1
|
Yeo JC, Tay FP, Bennion R, Loss O, Maignel J, Pons L, Foster K, Beard M, Bard F. Botulinum toxin intoxication requires retrograde transport and membrane translocation at the ER in RenVM neurons. eLife 2024; 12:RP92806. [PMID: 39196607 DOI: 10.7554/elife.92806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
Botulinum neurotoxin A (BoNT/A) is a highly potent proteolytic toxin specific for neurons with numerous clinical and cosmetic uses. After uptake at the synapse, the protein is proposed to translocate from synaptic vesicles to the cytosol through a self-formed channel. Surprisingly, we found that after intoxication proteolysis of a fluorescent reporter occurs in the neuron soma first and then centrifugally in neurites. To investigate the molecular mechanisms at play, we use a genome-wide siRNA screen in genetically engineered neurons and identify over three hundred genes. An organelle-specific split-mNG complementation indicates BoNT/A traffic from the synapse to the soma-localized Golgi in a retromer-dependent fashion. The toxin then moves to the ER and appears to require the Sec61 complex for retro-translocation to the cytosol. Our study identifies genes and trafficking processes hijacked by the toxin, revealing a new pathway mediating BoNT/A cellular toxicity.
Collapse
Affiliation(s)
- Jeremy C Yeo
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Felicia P Tay
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Rebecca Bennion
- Centre de Recherche en Cancérologie de Marseille, Aix Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, Equipe Leader Fondation ARC 2021, Marseille, France
| | - Omar Loss
- Ipsen Bioinnovation, London, United Kingdom
| | | | | | | | | | - Frederic Bard
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Centre de Recherche en Cancérologie de Marseille, Aix Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, Equipe Leader Fondation ARC 2021, Marseille, France
| |
Collapse
|
2
|
Kumar R, Feltrup TM, Kukreja RV, Patel KB, Cai S, Singh BR. Evolutionary Features in the Structure and Function of Bacterial Toxins. Toxins (Basel) 2019; 11:toxins11010015. [PMID: 30609803 PMCID: PMC6356308 DOI: 10.3390/toxins11010015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/24/2018] [Accepted: 12/25/2018] [Indexed: 12/21/2022] Open
Abstract
Toxins can function both as a harmful and therapeutic molecule, depending on their concentrations. The diversity in their function allows us to ask some very pertinent questions related to their origin and roles: (a) What makes them such effective molecules? (b) Are there evolutionary features encoded within the structures of the toxins for their function? (c) Is structural hierarchy in the toxins important for maintaining their structure and function? (d) Do protein dynamics play a role in the function of toxins? and (e) Do the evolutionary connections to these unique features and functions provide the fundamental points in driving evolution? In light of the growing evidence in structural biology, it would be appropriate to suggest that protein dynamics and flexibility play a much bigger role in the function of the toxin than the structure itself. Discovery of IDPs (intrinsically disorder proteins), multifunctionality, and the concept of native aggregation are shaking the paradigm of the requirement of a fixed three-dimensional structure for the protein’s function. Growing evidence supporting the above concepts allow us to redesign the structure-function aspects of the protein molecules. An evolutionary model is necessary and needs to be developed to study these important aspects. The criteria for a well-defined model would be: (a) diversity in structure and function, (b) unique functionality, and (c) must belong to a family to define the evolutionary relationships. All these characteristics are largely fulfilled by bacterial toxins. Bacterial toxins are diverse and widely distributed in all three forms of life (Bacteria, Archaea and Eukaryotes). Some of the unique characteristics include structural folding, sequence and functional combination of domains, targeting a cellular process to execute their function, and most importantly their flexibility and dynamics. In this work, we summarize certain unique aspects of bacterial toxins, including role of structure in defining toxin function, uniqueness in their enzymatic function, and interaction with their substrates and other proteins. Finally, we have discussed the evolutionary aspects of toxins in detail, which will help us rethink the current evolutionary theories. A careful study, and appropriate interpretations, will provide answers to several questions related to the structure-function relationship of proteins, in general. Additionally, this will also allow us to refine the current evolution theories.
Collapse
Affiliation(s)
- Raj Kumar
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA.
| | - Thomas M Feltrup
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA.
| | - Roshan V Kukreja
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA.
| | - Kruti B Patel
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA.
| | - Shuowei Cai
- Department of Chemistry and Biochemistry, University of Massachusetts, Dartmouth, MA 02747, USA.
| | - Bal Ram Singh
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA.
| |
Collapse
|
3
|
Jacobson AR, Adler M, Silvaggi NR, Allen KN, Smith GM, Fredenburg RA, Stein RL, Park JB, Feng X, Shoemaker CB, Deshpande SS, Goodnough MC, Malizio CJ, Johnson EA, Pellett S, Tepp WH, Tzipori S. Small molecule metalloprotease inhibitor with in vitro, ex vivo and in vivo efficacy against botulinum neurotoxin serotype A. Toxicon 2017; 137:36-47. [PMID: 28698055 DOI: 10.1016/j.toxicon.2017.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 01/08/2023]
Abstract
Botulinum neurotoxins (BoNTs) are the most toxic substances known to mankind and are the causative agents of the neuroparalytic disease botulism. Their ease of production and extreme toxicity have caused these neurotoxins to be classified as Tier 1 bioterrorist threat agents and have led to a sustained effort to develop countermeasures to treat intoxication in case of a bioterrorist attack. While timely administration of an approved antitoxin is effective in reducing the severity of botulism, reversing intoxication requires different strategies. In the present study, we evaluated ABS 252 and other mercaptoacetamide small molecule active-site inhibitors of BoNT/A light chain using an integrated multi-assay approach. ABS 252 showed inhibitory activity in enzymatic, cell-based and muscle activity assays, and importantly, produced a marked delay in time-to-death in mice. The results suggest that a multi-assay approach is an effective strategy for discovery of potential BoNT therapeutic candidates.
Collapse
Affiliation(s)
| | - Michael Adler
- Neuroscience Branch, Medical Toxicology Division, USAMRICD, APG, MD, 21010, United States.
| | - Nicholas R Silvaggi
- Department of Chemistry, Boston University, Boston, MA, 02215, United States
| | - Karen N Allen
- Department of Chemistry, Boston University, Boston, MA, 02215, United States
| | | | - Ross A Fredenburg
- Center for Neurologic Diseases, Brigham & Women's Hospital and Harvard Medical School, Cambridge, MA, 02139, United States
| | - Ross L Stein
- Laboratory for Drug Discovery in Neurodegeneration, Brigham & Women's Hospital and Harvard Medical School, Cambridge, MA, 02139, United States
| | - Jong-Beak Park
- Division of Infectious Diseases, Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, 01536, United States
| | - Xiaochuan Feng
- Division of Infectious Diseases, Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, 01536, United States
| | - Charles B Shoemaker
- Division of Infectious Diseases, Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, 01536, United States
| | - Sharad S Deshpande
- Neuroscience Branch, Medical Toxicology Division, USAMRICD, APG, MD, 21010, United States
| | | | | | - Eric A Johnson
- Department of Bacteriology, University of Wisconsin at Madison, Madison, WI, 53706, United States
| | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin at Madison, Madison, WI, 53706, United States
| | - William H Tepp
- Department of Bacteriology, University of Wisconsin at Madison, Madison, WI, 53706, United States
| | - Saul Tzipori
- Division of Infectious Diseases, Tufts University Cummings School of Veterinary Medicine, North Grafton, MA, 01536, United States
| |
Collapse
|
4
|
Pirazzini M, Rossetto O. Challenges in searching for therapeutics against Botulinum Neurotoxins. Expert Opin Drug Discov 2017; 12:497-510. [DOI: 10.1080/17460441.2017.1303476] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Seki H, Xue S, Pellett S, Šilhár P, Johnson EA, Janda KD. Cellular Protection of SNAP-25 against Botulinum Neurotoxin/A: Inhibition of Thioredoxin Reductase through a Suicide Substrate Mechanism. J Am Chem Soc 2016; 138:5568-75. [PMID: 27070533 PMCID: PMC4881748 DOI: 10.1021/jacs.5b12929] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Botulium neurotoxins (BoNTs) are among the most lethal toxins known to man. They are comprised of seven serotypes with BoNT/A being the most deadly; yet, there is no approved therapeutic for their intoxication or one that has even advanced to clinical trials. Botulinum neurotoxicity is ultimately governed through light chain (LC) protease SNARE protein cleavage leading to a loss of neurotransmitter release. Pharmacological attempts to ablate BoNT/A intoxication have sought to either nullify cellular toxin entry or critical biochemical junctions found within its intricate mechanism of action. In these regards, reports have surfaced of nonpeptidic small molecule inhibitors, but few have demonstrated efficacy in neutralizing cellular toxicity, a key prerequisite before rodent lethality studies can be initiated. On the basis of a lead discovered in our BoNT/A cellular assay campaign, we investigated a family of N-hydroxysuccinimide inhibitors grounded upon structure activity relationship (SAR) fundamentals. Molecules stemming from this SAR exercise were theorized to be protease inhibitors. However, this proposition was overturned on the basis of extensive kinetic analysis. Unexpectedly, inhibitor data pointed to thioredoxin reductase (TrxR), an essential component required for BoNT protease translocation. Also unforeseen was the inhibitors' mechanism of action against TrxR, which was found to be brokered through a suicide-mechanism utilizing quinone methide as the inactivating element. This new series of TrxR inhibitors provides an alternative means to negate the etiological agent responsible for BoNT intoxication, the LC protease.
