose transport although these mutants were well expressed. Substitutions along the entire side of TMS-8 containing the first amino acid in the loop 8/9 motif displayed defects in uphill lactose transport. Again, substitutions at positions 261, 265, 268, 272, and 276 were the most defective, with several of these mutants showing no lactose accumulation against a gradient. According to helical wheel plots, Phe-261, Thr-265, Gly-268, Asn-272, and Met-276 form a continuous stripe along one face of TMS-8. These results are discussed according to our hypothetical model, in which the two halves of the protein form a rotationally symmetrical dimer. In support of this model, alignment of predicted TMS-2 and TMS-8 shows an agreement between the amino acid residues in these transmembrane segments that are critical for lactose transport activities.
Collapse
Affiliation(s)
- A L Green
- Department of Genetics, Cell Biology, and Development and the Bioprocess Technology Institute, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | |
Collapse
|
17
|
Kaback HR, Sahin-Tóth M, Weinglass AB. The kamikaze approach to membrane transport. Nat Rev Mol Cell Biol 2001; 2:610-20. [PMID: 11483994 DOI: 10.1038/35085077] [Citation(s) in RCA: 253] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Membrane transport proteins catalyse the movement of molecules into and out of cells and organelles, but their hydrophobic and metastable nature often makes them difficult to study by traditional means. Novel approaches that have been developed and applied to one membrane transport protein, the lactose permease from Escherichia coli, are now being used to study various other membrane proteins.
Collapse
Affiliation(s)
- H R Kaback
- Howard Hughes Medical Institute, Department of Physiology, University of California, Los Angeles, California 90095-1662, USA.
| | | | | |
Collapse
|
18
|
Saraceni-Richards CA, Levy SB. Second-site suppressor mutations of inactivating substitutions at gly247 of the tetracycline efflux protein, Tet(B). J Bacteriol 2000; 182:6514-6. [PMID: 11053399 PMCID: PMC94801 DOI: 10.1128/jb.182.22.6514-6516.2000] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An Asp or Asn substitution for Gly247 in transmembrane helix 8 (TM-8) of Tet(B), the tetracycline efflux protein, eliminated tetracycline resistance. Second site suppressor mutations which partially restored resistance were located in TM-5, -8, -10, or -11 or in cytoplasmic loop 8-9 or loop 10-11. These results indicate physical proximity or functional relationships between TM-8 and these other regions of Tet(B).
Collapse
Affiliation(s)
- C A Saraceni-Richards
- The Center for Adaptation Genetics and Drug Resistance and the Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
19
|
Venkatesan P, Liu Z, Hu Y, Kaback HR. Site-directed sulfhydryl labeling of the lactose permease of Escherichia coli: N-ethylmaleimide-sensitive face of helix II. Biochemistry 2000; 39:10649-55. [PMID: 10978148 DOI: 10.1021/bi0004394] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cys-scanning mutagenesis of helix II in the lactose permease of Escherichia coli [Frillingos, S., Sun, J. et al. (1997) Biochemistry 36, 269-273] indicates that one face contains positions where Cys replacement or Cys replacement followed by treatment with N-ethylmaleimide (NEM) significantly inactivates the protein. In this study, site-directed sulfhydryl modification is utilized in situ to study this face of helix II. [(14)C]NEM labeling of 13 single-Cys mutants, including the nine NEM-sensitive Cys replacements, in right-side-out membrane vesicles is examined. Permease mutants with a single-Cys residue in place of Gly46, Phe49, Gln60, Ser67, or Leu70 are alkylated by NEM at 25 degrees C in 10 min, and mutants with Cys in place of Thr45 and Ser53 are labeled only in the presence of ligand, while mutants with Cys in place of Ile52, Ser56, Leu57, Leu62, Phe63, or Leu65 do not react. Binding of substrate leads to a marked increase in labeling of Cys residues at positions 45, 49, or 53 in the periplasmic half of helix II and a slight decrease in labeling of Cys residues at positions 60 or 67 in the cytoplasmic half. Labeling studies with methanethiosulfonate ethylsulfonate (MTSES) show that positions 45 and 53 are accessible to solvent in the presence of ligand only, while positions 46, 49, 67, and 70 are accessible to solvent in the absence or presence of ligand. Position 60 is also exposed to solvent, and substrate binding causes a decrease in solvent accessibility. The findings demonstrate that the NEM-sensitive face of helix II participates in ligand-induced conformational changes. Remarkably, this membrane-spanning face is accessible to the aqueous phase from the periplasmic side of the membrane. In the following paper in this issue [Venkatesan, P., Hu, Y., and Kaback, H. R. (2000) Biochemistry 39, 10656-10661], the approach is applied to helix X.
Collapse
Affiliation(s)
- P Venkatesan
- Howard Hughes Medical Institute, Departments of Physiology and Microbiology & Molecular Genetics, Molecular Biology Institute, University of California-Los Angeles, Los Angeles, California 90095-1662, USA
| | | | | | | |
Collapse
|
20
|
Venkatesan P, Kwaw I, Hu Y, Kaback HR. Site-directed sulfhydryl labeling of the lactose permease of Escherichia coli: helix VII. Biochemistry 2000; 39:10641-8. [PMID: 10978147 DOI: 10.1021/bi000438b] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Site-directed sulfhydryl modification in situ is employed to investigate structural and dynamic features of transmembrane helix VII and the beginning of the periplasmic loop between helices VII and VIII (loop VII/VIII). Essentially all of the Cys-replacement mutants in the periplasmic half of the helix and the portion of loop VII/VIII tested are labeled by N-[(14)C]ethylmaleimide (NEM). In contrast, with the exception of two mutants at the cytoplasmic end of helix VII, none of the mutants in the cytoplasmic half react with the alkylating agent. Labeling of most of the mutants is unaltered by ligand at 25 degrees C. However, at 4 degrees C, conformational changes induced by substrate binding become apparent. In the presence of ligand, permease mutants with a Cys residue at position 241, 242, 244, 245, 246, or 248 undergo a marked increase in labeling, while the reactivity of a Cys at position 238 is slightly decreased. Labeling of the remaining Cys-replacement mutants is unaffected by ligand. Studies with methanethiosulfonate ethylsulfonate (MTSES), a hydrophilic impermeant thiol reagent, show that most of the positions that react with NEM are accessible to MTSES; however, the two NEM-reactive mutants at the cytoplasmic end of helix VII and position 236 in the middle of the membrane-spanning domain are not. The findings demonstrate that positions in helix VII that reflect ligand-induced conformational changes are located in the periplasmic half and accessible to the aqueous phase from the periplasmic face of the membrane. In the following papers in this issue (Venkatesan, P., Lui, Z., Hu, Y., and Kaback H. R.; Venkatesan, P., Hu, Y., and Kaback H. R.), the approach is applied to helices II and X.
