1
|
Novikova LA, Yovkova V, Luzikov VN, Barth G, Mauersberger S. Recombinant Yarrowia lipolytica strains for the heterologous expression of multi-component enzyme systems: Expression of mammalian steroidogenic proteins. J Biotechnol 2021; 339:42-52. [PMID: 34333044 DOI: 10.1016/j.jbiotec.2021.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/15/2021] [Accepted: 07/24/2021] [Indexed: 11/25/2022]
Abstract
New Yarrowia lipolytica strains for the co-expression of steroidogenic mammalian proteins were obtained in this study. For this purpose, a two-step approach for constructing recombinant strains that permits the simple introduction of several expression cassettes encoding heterologous proteins into the yeast genome was successfully applied. This study tested two series of integrative multi-copy expression vectors containing cDNAs for the mature forms of P450scc system components (cytochrome P450scc (CYP11A1), adrenodoxin reductase, adrenodoxin, or fused adrenodoxin-P450scc) or for P45017α (CYP17A1) under the control of the isocitrate lyase promoter pICL1, which were constructed using the basic plasmids p64PT or p67PT (rDNA or the long terminal repeat (LTR) zeta of Ylt1 as integration targeting sequences and ura3d4 as a multi-copy selection marker). This study demonstrated the integration of up to three expression vectors containing different heterologous cDNA via their simultaneous transformation into haploid recipient strains. Additionally, further combinations of the different expression cassettes in one strain were obtained by subsequent diploidisation using selected haploid multi-copy transformants. Thus, recombinant strains containing three to five different expression cassettes were obtained, as demonstrated by Southern blotting. Expression of P450scc system proteins was identified by western blotting. The presented method for recombinant strain construction is a useful tool for the heterologous expression of multi-component enzyme systems in Y. lipolytica.
Collapse
Affiliation(s)
- Ludmila A Novikova
- Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1/40, 119991, Moscow, Russia.
| | - Venelina Yovkova
- Institute of Microbiology, Dresden University of Technology, Hedda Vogel, 01062, Dresden, Germany
| | - Valentin N Luzikov
- Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1/40, 119991, Moscow, Russia
| | - Gerold Barth
- Institute of Microbiology, Dresden University of Technology, Hedda Vogel, 01062, Dresden, Germany
| | - Stephan Mauersberger
- Institute of Microbiology, Dresden University of Technology, Hedda Vogel, 01062, Dresden, Germany
| |
Collapse
|
2
|
Omura T, Gotoh O. Evolutionary origin of mitochondrial cytochrome P450. J Biochem 2017; 161:399-407. [DOI: 10.1093/jb/mvx011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 01/03/2017] [Indexed: 12/17/2022] Open
|
3
|
Hlavica P. Mechanistic basis of electron transfer to cytochromes p450 by natural redox partners and artificial donor constructs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 851:247-97. [PMID: 26002739 DOI: 10.1007/978-3-319-16009-2_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cytochromes P450 (P450s) are hemoproteins catalyzing oxidative biotransformation of a vast array of natural and xenobiotic compounds. Reducing equivalents required for dioxygen cleavage and substrate hydroxylation originate from different redox partners including diflavin reductases, flavodoxins, ferredoxins and phthalate dioxygenase reductase (PDR)-type proteins. Accordingly, circumstantial analysis of structural and physicochemical features governing donor-acceptor recognition and electron transfer poses an intriguing challenge. Thus, conformational flexibility reflected by togging between closed and open states of solvent exposed patches on the redox components was shown to be instrumental to steered electron transmission. Here, the membrane-interactive tails of the P450 enzymes and donor proteins were recognized to be crucial to proper orientation toward each other of surface sites on the redox modules steering functional coupling. Also, mobile electron shuttling may come into play. While charge-pairing mechanisms are of primary importance in attraction and complexation of the redox partners, hydrophobic and van der Waals cohesion forces play a minor role in docking events. Due to catalytic plasticity of P450 enzymes, there is considerable promise in biotechnological applications. Here, deeper insight into the mechanistic basis of the redox machinery will permit optimization of redox processes via directed evolution and DNA shuffling. Thus, creation of hybrid systems by fusion of the modified heme domain of P450s with proteinaceous electron carriers helps obviate the tedious reconstitution procedure and induces novel activities. Also, P450-based amperometric biosensors may open new vistas in pharmaceutical and clinical implementation and environmental monitoring.