Collapse
Affiliation(s)
| | | | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin , 1550 Linden Drive, Madison, Wisconsin 53706, United States
| | | | - Eric A Johnson
- Department of Bacteriology, University of Wisconsin , 1550 Linden Drive, Madison, Wisconsin 53706, United States
| | | |
Collapse
|
6
|
In cellulo phosphorylation induces pharmacological reprogramming of maurocalcin, a cell-penetrating venom peptide. Proc Natl Acad Sci U S A 2016; 113:E2460-8. [PMID: 27071086 DOI: 10.1073/pnas.1517342113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The venom peptide maurocalcin (MCa) is atypical among toxins because of its ability to rapidly translocate into cells and potently activate the intracellular calcium channel type 1 ryanodine receptor (RyR1). Therefore, MCa is potentially subjected to posttranslational modifications within recipient cells. Here, we report that MCa Thr(26) belongs to a consensus PKA phosphorylation site and can be phosphorylated by PKA both in vitro and after cell penetration in cellulo. Unexpectedly, phosphorylation converts MCa from positive to negative RyR1 allosteric modulator. Thr(26) phosphorylation leads to charge neutralization of Arg(24), a residue crucial for MCa agonist activity. The functional effect of Thr(26) phosphorylation is partially mimicked by aspartyl mutation. This represents the first case, to our knowledge, of both ex situ posttranslational modification and pharmacological reprogramming of a small natural cystine-rich peptide by target cells. So far, phosphorylated MCa is the first specific negative allosteric modulator of RyR1, to our knowledge, and represents a lead compound for further development of phosphatase-resistant analogs.
Collapse
|
7
|
Kiris E, Nuss JE, Stanford SM, Wanner LM, Cazares L, Maestre MF, Du HT, Gomba GY, Burnett JC, Gussio R, Bottini N, Panchal RG, Kane CD, Tessarollo L, Bavari S. Phosphatase Inhibitors Function as Novel, Broad Spectrum Botulinum Neurotoxin Antagonists in Mouse and Human Embryonic Stem Cell-Derived Motor Neuron-Based Assays. PLoS One 2015; 10:e0129264. [PMID: 26061731 PMCID: PMC4462581 DOI: 10.1371/journal.pone.0129264] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/06/2015] [Indexed: 12/05/2022] Open
Abstract
There is an urgent need to develop novel treatments to counter Botulinum neurotoxin (BoNT) poisoning. Currently, the majority of BoNT drug development efforts focus on directly inhibiting the proteolytic components of BoNT, i.e. light chains (LC). Although this is a rational approach, previous research has shown that LCs are extremely difficult drug targets and that inhibiting multi-serotype BoNTs with a single LC inhibitor may not be feasible. An alternative approach would target neuronal pathways involved in intoxication/recovery, rather than the LC itself. Phosphorylation-related mechanisms have been implicated in the intoxication pathway(s) of BoNTs. However, the effects of phosphatase inhibitors upon BoNT activity in the physiological target of BoNTs, i.e. motor neurons, have not been investigated. In this study, a small library of phosphatase inhibitors was screened for BoNT antagonism in the context of mouse embryonic stem cell-derived motor neurons (ES-MNs). Four inhibitors were found to function as BoNT/A antagonists. Subsequently, we confirmed that these inhibitors protect against BoNT/A in a dose-dependent manner in human ES-MNs. Additionally, these compounds provide protection when administered in post-intoxication scenario. Importantly, the inhibitors were also effective against BoNT serotypes B and E. To the best of our knowledge, this is the first study showing phosphatase inhibitors as broad-spectrum BoNT antagonists.
Collapse
Affiliation(s)
- Erkan Kiris
- Geneva Foundation, Tacoma, WA, United States of America
- Department of Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI), Frederick, MD, United States of America
| | - Jonathan E. Nuss
- Department of Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Stephanie M. Stanford
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
| | - Laura M. Wanner
- Department of Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Lisa Cazares
- Department of Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Michael F. Maestre
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
| | - Hao T. Du
- Department of Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Glenn Y. Gomba
- Department of Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - James C. Burnett
- Leidos Biomedical Research, Inc., Computational Drug Development Group (CDDG), NCI, Frederick, MD, United States of America
- CDDG, Developmental Therapeutics Program, NCI, Frederick, MD, United States of America
| | - Rick Gussio
- CDDG, Developmental Therapeutics Program, NCI, Frederick, MD, United States of America
| | - Nunzio Bottini
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
| | - Rekha G. Panchal
- Department of Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Christopher D. Kane
- Department of Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
- Henry M. Jackson Foundation, Bethesda, MD, United States of America
- DoD Biotechnology High Performance Computing Software Applications Institute (BHSAI), Telemedicine and Advanced Technology Research Center (TATRC), US Army Medical Research and Materiel Command (USAMRMC), Frederick, MD, United States of America
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI), Frederick, MD, United States of America
| | - Sina Bavari
- Department of Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| |
Collapse
|
8
|
Kiris E, Burnett JC, Nuss JE, Wanner LM, Peyser BD, Du HT, Gomba GY, Kota KP, Panchal RG, Gussio R, Kane CD, Tessarollo L, Bavari S. SRC family kinase inhibitors antagonize the toxicity of multiple serotypes of botulinum neurotoxin in human embryonic stem cell-derived motor neurons. Neurotox Res 2015; 27:384-98. [PMID: 25782580 PMCID: PMC4455898 DOI: 10.1007/s12640-015-9526-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/05/2015] [Indexed: 02/07/2023]
Abstract
Botulinum neurotoxins (BoNTs), the causative agents of botulism, are potent inhibitors of neurotransmitter release from motor neurons. There are currently no drugs to treat BoNT intoxication after the onset of the disease symptoms. In this study, we explored how modulation of key host pathways affects the process of BoNT intoxication in human motor neurons, focusing on Src family kinase (SFK) signaling. Motor neurons derived from human embryonic stem (hES) cells were treated with a panel of SFK inhibitors and intoxicated with BoNT serotypes A, B, or E (which are responsible for >95 % of human botulism cases). Subsequently, it was found that bosutinib, dasatinib, KX2-391, PP1, PP2, Src inhibitor-1, and SU6656 significantly antagonized all three of the serotypes. Furthermore, the data indicated that the treatment of hES-derived motor neurons with multiple SFK inhibitors increased the antagonistic effect synergistically. Mechanistically, the small molecules appear to inhibit BoNTs by targeting host pathways necessary for intoxication and not by directly inhibiting the toxins' proteolytic activity. Importantly, the identified inhibitors are all well-studied with some in clinical trials while others are FDA-approved drugs. Overall, this study emphasizes the importance of targeting host neuronal pathways, rather than the toxin's enzymatic components, to antagonize multiple BoNT serotypes in motor neurons.