Collapse
Affiliation(s)
- P Venkatesan
- Howard Hughes Medical Institute, Departments of Physiology and Microbiology & Molecular Genetics, Molecular Biology Institute, University of California-Los Angeles, Los Angeles, California 90095-1662, USA
| | | | | | | |
Collapse
|
21
|
Green AL, Anderson EJ, Brooker RJ. A revised model for the structure and function of the lactose permease. Evidence that a face on transmembrane segment 2 is important for conformational changes. J Biol Chem 2000; 275:23240-6. [PMID: 10807929 DOI: 10.1074/jbc.m909202199] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lactose permease is an integral membrane protein that cotransports H(+) and lactose into the bacterial cytoplasm. Previous work has shown that bulky substitutions at glycine 64, which is found on the cytoplasmic edge of transmembrane segment 2 (TMS-2), cause a substantial decrease in the maximal velocity of lactose uptake without significantly affecting the K(m) values (Jessen-Marshall, A. E., Parker, N. J., and Brooker, R. J. (1997) J. Bacteriol. 179, 2616-2622). In the current study, mutagenesis was conducted along the face of TMS-2 that contains glycine-64. Single amino acid substitutions that substantially changed side-chain volume at codons 52, 57, 59, 63, and 66 had little or no effect on transport activity, whereas substitutions at codons 49, 53, 56, and 60 were markedly defective and/or had lower levels of expression. According to helical wheel plots, Phe-49, Ser-53, Ser-56, Gln-60, and Gly-64 form a continuous stripe along one face of TMS-2. Several of the TMS-2 mutants (S56Y, S56L, S56Q, Q60A, and Q60V) were used as parental strains to isolate mutants that restore transport activity. These mutations were either first-site mutations or second-site suppressors in TMS-1, TMS-2, TMS-7 or TMS-11. A kinetic analysis showed that the suppressors had a higher rate of lactose transport compared with the corresponding parental strains. Overall, the results of this study are consistent with the notion that a face on TMS-2, containing Phe-49, Ser-53, Ser-56, Gln-60, and Gly-64, plays a critical role in conformational changes associated with lactose transport. We hypothesize that TMS-2 slides across TMS-7 and TMS-11 when the lactose permease interconverts between the C1 and C2 conformations. This idea is discussed within the context of a revised model for the structure of the lactose permease.
Collapse
Affiliation(s)
- A L Green
- Department of Genetics, Cell Biology, and Development and the BioProcess Technology Institute, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | |
Collapse
|
22
|
Seyfang A, Landfear SM. Four conserved cytoplasmic sequence motifs are important for transport function of the Leishmania inositol/H(+) symporter. J Biol Chem 2000; 275:5687-93. [PMID: 10681553 DOI: 10.1074/jbc.275.8.5687] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protozoan Leishmania donovani has a myo-inositol/proton symporter (MIT) that is a member of a large sugar transporter superfamily. Active transport by MIT is driven by the proton electrochemical gradient across the parasite membrane, and MIT is a prototype for understanding the function of an active transporter in lower eukaryotes. MIT contains two duplicated 6- or 7-amino acid motifs within cytoplasmic loops, which are highly conserved among 50 members of the sugar transporter superfamily and are designated A(1), A(2) ((V)(D/E)(R/K)PhiGR(R/K)), and B(1) (PESPRPhiL), B(2) (VPETKG). In particular, the three acidic residues within these motifs, Glu(187)(B(1)), Asp(300)(A(2)), and Glu(429)(B(2)) in MIT, are highly conserved with 96, 78, and 96% amino acid identity within the analyzed members of this transporter superfamily ranging from bacteria, archaea, and fungi to plants and the animal kingdom. We have used site-directed mutagenesis in combination with functional expression of transporter mutants in Xenopus oocytes and overexpression in Leishmania transfectants to investigate the significance of these three acidic residues in the B(1), A(2), and B(2) motifs. Alteration to the uncharged amides greatly reduced MIT transport function to 23% (E187Q), 1.4% (D300N), and 3% (E429Q) of wild-type activity, respectively, by affecting V(max) but not substrate affinity. Conservative mutations that retained the charge revealed a less pronounced effect on inositol transport with 39% (E187D), 16% (D300E) and 20% (E429D) remaining transport activity. Immunofluorescence microscopy of oocyte cryosections confirmed that MIT mutants were expressed on the oocyte surface in similar quantity to MIT wild type. The proton uncouplers carbonylcyanide-4-(trifluoromethoxy) phenylhydrazone and dinitrophenol inhibited inositol transport by 50-70% in the wild type as well as in E187Q, D300N, and E429Q, despite their reduced transport activities, suggesting that transport in these mutants is still proton-coupled. Furthermore, temperature-dependent uptake studies showed an increased Arrhenius activation energy for the B(1)-E187Q and the B(2)-E429Q mutants, which supports the idea of an impaired transporter cycle in these mutants. We conclude that the conserved acidic residues Glu(187), Asp(300), and Glu(429) are critical for transport function of MIT.