Collapse
Affiliation(s)
- Peter Hlavica
- Walther-Straub-Institut für Pharmakologie und Toxikologie der LMU, Goethestrasse 33, 80336, München, Germany,
| |
Collapse
|
4
|
Mauersberger S, Novikova LA, Shkumatov VM. Cytochrome P450 Expression in Yarrowia lipolytica and Its Use in Steroid Biotransformation. YARROWIA LIPOLYTICA 2013. [DOI: 10.1007/978-3-642-38583-4_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
5
|
Affiliation(s)
- Rudi Fasan
- Department of Chemistry,
Hutchison Hall, University of Rochester, Rochester, New York 14627,
United States
| |
Collapse
|
6
|
Affiliation(s)
- Toshiyuki Sakaki
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University
| |
Collapse
|
7
|
Sangar MC, Bansal S, Avadhani NG. Bimodal targeting of microsomal cytochrome P450s to mitochondria: implications in drug metabolism and toxicity. Expert Opin Drug Metab Toxicol 2010; 6:1231-51. [PMID: 20629582 PMCID: PMC2940958 DOI: 10.1517/17425255.2010.503955] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
IMPORTANCE OF THE FIELD Microsomal CYPs are critical for drug metabolism and toxicity. Recent studies show that these CYPs are also present in the mitochondrial compartment of human and rodent tissues. Mitochondrial CYP1A1 and 2E1 show both overlapping and distinct metabolic activities compared to microsomal forms. Mitochondrial CYP2E1 also induces oxidative stress. The mechanisms of mitochondria targeting of CYPs and their role in drug metabolism and toxicity are important factors to consider while determining the drug dose and in drug development. AREAS COVERED IN THIS REVIEW This review highlights the mechanisms of bimodal targeting of CYP1A1, 2B1, 2E1 and 2D6 to mitochondria and microsomes. The review also discusses differences in structure and function of mitochondrial CYPs. WHAT THE READERS WILL GAIN A comprehensive review of the literature on drug metabolism in the mitochondrial compartment and their potential for inducing mitochondrial dysfunction. TAKE HOME MESSAGE Studies on the biochemistry, pharmacology and pharmacogenetic analysis of CYPs are mostly focused on the molecular forms associated with the microsomal membrane. However, the mitochondrial CYPs in some individuals can represent a substantial part of the tissue pool and contribute in a significant way to drug metabolism, clearance and toxicity.
Collapse
Affiliation(s)
- Michelle C Sangar
- University of Pennsylvania, School of Veterinary Medicine, Department of Animal Biology and the Mari Lowe Center for Comparative Oncology, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
8
|
Sakaki T, Sugimoto H, Hayashi K, Yasuda K, Munetsuna E, Kamakura M, Ikushiro S, Shiro Y. Bioconversion of vitamin D to its active form by bacterial or mammalian cytochrome P450. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:249-56. [PMID: 20654743 DOI: 10.1016/j.bbapap.2010.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 06/29/2010] [Accepted: 07/12/2010] [Indexed: 10/19/2022]
Abstract
Bioconversion processes, including specific hydroxylations, promise to be useful for practical applications because chemical syntheses often involve complex procedures. One of the successful applications of P450 reactions is the bioconversion of vitamin D₃ to 1α,25-dihydroxyvitamin D₃. Recently, a cytochrome P450 gene encoding a vitamin D hydroxylase from the CYP107 family was cloned from Pseudonocardia autotrophica and is now applied in the bioconversion process that produces 1α,25-dihydroxyvitamin D₃. In addition, the directed evolution study of CYP107 has significantly enhanced its activity. On the other hand, we found that Streptomyces griseolus CYP105A1 can convert vitamin D₃ to 1α,25-dihydroxyvitamin D₃. Site-directed mutagenesis of CYP105A1 based on its crystal structure dramatically enhanced its activity. To date, multiple vitamin D hydroxylases have been found in bacteria, fungi, and mammals, suggesting that vitamin D is a popular substrate of the enzymes belonging to the P450 superfamily. A combination of these cytochrome P450s would produce a large number of compounds from vitamin D and its analogs. Therefore, we believe that the bioconversion of vitamin D and its analogs is one of the most promising P450 reactions in terms of practical application.
Collapse
Affiliation(s)
- Toshiyuki Sakaki
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Cytochrome P450 enzyme system consists of P450 and its NAD(P)H-linked reductase or reducing system, and catalyses monooxygenation reactions. The most prevalent type in eukaryotic organisms is 'microsomes type', which consists of membrane-bound P450 and NADPH-P450 reductase. The second type is 'mitochondria type', in which P450 is bound to the inner membrane while the reducing system consisting of an NADPH-linked flavoprotein and a ferredoxin-type iron-sulphur protein is soluble in the matrix space. The third type is 'bacteria type', in which both P450 and the reducing system are soluble in the cytoplasm. In addition to these three types, several forms of P450-reductase fusion proteins have been found in prokaryotic organisms. On the other hand, some P450s catalyse the re-arrangement of the oxygen atoms in the substrate molecules that does not require the supply of reducing equivalents for the reaction. A peculiar P450, P450nor, receives electrons directly from NADH for the reduction of nitric oxide.