Collapse
Affiliation(s)
- Erkan Kiris
- Geneva Foundation, Tacoma, WA, USA
- Department of Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
- Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - James C. Burnett
- Leidos Biomedical Research, Inc., Computational Drug Development Group (CDDG), NCI, Frederick, MD 21702, USA
- CDDG, Developmental Therapeutics Program, NCI, Frederick, MD 21702, USA
| | - Jonathan E. Nuss
- Department of Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Laura M. Wanner
- Department of Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Brian D. Peyser
- CDDG, Developmental Therapeutics Program, NCI, Frederick, MD 21702, USA
| | - Hao T. Du
- Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Glenn Y. Gomba
- Department of Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Krishna P. Kota
- Department of Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Rekha G. Panchal
- Department of Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| | - Rick Gussio
- CDDG, Developmental Therapeutics Program, NCI, Frederick, MD 21702, USA
| | - Christopher D. Kane
- Department of Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
- Henry M. Jackson Foundation, Bethesda, MD, USA
- DoD Biotechnology High Performance Computing Software Applications Institute (BHSAI), Telemedicine and Advanced Technology Research Center (TATRC), US Army Medical Research and Materiel Command (USAMRMC), Frederick, MD 2170, USA
| | - Lino Tessarollo
- Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Sina Bavari
- Department of Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, USA
| |
Collapse
|
9
|
Kumar R, Kukreja RV, Cai S, Singh BR. Differential role of molten globule and protein folding in distinguishing unique features of botulinum neurotoxin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1145-52. [PMID: 24568862 DOI: 10.1016/j.bbapap.2014.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 02/15/2014] [Accepted: 02/17/2014] [Indexed: 12/11/2022]
Abstract
Botulinum neurotoxins (BoNTs) are proteins of great interest not only because of their extreme toxicity but also paradoxically for their therapeutic applications. All the known serotypes (A-G) have varying degrees of longevity and potency inside the neuronal cell. Differential chemical modifications such as phosphorylation and ubiquitination have been suggested as possible mechanisms for their longevity, but the molecular basis of the longevity remains unclear. Since the endopeptidase domain (light chain; LC) of toxin apparently survives inside the neuronal cells for months, it is important to examine the structural features of this domain to understand its resistance to intracellular degradation. Published crystal structures (both botulinum neurotoxins and endopeptidase domain) have not provided adequate explanation for the intracellular longevity of the domain. Structural features obtained from spectroscopic analysis of LCA and LCB were similar, and a PRIME (PReImminent Molten Globule Enzyme) conformation appears to be responsible for their optimal enzymatic activity at 37°C. LCE, on the other hand, was although optimally active at 37°C, but its active conformation differed from the PRIME conformation of LCA and LCB. This study establishes and confirms our earlier finding that an optimally active conformation of these proteins in the form of PRIME exists for the most poisonous poison, botulinum neurotoxin. There are substantial variations in the structural and functional characteristics of these active molten globule related structures among the three BoNT endopeptidases examined. These differential conformations of LCs are important in understanding the fundamental structural features of proteins, and their possible connection to intracellular longevity could provide significant clues for devising new countermeasures and effective therapeutics.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Chemistry and Biochemistry, University of Massachusetts, Dartmouth, MA 02747, USA
| | - Roshan V Kukreja
- Department of Chemistry and Biochemistry, University of Massachusetts, Dartmouth, MA 02747, USA
| | - Shuowei Cai
- Department of Chemistry and Biochemistry, University of Massachusetts, Dartmouth, MA 02747, USA
| | - Bal R Singh
- Department of Chemistry and Biochemistry, University of Massachusetts, Dartmouth, MA 02747, USA.
| |
Collapse
|
10
|
Lawrence GW, Ovsepian SV, Wang J, Aoki KR, Dolly JO. Therapeutic effectiveness of botulinum neurotoxin A: Potent blockade of autonomic transmission by targeted cleavage of only the pertinent SNAP-25. Neuropharmacology 2013; 70:287-95. [DOI: 10.1016/j.neuropharm.2013.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 01/17/2013] [Accepted: 02/14/2013] [Indexed: 11/16/2022]
|
11
|
Šilhár P, Lardy MA, Hixon MS, Shoemaker CB, Barbieri JT, Struss AK, Lively JM, Javor S, Janda KD. The C-terminus of Botulinum A Protease Has Profound and Unanticipated Kinetic Consequences Upon the Catalytic Cleft. ACS Med Chem Lett 2013; 4:283-287. [PMID: 23565325 DOI: 10.1021/ml300428s] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are among the most deadly poisons known though ironically, they also are of great therapeutic utility. A number of research programs have been initiated to discover small molecule inhibitors of BoNTs metalloprotease activity. Many, though not all of these programs have screened against a truncated and more stable form of the enzyme, that possess comparable catalytic properties to the full length enzyme. Interestingly, several classes of inhibitors notably the hydroxamates, display a large shift in potency between the two enzyme forms. In this report we compare the kinetics of active-site, alpha-exosite and beta-exosite inhibitors versus truncated and full length enzyme. Molecular dynamics simulations conducted with the truncated and homology models of the fully length BoNT LC/A indicate the flexibility of the C-terminus of the full length enzyme is responsible for the potency shifts of active-site proximally binding inhibitors while distal binding (alpha-exosite) inhibitors remain equipotent.
Collapse
Affiliation(s)
- Peter Šilhár
- Departments of Chemistry and
Immunology, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey
Pines Road, La Jolla, California 92037, United States
| | - Matthew A. Lardy
- Takeda California Inc., 10410 Science Center Drive, San Diego, California
92121, United States
| | - Mark S. Hixon
- Takeda California Inc., 10410 Science Center Drive, San Diego, California
92121, United States
| | - Charles B. Shoemaker
- Department
of Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, 200 Westboro
Road, North Grafton, Massachusetts 01536, United States
| | - Joseph T. Barbieri
- Department of Microbiology and
Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Anjali K. Struss
- Departments of Chemistry and
Immunology, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey
Pines Road, La Jolla, California 92037, United States
| | - Jenny M. Lively
- Departments of Chemistry and
Immunology, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey
Pines Road, La Jolla, California 92037, United States
| | - Sacha Javor
- Departments of Chemistry and
Immunology, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey
Pines Road, La Jolla, California 92037, United States
| | - Kim D. Janda
- Departments of Chemistry and
Immunology, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey
Pines Road, La Jolla, California 92037, United States
- Worm Institute for Research
and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United
States
| |
Collapse
|
12
|
Toth S, Brueggmann EE, Oyler GA, Smith LA, Hines HB, Ahmed SA. Tyrosine phosphorylation of botulinum neurotoxin protease domains. Front Pharmacol 2012; 3:102. [PMID: 22675300 PMCID: PMC3366388 DOI: 10.3389/fphar.2012.00102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/07/2012] [Indexed: 01/17/2023] Open
Abstract
Botulinum neurotoxins are most potent of all toxins. Their N-terminal light chain domain (Lc) translocates into peripheral cholinergic neurons to exert its endoproteolytic action leading to muscle paralysis. Therapeutic development against these toxins is a major challenge due to their in vitro and in vivo structural differences. Although three-dimensional structures and reaction mechanisms are very similar, the seven serotypes designated A through G vastly vary in their intracellular catalytic stability. To investigate if protein phosphorylation could account for this difference, we employed Src-catalyzed tyrosine phosphorylation of the Lc of six serotypes namely LcA, LcB, LcC1, LcD, LcE, and LcG. Very little phosphorylation was observed with LcD and LcE but LcA, LcB, and LcG were maximally phosphorylated by Src. Phosphorylation of LcA, LcB, and LcG did not affect their secondary and tertiary structures and thermostability significantly. Phosphorylation of Y250 and Y251 made LcA resistant to autocatalysis and drastically reduced its kcat/Km for catalysis. A tyrosine residue present near the essential cysteine at the C-terminal tail of LcA, LcB, and LcG was readily phosphorylated in vitro. Inclusion of a competitive inhibitor protected Y426 of LcA from phosphorylation, shedding light on the role of the C-terminus in the enzyme’s substrate or product binding.
Collapse
Affiliation(s)
- Stephen Toth
- Integrated Toxicology Division, Department of Biochemistry and Cell Biology, United States Army Medical Research Institute of Infectious Diseases Fort Detrick, MD, USA
| | | | | | | | | | | |
Collapse
|
13
|
Charrua A, Avelino A, Cruz F. Modulation of urinary bladder innervation: TRPV1 and botulinum toxin A. Handb Exp Pharmacol 2011:345-374. [PMID: 21290235 DOI: 10.1007/978-3-642-16499-6_17] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The persisting interest around neurotoxins such as vanilloids and botulinum toxin (BoNT) derives from their marked effect on detrusor overactivity refractory to conventional antimuscarinic treatments. In addition, both are administered by intravesical route. This offers three potential advantages. First, intravesical therapy is an easy way to provide high concentrations of pharmacological agents in the bladder tissue without causing unsuitable levels in other organs. Second, drugs effective on the bladder, but inappropriate for systemic administration, can be safely used as it is the case of vanilloids and BoNT. Third, the effects of one single treatment might be extremely longlasting, contributing to render these therapies highly attractive to patients despite the fact that the reasons to the prolonged effect are still incompletely understood. Attractive as it may be, intravesical pharmacological therapy should still be considered as a second-line treatment in patients refractory to conventional oral antimuscarinic therapy or who do not tolerate its systemic side effects. However, the increasing off-label use of these neurotoxins justifies a reappraisal of their pharmacological properties.