Collapse
Affiliation(s)
- A Seyfang
- Department of Molecular Microbiology, School of Medicine, Oregon Health Sciences University, Portland, Oregon 97201, USA.
| | | |
Collapse
|
23
|
Someya Y, Kimura-Someya T, Yamaguchi A. Role of the charge interaction between Arg(70) and Asp(120) in the Tn10-encoded metal-tetracycline/H(+) antiporter of Escherichia coli. J Biol Chem 2000; 275:210-4. [PMID: 10617606 DOI: 10.1074/jbc.275.1.210] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We reported that the positive charge of Arg(70) is mandatory for tetracycline transport activity of Tn10-encoded metal-tetracycline/H(+) antiporter (TetA(B)) (Someya, Y., and Yamaguchi, A. (1996) Biochemistry 35, 9385-9391). Arg(70) may function through a charge-pairing with a negatively charged residue in close proximity. Therefore, we mutated Asp(66) and Asp(120), which are only two negatively charged residues located close to Arg(70) in putative secondary structure of TetA(B) and highly conserved throughout transporters of the major facilitator superfamily. Site-directed mutagenesis studies revealed that Asp(66) is essential, but Asp(120) is important for TetA(B) function. Surprisingly, when Asp(120) was replaced by a neutral residue, the R70A mutant recovered tetracycline resistance and transport activity. There was no such effect in the Asp(66) mutation. The charge-exchanged mutant, R70D/D120R, also showed significant drug resistance and transport activity (about 50% of the wild type), although the R70D mutant had absolutely no activity, and the D120R mutant retained very low activity (about 10% of the wild type). Both the R70C and D120C mutants were inactivated by N-ethylmaleimide. Mercuric ion (Hg(2+)), which gives a positive charge to a SH group of a Cys residue through mercaptide formation, had an opposite effect on the R70C and D120C mutants. The activity of the R70C mutant was stimulated by Hg(2+); however, on the contrary, the D120C mutant was partially inhibited. On the other hand, the R70C/D120C double mutant was almost completely inactivated by Hg(2+), probably because the side chains at positions 70 and 120 are bridged with Hg(2+). The close proximity of positions 70 and 120 were confirmed by disulfide cross-linking formation of the R70C/D120C double mutant when it was oxidized by copper-(1,10-phenanthroline). These results indicate that the positive charge of Arg(70) requires the negative charge of Asp(120) for neutralization, probably for properly positioning transmembrane segments in the membrane.
Collapse
Affiliation(s)
- Y Someya
- Department of Cell Membrane Biology, the Institute of Scientific and Industrial Research, Osaka University, Osaka 567-0047, Japan
| | | | | |
Collapse
|
24
|
Kawabe T, Yamaguchi A. Transmembrane remote conformational suppression of the Gly-332 mutation of the Tn10-encoded metal-tetracycline/H+ antiporter. FEBS Lett 1999; 457:169-73. [PMID: 10486587 DOI: 10.1016/s0014-5793(99)01032-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Gly-332 is a conformationally important residue of the Tn10-encoded metal-tetracycline/H+ antiporter (TetA(B)), which was found by random mutagenesis and confirmed by site-directed mutagenesis. A bulky side chain at position 332 is deleterious to the transport function. A spontaneous second-site suppressor revertant was isolated from G332S mutant and identified as the Ala-354-->Asp mutant. Gly-332 and Ala-354 are located on opposite ends of transmembrane segment XI. As judged from [14C]NEM binding to Cys mutants, the residue at position 354, which is originally exposed to water, was buried in the membrane by a G332S mutation through a remote conformational change of transmembrane segment XI. This effect is the same as that of a G62L mutation at position 30 through transmembrane segment II [Kimura, T., Sawai, T. and Yamaguchi, A. (1997) Biochemistry 36, 6941-6946]. Interestingly, the G332S mutation was also suppressed by the L30S mutation, and the G62L mutation was moderately suppressed by the A354D mutation. These results indicate the presence of a close conformational relationship between the flanking regions of the transmembrane segments II and XI.
Collapse
Affiliation(s)
- T Kawabe
- Department of Cell Membrane Biology, Osaka University, Japan
| | | |
Collapse
|
25
|
Johnson JL, Brooker RJ. A K319N/E325Q double mutant of the lactose permease cotransports H+ with lactose. Implications for a proposed mechanism of H+/lactose symport. J Biol Chem 1999; 274:4074-81. [PMID: 9933600 DOI: 10.1074/jbc.274.7.4074] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we have examined the transport characteristics of the wild-type lactose permease, single mutants in which Lys-319 was changed to asparagine or alanine or Glu-325 was changed to glutamine or alanine, and the corresponding double mutant strains. The wild-type and Asn-319 mutant showed high levels of lactose uptake, with Km values of 0.42 and 1.30 mM and Vmax values of 102.6 and 48.3 nmol of lactose/min/mg of protein, respectively. The Asn-319/Gln-325 strain had a normal Km of 0.36 mM and a moderate Vmax of 18.5 nmol of lactose/min/mg of protein. By comparison, the single E325Q strain had a normal Km of 0.27 mM but a very defective Vmax of 1.3 nmol of lactose/min/mg of protein. A similar trend was observed among the alanine substitutions at these positions, although the Vmax values were lower for the Ala-319 mutations. When comparing the Vmax values between the single position 325 mutants with those of the double mutants, these results indicate that neutral 319 mutations substantially alleviate a defect in Vmax caused by neutral 325 mutations. With regard to H+/lactose coupling, the wild-type permease is normally coupled and can transport lactose against a gradient. The position 325 single mutants showed no evidence of H+ transport with lactose or thiodigalactoside (TDG) and were unable to facilitate uphill lactose transport. The single Asn-319 mutant and double Asn-319/Gln-325 mutant were able to transport H+ upon the addition of lactose or TDG. In addition, both of these strains catalyzed a sugar-dependent H+ leak that inhibited cell growth in the presence of TDG. These two strains were also defective in uphill transport, which may be related to their sugar-dependent leak pathway. Based on these and other results in the literature, a model is presented that describes how the interactions among several ionizable residues within the lactose permease act in a concerted manner to control H+/lactose coupling. In this model, Lys-319 and Glu-325 play a central role in governing the ability of the lactose permease to couple the transport of H+ and lactose.