Collapse
Affiliation(s)
- Tsuneo Omura
- Kyushu University, Kyushu University, Fukuoka, Fukuoka 811-8582, Japan.
| |
Collapse
|
10
|
Hlavica P. Assembly of non-natural electron transfer conduits in the cytochrome P450 system: A critical assessment and update of artificial redox constructs amenable to exploitation in biotechnological areas. Biotechnol Adv 2009; 27:103-21. [DOI: 10.1016/j.biotechadv.2008.10.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 09/29/2008] [Accepted: 10/04/2008] [Indexed: 10/21/2022]
|
11
|
Hayashi K, Sugimoto H, Shinkyo R, Yamada M, Ikeda S, Ikushiro S, Kamakura M, Shiro Y, Sakaki T. Structure-Based Design of a Highly Active Vitamin D Hydroxylase from Streptomyces griseolus CYP105A1. Biochemistry 2008; 47:11964-72. [DOI: 10.1021/bi801222d] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Keiko Hayashi
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan, RIKEN SPring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan, and Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugimoto
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan, RIKEN SPring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan, and Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Raku Shinkyo
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan, RIKEN SPring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan, and Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masato Yamada
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan, RIKEN SPring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan, and Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shinnosuke Ikeda
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan, RIKEN SPring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan, and Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan, RIKEN SPring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan, and Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masaki Kamakura
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan, RIKEN SPring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan, and Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoshitsugu Shiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan, RIKEN SPring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan, and Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Toshiyuki Sakaki
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan, RIKEN SPring-8 Center, Harima Institute, Sayo, Hyogo 679-5148, Japan, and Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
12
|
Sawada N, Yamamoto K, Yamada S, Ikushiro S, Kamakura M, Ohta M, Inouye K, Sakaki T. Role of Gln 85 of human CYP27A1 in 25-hydroxyvitamin D(3)-binding and protein folding. Biochem Biophys Res Commun 2007; 355:211-6. [PMID: 17292862 DOI: 10.1016/j.bbrc.2007.01.158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 01/26/2007] [Indexed: 11/23/2022]
Abstract
CYP27A1 catalyzes vitamin D(3) 25-hydroxylation and further hydroxylation at C-1alpha, C-24 or C-26(27). Molecular modeling of human CYP27A1 and docking with 25-hydroxyvitamin D(3) predicted that Gln 85 might be important for 1alpha-hydroxylation activity of CYP27A1 by forming a hydrogen bond with the 25-OH group of 25-hydroxyvitamin D(3). Expectedly, the mutant Q85H expressed in Escherichia coli showed no detectable 1alpha-hydroxylation activity toward 25-hydroxyvitamin D(3). In addition, Q85H prefers 24-hydroxylation toward 25-hydroxyvitamin D(3) whereas the wild-type prefers 26(27)-hydroxylation. A molecular modeling study also suggests that Gln 85 of CYP27A1 simultaneously interacts with Asn 107 and the hydroxyl group of the substrate. The fact that Q85L did not contain a heme molecule suggests that the hydrogen bond between Gln 85 and Asn 107 is important for protein folding of CYP27A1. Based on these results, it is possible that Gln 85 plays essential roles in both substrate-binding and protein folding.
Collapse
Affiliation(s)
- Natsumi Sawada
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Pechurskaya TA, Harnastai IN, Grabovec IP, Gilep AA, Usanov SA. Adrenodoxin supports reactions catalyzed by microsomal steroidogenic cytochrome P450s. Biochem Biophys Res Commun 2006; 353:598-604. [PMID: 17188650 DOI: 10.1016/j.bbrc.2006.12.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 12/08/2006] [Indexed: 11/23/2022]
Abstract
The interaction of adrenodoxin (Adx) and NADPH cytochrome P450 reductase (CPR) with human microsomal steroidogenic cytochrome P450s was studied. It is found that Adx, mitochondrial electron transfer protein, is able to support reactions catalyzed by human microsomal P450s: full length CYP17, truncated CYP17, and truncated CYP21. CPR, but not Adx, supports activity of truncated CYP19. Truncated and the full length CYP17s show distinct preference for electron donor proteins. Truncated CYP17 has higher activity with Adx compared to CPR. The alteration in preference to electron donor does not change product profile for truncated enzymes. The electrostatic contacts play a major role in the interaction of truncated CYP17 with either CPR or Adx. Similarly electrostatic contacts are predominant in the interaction of full length CYP17 with Adx. We speculate that Adx might serve as an alternative electron donor for CYP17 at the conditions of CPR deficiency in human.
Collapse
Affiliation(s)
- Tatiana A Pechurskaya
- Institute of Bioorganic Chemistry, Academy of Sciences of Belarus, Kuprevicha st., 5/2, Minsk 220141, Belarus
| | | | | | | | | |
Collapse
|
14
|
Omura T. Mitochondrial P450s. Chem Biol Interact 2006; 163:86-93. [DOI: 10.1016/j.cbi.2006.06.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2006] [Revised: 06/20/2006] [Accepted: 06/26/2006] [Indexed: 01/08/2023]
|
15
|
Sakaki T, Inouye K. Practical application of mammalian cytochrome P450. J Biosci Bioeng 2005; 90:583-90. [PMID: 16232916 DOI: 10.1263/jbb.90.583] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2000] [Accepted: 08/31/2000] [Indexed: 11/17/2022]
Abstract
Heterologous expression systems play an important role in the analysis of structure-function relationships of mammalian P450s. In addition, these expression systems allow practical application of mammalian P450s. Genetically engineered fused enzymes between mammalian P450 and yeast NADPH-P450 reductase have possible applications in bioconversion processes. Combined use of techniques reported thus far could produce steroid hormones in the recombinant yeast cells harboring four P450 species, CYP11A1, CYP17A1, CYP21B1 and CYP11B1. In an Escherichia coli expression system, the technology of the construction of the mitochondrial P450 electron transport chain has been established. The recombinant E. coli cells expressing CYP27B1, adrenodoxin and NADPH-adrenodoxin reductase would be applicable to a bioconversion process to produce 1alpha,25-dihydroxyvitamin D3. We also demonstrated the usefulness of heterologous expression systems for human liver microsomal P450s for the prediction of drug metabolism in the human body. Microsomal fractions prepared from recombinant yeast, insect and mammalian cells are commercially available and play an important role in preclinical drug development. Application of mammalian P450 to bioremediation with genetic engineering has also been developed. Thus, mammalian P450s appear to have great potential for a wide range of practical applications.
