1
|
Gadalla MR, Abrami L, van der Goot FG, Veit M. Hemagglutinin of Influenza A, but not of Influenza B and C viruses is acylated by ZDHHC2, 8, 15 and 20. Biochem J 2020; 477:285-303. [PMID: 31872235 DOI: 10.1042/bcj20190752] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/15/2019] [Accepted: 12/23/2019] [Indexed: 02/05/2023]
Abstract
Hemagglutinin (HA), a glycoprotein of Influenza A viruses and its proton channel M2 are site-specifically modified with fatty acids. Whereas two cysteines in the short cytoplasmic tail of HA contain only palmitate, stearate is exclusively attached to one cysteine located at the cytoplasmic border of the transmembrane region (TMR). M2 is palmitoylated at a cysteine positioned in an amphiphilic helix near the TMR. The enzymes catalyzing acylation of HA and M2 have not been identified, but zinc finger DHHC domain-containing (ZDHHC) palmitoyltransferases are candidates. We used a siRNA library to knockdown expression of each of the 23 human ZDHHCs in HA-expressing HeLa cells. siRNAs against ZDHHC2 and 8 had the strongest effect on acylation of HA as demonstrated by Acyl-RAC and confirmed by 3H-palmitate labeling. CRISPR/Cas9 knockout of ZDHHC2 and 8 in HAP1 cells, but also of the phylogenetically related ZDHHCs 15 and 20 strongly reduced acylation of group 1 and group 2 HAs and of M2, but individual ZDHHCs exhibit slightly different substrate preferences. These ZDHHCs co-localize with HA at membranes of the exocytic pathway in a human lung cell line. ZDHHC2, 8, 15 and 20 are not required for acylation of the HA-esterase-fusion protein of Influenza C virus that contains only stearate at one transmembrane cysteine. Knockout of these ZDHHCs also did not compromise acylation of HA of Influenza B virus that contains two palmitoylated cysteines in its cytoplasmic tail. Results are discussed with respect to the acyl preferences and possible substrate recognition features of the identified ZDHHCs.
Collapse
Affiliation(s)
- Mohamed Rasheed Gadalla
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Laurence Abrami
- Global Health Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - F Gisou van der Goot
- Global Health Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Michael Veit
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany
| |
Collapse
|
2
|
Kordyukova L. Structural and functional specificity of Influenza virus haemagglutinin and paramyxovirus fusion protein anchoring peptides. Virus Res 2017; 227:183-199. [DOI: 10.1016/j.virusres.2016.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 02/08/2023]
|
3
|
Holtz KM, Robinson PS, Matthews EE, Hashimoto Y, McPherson CE, Khramtsov N, Reifler MJ, Meghrous J, Rhodes DG, Cox MM, Srivastava IK. Modifications of cysteine residues in the transmembrane and cytoplasmic domains of a recombinant hemagglutinin protein prevent cross-linked multimer formation and potency loss. BMC Biotechnol 2014; 14:111. [PMID: 25540031 PMCID: PMC4320835 DOI: 10.1186/s12896-014-0111-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/16/2014] [Indexed: 01/19/2023] Open
Abstract
Background Recombinant hemagglutinin (rHA) is the active component in Flublok®; a trivalent influenza vaccine produced using the baculovirus expression vector system (BEVS). HA is a membrane bound homotrimer in the influenza virus envelope, and the purified rHA protein assembles into higher order rosette structures in the final formulation of the vaccine. During purification and storage of the rHA, disulfide mediated cross-linking of the trimers within the rosette occurs and results in reduced potency. Potency is measured by the Single Radial Immuno-diffusion (SRID) assay to determine the amount of HA that has the correct antigenic form. Results The five cysteine residues in the transmembrane (TM) and cytoplasmic (CT) domains of the rHA protein from the H3 A/Perth/16/2009 human influenza strain have been substituted to alanine and/or serine residues to produce three different site directed variants (SDVs). These SDVs have been evaluated to determine the impact of the TM and CT cysteines on potency, cross-linking, and the biochemical and biophysical properties of the rHA. Modification of these cysteine residues prevents disulfide bond cross-linking in the TM and CT, and the resulting rHA maintains potency for at least 12 months at 25°C. The strategy of substituting TM and CT cysteines to prevent potency loss has been successfully applied to another H3 rHA protein (from the A/Texas/50/2012 influenza strain) further demonstrating the utility of the approach. Conclusion rHA potency can be maintained by preventing non-specific disulfide bonding and cross-linked multimer formation. Substitution of carboxy terminal cysteines is an alternative to using reducing agents, and permits room temperature storage of the vaccine.