Collapse
Affiliation(s)
- J L Johnson
- Department of Genetics and Cell Biology and the Institute for Advanced Studies in Biological Process Technology, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | |
Collapse
|
26
|
Wu J, Hardy D, Kaback HR. Tilting of helix I and ligand-induced changes in the lactose permease determined by site-directed chemical cross-linking in situ. Biochemistry 1998; 37:15785-90. [PMID: 9843383 DOI: 10.1021/bi981501o] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The N-terminal six transmenbrane helices (N6) and the C-terminal six transmembrane helices (C6) of lactose permease, each with a single Cys residue, were co-expressed, and cross-linking was studied. The proximity of paired Cys residues in helices I (positions 11, 14, 15, 18, 25, 28, 29, or 32) and VII (positions 227, 231, 232, 234, 235, 238, 239, 241, 242, 245, or 246) was studied by using homobifunctional thiol-specific chemical linkers of different lengths and chemical properties. The results demonstrate that Cys residues on one face of the periplasmic half of helix I (positions 32, 29, 28, or 25) cross-link to Cys residues on one face of the periplasmic half of helix VII (242 or 245). In contrast, no cross-linking is evident with paired Cys residues in the cytoplasmic halves of helices I (positions 11, 14, 15, or 18) and VII (positions 227, 230, 231, 232, 234, 235, 238, or 239). The results indicate that helices I and VII are in close proximity only at their periplasmic halves. Ligand binding decreases cross-linking efficiency of the Cys pair 28/245 or 25/242 with N, N'-o-phenylenedimaleimide (rigid 6 A) and increases efficiency with N,N'-p-phenylenedimaleimide (rigid 10 A) or 1,6-bismaleimidohexane (flexible 16 A), indicating that the inter-thiol distance is about 6 A in the absence of ligand and that ligand binding increases the distance up to 10 A. The inter-thiol distance for Cys pairs 29/245 or 32/245 is less than 6 A in the absence of ligand, and in the presence of ligand, distance increases to between 6 and 10 A. Taken together, the results indicate that ligand binding induces a translational or scissors-like rigid body movement of helix I and/or VII at the periplasmic interface between the helices.
Collapse
Affiliation(s)
- J Wu
- Howard Hughes Medical Institute, Molecular Biology Institute, University of California, Los Angeles 90095-1662, USA
| | | | | |
Collapse
|
27
|
Patzlaff JS, Moeller JA, Barry BA, Brooker RJ. Fourier transform infrared analysis of purified lactose permease: a monodisperse lactose permease preparation is stably folded, alpha-helical, and highly accessible to deuterium exchange. Biochemistry 1998; 37:15363-75. [PMID: 9799497 DOI: 10.1021/bi981142x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The lactose permease, encoded by the lacY gene of Escherichia coli, is an integral membrane protein that functions as a proton and lactose symporter. In this study, we have characterized a novel monodisperse, purified preparation of lactose permease, as well as functionally reconstituted lactose permease, using spectroscopic techniques. The purification of monodisperse lactose permease has been aided by the development of a lacY gene product containing an amino-terminal six histidine affinity tag. In the novel purification method described here, lactose permease is purified from beta-dodecyl maltoside-solubilized membrane vesicles using three sequential column steps: hydroxyapatite, nickel-nitriloacetic acid (Ni-NTA) affinity, and cation-exchange chromatography. The hydroxyapatite step was shown to be essential in reducing aggregation of the final purified protein. Amino acid composition analysis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis support the conclusion that the protein has been purified to greater than 90% homogeneity. The protein has been successfully reconstituted and has been shown to be active for lactose transport. Fourier transform infrared (FT-IR) spectroscopy has been performed on monodisperse lactose permease and on proteoliposomes containing functional lactose permease. FT-IR spectroscopy supports the conclusion that the monodisperse lactose permease preparation is 80% alpha-helical and stably folded at 20 degreesC; thermal denaturation is first detected at 70 degreesC. Because the purified protein is also readily susceptible to 2H exchange, these results suggest that the protein is conformationally flexible and that 2H exchange is facilitated as the result of conformational fluctuations from the folded state.