Collapse
Affiliation(s)
- T Sakaki
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | | |
Collapse
|
16
|
Kato S, Takeyama KI. Expression cloning of ligand biosynthetic enzymes. Methods Enzymol 2003; 364:361-75. [PMID: 14631856 DOI: 10.1016/s0076-6879(03)64021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Shigeaki Kato
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan
| | | |
Collapse
|
17
|
Hlavica P, Schulze J, Lewis DFV. Functional interaction of cytochrome P450 with its redox partners: a critical assessment and update of the topology of predicted contact regions. J Inorg Biochem 2003; 96:279-97. [PMID: 12888264 DOI: 10.1016/s0162-0134(03)00152-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The problem of donor-acceptor recognition has been the most important and intriguing one in the area of P450 research. The present review outlines the topological background of electron-transfer complex formation, showing that the progress in collaborative investigations, combining physical techniques with chemical-modification and immunolocalization studies as well as site-directed mutagenesis experiments, has increasingly enabled the substantiation of hypothetical work resulting from homology modelling of P450s. Circumstantial analysis reveals the contact regions for redox proteins to cluster on the proximal face of P450s, constituting parts of the highly conserved, heme-binding core fold. However, more variable structural components located in the periphery of the hemoprotein molecules also participate in donor docking. The cross-reactivity of electron carriers, purified from pro- and eukaryotic sources, with a diversity of P450 species points at a possible evolutionary conservation of common anchoring domains. While electrostatic mechanisms appear to dominate orientation toward each other of the redox partners to generate pre-collisional encounter complexes, hydrophobic forces are likely to foster electron transfer events by through-bonding or pi-stacking interactions. Moreover, electron-tunneling pathways seem to be operative as well. The availability of new P450 crystal structures together with improved validation strategies will undoubtedly permit the production of increasingly satisfactory three-dimensional donor-acceptor models serving to better understand the molecular principles governing functional association of the redox proteins.
Collapse
Affiliation(s)
- P Hlavica
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Nussbaumstrasse 26, D-80336, Munich, Germany.
| | | | | |
Collapse
|
18
|
Sawada N, Sakaki T, Kitanaka S, Kato S, Inouye K. Structure-function analysis of CYP27B1 and CYP27A1. Studies on mutants from patients with vitamin D-dependent rickets type I (VDDR-I) and cerebrotendinous xanthomatosis (CTX). EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:6607-15. [PMID: 11737215 DOI: 10.1046/j.0014-2956.2001.02615.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have determined eight types of missense mutants of CYP27B1 from Japanese vitamin D-dependent rickets type I (VDDR-I) patients [Kitanaka, S., Takeyama, K., Murayama, A., Sato, T., Okumura, K., Nogami, M., Hasegawa, Y., Niimi, H., Yanagisawa, J., Tanaka, T. & Kato, S. (1998) New England J. Med., 338, 653-661 and Kitanaka, S., Murayama, A., Sakaki, T., Inouye, K., Seino, Y., Fukumoto, S., Shima, M., Yukizane, S., Takayanagi, M., Niimi, H., Takeyama, K. & Kato, S. (1999) J. Clin. Endocrine Metab., 84, 4111-4117]. None of the CYP27B1 mutants showed 1alpha-hydroxylase activity towards 25-hydroxyvitamin D3. Thus, it was assumed that the mutated amino-acid residues play important roles in the 1alpha-hydroxylase activity, such as substrate binding, activation of molecular oxygen, interaction with adrenodoxin, and folding of the cytochrome P450 structure. To examine our hypothesis, we generated various mutants of CYP27B1 and studied their enzymatic properties. In addition, the corresponding mutations were introduced to CYP27A1, which belongs to the same family as CYP27B1. As CYP27A1 showed much higher expression level than CYP27B1 in Escherichia coli, further analysis including heme-binding and substrate-binding was performed with CYP27A1 in place of CYP27B1. Western blot analysis, spectral analysis including reduced CO-difference spectra and substrate-induced difference spectra, and enzymatic analysis of the mutant CYP27A1 gave information on the structure-function relationships of both CYP27A1 and CYP27B1. Although the sequence alignment suggested that Arg107, Gly125, and Pro497 of CYP27B1 might be involved in substrate binding, the experimental data strongly suggested that mutations of these amino-acid residues destroyed the tertiary structure of the substrate-heme pocket. It was also suggested that Arg389 and Arg453 of CYP27B1 were involved in heme-propionate binding, and Asp164 stabilized the four-helix bundle consisting of D, E, I and J helices, possibly by forming a salt bridge. Thr321 was found to be responsible for the activation of molecular oxygen.