Collapse
Affiliation(s)
- Ana Charrua
- Institute of Histology and Embryology, Porto, Portugal
| | | | | |
Collapse
|
14
|
|
15
|
Affiliation(s)
- Mauricio Montal
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, California 92093-0366;
| |
Collapse
|
16
|
Lebeda FJ, Cer RZ, Mudunuri U, Stephens R, Singh BR, Adler M. The zinc-dependent protease activity of the botulinum neurotoxins. Toxins (Basel) 2010; 2:978-97. [PMID: 22069621 PMCID: PMC3153231 DOI: 10.3390/toxins2050978] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 04/30/2010] [Accepted: 05/05/2010] [Indexed: 12/11/2022] Open
Abstract
The botulinum neurotoxins (BoNT, serotypes A-G) are some of the most toxic proteins known and are the causative agents of botulism. Following exposure, the neurotoxin binds and enters peripheral cholinergic nerve endings and specifically and selectively cleaves one or more SNARE proteins to produce flaccid paralysis. This review centers on the kinetics of the Zn-dependent proteolytic activities of these neurotoxins, and briefly describes inhibitors, activators and factors underlying persistence of toxin action. Some of the structural, enzymatic and inhibitor data that are discussed here are available at the botulinum neurotoxin resource, BotDB (http://botdb.abcc.ncifcrf.gov).
Collapse
Affiliation(s)
- Frank J. Lebeda
- US Army Medical Research and Materiel Command, Ft. Detrick, MD 21702-5012, USA
| | - Regina Z. Cer
- Bioinformatics Support Group, Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD 21702, USA; (R.Z.C.); (U.M.); (R.S.)
| | - Uma Mudunuri
- Bioinformatics Support Group, Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD 21702, USA; (R.Z.C.); (U.M.); (R.S.)
| | - Robert Stephens
- Bioinformatics Support Group, Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick Inc., NCI-Frederick, Frederick, MD 21702, USA; (R.Z.C.); (U.M.); (R.S.)
| | - Bal Ram Singh
- Botulinum Research Center, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, MA 02747, USA; (B.R.S.)
| | - Michael Adler
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010-5400, USA; (M.A.)
| |
Collapse
|
17
|
Fischer A, Mushrush DJ, Lacy DB, Montal M. Botulinum neurotoxin devoid of receptor binding domain translocates active protease. PLoS Pathog 2008; 4:e1000245. [PMID: 19096517 PMCID: PMC2596314 DOI: 10.1371/journal.ppat.1000245] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 11/19/2008] [Indexed: 01/04/2023] Open
Abstract
Clostridium botulinum neurotoxin (BoNT) causes flaccid paralysis by disabling synaptic exocytosis. Intoxication requires the tri-modular protein to undergo conformational changes in response to pH and redox gradients across endosomes, leading to the formation of a protein-conducting channel. The approximately 50 kDa light chain (LC) protease is translocated into the cytosol by the approximately 100 kDa heavy chain (HC), which consists of two modules: the N-terminal translocation domain (TD) and the C-terminal Receptor Binding Domain (RBD). Here we exploited the BoNT modular design to identify the minimal requirements for channel activity and LC translocation in neurons. Using the combined detection of substrate proteolysis and single-channel currents, we showed that a di-modular protein consisting only of LC and TD was sufficient to translocate active protease into the cytosol of target cells. The RBD is dispensable for cell entry, channel activity, or LC translocation; however, it determined a pH threshold for channel formation. These findings indicate that, in addition to its individual functions, each module acts as a chaperone for the others, working in concert to achieve productive intoxication.
Collapse
Affiliation(s)
- Audrey Fischer
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Darren J. Mushrush
- Departments of Biochemistry, Microbiology and Immunology, and Center for Structural Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - D. Borden Lacy
- Departments of Biochemistry, Microbiology and Immunology, and Center for Structural Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Mauricio Montal
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
18
|
Fischer A, Garcia-Rodriguez C, Geren I, Lou J, Marks JD, Nakagawa T, Montal M. Molecular Architecture of Botulinum Neurotoxin E Revealed by Single Particle Electron Microscopy. J Biol Chem 2008; 283:3997-4003. [DOI: 10.1074/jbc.m707917200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
19
|
Affiliation(s)
- Eric A Johnson
- Department of Bacteriology, Food Research Institute, University of Wisconsin, Madison, WI, USA.
| | | |
Collapse
|
20
|
Fischer A, Montal M. Single molecule detection of intermediates during botulinum neurotoxin translocation across membranes. Proc Natl Acad Sci U S A 2007; 104:10447-52. [PMID: 17563359 PMCID: PMC1965533 DOI: 10.1073/pnas.0700046104] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dynamics of Clostridium botulinum neurotoxins (BoNTs) protein-translocation across membranes was investigated by using a single molecule assay with millisecond resolution on excised patches of neuronal cells. Translocation of BoNT/A light chain (LC) by heavy chain (HC) was observed in real time as an increase of channel conductance: the HC channel is occluded by the LC during transit, then unoccluded after completion of translocation and release of LC-cargo. We identified an entirely unknown succession of intermediate conductance stages during LC translocation. For the single-chain BoNT/E, by contrast to the di-chain BoNT/A, we demonstrate that productive translocation requires proteolysis of the LC cargo from the HC chaperone. We propose a model for the set of protein-protein interactions between translocase and cargo at each step of translocation that supports the notion of an interdependent, tight interplay between the HC chaperone and the LC cargo preventing LC aggregation and dictating the outcome of translocation: productive passage of cargo or abortive channel occlusion by cargo.
Collapse
Affiliation(s)
- Audrey Fischer
- Section of Neurobiology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0366
| | - Mauricio Montal
- Section of Neurobiology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0366
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
21
|
Cai F, Adrion CB, Keller JE. Comparison of extracellular and intracellular potency of botulinum neurotoxins. Infect Immun 2006; 74:5617-24. [PMID: 16988237 PMCID: PMC1594926 DOI: 10.1128/iai.00552-06] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Levels of botulinum neurotoxin (BoNT) proteolytic activity were compared using a cell-free assay and living neurons to measure extracellular and intracellular enzymatic activity. Within the cell-free reaction model, BoNT serotypes A and E (BoNT/A and BoNT/E, respectively) were reversibly inhibited by chelating Zn2+ with N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN). BoNT/E required relatively long incubation with TPEN to achieve total inhibition, whereas BoNT/A was inhibited immediately upon mixing. When naïve Zn2+-containing BoNTs were applied to cultured neurons, the cellular action of each BoNT was rapidly inhibited by subsequent addition of TPEN, which is membrane permeable. Excess Zn2+ added to the culture medium several hours after poisoning fully restored intracellular toxin activity. Unlike TPEN, EDTA irreversibly inhibited both BoNT/A and -E within the cell-free in vitro reaction. Excess Zn2+ did not reactivate the EDTA-treated toxins. However, application of EDTA-treated BoNT/A or -E to cultured neurons demonstrated normal toxin action in terms of both blocking neurotransmission and SNAP-25 proteolysis. Different concentrations of EDTA produced toxin preparations with incrementally reduced in vitro proteolytic activities, which, when applied to living neurons showed undiminished cellular potency. This suggests that EDTA renders the BoNT proteolytic domain conformationally inactive when tested with the cell-free reaction, but this change is corrected during entry into neurons. The effect of EDTA is unrelated to Zn2+ because TPEN could be applied to living cells before or after poisoning to produce rapid and reversible inhibition of both BoNTs. Therefore, bound Zn2+ is not required for toxin entry into neurons, and removal of Zn2+ from cytosolic BoNTs does not irreversibly alter toxin structure or function. We conclude that EDTA directly alters both BoNTs in a manner that is independent of Zn2+.