Collapse
Affiliation(s)
- J S Patzlaff
- Department of Biochemistry, Molecular Biology, and Biophysics, College of Biological Sciences, University of Minnesota, St. Paul 55108, USA
| | | | | | | |
Collapse
|
28
|
Wu J, Hardy D, Kaback HR. Transmembrane helix tilting and ligand-induced conformational changes in the lactose permease determined by site-directed chemical crosslinking in situ. J Mol Biol 1998; 282:959-67. [PMID: 9753547 DOI: 10.1006/jmbi.1998.2065] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The N-terminal six transmenbrane helices (N6) and the C-terminal six transmembrane helices (C6) of the lactose permease of Escherichia coli, each with a Cys residue, were co-expressed independently, and crosslinking was studied. Proximity of paired Cys residues in helices II (position 49, 52, 53, 56, 57, 60, 63 or 67) and VII (position 227, 230, 231, 234, 238, 241, 242 or 245) or XI (position 350, 353, 354, 357, 361 or 364) was examined by using two homobifunctional thiol-specific crosslinking agents of different lengths (6 or 10 A). The results demonstrate that a Cys residue placed in the periplasmic half of helix II (position 49, 52, 53 or 57) crosslinks to Cys residues in the periplasmic half of helix VII (position 241, 242 or 245). In contrast, no crosslinking is evident with paired-Cys residues in the cytoplasmic halves of helices II (position 60, 63 or 67) and VII (position 227, 230, 231, 234 or 238). Remarkably, a Cys residue in the cytoplasmic half of helix II (position 60, 63 or 67) crosslinks with a Cys residue in the cytoplasmic half of helix XI (position 350, 353 or 354), while paired-Cys residues at positions in the periplasmic halves of the two helices do not crosslink. Therefore, helix II is tilted in such a manner that the periplasmic end is close to helix VII, and the cytoplasmic end is close to helix XI. Furthermore, ligand-binding alters the crosslinking efficiency of paired-Cys residues in helices II and VII or XI, indicating that both interfaces are conformationally active. The results are consistent with the conclusion that ligand-binding induces a scissors-like movement of helices II and VII that increases interhelical distance by 3 to 4 A at the periplasmic ends and decreases the distance by 3 to 4 A at the approximate middle of the two transmembrane helices.
Collapse
Affiliation(s)
- J Wu
- Department of Physiology, University of California at Los Angeles, Los Angeles, CA 90095-1662, USA
| | | | | |
Collapse
|
29
|
Frillingos S, Sahin-Tóth M, Wu J, Kaback HR. Cys-scanning mutagenesis: a novel approach to structure function relationships in polytopic membrane proteins. FASEB J 1998; 12:1281-99. [PMID: 9761772 DOI: 10.1096/fasebj.12.13.1281] [Citation(s) in RCA: 311] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The entire lactose permease of Escherichia coli, a polytopic membrane transport protein that catalyzes beta-galactoside/H+ symport, has been subjected to Cys-scanning mutagenesis in order to determine which residues play an obligatory role in the mechanism and to create a library of mutants with a single-Cys residue at each position of the molecule for structure/function studies. Analysis of the mutants has led to the following: 1) only six amino acid side chains play an irreplaceable role in the transport mechanism; 2) positions where the reactivity of the Cys replacement is increased upon ligand binding are identified; 3) positions where the reactivity of the Cys replacement is decreased by ligand binding are identified; 4) helix packing, helix tilt, and ligand-induced conformational changes are determined by using the library of mutants in conjunction with a battery of site-directed techniques; 5) the permease is a highly flexible molecule; and 6) a working model that explains coupling between beta-galactoside and H+ translocation. structure-function relationships in polytopic membrane proteins.
Collapse
Affiliation(s)
- S Frillingos
- Howard Hughes Medical Institute, Departments of Physiology and Microbiology and Molecular Genetics, Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90024
| | | | | | | |
Collapse
|
30
|
Hu LA, King SC. Functional significance of the "signature cysteine" in helix 8 of the Escherichia coli 4-aminobutyrate transporter from the amine-polyamine-choline superfamily. Restoration of Cys-300 to the Cys-less Gabp. J Biol Chem 1998; 273:20162-7. [PMID: 9685361 DOI: 10.1074/jbc.273.32.20162] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
gab permease (GabP) is the exclusive mediator of 4-aminobutyrate (GABA) transport across the Escherichia coli plasma membrane. Helix 8 and a portion of the adjoining cytoplasmic region (loop 8-9) constitute the GabP "consensus amphipathic region" (CAR), a potential channel-forming domain that is found to be evolutionarily conserved within the APC (amine-polyamine-choline) transporter superfamily. Upon the polar surface of the CAR, all known gab permeases display a "signature cysteine" not found in other members of the APC superfamily, suggesting that discrete features within the CAR might play a role in imparting specificity (kcat/Km) to the translocation reaction. Here we show that among the five cysteine residues in the E. coli GabP, only Cys-300, the signature cysteine, can restore wild type properties to the Cys-less GabP mutant. We conclude (i) from partial reaction studies (equilibrium exchange, counterflow) that rapid translocation of the GABA binding site from one side of the membrane to the other is greatly facilitated by Cys-300 and (ii) from pharmacological studies that loss of Cys-300 has little effect on the affinity that GabP exhibits for a structurally diverse array (kojic amine, 5-aminovaleric acid, GABA, nipecotic acid, and cis-4-aminocrotonic acid) of competitive ligands. These results raise the possibility that other GABA transporters might rely analogously upon conserved cysteine residues positioned within the amphipathic helix 8 and loop 8-9 regions.
Collapse
Affiliation(s)
- L A Hu
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-0641, USA
| | | |
Collapse
|
31
|
Pazdernik NJ, Cain SM, Brooker RJ. An analysis of suppressor mutations suggests that the two halves of the lactose permease function in a symmetrical manner. J Biol Chem 1997; 272:26110-6. [PMID: 9334175 DOI: 10.1074/jbc.272.42.26110] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A conserved motif, GXXX(D/E)(R/K)XG[X](R/K)(R/K), is located in loop 2/3 and loop 8/9 in the lactose permease, and also in hundreds of evolutionarily related transporters. The importance of conserved residues in loop 8/9 was previously investigated (Pazdernik, N. J., Jessen-Marshall, A. E., and Brooker, R. J. (1997) J. Bacteriol. 179, 735-741). Although this loop was tolerant of many substitutions, a few mutations in the first position of the motif were shown to dramatically decrease lactose transport. In the current study, a mutant at the first position in the motif having very low lactose transport, Leu280, was used as a parental strain to isolate second-site revertants that restore function. A total of 23 independent mutants were sequenced and found to have a second amino acid substitution at several locations (G46C, G46S, F49L, A50T, L212Q, L216Q, S233P, C333G, F354C, G370C, G370S, and G370V). A kinetic analysis revealed that the first-site mutation, Leu280, had a slightly better affinity for lactose compared with the wild-type strain, but its Vmax for lactose transport was over 30-fold lower. The primary effect of the second-site mutations was to increase the Vmax for lactose transport, in some cases, to levels that were near the wild-type value. When comparing this study to second-site mutations obtained from loop 2/3 defective strains, a striking observation was made. Mutations in three regions of the protein, codons 45-50, 234-241, and 366-370, were able to restore functionality to both loop 2/3 and loop 8/9 defects. These results are discussed within the context of a C1/C2 alternating conformation model in which lactose translocation occurs by a conformational change at the interface between the two halves of the protein.