Collapse
Affiliation(s)
- N Sawada
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
19
|
Miles CS, Ost TW, Noble MA, Munro AW, Chapman SK. Protein engineering of cytochromes P-450. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1543:383-407. [PMID: 11150615 DOI: 10.1016/s0167-4838(00)00236-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The cytochromes P-450 are an immensely important superfamily of heme-containing enzymes. They catalyze the monooxygenation of an enormous range of substrates. In bacteria, cytochromes P-450 are known to catalyze the hydroxylation of environmentally significant substrates such as camphor, phenolic compounds and many herbicides. In eukaryotes, these enzymes perform key roles in the synthesis and interconversion of steroids, while in mammals hepatic cytochromes P-450 are vital for the detoxification of many drugs. As such, the cytochromes P-450 are of considerable interest in medicine and biotechnology and are obvious targets for protein engineering. The purpose of this article is to illustrate the ways in which protein engineering has been used to investigate and modify the properties of cytochromes P-450. Illustrative examples include: the manipulation of substrate selectivity and regiospecificity, the alteration of membrane binding properties, and probing the route of electron transfer.
Collapse
Affiliation(s)
- C S Miles
- Institute of Cell and Molecular Biology, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, UK
| | | | | | | | | |
Collapse
|
20
|
Sawada N, Sakaki T, Ohta M, Inouye K. Metabolism of vitamin D(3) by human CYP27A1. Biochem Biophys Res Commun 2000; 273:977-84. [PMID: 10891358 DOI: 10.1006/bbrc.2000.3050] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human vitamin D(3) 25-hydroxylase (CYP27A1) cDNA was expressed in Escherichia coli, and its enzymatic properties were revealed. The reconstituted system containing the membrane fraction prepared from the recombinant E. coli cells was examined for the metabolism of vitamin D(3). Surprisingly, at least eight forms of metabolites including the major product 25(OH)D(3) were observed. HPLC analysis and mass spectrometric analysis suggested that those metabolites were 25(OH)D(3), 26(OH)D(3), 27(OH)D(3), 24R,25(OH)(2)D(3), 1alpha, 25(OH)(2)D(3, )25,26(OH)(2)D(3) (25,27(OH)(2)D(3)), 27-oxo-D(3) and a dehydrogenated form of vitamin D(3). These results suggest that human CYP27A1 catalyzes multiple reactions and multiple-step metabolism toward vitamin D(3). The K(m) and V(max) values for vitamin D(3) 25-hydroxylation and 25(OH)D(3) 1alpha-hydroxylation were estimated to be 3.2 microM and 0.27 (mol/min/mol P450), and 3.5 microM and 0.021 (mol/min/mol P450), respectively. These kinetic studies have made it possible to evaluate a physiological meaning of each reaction catalyzed by CYP27A1.
Collapse
Affiliation(s)
- N Sawada
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | | | | |
Collapse
|
21
|
|
22
|
Sawada N, Sakaki T, Kitanaka S, Takeyama K, Kato S, Inouye K. Enzymatic properties of human 25-hydroxyvitamin D3 1alpha-hydroxylase coexpression with adrenodoxin and NADPH-adrenodoxin reductase in Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:950-6. [PMID: 10518789 DOI: 10.1046/j.1432-1327.1999.00794.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have cloned human 25-hydroxyvitamin D3 1alpha-hydroxylase cDNAs from normal subjects and patients with pseudovitamin D-deficient rickets (PDDR), and expressed the cDNAs in Escherichia coli JM109 cells. Kinetic analysis of normal 1alpha-hydroxylase in the reconstituted system revealed that Km values for 25(OH)D3 and (24R), 25(OH)2D3 were 2.7 and 1.1 microM, respectively. The lower Km value and higher Vmax/Km value for (24R),25(OH)2D3 indicated that it is a better substrate than 25(OH)D3 for 1alpha-hydroxylase. These results are quite similar to those of mouse 1alpha-hydroxylase. To establish a highly sensitive in vivo system, 1alpha-hydroxylase, adrenodoxin and NADPH-adrenodoxin reductase were coexpressed in E. coli cells. The recombinant E. coli cells showed remarkably high 1alpha-hydroxylase activity, suggesting that the electrons were efficiently transferred from NADPH-adrenodoxin reductase through adrenodoxin to 1alpha-hydroxylase in E. coli cells. Using this system, the activities of four mutants of 1alpha-hydroxylase, R107H, G125E, R335P and P382S, derived from patients with PDDR were examined. Although no significant reduction in expression of these mutants was observed, none showed detectable activity. These results strongly suggest that the mutations found in the patients with PDDR completely abolished 1alpha-hydroxylase activity by replacement of one amino acid residue.