Collapse
|
4
|
Brett K, Kordyukova LV, Serebryakova MV, Mintaev RR, Alexeevski AV, Veit M. Site-specific S-acylation of influenza virus hemagglutinin: the location of the acylation site relative to the membrane border is the decisive factor for attachment of stearate. J Biol Chem 2014; 289:34978-89. [PMID: 25349209 DOI: 10.1074/jbc.m114.586180] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
S-Acylation of hemagglutinin (HA), the main glycoprotein of influenza viruses, is an essential modification required for virus replication. Using mass spectrometry, we have previously demonstrated specific attachment of acyl chains to individual acylation sites. Whereas the two cysteines in the cytoplasmic tail of HA contain only palmitate, stearate is exclusively attached to a cysteine positioned at the end of the transmembrane region (TMR). Here we analyzed recombinant viruses containing HA with exchange of conserved amino acids adjacent to acylation sites or with a TMR cysteine shifted to a cytoplasmic location to identify the molecular signal that determines preferential attachment of stearate. We first developed a new protocol for sample preparation that requires less material and might thus also be suitable to analyze cellular proteins. We observed cell type-specific differences in the fatty acid pattern of HA: more stearate was attached if human viruses were grown in mammalian compared with avian cells. No underacylated peptides were detected in the mass spectra, and even mutations that prevented generation of infectious virus particles did not abolish acylation of expressed HA as demonstrated by metabolic labeling experiments with [(3)H]palmitate. Exchange of conserved amino acids in the vicinity of an acylation site had a moderate effect on the stearate content. In contrast, shifting the TMR cysteine to a cytoplasmic location virtually eliminated attachment of stearate. Thus, the location of an acylation site relative to the transmembrane span is the main signal for stearate attachment, but the sequence context and the cell type modulate the fatty acid pattern.
Collapse
Affiliation(s)
- Katharina Brett
- From the Institut für Virologie, Free University Berlin, 14163 Berlin, Germany
| | - Larisa V Kordyukova
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Marina V Serebryakova
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Ramil R Mintaev
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia, I. I. Mechnikov Research Institute of Vaccines and Sera, Russian Academy of Medical Sciences, 105064 Moscow, Russia, and
| | - Andrei V Alexeevski
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia, Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Michael Veit
- From the Institut für Virologie, Free University Berlin, 14163 Berlin, Germany,
| |
Collapse
|
5
|
Serebryakova MV, Kordyukova LV, Rudneva IA, Kropotkina EA, Veit M, Baratova LA. Mass spectrometry analysis of influenza virus reassortant clones does not reveal an influence of other viral proteins on S-acylation of hemagglutinin. Arch Virol 2012; 158:467-72. [DOI: 10.1007/s00705-012-1510-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 09/06/2012] [Indexed: 11/25/2022]
|
6
|
Abstract
The article summarises the results of more than 30 years of research on palmitoylation (S‐acylation) of viral proteins, the post‐translational attachment of fatty acids to cysteine residues of integral and peripheral membrane proteins. Analysing viral proteins is not only important to characterise the cellular pathogens but also instrumental to decipher the palmitoylation machinery of cells. This comprehensive review describes methods to identify S‐acylated proteins and covers the fundamental biochemistry of palmitoylation: the location of palmitoylation sites in viral proteins, the fatty acid species found in S‐acylated proteins, the intracellular site of palmitoylation and the enzymology of the reaction. Finally, the functional consequences of palmitoylation are discussed regarding binding of proteins to membranes or membrane rafts, entry of enveloped viruses into target cells by spike‐mediated membrane fusion as well as assembly and release of virus particles from infected cells. The topics are described mainly for palmitoylated proteins of influenza virus, but proteins of other important pathogens, such as the causative agents of AIDS and severe acute respiratory syndrome, and of model viruses are discussed.