Collapse
Affiliation(s)
- N J Pazdernik
- Department of Genetics and Cell Biology and the Bioprocess Technology Institute, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | |
Collapse
|
32
|
Sun J, Kaback HR. Proximity of periplasmic loops in the lactose permease of Escherichia coli determined by site-directed cross-linking. Biochemistry 1997; 36:11959-65. [PMID: 9305990 DOI: 10.1021/bi971172k] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Out of over 60 single-Cys mutants in putative periplasmic loops in lactose permease, three mutants [Tyr101 --> Cys (loop III/IV), Leu313 --> Cys (loop IX/X), and Ser375 --> Cys (loop XI/XII)] spontaneously form disulfide-linked dimers, indicating that these loops are located on the periphery of the 12-helix bundle that comprises the permease. By using a permease construct with a factor Xa protease site in the middle cytoplasmic loop, cross-linking between paired-Cys residues in the N- and C-terminal halves of the permease was studied by spontaneous or copper-(1, 10-phenanthroline)3-catalyzed disulfide formation or by cross-linking with homo- or heterobifunctional reagents in which the distance between the reactive groups and the flexibility of the linker vary. The findings suggest that the longer loops are relatively flexible; however, cross-linking of residues between loops is specific, indicating that these domains are not simply flexible, hydrophilic connections between helices that interact randomly. More specifically, the findings indicate that the first periplasmic loop (loop I/II) is close to loops VII/VIII and XI/XII, placing helix XII in close proximity to helices II and XI. In addition, the observations are consistent with previous results [Wu, J., & Kaback, H. R. (1996) Proc. Natl. Acad. Sci. U.S.A. 93, 14498-502] demonstrating that helices I and II are close to helices VII and XI. Finally, evidence is presented indicating that conformational flexibility between loops I/II and XI/XII may be important for permease turnover.
Collapse
Affiliation(s)
- J Sun
- Howard Hughes Medical Institute, Department of Physiology, Molecular Biology Institute, University of California at Los Angeles, Los Angeles, California 90095-1662, USA
| | | |
Collapse
|
33
|
Wu J, Kaback HR. Helix proximity and ligand-induced conformational changes in the lactose permease of Escherichia coli determined by site-directed chemical crosslinking. J Mol Biol 1997; 270:285-93. [PMID: 9236129 DOI: 10.1006/jmbi.1997.1099] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
N and C-terminal halves of lactose permease, each with a single-Cys residue, were co-expressed, and crosslinking was studied. Iodine or N,N'-o-phenylenedimaleimide (o-PDM; rigid 6 A), crosslinks Asn245 Cys (helix VII) and Ile52 --> Cys or Ser53 --> Cys (helix II). N,N'-p-phenylenedimaleimide (p-PDM; rigid 10 A) crosslinks the 245/53 Cys pair weakly, but does not crosslink 245/52, and 1,6-bis-maleimidohexane (BMH; flexible 16 A) crosslinks both pairs less effectively than o-PDM. Thus, 245 is almost equidistant from 52 and 53 by up to about 6 A. BMH or p-PDM crosslinks Gln242 --> Cys and Ser53 --> Cys, but o-PDM is ineffective, indicating that distance varies by up to 10 A. Ligand binding increases crosslinking of 245/53 with p-PDM or BMH, has little effect with o-PDM and decreases iodine crosslinking. Similar effects are observed with 245/52. Ligand increases 242/53 crosslinking with p-PDM or BMH, but no crosslinking is observed with o-PDM. Therefore, ligand induces a translational or scissors-like displacement of the helices by 3-4 A. Crosslinking 245/53 inhibits transport indicating that conformational flexibility is important for function.
Collapse
Affiliation(s)
- J Wu
- Department of Physiology, University of California, Los Angeles 90095-1662, USA
| | | |
Collapse
|
34
|
Kimura T, Sawai T, Yamaguchi A. Remote conformational effects of the Gly-62 --> Leu mutation of the Tn10-encoded metal-tetracycline/H+ antiporter of Escherichia coli and its second-site suppressor mutation. Biochemistry 1997; 36:6941-6. [PMID: 9188689 DOI: 10.1021/bi9631879] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Substitution of Gly-62 of the Tn10-encoded metal-tetracycline/H+ antiporter caused a functional defect corresponding to the volume of the substituent [Yamaguchi, A., Someya, Y., and Sawai, T. (1992) J. Biol. Chem. 267, 19155-19162]. A spontaneous revertant exhibiting tetracycline resistance was isolated from Escherichia coli cells carrying the tetA(B) gene encoding the G62L mutation. The revertant showed a second-site mutation at codon 30 of TTA (Leu) to TCA (Ser). Site-directed mutagenesis studies revealed that the L30S mutation could suppress the effects of the G62A, G62C, G62N, and G62V mutations as well as the G62L mutation. Positions 62 and 30 are located in hydrophilic loops estimated to be in the cytoplasm and periplasm, respectively. Their sidedness was confirmed by the fact that, in intact cells, the [14C]N-ethylmaleimide (NEM) binding to the G62C mutant was not affected by preincubation with a membrane-impermeant sulfhydryl reagent, whereas the binding to the L30C mutant was blocked by the reagent. The reactivity of the L30C and L29C mutants with [14C]NEM was drastically decreased when Gly-62 was replaced by Leu, indicating that the residues around position 30 became embedded in the intramembrane region due to the remote conformational effect of the G62L mutation across the membrane. Moreover, the reactivity of the L29C/G62L mutant with [14C]NEM was restored with the L30S mutation. These results clearly indicate that the second-site suppression by the L30S mutation was based on the blocking of the remote conformational change around position 30 across the cell membrane caused by the G62L mutation.