Collapse
Affiliation(s)
- N Sawada
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Bhagwat SV, Biswas G, Anandatheerthavarada HK, Addya S, Pandak W, Avadhani NG. Dual targeting property of the N-terminal signal sequence of P4501A1. Targeting of heterologous proteins to endoplasmic reticulum and mitochondria. J Biol Chem 1999; 274:24014-22. [PMID: 10446170 DOI: 10.1074/jbc.274.34.24014] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies from our laboratory showed that the beta-naphthoflavone-inducible cytochrome P4501A1 is targeted to both the endoplasmic reticulum (ER) and mitochondria. In the present study, we have further investigated the ability of the N-terminal signal sequence (residues 1-44) of P4501A1 to target heterologous proteins, dihydrofolate reductase, and the mature portion of the rat P450c27 to the two subcellular compartments. In vitro transport and in vivo expression experiments show that N-terminally fused 1-44 signal sequence of P4501A1 targets heterologous proteins to both the ER and mitochondria, whereas the 33-44 sequence strictly functions as a mitochondrial targeting signal. Site-specific mutations show that positively charged residues at the 34th and 39th positions are critical for mitochondrial targeting. Cholesterol 27-hydroxylase activity of the ER-associated 1-44/1A1-CYP27 fusion protein can be reconstituted with cytochrome P450 reductase, but the mitochondrial associated fusion protein is functional with adrenodoxin + adrenodoxin reductase. Consistent with these differences, the fusion protein in the two organelle compartments exhibited distinctly different membrane topology. The results on the chimeric nature of the N-terminal signal of P4501A1 coupled with interaction with different electron transport proteins suggest a co-evolutionary nature of some of the xenobiotic inducible microsomal and mitochondrial P450s.
Collapse
Affiliation(s)
- S V Bhagwat
- Department of Animal Biology and the Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6047, USA
| | | | | | | | | | | |
Collapse
|
24
|
Lacour T, Ohkawa H. Engineering and biochemical characterization of the rat microsomal cytochrome P4501A1 fused to ferredoxin and ferredoxin-NADP(+) reductase from plant chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1433:87-102. [PMID: 10446362 DOI: 10.1016/s0167-4838(99)00154-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fusion proteins of rat cytochrome P4501A1 with maize ferredoxin I (Fd) and pea ferredoxin NADP(+) reductase (FNR), the last electron transfer proteins of the photosynthetic channel in plant chloroplasts, were obtained by gene fusion in the yeast expression vector pAAH5N. The encoded fusion proteins P4501A1-Fd, P4501A1-FNR, P4501A1-Fd-FNR and P4501A1-FNR-Fd were produced in microsomes of the yeast Saccharomyces cerevisiae AH22. Enzymatic assays were carried out in vitro with the isolated microsomes. P4501A1-Fd-FNR and P4501A1-FNR-Fd were found to catalyze P450-monooxygenase activities towards 7-ethoxycoumarin and the herbicide chlortoluron. P4501A1-Fd-FNR was the most efficient enzyme as measured in vitro in ferricyanide and cytochrome c reductions, as well as P450-monooxygenase assays. Apparent K(m) and k(cat) of P4501A1-Fd-FNR were 70 microM and 7800 min(-1) for NADPH, 13.2 microM and 51.1 min(-1) for 7-ethoxycoumarin, and 21.3 microM and 23. 8 min(-1) for the herbicide chlortoluron, respectively. Fd in P4501A1-Fd-FNR fusion enzyme was found to be a limiting factor compared to P4501A1 fused to the yeast NADPH-cytochrome P450 reductase, an artificial enzyme described previously. The efficiency of electron transfer in the P4501A1 fusion proteins and a possible in vivo molecular coupling of Fd and FNR with microsomal cytochrome P4501A1 produced in plant chloroplasts are discussed.
Collapse
Affiliation(s)
- T Lacour
- Department of Biological and Environmental Sciences, Faculty of Agriculture, Kobe University, Rokkodai-cho 1-1, Nada-ku, Kobe 657-8501, Japan
| | | |
Collapse
|
25
|
Anandatheerthavarada HK, Vijayasarathy C, Bhagwat SV, Biswas G, Mullick J, Avadhani NG. Physiological role of the N-terminal processed P4501A1 targeted to mitochondria in erythromycin metabolism and reversal of erythromycin-mediated inhibition of mitochondrial protein synthesis. J Biol Chem 1999; 274:6617-25. [PMID: 10037757 DOI: 10.1074/jbc.274.10.6617] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, we showed that the major species of beta-naphthoflavone-inducible rat liver mitochondrial P450MT2 consists of N-terminal truncated microsomal P4501A1 (+33/1A1) and that the truncated enzyme exhibits different substrate specificity as compared with intact P4501A1. The results of the present study show that P450MT2 targeted to COS cell mitochondria by transient transfection of P4501A1 cDNA is localized inside the mitochondrial inner membrane in a membrane-extrinsic orientation. Co-expression with wild type P4501A1 and adrenodoxin (Adx) cDNAs resulted in 5-7-fold higher erythromycin N-demethylation (ERND) in the mitochondrial fraction but minimal changes in the microsomal fraction of transfected cells. Erythromycin, a potent inhibitor of bacterial and mitochondrial protein synthesis, caused 8-12-fold higher accumulation of CYP1A1 mRNA, preferential accumulation of P450MT2, and 5-6-fold higher ERND activity in the mitochondrial compartment of rat C6 glioma cells. Consistent with the increased mitochondrial ERND activity, co-expression with P4501A1 and Adx in COS cells rendered complete protection against erythromycin-mediated mitochondrial translation inhibition. Mutations that specifically affect the mitochondrial targeting of P4501A1 also abolished protection against mitochondrial translation inhibition. These results for the first time suggest a physiological function for the xenobiotic inducible cytochrome P4501A1 against drug-mediated mitochondrial toxicity.