Collapse
Affiliation(s)
- Fang Cai
- Laboratory of Bacterial Toxins, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
22
|
Dasgupta BR, Antharavally BS, Tepp W, Evenson ML. Botulinum neurotoxin types A, B, and E: fragmentations by autoproteolysis and other mechanisms including by O-phenanthroline-dithiothreitol, and association of the dinucleotides NAD(+)/NADH with the heavy chain of the three neurotoxins. Protein J 2006; 24:337-68. [PMID: 16323041 DOI: 10.1007/s10930-005-7589-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2005] [Indexed: 10/25/2022]
Abstract
The first evidence of autoproteolytic activity of the approximately 50-kDa light chain of the clostridial neurotoxins (NT) is traceable to the observations that the light chains of botulinum NT serotypes A and E, separated from their approximately 100-kDa heavy chain conjugate, were found cleaved at the amino side of Tyr250 and Arg244, respectively [DasGupta and Foley (1989). Biochimie 71: 1183-1200]. Specific cleavages of the recombinant light chain of NT type A, including at Tyr249-Tyr250, firmly established that the cleavages reported earlier were due to autoproteolysis [Ahmed et al. (2001). J. Protein Chem. 20: 221-231; Ahmed et al. (2003). Biochemistry 42:12539-12549] and not by contaminating proteases or non-enzymatic. We now report many cleavages in the NT types A, B and E and also in their separated light and heavy chains, and identification of several of the peptide bonds cleaved. None of the identified cleaved bonds (-P1-P1' -) in one serotype (except Asp-Pro) was found common in other serotypes or cleaved within itself at a second site. After separation from the heavy chain self-cleavages of the light chains of type A, B and E at Tyr249-Tyr250, Gln258-Ser259 and Ile243-Arg244, respectively indicate an intriguing feature (in the aligned sequences these bonds of type A and B are 2 and type A and E are 4 peptide bonds apart) that may have some role in the NT's structure-function relationship yet to be understood. We point out that autoproteolysis of a single peptide bond (Phe418-Thr419 or Phe422-Glu423) in NT type A reported by Ahmed et al. (2001) can potentially generate proteolytically active light chain freed of the heavy chain; this is an efficient pathway, that by-passes nicking by a trypsin-like protease(s) inside the intrachain disulfide bridge and its reductive cleavage. We offer probable explanations for the observed cleavages such as acid- and metal-mediated (non-catalytic and non-stoichiometric) reactions in addition to autoproteolysis but cannot predict which mechanism(s) of cleavage occur or prevail following NT's entry in the body as poison or therapeutic agent. The metal chelator O-phenanthroline (above critical miceller concentration) in the presence of dithiothreitol cleaved type E NT at limited sites generating discrete 114-, 87-, 49-, 42-, and 31-kDa fragments but degraded NTs type A and B extensively. The limited cleavage of type E NT was dependent on the presence of metal ion(s) bound to the protein and its native (urea sensitive) conformation. The self-cleavage of the NTs at specific sites prompted us to search for specific binding sites on the NTs analogous to SNARE-motifs-the 9-residuelong motifs present on the NT's natural substrates (SNAP-25, syntaxin, VAMP/synaptobrevin); such putative binding motifs (sites) noted on all clostridial NTs are reported here. Their relationship to the observed autoproteolysis remains to be determined experimentally. The dinucleotide NAD(+)/NADH associated with the NTs type A, B and E (2-3 NADH per protein molecule) via their H-chains, and a portion of the H-chain (toward the C-terminus) appears to exhibit limited amino acid sequence homology with lactate dehydrogenase-a representative NAD(+)/NADH binding protein.
Collapse
Affiliation(s)
- Bibhuti R Dasgupta
- Department of Food Microbiology and Toxicology, University of Wisconsin - Madison, 1925 Willow Drive, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
23
|
Ibañez C, Blanes-Mira C, Fernández-Ballester G, Planells-Cases R, Ferrer-Montiel A. Modulation of botulinum neurotoxin A catalytic domain stability by tyrosine phosphorylation. FEBS Lett 2005; 578:121-7. [PMID: 15581628 DOI: 10.1016/j.febslet.2004.10.084] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Accepted: 10/20/2004] [Indexed: 11/25/2022]
Abstract
Botulinum neurotoxin A (BoNT A) is a substrate of the Src family of tyrosine kinases. Here, we report that the BoNT A light chain (LC) is phosphorylated in the tyrosine-71 located at N-terminus. Covalent modification of this residue notably increases the thermal stability of the endopeptidase activity, without affecting its catalytic efficacy. Similarly, mutation of this residue specifically affected the protein stability but not its endopeptidase function. Fusion of the Tat-translocating domain to the N-terminus of the enzyme produced a cell permeable, functional enzyme, as evidenced by immunocytochemistry and by the cleavage of cytosolic SNAP25 in intact PC12 cells. Noteworthy, truncation of cellular SNAP25 was reduced in cells when the Src kinase activity was inhibited with a specific antagonist, implying that tyrosine phosphorylation of BoNT A LC modulates the in vivo proteolytic activity of the neurotoxin. Taken together, these findings substantiate the tenet that tyrosine phosphorylation of BoNT A LC could be an important modulatory strategy of the neurotoxin stability and suggest that the phosphorylated neurotoxin may be a relevant molecule in vivo.
Collapse
Affiliation(s)
- Cristina Ibañez
- Instituto Biología Molecular y Celular, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain
| | | | | | | | | |
Collapse
|
24
|
Zhang L, Lin WJ, Li S, Aoki KR. Complete DNA sequences of the botulinum neurotoxin complex of Clostridium botulinum type A-Hall (Allergan) strain. Gene 2003; 315:21-32. [PMID: 14557061 DOI: 10.1016/s0378-1119(03)00792-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BOTOX is manufactured with the purified native 900-kDa type A neurotoxin complex from Clostridium botulinum type A-Hall (Allergan) strain. This complex is composed of the botulinum neurotoxin (BoNT) and several toxin associated proteins known as the hemagglutinins (HAs) and the non-toxic non-hemagglutinin protein (NTNH). We describe here the complete gene sequences of the BoNT complex of type A-Hall (Allergan) strain. Using a polymerase chain reaction-based approach, we sequenced six open reading frames (ORFs) encoding BoNT (1296 amino acids), the toxin-associated proteins: HA70, 625 aa; HA17, 147 aa; HA34, 291 aa; NTNH, 1193 aa; and the regulatory component botR/OrfX, 178 aa. Comparative alignments of the amino acid sequence of BoNT/A shows a 98-100% sequence identity among different strains of the type A, except for the Kyoto-F strain (90%), whereas the sequence identity between BoNT/A and other toxin serotypes is only 30.4-39.1%. Similar to the neurotoxin, the toxin-associated proteins and botR from type A-Hall strain also share more than 95% identity to the homologous proteins found in type A-NCTC2916 strain. Among all the toxin associated proteins, NTNHs and HA70s are the most conserved with 65-87% identity across different serotypes. On the other hand, HA34s, present only in serotypes A-D, show greater diversity than all other toxin-associated proteins; HA34/A has 90% identity to HA34/B and only approximately 35% identity to HA34/C and HA34/D. Relatively higher sequence identity ( approximately 60%) is seen in HA17 and botR of Hall A when compared to their counterparts in serotypes C or D. Of all proteins within the toxin complex, NTNH and HA70 have the highest degree of conservation across serotypes and this may underscore a critical role for these proteins in the formation of the complexes. Physiologically, different duration of action in different serotypes may be due to different modifications of toxins by neuronal enzymes, which lead to different compartmentalization of different toxins. Computer-assisted motif analysis reveals that toxins contain several potential sites for phosphorylation by casein kinase II, protein kinase C, tyrosine kinases, glycogen synthase kinase 3, cGMP dependent protein kinase (PKG) that are well conserved. The reported sequence information for type A-Hall strain will potentially facilitate elucidation of the toxin interactions with the nontoxin proteins in the complex.
Collapse
Affiliation(s)
- Li Zhang
- Neurotoxin Preclinical Research Program, Department of Biological Sciences, Allergan Inc., 2525 Dupont Drive, Irvine, CA 92612, USA
| | | | | | | |
Collapse
|
25
|
Adler M, Shafer HF, Manley HA, Hackley BE, Nicholson JD, Keller JE, Goodnough MC. A capillary electrophoresis technique for evaluating botulinum neurotoxin B light chain activity. JOURNAL OF PROTEIN CHEMISTRY 2003; 22:441-8. [PMID: 14690246 DOI: 10.1023/b:jopc.0000005459.00492.60] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Botulinum neurotoxin B (BoNT/B) produces muscle paralysis by cleaving synaptobrevin/vesicle-associated membrane protein (VAMP), an 18-kDa membrane-associated protein located on the surface of small synaptic vesicles. A capillary electrophoresis (CE) assay was developed to evaluate inhibitors of the proteolytic activity of BoNT/B with the objective of identifying suitable candidates for treatment of botulism. The assay was based on monitoring the cleavage of a peptide that corresponds to residues 44-94 of human VAMP-2 (V51) following reaction with the catalytic light chain (LC) of BoNT/B. Cleavage of V51 generated peptide fragments of 18 and 33 amino acids by scission of the bond between Q76 and F77. The fragments and parent peptide were clearly resolved by CE, allowing accurate quantification of the BoNT/B LC-mediated reaction rates. The results indicate that CE is suitable for assessing the enzymatic activity of BoNT/B LC.