Collapse
Affiliation(s)
- Michael Veit
- Department of Immunology and Molecular Biology, Free University, Berlin, Germany.
| |
Collapse
|
7
|
Zhang L, Foster K, Li Q, Martens JR. S-acylation regulates Kv1.5 channel surface expression. Am J Physiol Cell Physiol 2007; 293:C152-61. [PMID: 17344312 DOI: 10.1152/ajpcell.00480.2006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The number of ion channels expressed on the cell surface shapes the complex electrical response of excitable cells. An imbalance in the ratio of inward and outward conducting channels is unfavorable and often detrimental. For example, over- or underexpression of voltage-gated K(+) (Kv) channels can be cytotoxic and in some cases lead to disease. In this study, we demonstrated a novel role for S-acylation in Kv1.5 cell surface expression. In transfected fibroblasts, biochemical evidence showed that Kv1.5 is posttranslationally modified on both the NH(2) and COOH termini via hydroxylamine-sensitive thioester bonds. Pharmacological inhibition of S-acylation, but not myristoylation, significantly decreased Kv1.5 expression and resulted in accumulation of channel protein in intracellular compartments and targeting for degradation. Channel protein degradation was rescued by treatment with proteasome inhibitors. Time course experiments revealed that S-acylation occurred in the biosynthetic pathway of nascent channel protein and showed that newly synthesized Kv1.5 protein, but not protein expressed on the cell surface, is sensitive to inhibitors of thioacylation. Sensitivity to inhibitors of S-acylation was governed by COOH-terminal, but not NH(2)-terminal, cysteines. Surprisingly, although intracellular cysteines were required for S-acylation, mutation of these residues resulted in an increase in Kv1.5 cell surface channel expression, suggesting that screening of free cysteines by fatty acylation is an important regulatory step in the quality control pathway. Together, these results show that S-acylation can regulate steady-state expression of Kv1.5.
Collapse
Affiliation(s)
- Lian Zhang
- Dept. of Pharmacology, University of Michigan, 1150 W. Medical Center Dr., 1301 MSRB III, Ann Arbor, MI 48109-0632, USA
| | | | | | | |
Collapse
|
8
|
Stadelmann-Ingrand S, Pontcharraud R, Fauconneau B. Evidence for the reactivity of fatty aldehydes released from oxidized plasmalogens with phosphatidylethanolamine to form Schiff base adducts in rat brain homogenates. Chem Phys Lipids 2005; 131:93-105. [PMID: 15210368 DOI: 10.1016/j.chemphyslip.2004.04.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Revised: 04/05/2004] [Accepted: 04/08/2004] [Indexed: 10/26/2022]
Abstract
The vinyl ether bond of plasmalogens could be among the first target of free radicals attack. Consequently, because of their location in the membranes of cells, plasmalogens represent a first shield against oxidative damages by protecting other macromolecules and are often considered as antioxidant molecules. However, under oxidative conditions their disruption leads to the release of fatty aldehydes. In this paper, we showed using gas chromatography-mass spectrometry (GC-MS) analyses that fatty aldehydes released from plasmalogens after oxidation (UV irradiation and Fe2+/ascorbate) of cerebral cortex homogenates can generate covalent modifications of endogenous macromolecules such as phosphatidylethanolamine (PE), like the very reactive and toxic malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE). These newly formed Schiff base adducts could be responsible for deleterious effects on cells thus making the protective role of plasmalogens potentially questionable.
Collapse
|
9
|
Hiol A, Caron JM, Smith CD, Jones TLZ. Characterization and partial purification of protein fatty acyltransferase activity from rat liver. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1635:10-9. [PMID: 14642772 DOI: 10.1016/j.bbalip.2003.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The acylation of proteins through the addition of palmitate to cysteine residues is a common posttranslational modification for a variety of proteins, but the enzymology of this reversible modification has resisted elucidation. We developed a strategy to purify protein fatty acyltransferase (PAT) activity from rat livers that took advantage of recent knowledge on the cellular location and inhibition of PAT activity. We determined that three different thiolases have PAT activity in the presence of imidazole and therefore started the purification with a plasma membrane fraction to minimize the contamination with these enzymes. After detergent extraction of the plasma membrane fraction, the PAT activity was enriched about 90-fold by sequential chromatography including affinity chromatography to a cerulenin-based inhibitor of palmitoylation. The partially purified PAT activity (1) was lost with treatments to degrade or denature proteins, (2) could acylate tubulin, Galpha(i) and RGS16 and (3) showed a preference for palmitate and to a lesser degree other long-chain fatty acids. This purification procedure is a significant advance over previous efforts at PAT purification and a starting point for a proteomic approach for identification of mammalian PAT.