Collapse
Affiliation(s)
- H K Anandatheerthavarada
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6047, USA
| | | | | | | | | | | |
Collapse
|
26
|
Sakaki T, Sawada N, Takeyama K, Kato S, Inouye K. Enzymatic properties of mouse 25-hydroxyvitamin D3 1 alpha-hydroxylase expressed in Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 259:731-8. [PMID: 10092858 DOI: 10.1046/j.1432-1327.1999.00096.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Renal 25-hydroxyvitamin D3 1 alpha-hydroxylase cDNA cloned from the kidneys of mice lacking the vitamin D receptor was expressed in Escherichia coli JM109. As expected, the bacterially-expressed enzyme catalyzes the 1 alpha-hydroxylation of 25-hydroxyvitamin D3 with a Michaelis constant, K(m), value of 2.7 microM. Unexpectedly, the enzyme also hydroxylates the 1 alpha-position of 24,25-dihydroxyvitamin D3 with a K(m) of 1.3 microM, and a fourfold higher Vmax/K(m) compared with the 25-hydroxyvitamin D3 hydroxylase activity, suggesting that 24,25-dihydroxyvitamin D3 is a better substrate than 25-hydroxyvitamin D3 for 1 alpha-hydroxylase. In addition, the enzyme showed 1 alpha-hydroxylase activity toward 24-oxo-25-hydroxyvitamin D3. However, it showed only slight activity towards 23,25-dihydroxyvitamin D3 and 24-oxo-23,25-dihydroxyvitamin D3, and no detectable activity towards vitamin D3 and 24,25,26,27-tetranor-23-hydroxyvitamin D3. These results suggest that the 25-hydroxyl group of vitamin D3 is essential for the 1 alpha-hydroxylase activity and the 24-hydroxyl group enhances the activity, but the 23-hydroxyl group greatly reduced the activity. Another remarkable finding is that living recombinant E. coli cells can convert the substrates into the 1 alpha-hydroxylated products, suggesting the presence of a redox partner of 1 alpha-hydroxylase in E. coli cells.
Collapse
Affiliation(s)
- T Sakaki
- Division of Applied Life Sciences, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
27
|
Lehnerer M, Schulze J, Bernhardt R, Hlavica P. Some properties of mitochondrial adrenodoxin associated with its nonconventional electron donor function toward rabbit liver microsomal cytochrome P450 2B4. Biochem Biophys Res Commun 1999; 254:83-7. [PMID: 9920736 DOI: 10.1006/bbrc.1998.9889] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondrial adrenodoxin (Adx) was found to cross-react with microsomal cytochrome P450 2B4 (CYP2B4) as the terminal electron acceptor. When compared with NADPH-cytochrome P450 reductase (P450R), the natural redox partner of CYP2B4, Adx was less efficient both in transferring the first electron and in coupling the system. The ferredoxin yielded an unusual reverse type I spectral change with low-spin CYP2B4, which underwent transformation to a typical type I optical perturbation upon deletion of the signal anchor sequence (Delta2-27) of the hemoprotein. Truncation of CYP2B4 slightly fostered electron transfer from Adx, but was deleterious to reduction of the engineered isozyme by P450R. Addition of manganese-substituted cytochrome b5, which failed to serve as an electron donor to CYP2B4, augmented the amount of hemoprotein existing in form of a low-spin complex with Adx and affected the ferredoxin-dependent reduction kinetics through causing a proportional rise in both Km and Vmax. Conservative replacement of Asp-76 with glutamate in the Adx molecule was associated with a drastic drop in reductive efficiency toward CYP2B4, while spectral binding of the mutant to the hemoprotein was marginally changed. The results support the concept of an evolutionary relationship between the various cytochrome P450 forms as regards the conservation of surface regions participating in contacts with heterologous donor proteins.