Collapse
Affiliation(s)
- Michael Adler
- Neurotoxicology Branch, Pharmacology Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland 21010, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Poulain B, Humeau Y. [Mode of action of botulinum neurotoxin: pathological, cellular and molecular aspect]. ANNALES DE READAPTATION ET DE MEDECINE PHYSIQUE : REVUE SCIENTIFIQUE DE LA SOCIETE FRANCAISE DE REEDUCATION FONCTIONNELLE DE READAPTATION ET DE MEDECINE PHYSIQUE 2003; 46:265-75. [PMID: 12928128 DOI: 10.1016/s0168-6054(03)00114-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Several bacteria of the Clostridium genus (C. botulinum) produce 150 kDa di-chainal protein toxins referred as botulinum neurotoxins or BoNTs. They associate with non-toxic companion proteins and form a complex termed botulinum toxin or BoTx. The latter is used in clinic for therapeutic purpose. BoNTs affect cholinergic nerve terminals in periphery where they block acetylcholine release, thereby causing dysautonomia and motorparalysis (i.e. botulism). The cellular action of BoNTs can be depicted according to a three steps model: binding, internalisation and intraneuronal action. The toxins heavy chain mediates binding to specific receptors followed by endocytotic internalisation of BoNT/receptor complex. BoNT receptors may comprise gangliosides and synaptic vesicle-associated proteins as synaptotagmins. Vesicle recycling induces BoNT internalisation. Upon acidification of vesicles, the light chain of the neurotoxin is translocated into the cytosol. Here, this zinc-endopeptidase cleaves one or two among three synaptic proteins (VAMP-synaptobrevin, SNAP25, and syntaxin). As the three protein targets of BoNT play major role in fusion of synaptic vesicles at the release sites, their cleavage is followed by blockage of neurotransmitter exocytosis. The duration of the paralytic effect of the BoNTs is determined by 1) the turnover of their protein target; 2) the time-life of the toxin light chain in the cytosol, and 3) the sprouting of new nerve-endings that are retracted when the poisoned nerve terminal had recovered its full functionality.
Collapse
Affiliation(s)
- B Poulain
- Neurotransmission et sécrétion neuroendocrine, UPR 2356 du CNRS, IFR 37 des neurosciences, 5, rue Blaise-Pascal, 67084 Strasbourg cedex, France.
| | | |
Collapse
|
27
|
Caccin P, Rossetto O, Rigoni M, Johnson E, Schiavo G, Montecucco C. VAMP/synaptobrevin cleavage by tetanus and botulinum neurotoxins is strongly enhanced by acidic liposomes. FEBS Lett 2003; 542:132-6. [PMID: 12729912 DOI: 10.1016/s0014-5793(03)00365-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tetanus and botulinum neurotoxins (TeNT and BoNTs) block neuroexocytosis via specific cleavage and inactivation of SNARE proteins. Such activity is exerted by the N-terminal 50 kDa light chain (L) domain, which is a zinc-dependent endopeptidase. TeNT, BoNT/B, /D, /F and /G cleave vesicle associated membrane protein (VAMP), a protein of the neurotransmitter-containing small synaptic vesicles, at different single peptide bonds. Since the proteolytic activity of these metalloproteases is higher on native VAMP inserted in synaptic vesicles than on recombinant VAMP, we have investigated the influence of liposomes of different lipid composition on this activity. We found that the rate of VAMP cleavage with all neurotoxins tested here is strongly enhanced by negatively charged lipid mixtures. This effect is at least partially due to the binding of the metalloprotease to the lipid membranes, with electrostatic interactions playing an important role.
Collapse
Affiliation(s)
- Paola Caccin
- Istituto di Neuroscienze del CNR Biomembrane and Dipartimento di Scienze Biomediche, Università di Padova, Via G. Colombo 3, 35121 Padova, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Turton K, Chaddock JA, Acharya KR. Botulinum and tetanus neurotoxins: structure, function and therapeutic utility. Trends Biochem Sci 2002; 27:552-8. [PMID: 12417130 DOI: 10.1016/s0968-0004(02)02177-1] [Citation(s) in RCA: 244] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The toxic products of the anaerobic bacteria Clostridium botulinum, Clostridium butyricum, Clostridium barati and Clostridium tetani are the causative agents of botulism and tetanus. The ability of botulinum neurotoxins to disrupt neurotransmission, often for prolonged periods, has been exploited for use in several medical applications and the toxins, as licensed pharmaceutical products, now represent the therapeutics of choice for the treatment for several neuromuscular conditions. Research into the structures and activities of botulinum and tetanus toxins has revealed features of these proteins that might be useful in the design of improved vaccines, effective inhibitors and novel biopharmaceuticals. Here, we discuss the relationships between structure, mechanism of action and therapeutic use.
Collapse
Affiliation(s)
- Kathryn Turton
- Dept of Biology and Biochemistry, University of Bath, Claverton Down, UK BA2 7AY
| | | | | |
Collapse
|
29
|
Verastegui C, Lalli G, Bohnert S, Meunier FA, Schiavo G. CLOSTRIDIAL NEUROTOXINS. ACTA ACUST UNITED AC 2002. [DOI: 10.1081/txr-120014404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Blanes-Mira C, Clemente J, Jodas G, Gil A, Fernandez-Ballester G, Ponsati B, Gutierrez L, Perez-Paya E, Ferrer-Montiel A. A synthetic hexapeptide (Argireline) with antiwrinkle activity. Int J Cosmet Sci 2002; 24:303-10. [DOI: 10.1046/j.1467-2494.2002.00153.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Meunier FA, Schiavo G, Molgó J. Botulinum neurotoxins: from paralysis to recovery of functional neuromuscular transmission. JOURNAL OF PHYSIOLOGY, PARIS 2002; 96:105-13. [PMID: 11755789 DOI: 10.1016/s0928-4257(01)00086-9] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The neuromuscular junction is one of the most accessible mammalian synapses which offers a useful model to study long-term synaptic modifications occurring throughout life. It is also the natural target of botulinum neurotoxins (BoNTs) causing a selective blockade of the regulated exocytosis of acetylcholine thereby triggering a profound albeit transitory muscular paralysis. The scope of this review is to describe the principal steps implicated in botulinum toxin intoxication from the early events leading to a paralysis to the cellular response implementing an impressive synaptic remodelling culminating in the functional recovery of neuromuscular transmission. BoNT/A treatment promotes extensive sprouting emanating from intoxicated motor nerve terminals and the distal portion of motor axons. The current view is that sprouts have the ability to form functional synapses as they display a number of key proteins required for exocytosis: SNAP-25, VAMP/synaptobrevin, syntaxin-I, synaptotagmin-II, synaptophysin, and voltage-activated Na+, Ca2+ and Ca2+-activated K+ channels. Exo-endocytosis was demonstrated (using the styryl dye FM1-43) to occur only in the sprouts in vivo, at the time of functional recovery emphasising the direct role of nerve terminal outgrowth in implementing the restoration of functional neurotransmitter release (at a time when nerve stimulation again elicited muscle contraction). Interestingly, sprouts are only transitory since a second distinct phase of the rehabilitation process occurs with a return of synaptic activity to the original nerve terminals. This is accompanied by the elimination of the dispensable sprouts. The growth or elimination of these nerve processes appears to be strongly correlated with the level of synaptic activity at the parent terminal. The BoNT/A-induced extension and later removal of "functional" sprouts indicate their fundamental importance in the rehabilitation of paralysed endplates, a finding with ramifications for the vital process of nerve regeneration.