Collapse
Affiliation(s)
- Abel Hiol
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
10
|
Oker-Blom C, Vuento M. Reconstitution of recombinant viral envelope proteins. Methods Enzymol 2003; 372:418-28. [PMID: 14610828 DOI: 10.1016/s0076-6879(03)72025-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Christian Oker-Blom
- University of Jvaskyla, Department of Biological and Environmental Sciences, P.O. Box 35, FIN 40351 Jyvaskyla, Finland
| | | |
Collapse
|
11
|
Qanbar R, Bouvier M. Role of palmitoylation/depalmitoylation reactions in G-protein-coupled receptor function. Pharmacol Ther 2003; 97:1-33. [PMID: 12493533 DOI: 10.1016/s0163-7258(02)00300-5] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G-protein-coupled receptors (GPCRs) constitute one of the largest protein families in the human genome. They are subject to numerous post-translational modifications, including palmitoylation. This review highlights the dynamic nature of palmitoylation and its role in GPCR expression and function. The palmitoylation of other proteins involved in GPCR signaling, such as G-proteins, regulators of G-protein signaling, and G-protein-coupled receptor kinases, is also discussed.
Collapse
Affiliation(s)
- Riad Qanbar
- Département de Biochimie, Université de Montréal, C.P. 6128 Succursale Centre-Ville, 2900 Edouard Montpetit, Montreál, Quebec, Canada H3C 3J7
| | | |
Collapse
|
12
|
Kim SH, Kwon HB, Kim YS, Ryu JH, Kim KS, Ahn Y, Lee WJ, Choi KY. Isolation and characterization of a Drosophila homologue of mitogen-activated protein kinase phosphatase-3 which has a high substrate specificity towards extracellular-signal-regulated kinase. Biochem J 2002; 361:143-51. [PMID: 11742539 PMCID: PMC1222289 DOI: 10.1042/bj3610143] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A partial C-terminal cDNA sequence of a novel Drosophila mitogen-activated protein kinase phosphatase (MKP), designated DMKP-3, was identified from an epitope expressed sequence tag database, and the missing N-terminal cDNA fragment was cloned from a Drosophila cDNA library. DMKP-3 is a protein of 411 amino acids, with a calculated molecular mass of 45.8 kDa; the deduced amino acid sequence is most similar to that of mammalian MKP-3. Recombinant DMKP-3 produced in Escherichia coli retained intrinsic tyrosine phosphatase activity. In addition, DMKP-3 specifically inhibited extracellular-signal-regulated kinase (ERK) activity, but was without a significant affect on c-Jun N-terminal kinase (JNK) and p38 activities, when it was overexpressed in Schneider cells. DMKP-3 interacted specifically with Drosophila ERK (DERK) via its N-terminal domain. In addition, DMKP-3 specifically inhibited Elk-1-dependent trans-reporter gene expression in mammalian CV1 cells, and dephosphorylated activated mammalian ERK in vitro. DMKP-3 is uniquely localized in the cytoplasm within Schneider cells, and gene expression is tightly regulated during development. Thus DMKP-3 is a Drosophila homologue of mammalian MKP-3, and may play important roles in the regulation of various developmental processes.
Collapse
Affiliation(s)
- Sun-Hong Kim
- Department of Biochemistry and Molecular Biology, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Grabherr R, Ernst W, Oker-Blom C, Jones I. Developments in the use of baculoviruses for the surface display of complex eukaryotic proteins. Trends Biotechnol 2001; 19:231-6. [PMID: 11356285 DOI: 10.1016/s0167-7799(01)01610-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ability to couple genotype to phenotype has proven to be of immense value in systems such as phage display and has allowed genes encoding novel functions to be selected directly from complex libraries. However, the complexity of many eukaryotic proteins places a severe constraint on successful display in Escherichia coli. This restriction could be resolved if a eukaryotic virus could be similarly engineered for display purposes. Preliminary data have suggested that the baculovirus Autographa californica, a multiple nuclear polyhedrosis virus (AcMNPV) is a candidate for eukaryotic virus display because the insertion of peptides into the native virus coat protein, or the expression of foreign proteins as coat protein fusions, results in incorporation of the sequence of interest onto the surface of virus particles. A variety of strategies are currently under investigation to develop further the display capabilities of AcMNPV and to improve the complexity of library that might be accommodated. Several expression vectors for different forms of surface display have been developed and, coupled with improved recombination strategies, represent progress towards a refined tool for use in functional genomics and in vitro protein evolution.