Collapse
Affiliation(s)
- T Kimura
- Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University, Mihogaoka, Ibaraki, Japan
| | | | | |
Collapse
|
35
|
Yan SZ, Huang ZH, Shaw RS, Tang WJ. The conserved asparagine and arginine are essential for catalysis of mammalian adenylyl cyclase. J Biol Chem 1997; 272:12342-9. [PMID: 9139678 DOI: 10.1074/jbc.272.19.12342] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mammalian adenylyl cyclases have two homologous cytoplasmic domains (C1 and C2), and both domains are required for the high enzymatic activity. Mutational and genetic analyses of type I and soluble adenylyl cyclases suggest that the C2 domain is catalytically active and the C1 domain is not; the role of the C1 domain is to promote the catalytic activity of the C2 domain. Two amino acid residues, Asn-1025 and Arg-1029 of type II adenylyl cyclase, are conserved among the C2 domains, but not among the C1 domains, of adenylyl cyclases with 12 putative transmembrane helices. Mutations at each amino acid residue alone result in a 30-100-fold reduction in Kcat of adenylyl cyclase. However, the same mutations do not affect the Km for ATP, the half-maximal concentration (EC50) for the C2 domain of type II adenylyl cyclase to associate with the C1 domain of type I adenylyl cyclase and achieve maximal enzyme activity, or the EC50 for forskolin to maximally activate enzyme activity with or without Gsalpha. This indicates that the mutations at these two residues do not cause gross structural alteration. Thus, these two conserved amino acid residues appear to be crucial for catalysis, and their absence from the C1 domains may account for its lack of catalytic activity. Mutations at both amino acid residues together result in a 3,000-fold reduction in Kcat of adenylyl cyclase, suggesting that these two residues have additive effects in catalysis. A second site suppressor of the Asn-1025 to Ser mutant protein has been isolated. This suppressor has 17-fold higher activity than the mutant and has a Pro-1015 to Ser mutation.
Collapse
Affiliation(s)
- S Z Yan
- Department of Pharmacological and Physiological Sciences, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
36
|
Jessen-Marshall AE, Parker NJ, Brooker RJ. Suppressor analysis of mutations in the loop 2-3 motif of lactose permease: evidence that glycine-64 is an important residue for conformational changes. J Bacteriol 1997; 179:2616-22. [PMID: 9098060 PMCID: PMC179011 DOI: 10.1128/jb.179.8.2616-2622.1997] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A superfamily of transport proteins, which includes the lactose permease of Escherichia coli, contains a highly conserved motif, G-X-X-X-D/E-R/K-X-G-R/K-R/K, in the loops that connect transmembrane segments 2 and 3 and transmembrane segments 8 and 9. Previous analysis of this motif in the lactose permease (A. E. Jessen-Marshall, N. J. Paul, and R. J. Brooker, J. Biol. Chem. 270:16251-16257, 1995) has shown that the conserved glycine residue found at the first position in the motif (i.e., Gly-64) is important for transport function. Every substitution at this site, with the exception of alanine, greatly diminished lactose transport activity. In this study, three mutants in which glycine-64 was changed to cysteine, serine, and valine were used as parental strains to isolate 64 independent suppressor mutations that restored transport function. Of these 64 isolates, 39 were first-site revertants to glycine or alanine, while 25 were second-site mutations that restored transport activity yet retained a cysteine, serine, or valine at position 64. The second-site mutations were found to be located at several sites within the lactose permease (Pro-28 --> Ser, Leu, or Thr; Phe-29 --> Ser; Ala-50 --> Thr, Cys-154 --> Gly; Cys-234 --> Phe; Gln-241 --> Leu; Phe-261 --> Val; Thr-266 --> Iso; Val-367 --> Glu; and Ala-369 --> Pro). A kinetic analysis was conducted which compared lactose uptake in the three parental strains and several suppressor strains. The apparent Km values of the Cys-64, Ser-64, and Val-64 parental strains were 0.8 mM, 0.7 mM, and 4.6 mM, respectively, which was similar to the apparent Km of the wild-type permease (1.4 mM). In contrast, the Vmax values of the Cys-64, Ser-64, and Val-64 strains were sharply reduced (3.9, 10.1, and 13.2 nmol of lactose/min x mg of protein, respectively) compared with the wild-type strain (676 nmol of lactose/min x mg of protein). The primary effect of the second-site suppressor mutations was to restore the maximal rate of lactose transport to levels that were similar to the wild-type strains. Taken together, these results support the notion that Gly-64 in the wild-type permease is at a site in the protein which is important in facilitating conformational changes that are necessary for lactose translocation across the membrane. According to our tertiary model, this site is at an interface between the two halves of the protein.