Collapse
Affiliation(s)
- Frédéric A Meunier
- Molecular NeuroPathobiology Laboratory, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.
| | | | | |
Collapse
|
32
|
Prabakaran S, Tepp W, DasGupta BR. Botulinum neurotoxin types B and E: purification, limited proteolysis by endoproteinase Glu-C and pepsin, and comparison of their identified cleaved sites relative to the three-dimensional structure of type A neurotoxin. Toxicon 2001; 39:1515-31. [PMID: 11478959 DOI: 10.1016/s0041-0101(01)00124-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Botulinum neurotoxin (NT) serotypes B and E are approximately 150 kDa proteins. Isolated from the liquid culture of Clostridium botulinum the NT type E is a single chain protein while the NT type B, from the proteolytic strain of the bacteria, is a mixture of dichain (nicked within a disulfide loop located about one-third the way from the N-terminus to the C-terminus) protein and its precursor single-chain protein. Endoproteinase Glu-C (EC 3.4.21.19) and pepsin (EC 3.4.23.1) were used for controlled digestion of NT types B and E; the amino acid residues flanking many of the cleavable peptide bonds were identified and the corresponding proteolytic fragments partially characterized. Chemical identification of 82 and 108 residues of types B and E NT, respectively, revealed that the residue 738 and 1098 in type E NT, identified as Leu and Asn, respectively, differ from those deduced from nucleotide sequences. Several fragments overlapped spanning various segments of the NT's functional domains; they appear to have potential for structure-function studies of the NT. The cleavage sites were compared with the previously determined proteolyzed sites on NT types A and E. The cleavage sites of the NT types A, B and E, all exposed on the protein surface, were scrutinized in the context of the three-dimensional structure of crystallized NT type A [Lacy, D.B., Stevens, R.C., 1999. J. Mol. Biol. 291, 1091-1104]. Detailed procedures for isolation of pure NT types B and E in large quantities (average yield 92 and 62 mg, respectively) suitable for crystallization are reported.
Collapse
Affiliation(s)
- S Prabakaran
- Department of Food Microbiology and Toxicology, University of Wisconsin, Madison, 53706, USA
| | | | | |
Collapse
|
33
|
Caprini M, Ferroni S, Planells-Cases R, Rueda J, Rapisarda C, Ferrer-Montiel A, Montal M. Structural compatibility between the putative voltage sensor of voltage-gated K+ channels and the prokaryotic KcsA channel. J Biol Chem 2001; 276:21070-6. [PMID: 11274182 DOI: 10.1074/jbc.m100487200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sequence similarity among and electrophysiological studies of known potassium channels, along with the three-dimensional structure of the Streptomyces lividans K(+) channel (KcsA), support the tenet that voltage-gated K(+) channels (Kv channels) consist of two distinct modules: the "voltage sensor" module comprising the N-terminal portion of the channel up to and including the S4 transmembrane segment and the "pore" module encompassing the C-terminal portion from the S5 transmembrane segment onward. To substantiate this modular design, we investigated whether the pore module of Kv channels may be replaced with the pore module of the prokaryotic KcsA channel. Biochemical and immunocytochemical studies showed that chimeric channels were expressed on the cell surface of Xenopus oocytes, demonstrating that they were properly synthesized, glycosylated, folded, assembled, and delivered to the plasma membrane. Unexpectedly, surface-expressed homomeric chimeras did not exhibit detectable voltage-dependent channel activity upon both hyperpolarization and depolarization regardless of the expression system used. Chimeras were, however, strongly dominant-negative when coexpressed with wild-type Kv channels, as evidenced by the complete suppression of wild-type channel activity. Notably, the dominant-negative phenotype correlated well with the formation of stable, glycosylated, nonfunctional, heteromeric channels. Collectively, these findings imply a structural compatibility between the prokaryotic pore module and the eukaryotic voltage sensor domain that leads to the biogenesis of non-responsive channels. Our results lend support to the notion that voltage-dependent channel gating depends on the precise coupling between both protein domains, probably through a localized interaction surface.
Collapse
Affiliation(s)
- M Caprini
- Department of Human and General Physiology, University of Bologna, Via San Donato 19/2, 40127 Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
34
|
Adler M, Keller JE, Sheridan RE, Deshpande SS. Persistence of botulinum neurotoxin A demonstrated by sequential administration of serotypes A and E in rat EDL muscle. Toxicon 2001; 39:233-43. [PMID: 10978741 DOI: 10.1016/s0041-0101(00)00120-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Botulinum neurotoxin serotypes A (BoNT/A) and E (BoNT/E) inhibit neurotransmitter release from peripheral cholinergic nerve terminals by cleaving different sites on SNAP-25, a protein involved in synaptic vesicle docking and exocytosis. Since recovery from BoNT/A is protracted, but reversal of BoNT/E intoxication is relatively rapid, it was of interest to determine whether sequential exposure to BoNT/A and BoNT/E could provide insight into the factors responsible for persistence of BoNT action. Extensor digitorum longus (EDL) muscles from rats were injected locally with 5 mouse LD(50) units of BoNT/A or 20 mouse LD(50) units of BoNT/E; these doses were selected to produce total paralysis of EDL muscles within 48 hr. Additional groups of rats were injected sequentially with either BoNT/A followed 48 h later by BoNT/E or with BoNT/E followed 48 h later by BoNT/A. Muscle tensions were elicited in situ in response to supramaximal stimulation of the peroneal nerve to monitor recovery from BoNT intoxication. Tensions returned to 53% and 94% of control, respectively, 7 and 15 days after injection of BoNT/E. In contrast, tensions in muscles injected with BoNT/A returned to only 2% and 12% of control at these time points. Preparations injected sequentially with BoNT/A followed by BoNT/E or with BoNT/E followed by BoNT/A exhibited slow recovery times resembling those recorded in the presence of BoNT/A alone. Pronounced atrophy of the EDL muscle was observed in rats injected with BoNT/A or in those receiving serotype combinations in either sequence, whereas no loss of muscle mass was observed in animals treated with BoNT/E alone. Data suggesting that BoNT/E can enter BoNT/A-treated preparations was obtained by findings that 3,4-diaminopyridine, which readily reversed muscle paralysis after BoNT/A exposure, lost this ability within 1 h of BoNT/E addition. Evidence that BoNT/E was able to cleave SNAP-25 at its characteristic site during sequential neurotoxin exposure was demonstrated by western blot analysis of cultured primary cortical neurons. Since the sequential exposure studies indicate that recovery from BoNT intoxication is lengthened by exposure to serotype A, but not shortened by exposure to serotype E, the duration of BoNT/A intoxication appears to be determined predominantly by the intracellular stability of catalytically active BoNT/A light chain.
Collapse
Affiliation(s)
- M Adler
- Neurotoxicology Branch, Pharmacology Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010-5400, USA.
| | | | | | | |
Collapse
|
35
|
Abstract
The authors divide biological toxins into animal, plant, and bacterial classes and discuss each within a context of demographic, clinical and research examples. Advances in our knowledge are highlighted, and the authors relate the implications of this knowledge to target-specific neurologic involvement.
Collapse
Affiliation(s)
- C G Goetz
- Department of Neurological Sciences, Rush-Presbyterian-St. Luke's Medical Center, Chicago, Il 60612, USA
| | | |
Collapse
|
36
|
Abstract
Nerve terminals are specific sites of action of a very large number of toxins produced by many different organisms. The mechanism of action of three groups of presynaptic neurotoxins that interfere directly with the process of neurotransmitter release is reviewed, whereas presynaptic neurotoxins acting on ion channels are not dealt with here. These neurotoxins can be grouped in three large families: 1) the clostridial neurotoxins that act inside nerves and block neurotransmitter release via their metalloproteolytic activity directed specifically on SNARE proteins; 2) the snake presynaptic neurotoxins with phospholipase A(2) activity, whose site of action is still undefined and which induce the release of acethylcholine followed by impairment of synaptic functions; and 3) the excitatory latrotoxin-like neurotoxins that induce a massive release of neurotransmitter at peripheral and central synapses. Their modes of binding, sites of action, and biochemical activities are discussed in relation to the symptoms of the diseases they cause. The use of these toxins in cell biology and neuroscience is considered as well as the therapeutic utilization of the botulinum neurotoxins in human diseases characterized by hyperfunction of cholinergic terminals.
Collapse
Affiliation(s)
- G Schiavo
- Imperial Cancer Research Fund, London, United Kingdom
| | | | | |
Collapse
|
37
|
Hua SY, Charlton MP. Activity-dependent changes in partial VAMP complexes during neurotransmitter release. Nat Neurosci 1999; 2:1078-83. [PMID: 10570484 DOI: 10.1038/16005] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The temporal sequence of SNARE protein interactions that cause exocytosis is unknown. Blockade of synaptic neurotransmitter release through cleavage of VAMP/synaptobrevin by tetanus toxin light chain (TeNT-LC) was accelerated by nerve stimulation. Botulinum/B neurotoxin light chain (BoNT/B-LC), which cleaves VAMP at the same site as TeNT-LC, did not require stimulation. Because TeNT-LC requires the N-terminal coil domain of VAMP for binding but BoNT/B-LC requires the C-terminal coil domain, it seems that, before nerve activity, the N-terminal domain is shielded in a protein complex, but the C-terminal domain is exposed. This N-terminal complex lasts until nerve activity occurs and may serve to cock synaptic vesicles for immediate exocytosis upon Ca2+ entry.