Collapse
Affiliation(s)
- R Grabherr
- University of Agriculture, Institute of Applied Microbiology, Muthgasse 18, A-1190, Vienna, Austria.
| | | | | | | |
Collapse
|
14
|
Bizzozero OA, Bixler HA, Pastuszyn A. Structural determinants influencing the reaction of cysteine-containing peptides with palmitoyl-coenzyme A and other thioesters. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1545:278-88. [PMID: 11342053 DOI: 10.1016/s0167-4838(00)00291-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Non-enzymatic thioesterification of specific cysteinyl peptides with fatty acyl-CoA has been previously demonstrated in both liposomes and aqueous medium. To identify the molecular basis for the differential reactivity of polypeptides in aqueous solutions, 26 synthetic cysteinyl peptides encompassing the palmitoylation sites of well known proteins (protein zero, proteolipid protein, beta-adrenergic receptor, p21(K-ras), transferrin receptor, CD-4 and SNAP-25) and six small thiol compounds were incubated separately with [3H]palmitoyl-CoA, [14C]acetyl-CoA and p-nitrophenyl thioacetate (NPTA). For each peptide, both the observed reaction rate constant at pH 7.5 and the pH-independent rate constant (k(2)) were calculated, and reactivity of the attacking sulfhydryl group was characterized using the Brønsted equation (log k(2)=beta(nuc) pK(a)+C). In general, peptides bearing basic and aromatic amino acid residues showed the lowest thiol pK(a)s, and consequently displayed the highest acylation rates. Reaction with palmitoyl-CoA was complicated to analyze because of the variable partition of peptides in the acyl chain donor/detergent micelles. In contrast, a linear Brønsted relationship was found for the reaction of the peptides with the water-soluble acetyl-CoA (beta(nuc)=0.59). A similar beta(nuc) value was obtained with the neutral NPTA, indicating that electronic effects other than those responsible for the acid-base properties of the thiol are less important. Thus, the concentration of the thiolate anion appears to be the major factor influencing the rate of the nucleophilic substitution reaction. These findings and the fact that the acylation sites in most proteins are surrounded by basic amino acids may partially explain the specificity of non-enzymatic palmitoylation regarding the acceptor sequences.
Collapse
Affiliation(s)
- O A Bizzozero
- Department of Cell Biology and Physiology, University of New Mexico-Health Sciences Center, Albuquerque, NM 87131, USA.
| | | | | |
Collapse
|
15
|
Manahan CL, Patnana M, Blumer KJ, Linder ME. Dual lipid modification motifs in G(alpha) and G(gamma) subunits are required for full activity of the pheromone response pathway in Saccharomyces cerevisiae. Mol Biol Cell 2000; 11:957-68. [PMID: 10712512 PMCID: PMC14823 DOI: 10.1091/mbc.11.3.957] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
To establish the biological function of thioacylation (palmitoylation), we have studied the heterotrimeric guanine nucleotide-binding protein (G protein) subunits of the pheromone response pathway of Saccharomyces cerevisiae. The yeast G protein gamma subunit (Ste18p) is unusual among G(gamma) subunits because it is farnesylated at cysteine 107 and has the potential to be thioacylated at cysteine 106. Substitution of either cysteine results in a strong signaling defect. In this study, we found that Ste18p is thioacylated at cysteine 106, which depended on prenylation of cysteine 107. Ste18p was targeted to the plasma membrane even in the absence of prenylation or thioacylation. However, G protein activation released prenylation- or thioacylation-defective Ste18p into the cytoplasm. Hence, lipid modifications of the G(gamma) subunit are dispensable for G protein activation by receptor, but they are required to maintain the plasma membrane association of G(betagamma) after receptor-stimulated release from G(alpha). The G protein alpha subunit (Gpa1p) is tandemly modified at its N terminus with amide- and thioester-linked fatty acids. Here we show that Gpa1p was thioacylated in vivo with a mixture of radioactive myristate and palmitate. Mutation of the thioacylation site in Gpa1p resulted in yeast cells that displayed partial activation of the pathway in the absence of pheromone. Thus, dual lipidation motifs on Gpa1p and Ste18p are required for a fully functional pheromone response pathway.