Collapse
Affiliation(s)
- M Lehnerer
- Walther-Straub-Institut für Pharmakologie und Toxikologie der LMU, Nussbaumstrasse 26, München, D-80336, Germany
| | | | | | | |
Collapse
|
28
|
Anandatheerthavarada HK, Addya S, Mullick J, Avadhani NG. Interaction of adrenodoxin with P4501A1 and its truncated form P450MT2 through different domains: differential modulation of enzyme activities. Biochemistry 1998; 37:1150-60. [PMID: 9454608 DOI: 10.1021/bi972046j] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recently we showed that the beta-naphthoflavone-inducible liver mitochondrial P450MT2 consists of two N-terminal truncated forms of the microsomal P4501A1, termed P450MT2a (+5/1A1) and MT2b (+33/1A1) [Addya et al. (1997) J. Cell Biol. 139, 589-599]. In the present study, we demonstrate that intact P4501A1 and the major mitochondrial form, P450MT2b (routinely referred to as P450MT2), show distinct substrate specificities and preference for different electron transport proteins. Enzyme reconstitution and spectral studies show that the wild-type adrenodoxin (Adx), but not the mutant Adx, binds to P450MT2 in a functionally productive manner (Kd = 0.6 microM) and induces a characteristic high-spin state. Adx binding to intact P4501A1 or +5/1A1 is less efficient as seen from spectral shift patterns (Kd = 1.8-2.0 microM) and reconstitution of enzyme activity. Use of Adx--Sepharose affinity matrix yielded < 90% pure P450MT2 (specific activity: 13.5 nmol/mg of protein) starting from a partially purified fraction of 10-15% purity, further demonstrating the specificity of P450MT2 and Adx interaction. Chemical cross-linking studies show that the bovine Adx forms heteroduplexes with both P450MT2 and intact P4501A1, though at different efficiencies. Our results show that Adx interacts with P450MT2 through its C-terminal acidic domain 2, while interaction with intact P4501A1 likely involves the N-terminal acidic domain 1. These results point to an interesting possibility that different electron transfer proteins may differently modulate the enzyme activity. Our results also demonstrate for the first time as to how a different mode of Adx interaction differently modulates the substrate specificities of the two P450 forms.
Collapse
Affiliation(s)
- H K Anandatheerthavarada
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | |
Collapse
|
29
|
Abstract
A principal advance in the production of drug-metabolizing enzymes has been the development of catalytically self-sufficient cytochrome P450 systems, including additional P450-reductase fusion proteins and Escherichia coli and baculovirus coexpression constructs. Continuing work with glutathione transferases has resulted in the identification of important residues by random mutagenesis screening techniques, as well as in the engineering of model Salmonella typhimurium strains for genotoxicity analysis.
Collapse
Affiliation(s)
- F P Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | |
Collapse
|
30
|
Takeyama K, Kitanaka S, Sato T, Kobori M, Yanagisawa J, Kato S. 25-Hydroxyvitamin D3 1alpha-hydroxylase and vitamin D synthesis. Science 1997; 277:1827-30. [PMID: 9295274 DOI: 10.1126/science.277.5333.1827] [Citation(s) in RCA: 350] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Renal 25-hydroxyvitamin D3 1alpha-hydroxylase [1alpha(OH)ase] catalyzes metabolic activation of 25-hydroxyvitamin D3 into 1alpha, 25-dihydroxyvitamin D3 [1alpha,25(OH)2D3], an active form of vitamin D, and is inhibited by 1alpha,25(OH)2D3. 1alpha(OH)ase, which was cloned from the kidney of mice lacking the vitamin D receptor (VDR-/- mice), is a member of the P450 family of enzymes (P450VD1alpha). Expression of 1alpha(OH)ase was suppressed by 1alpha, 25(OH)2D3 in VDR+/+ and VDR+/- mice but not in VDR-/- mice. These results indicate that the negative feedback regulation of active vitamin D synthesis is mediated by 1alpha(OH)ase through liganded VDR.
Collapse
Affiliation(s)
- K Takeyama
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Pikuleva IA, Björkhem I, Waterman MR. Expression, purification, and enzymatic properties of recombinant human cytochrome P450c27 (CYP27). Arch Biochem Biophys 1997; 343:123-30. [PMID: 9210654 DOI: 10.1006/abbi.1997.0142] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A large number of microsomal P450s have been expressed in Escherichia coli in quantities sufficient for structure/function analysis. However, only one mitochondrial P450 has been successfully overexpressed, that being cholesterol side chain cleavage cytochrome P450 (P450scc). We report here overexpression, purification, and characterization of a second mitochondrial P450, human sterol C-27 hydroxylase (P450c27). The conditions used for expression are very similar to those applied for P450scc, although a quite different purification protocol was necessary to achieve highly purified P450c27. The catalytic properties of purified recombinant human P450c27 resemble those of purified, endogenous rat and rabbit P450c27, regarding both specificity and turnover numbers. Like endogenous P450c27 from rat and rabbit liver, human recombinant P450c27 is only functional in the presence of adrenodoxin and adrenodoxin reductase and shows no activity in the presence of the microsomal P450 reductase. We conclude that P450c27 is most likely not the 1alpha-hydroxylase of 25-hydroxyvitamin D3, contrary to a previous suggestion (Axen, E., Postlind, H., Sjöberg, H., and Wikvall, K. (1994) Proc. Natl. Acad. Sci. USA 91, 10014-10018) because this activity of P450c27 (28 pmol/min/nmol P450) seems far too low to be physiologically relevant. This activity is 10(3) times lower than the 27-hydroxylase activity toward 5beta-cholestane-3alpha,7alpha,12alpha-triol and 40 times lower than the 27-hydroxylation of cholesterol by this enzyme. The development of this expression system and purification procedure creates the potential for structure/function analysis of P450c27, including possible crystallization of this important enzyme.
Collapse
Affiliation(s)
- I A Pikuleva
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | |
Collapse
|