Collapse
Affiliation(s)
- A E Jessen-Marshall
- Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108, USA
| | | | | |
Collapse
|
37
|
Frillingos S, Sun J, Gonzalez A, Kaback HR. Cysteine-scanning mutagenesis of helix II and flanking hydrophilic domains in the lactose permease of Escherichia coli. Biochemistry 1997; 36:269-73. [PMID: 8993343 DOI: 10.1021/bi9618629] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Using a functional lactose permease mutant devoid of Cys residues (C-less permease), each amino acid residue in putative transmembrane helix II and flanking hydrophilic loops (from Leu34 to Lys74) was replaced individually with Cys. Of the 41 single-Cys mutants, 28 accumulate lactose to > 70% of the steady state observed with C-less permease, and an additional 10 mutants exhibit lower but significant levels of accumulation (25-60% of C-less). His35-->Cys permease exhibits very low activity (ca. 20% of C-less), while Gly64-->Cys or Asp68-->Cys permease is unable to accumulate lactose. However, His35 can be replaced with Arg without effect on transport activity [Padan, E., Sarkar, H.K., et al. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 6765-6768]. In addition, even though mutant Gly64-->Cys or Glu68-->Cys is inactive both in the C-less background and in the wild-type, neither Gly64 [Jung, K., Jung, H., et al. (1995) Biochemistry 34, 1030-1039] nor Glu68 [Jessen-Marshall, A.E., & Brooker, R.J. (1996) J. Biol. Chem. 271, 1400-1404] is essential for active lactose transport. Immunoloblot analysis reveals that all of the mutants except His35-->Cys permease are inserted into the membrane at concentrations comparable to that of C-less permease. The transport activity of the single-Cys mutants is altered by N-ethylmaleimide (NEM) treatment in a highly specific manner. Most of the mutants are insensitive, but Cys replacements render the permease sensitive to NEM inactivation at positions that cluster in a manner indicating that they are on one face of an alpha-helix (Thr45-->Cys, Gly46-->Cys, Phe49-->Cys, Ser53-->Cys, Ser56-->Cys, Gln60-->Cys, and Ser67-->Cys). Interestingly, the same face contains positions where Cys substitution itself leads to low transport activity (Ile52-->Cys, Leu57-->Cys, Gln60-->Cys, and Gly64-->Cys). The results demonstrate that although no residue per se in this region of the permease is irreplaceable, the surface of one face of helix II is important for active lactose transport.
Collapse
Affiliation(s)
- S Frillingos
- Howard Hughes Medical Institute, Department of Physiology, University of California, Los Angeles 90024-1570, USA
| | | | | | | |
Collapse
|
38
|
Wu J, Kaback HR. A general method for determining helix packing in membrane proteins in situ: helices I and II are close to helix VII in the lactose permease of Escherichia coli. Proc Natl Acad Sci U S A 1996; 93:14498-502. [PMID: 8962080 PMCID: PMC26161 DOI: 10.1073/pnas.93.25.14498] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
It was previously shown that coexpression of the lactose permease of Escherichia coli in two contiguous fragments leads to functional complementation. We demonstrate here that site-directed thiol crosslinking of coexpressed permease fragments can be used to determine helix proximity in situ without the necessity of purifying the permease. After coexpression of the six N-terminal (N6) and six C-terminal (C6) transmembrane helices, each with a single Cys residue, crosslinking was carried out in native membranes and assessed by the mobility of anti-C-terminal-reactive polypeptides on immunoblots. A Cys residue at position 242 or 245 (helix VII) forms a disulfide with a Cys residue at either position 28 or 29 (helix I), but not with a Cys residue at position 27, which is on the opposite face of helix I, thereby indicating that the face of helix I containing Pro-28 and Phe-29 is close to helix VII. Similarly, a Cys residue at position 242 or 245 (helix VII) forms a disulfide with a Cys residue at either position 52 or 53 (helix II), but not with a Cys residue at position 54. Furthermore, low-efficiency crosslinking is observed between a Cys residue at position 52 or 53 and a Cys residue at position 361 (helix XI). The results indicate that helix VII lies in close proximity to both helices I and II and that helix II is also close to helix XI. The method should be applicable to a number of different polytopic membrane proteins.
Collapse
Affiliation(s)
- J Wu
- Howard Hughes Medical Institute, Department of Physiology and Microbiology, University of California, Los Angeles 90095-1662, USA
| | | |
Collapse
|
39
|
Abstract
Multidrug efflux systems display the ability to transport a variety of structurally unrelated drugs from a cell and consequently are capable of conferring resistance to a diverse range of chemotherapeutic agents. This review examines multidrug efflux systems which use the proton motive force to drive drug transport. These proteins are likely to operate as multidrug/proton antiporters and have been identified in both prokaryotes and eukaryotes. Such proton-dependent multidrug efflux proteins belong to three distinct families or superfamilies of transport proteins: the major facilitator superfamily (MFS), the small multidrug resistance (SMR) family, and the resistance/ nodulation/cell division (RND) family. The MFS consists of symporters, antiporters, and uniporters with either 12 or 14 transmembrane-spanning segments (TMS), and we show that within the MFS, three separate families include various multidrug/proton antiport proteins. The SMR family consists of proteins with four TMS, and the multidrug efflux proteins within this family are the smallest known secondary transporters. The RND family consists of 12-TMS transport proteins and includes a number of multidrug efflux proteins with particularly broad substrate specificity. In gram-negative bacteria, some multidrug efflux systems require two auxiliary constituents, which might enable drug transport to occur across both membranes of the cell envelope. These auxiliary constituents belong to the membrane fusion protein and the outer membrane factor families, respectively. This review examines in detail each of the characterized proton-linked multidrug efflux systems. The molecular basis of the broad substrate specificity of these transporters is discussed. The surprisingly wide distribution of multidrug efflux systems and their multiplicity in single organisms, with Escherichia coli, for instance, possessing at least nine proton-dependent multidrug efflux systems with overlapping specificities, is examined. We also discuss whether the normal physiological role of the multidrug efflux systems is to protect the cell from toxic compounds or whether they fulfil primary functions unrelated to drug resistance and only efflux multiple drugs fortuitously or opportunistically.
Collapse
Affiliation(s)
- I T Paulsen
- School of Biological Sciences, University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|