Collapse
Affiliation(s)
- C L Manahan
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
16
|
Resh MD. Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1451:1-16. [PMID: 10446384 DOI: 10.1016/s0167-4889(99)00075-0] [Citation(s) in RCA: 968] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Covalent attachment of myristate and/or palmitate occurs on a wide variety of viral and cellular proteins. This review will highlight the latest advances in our understanding of the enzymology of N-myristoylation and palmitoylation as well as the functional consequences of fatty acylation of key signaling proteins. The role of myristate and palmitate in promoting membrane binding as well as specific membrane targeting will be reviewed, with emphasis on the Src family of tyrosine protein kinases and alpha subunits of heterotrimeric G proteins. The use of myristoyl switches and regulated depalmitoylation as mechanisms for achieving reversible membrane binding and regulated signaling will also be explored.
Collapse
Affiliation(s)
- M D Resh
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 143, New York, NY 10021, USA.
| |
Collapse
|
17
|
Altmann F, Staudacher E, Wilson IB, März L. Insect cells as hosts for the expression of recombinant glycoproteins. Glycoconj J 1999; 16:109-23. [PMID: 10612411 DOI: 10.1023/a:1026488408951] [Citation(s) in RCA: 241] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Baculovirus-mediated expression in insect cells has become well-established for the production of recombinant glycoproteins. Its frequent use arises from the relative ease and speed with which a heterologous protein can be expressed on the laboratory scale and the high chance of obtaining a biologically active protein. In addition to Spodoptera frugiperda Sf9 cells, which are probably the most widely used insect cell line, other mainly lepidopteran cell lines are exploited for protein expression. Recombinant baculovirus is the usual vector for the expression of foreign genes but stable transfection of - especially dipteran - insect cells presents an interesting alternative. Insect cells can be grown on serum free media which is an advantage in terms of costs as well as of biosafety. For large scale culture, conditions have been developed which meet the special requirements of insect cells. With regard to protein folding and post-translational processing, insect cells are second only to mammalian cell lines. Evidence is presented that many processing events known in mammalian systems do also occur in insects. In this review, emphasis is laid, however, on protein glycosylation, particularly N-glycosylation, which in insects differs in many respects from that in mammals. For instance, truncated oligosaccharides containing just three or even only two mannose residues and sometimes fucose have been found on expressed proteins. These small structures can be explained by post-synthetic trimming reactions. Indeed, cell lines having a low level of N-acetyl-beta-glucosaminidase, e.g. Estigmene acrea cells, produce N- glycans with non-reducing terminal N-acetylglucosamine residues. The Trichoplusia ni cell line TN-5B1-4 was even found to produce small amounts of galactose terminated N-glycans. However, there appears to be no significant sialylation of N-glycans in insect cells. Insect cells expressed glycoproteins may, though, be alpha1,3-fucosylated on the reducing-terminal GlcNAc residue. This type of fucosylation renders the N-glycans on one hand resistant to hydrolysis with PNGase F and on the other immunogenic. Even in the absence of alpha1,3-fucosylation, the truncated N-glycans of glycoproteins produced in insect cells constitute a barrier to their use as therapeutics. Attempts and strategies to "mammalianise" the N-glycosylation capacity of insect cells are discussed.
Collapse
Affiliation(s)
- F Altmann
- Institut für Chemie der Universität für Bodenkultur Wien.
| | | | | | | |
Collapse
|
18
|
Ponimaskin E, Schmidt MF. Domain-structure of cytoplasmic border region is main determinant for palmitoylation of influenza virus hemagglutinin (H7). Virology 1998; 249:325-35. [PMID: 9791024 DOI: 10.1006/viro.1998.9303] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have shown previously that the length of cytoplasmic tails influences the selection of lipid substrates for palmitoylation of influenza viral hemagglutinin esterase fusion (HEF) and hemagglutinin (HA) glycoproteins [Veit et al. (1996) Biochem. J. 318, 163-172; Reverey et al. (1996) J. Biol. Chem. 271, 23607-23610]. Using a series of new chimeric mutant proteins derived from acylated influenza virus HA (subtype H7) and from nonacylated Sendai virus fusion protein (F, strain Z), we report here that palmitoylation levels depend on the type of transmembrane or cytoplasmic domain, or both, present in the expression products and that cysteine residues placed close to the cytoplasmic membrane border are not sufficient for acylation. By inserting stretches of the HA transmembrane domain into a nonacylated mutant of Sendai F (FCys), we induce palmitoylation after expression in CV.1 cells, and the level of fatty acid transfer increases with the length of the HA-derived insert. A five-amino-acid shift of the HA transmembrane domain severely augments fatty acid transfer. Our data suggest that the influenza virus HA contains complex conformational signals for palmitoylation that are mainly located within the transmembrane domain but also involve the C-tail region, whereas the extracellular (luminal) domain has only marginal influence on palmitoylation.