Collapse
Affiliation(s)
- S Y Hua
- Physiology Department, MSB, Rm 3232, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | | |
Collapse
|
38
|
Yao Y, Ferrer-Montiel AV, Montal M, Tsien RY. Activation of store-operated Ca2+ current in Xenopus oocytes requires SNAP-25 but not a diffusible messenger. Cell 1999; 98:475-85. [PMID: 10481912 DOI: 10.1016/s0092-8674(00)81976-5] [Citation(s) in RCA: 201] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Depletion of Ca2+ stores in Xenopus oocytes activated entry of Ca2+ across the plasma membrane, which was measured as a current I(soc) in subsequently formed cell-attached patches. I(soc) survived excision into inside-out configuration. If cell-attached patches were formed before store depletion, I(soc) was activated outside but not inside the patches. I(soc) was potentiated by microinjection of Clostridium C3 transferase, which inhibits Rho GTPase, whereas I(soc) was inhibited by expression of wild-type or constitutively active Rho. Activation of I(soc) was also inhibited by botulinum neurotoxin A and dominant-negative mutants of SNAP-25 but was unaffected by brefeldin A. These results suggest that oocyte I(soc) is dependent not on aqueous diffusible messengers but on SNAP-25, probably via exocytosis of membrane channels or regulatory molecules.
Collapse
Affiliation(s)
- Y Yao
- Department of Pharmacology, University of California, San Diego, La Jolla 92093-0647, USA
| | | | | | | |
Collapse
|
39
|
Asermely KE, Sterling GH, McCafferty MR, O'Neill JJ. Synaptophysin is phosphorylated in rat cortical synaptosomes treated with botulinum toxin A. Life Sci 1999; 64:PL297-303. [PMID: 10403513 DOI: 10.1016/s0024-3205(99)00212-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Phosphorylation and dephosphorylation of neuronal proteins have been implicated in regulation of synaptic transmission. Studies were performed to determine if synaptophysin was phosphorylated or dephosphorylated during exposure of synaptosomes to botulinum toxin A (BoTX/A). Cholinergic-enriched synaptosomes were preincubated in the presence of 3H-choline to label newly synthesized acetylcholine (3H-ACh). This was followed by incubation with low or high potassium to stimulate release of newly synthesized 3H-ACh. BoTX/A inhibited total Ach release by 15-19% and inhibited release of newly synthesized 3H-ACh by 35%. A 165% increase in synaptophysin phosphorylation occurred in a dose-dependent manner over a range of doses (0.2 nM, 2 nM, 20 nM, 100 nM) of BoTX/A. When 4-Aminopyridine was added to synaptosomes that were BoTX/A treated, synaptophysin was dephosphorylated to control levels. Synaptosomes incubated with BoTX/A exhibited an inhibition of potassium stimulated ACh release and an increase in synaptophysin phosphorylation. Synaptophysin phosphorylation may be involved in inhibition of acetylcholine release.
Collapse
Affiliation(s)
- K E Asermely
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.
| | | | | | | |
Collapse
|
40
|
Wu TT, Castle JD. Tyrosine phosphorylation of selected secretory carrier membrane proteins, SCAMP1 and SCAMP3, and association with the EGF receptor. Mol Biol Cell 1998; 9:1661-74. [PMID: 9658162 PMCID: PMC25404 DOI: 10.1091/mbc.9.7.1661] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/1997] [Accepted: 04/09/1998] [Indexed: 01/03/2023] Open
Abstract
Secretory carrier membrane proteins (SCAMPs) are ubiquitously expressed proteins of post-Golgi vesicles. In the presence of the tyrosine phosphatase inhibitor vanadate, or after overexpression in Chinese hamster ovary (CHO) cells, SCAMP1 and SCAMP3 are phosphorylated selectively on tyrosine residue(s). Phosphorylation is reversible after vanadate washout in situ or when isolated SCAMP3 is incubated with the recombinant tyrosine phosphatase PTP1B. Vanadate also causes the partial accumulation of SCAMP3, but not SCAMP1, in "patches" at or near the cell surface. A search for SCAMP kinase activities has shown that SCAMPs 1 and 3, but not SCAMP2, are tyrosine phosphorylated in EGF-stimulated murine fibroblasts overexpressing the EGF receptor (EGFR). EGF catalyzes the progressive phosphorylation of the SCAMPs up to 1 h poststimulation and may enhance colocalization of the EGFR and SCAMP3 within the cell interior. EGF also induces SCAMP-EGFR association, as detected by coimmunoprecipitation, and phosphorylation of SCAMP3 is stimulated by the EGFR in vitro. These results suggest that phosphorylation of SCAMPs, either directly or indirectly, may be functionally linked to the internalization/down-regulation of the EGFR.
Collapse
Affiliation(s)
- T T Wu
- Department of Cell Biology, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
41
|
Encinar JA, Fernández A, Ferragut JA, González-Ros JM, DasGupta BR, Montal M, Ferrer-Montiel A. Structural stabilization of botulinum neurotoxins by tyrosine phosphorylation. FEBS Lett 1998; 429:78-82. [PMID: 9657387 DOI: 10.1016/s0014-5793(98)00571-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tyrosine phosphorylation of botulinum neurotoxins augments their proteolytic activity and thermal stability, suggesting a substantial modification of the global protein conformation. We used Fourier-transform infrared (FTIR) spectroscopy to study changes of secondary structure and thermostability of tyrosine phosphorylated botulinum neurotoxins A (BoNT A) and E (BoNT E). Changes in the conformationally-sensitive amide I band upon phosphorylation indicated an increase of the alpha-helical content with a concomitant decrease of less ordered structures such as turns and random coils, and without changes in beta-sheet content. These changes in secondary structure were accompanied by an increase in the residual amide II absorbance band remaining upon H-D exchange, consistent with a tighter packing of the phosphorylated proteins. FTIR and differential scanning calorimetry (DSC) analyses of the denaturation process show that phosphorylated neurotoxins denature at temperatures higher than those required by non-phosphorylated species. These findings indicate that tyrosine phosphorylation induced a transition to higher order and that the more compact structure presumably imparts to the phosphorylated neurotoxins the higher catalytic activity and thermostability.
Collapse
Affiliation(s)
- J A Encinar
- Department of Neurochemistry, University Miguel Hernández, C/Monóvar s/n (Polígono de Carrús), Alicante, Spain
| | | | | | | | | | | | | |
Collapse
|
42
|
Ekong TAN, Feavers IM, Sesardic D. Recombinant SNAP-25 is an effective substrate for Clostridium botulinum type A toxin endopeptidase activity in vitro. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 10):3337-3347. [PMID: 9353935 DOI: 10.1099/00221287-143-10-3337] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bacterial neurotoxins are now being used routinely for the treatment of neuromuscular conditions. Alternative assays to replace or to complement in vivo bioassay methods for assessment of the safety and potency of these botulinum neurotoxin-based therapeutic products are urgently needed. Advances made in understanding the mode of action of clostridial neurotoxins have provided the basis for the development of alternative mechanism-based assay methods. Thus, the identification of SNAP-25 (synaptosomal-associated protein of molecular mass 25 kDa) as the intracellular protein target which is selectively cleaved during poisoning by botulinum neurotoxin type A (BoNT/A) has enabled the development of a functional in vitro assay for this toxin. Using recombinant DNA methods, a segment of SNAP-25 (aa residues 134-206) spanning the toxin cleavage site was prepared as a fusion protein to the maltose-binding protein in Escherichia coli. The fusion protein was purified by affinity chromatography and the fragment isolated after cleavage with Factor Xa. Targeted antibodies specific for the N and C termini of SNAP-25, as well as the toxin cleavage site, were prepared and used in an immunoassay to demonstrate BoNT/A endopeptidase activity towards recombinant SNAP-25 substrates. The reaction required low concentrations of reducing agents which were inhibitory at higher concentrations as were metal chelators and some inhibitors of metallopeptidases. The endopeptidase assay has proved to be more sensitive than the mouse bioassay for detection of toxin in therapeutic preparations. A good correlation with results obtained in the in vivo bioassay (r = 0.95, n = 23) was demonstrated. The endopeptidase assay described here may provide a suitable replacement assay for the estimation of the potency of type A toxin in therapeutic preparations.
Collapse
Affiliation(s)
- Theresa A N Ekong
- Division of Bacteriology, National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Ian M Feavers
- Division of Bacteriology, National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Dorothea Sesardic
- Division of Bacteriology, National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| |
Collapse
|