Collapse
Affiliation(s)
- E Ponimaskin
- Institut für Immunologie und Molekularbiologie, Fachbereich Veterinärmedizin der Freien Universität Berlin, Luisenstrasse 56, Berlin, D-10117, Germany
| | | |
Collapse
|
19
|
Hausmann J, Ortmann D, Witt E, Veit M, Seidel W. Adenovirus death protein, a transmembrane protein encoded in the E3 region, is palmitoylated at the cytoplasmic tail. Virology 1998; 244:343-51. [PMID: 9601505 DOI: 10.1006/viro.1998.9135] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 11.6-K protein of human adenovirus 2 (Ad2), which was recently renamed as adenovirus death protein (ADP), is a type III membrane glycoprotein that ultimately localizes to the nuclear membrane. ADP is encoded in the E3 transcription unit of Ad2 and migrates as a set of multiple bands in SDS-PAGE with three major forms. The corresponding gene product of adenovirus 5 (Ad5) has a slightly lower molecular weight and shows the same pattern in SDS-PAGE. We report here the covalent attachment of fatty acids to cysteine residues of ADP. In the case of Ad5-ADP all three major forms of this protein can be labeled by [3H]palmitic acid, but not by [3H]myristic acid, whereas only two [3H]palmitic acid-labeled Ad2-ADP species could be detected. The label is sensitive to treatment with 1 M hydroxylamine at pH 7 and with 20% beta-mercaptoethanol indicating that the fatty acids are linked via a thioester bond. By thin layer chromatography, the vast majority of the incorporated label was identified as palmitic acid. Two cysteine residues at the boundary between transmembrane domain and cytoplasmic tail which could serve as acceptor sites were mutated to alanine residues by site-directed mutagenesis of the cloned Ad5-ADP gene. Expression of wild-type Ad5-ADP and the resulting mutants was performed in HeLa cells using the vaccinia virus T7 expression system. As demonstrated by labeling with [3H]palmitic acid, only the mutants with one remaining cysteine residue in the cytoplasmic tail were able to incorporate [3H]palmitic acid, indicating that either could serve as acceptor site. In contrast the double cysteine mutant could not be labeled by [3H]palmitic acid, clearly demonstrating that cysteines 53 and 54 are required for palmitoylation and probably represent the palmitoylation sites in Ad5-ADP.
Collapse
Affiliation(s)
- J Hausmann
- Institut für Medizinische Mikrobiologie der Ernst-Moritz-Arndt-Universität, Greifswald, Germany.
| | | | | | | | | |
Collapse
|
20
|
Bañó MC, Jackson CS, Magee AI. Pseudo-enzymatic S-acylation of a myristoylated yes protein tyrosine kinase peptide in vitro may reflect non-enzymatic S-acylation in vivo. Biochem J 1998; 330 ( Pt 2):723-31. [PMID: 9480882 PMCID: PMC1219197 DOI: 10.1042/bj3300723] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covalent attachment of a variety of lipid groups to proteins is now recognized as a major group of post-translational modifications. S-acylation of proteins at cysteine residues is the only modification considered dynamic and thus has the potential for regulating protein function and/or localization. The activities that catalyse reversible S-acylation have not been well characterized and it is not clear whether both the acylation and the deacylation steps are regulated, since in principle it would be sufficient to control only one of them. Both apparently enzymatic and non-enzymatic S-acylation of proteins have previously been reported. Here we show that a synthetic myristoylated c-Yes protein tyrosine kinase undecapeptide undergoes spontaneous S-acylation in vitro when using a long chain acyl-CoA as acyl donor in the absence of any protein. The S-acylation was dependent on myristoylation of the substrate, the length of the incubation period, temperature and substrate concentration. When COS cell fractions were added to the S-acylation reaction no additional peptide:S-acyltransferase activity was detected. These results are consistent with the possibility that membrane-associated proteins may undergo S-acylation in vivo by non-enzymatic transfer of acyl groups from acyl-CoA. In this case, the S-acylation-deacylation process could be controlled by a regulated depalmitoylation mechanism.
Collapse
Affiliation(s)
- M C Bañó
- Division of Membrane Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW71AA, U.K
| | | | | |
Collapse
|
21
|
Leventis R, Juel G, Knudsen JK, Silvius JR. Acyl-CoA binding proteins inhibit the nonenzymic S-acylation of cysteinyl-containing peptide sequences by long-chain acyl-CoAs. Biochemistry 1997; 36:5546-53. [PMID: 9154938 DOI: 10.1021/bi963029h] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Acyl-CoA binding proteins (ACBPs) from rat and bovine liver were found to inhibit the nonenzymic S-acylation of two representative types of peptides by long-chain acyl-CoAs. As demonstrated previously [Quesnel, S. & Silvius, J. R. (1994) Biochemistry 33 13340-13348; Bharadwaj, M., & Bizzozero, O. A. (1995) J. Neurochem. 65, 1805-1815], peptides with the sequences myristoyl-GCG, myristoyl-GCV, and IRYCWLRR-NH2, all representing physiological S-acylation sites in mammalian proteins, become S-acylated at appreciable rates in the presence of long-chain acyl-CoAs and large unilamellar lipid vesicles. Addition of ACBP at physiological molar ratios with respect to long-chain acyl-CoAs strongly inhibits the spontaneous S-acylation reaction, in a manner that can be quantitatively described by assuming that the ACBP sequesters the acyl-CoA with nanomolar affinity in a complex unable to serve as an S-acyl donor. From these results, we calculate that at physiological (intracellular) concentrations of ACBP, long-chain acyl-CoAs, and membrane lipids the expected half-times for spontaneous S-acylation of such protein sequences by long-chain acyl-CoAs will lie in the range of several tens of hours. The nonenzymic reaction of protein cysteine residues with long-chain acyl-CoAs is thus unlikely to contribute significantly to the physiological modification of signaling and other proteins that show relatively rapid rates of S-acylation in mammalian cells. However, it cannot be excluded that a nonenzymic reaction with long-chain acyl-CoAs could contribute to the physiological S-acylation of certain membrane proteins if the latter exhibit very slow kinetics of S-acylation in vivo.
Collapse
Affiliation(s)
- R Leventis
- Department of Biochemistry, McGill University, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
22
|
Nur-E-Kamal MS, Reverey H, Ponimaskin E, Schroth-Diez B, Herrmann A, Schmidt MF. Targeted delivery of human neurofibromin and c-Raf-1 mutants to the cytoplasmic membrane by use of the influenza virus hemagglutinin. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1338:233-43. [PMID: 9128141 DOI: 10.1016/s0167-4838(96)00206-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mutants of human neurofibromin and c-Raf-1 genes were fused to the 3' end of the hemagglutinin (HA) gene of influenza A virus by oligonucleotide-directed polymerase chain reaction (PCR). The two resulting chimeric genes, HA (1-534)/NF1 (1441-1518) and HA (1-534)/Raf-1 (51-132) which we designated HN and HR, respectively, were cloned in a vaccinia virus expression vector (pTMI) under the control of a T7 RNA polymerase promoter. The clones were expressed in a monkey cell line (CV-1) and the resulting chimeric proteins analysed. We found that expression levels of the chimeric proteins were similar to that of wild-type HA protein. Comparative endoglycosidase treatment revealed that the expressed chimeric proteins HN and HR were processed as wild-type HA, and FACS-analysis showed that both chimeric expression products localised in the cell membrane as the wild-type control. HN and HR expressing cells showed similar fusogenic activity as CV-1 cells transfected with wild-type HA indicating the correct topology of the fusion inducing portion (HA) of these chimera in the membrane. These findings show that the influenza virus hemagglutinin (HA) is a suitable vehicle to target foreign proteins with therapeutical potential into the cell membrane. In this respect HN and HR could potentially be used to block the abnormal signals generated by particular proteins in the cell membrane that lead to cell transformation.
Collapse
Affiliation(s)
- M S Nur-E-Kamal
- Institut für Immunologie und Molekularbiologie, Fachbereich Veterinämedizin der Freien Universität Berlin, Germany
| | | | | | | | | | | |
Collapse
|