1
|
Xu X, Liu L, Xu L, Zhang Y, Hafeez R, Ijaz M, Ali HM, Shahid MS, Ahmed T, Ondrasek G, Li B. Regulatory mechanism of C4-dicarboxylates in cyclo (Phe-Pro) production. Microb Cell Fact 2024; 23:255. [PMID: 39342283 PMCID: PMC11437626 DOI: 10.1186/s12934-024-02527-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Cyclo (Phe-Pro) (cFP), a cyclic dipeptide with notable antifungal, antibacterial, and antiviral properties, shows great promise for biological control of plant diseases. Produced as a byproduct by non-ribosomal peptide synthetases (NRPS), the regulatory mechanism of cFP biosynthesis remains unclear. In a screening test of 997 Tn5 mutants of Burkholderia seminalis strain R456, we identified eight mutants with enhanced antagonistic effects against Fusarium graminearum (Fg). Among these, mutant 88's culture filtrate contained cFP, confirmed through HPLC and LC-MS, which actively inhibited Fg. The gene disrupted in mutant 88 is part of the Dct transport system (Dct-A, -B, -D), responsible for C4-dicarboxylate transport. Knockout mutants of Dct genes exhibited higher cFP levels than the wild type, whereas complementary strains showed no significant difference. Additionally, the presence of exogenous C4-dicarboxylates reduced cFP production in wild type R456, indicating that these substrates negatively regulate cFP synthesis. Given that cFP synthesis is related to NRPS, we previously identified an NRPS cluster in R456, horizontally transferred from algae. Specifically, knocking out gene 2061 within this NRPS cluster significantly reduced cFP production. A Fur box binding site was predicted upstream of gene 2061, and yeast one-hybrid assays confirmed Fur protein binding, which increased with additional C4-dicarboxylates. Knockout of the Fur gene led to up-regulation of gene 2061 and increased cFP production, suggesting that C4-dicarboxylates suppress cFP synthesis by enhancing Fur-mediated repression of gene 2061.
Collapse
Affiliation(s)
- Xinyan Xu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Liu Liu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lihui Xu
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Yang Zhang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Rahila Hafeez
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Munazza Ijaz
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Xianghu Laboratory, Hangzhou, 311231, China
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
| | - Gabrijel Ondrasek
- Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, Zagreb, 10000, Croatia
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Kang S, Jang BR, Lee KH. Characterization of the transcriptionally active form of dephosphorylated DctD complexed with dephospho-IIA Glc. mBio 2024; 15:e0033024. [PMID: 38564689 PMCID: PMC11077940 DOI: 10.1128/mbio.00330-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Bacterial enhancer-binding proteins (bEBPs) acquire a transcriptionally active state via phosphorylation. However, transcriptional activation by the dephosphorylated form of bEBP has been observed in DctD, which belongs to Group I bEBP. The formation of a complex between dephosphorylated DctD (d-DctD) and dephosphorylated IIAGlc (d-IIAGlc) is a prerequisite for the transcriptional activity of d-DctD. In the present study, characteristics of the transcriptionally active complex composed of d-IIAGlc and phosphorylation-deficient DctD (DctDD57Q) of Vibrio vulnificus were investigated in its multimeric conformation and DNA-binding ability. DctDD57Q formed a homodimer that could not bind to the DNA. In contrast, when DctDD57Q formed a complex with d-IIAGlc in a 1:1 molar ratio, it produced two conformations: dimer and dodecamer of the complex. Only the dodecameric complex exhibited ATP-hydrolyzing activity and DNA-binding affinity. For successful DNA-binding and transcriptional activation by the dodecameric d-IIAGlc/DctDD57Q complex, extended upstream activator sequences were required, which encompass the nucleotide sequences homologous to the known DctD-binding site and additional nucleotides downstream. This is the first report to demonstrate the molecular characteristics of a dephosphorylated bEBP complexed with another protein to form a transcriptionally active dodecameric complex, which has an affinity for a specific DNA-binding sequence.IMPORTANCEResponse regulators belonging to the bacterial two-component regulatory system activate the transcription initiation of their regulons when they are phosphorylated by cognate sensor kinases and oligomerized to the appropriate multimeric states. Recently, it has been shown that a dephosphorylated response regulator, DctD, could activate transcription in a phosphorylation-independent manner in Vibrio vulnificus. The dephosphorylated DctD activated transcription as efficiently as phosphorylated DctD when it formed a complex with dephosphorylated form of IIAGlc, a component of the glucose-phosphotransferase system. Functional mimicry of this complex with the typical form of transcriptionally active phosphorylated DctD led us to study the molecular characteristics of this heterodimeric complex. Through systematic analyses, it was surprisingly determined that a multimer constituted with 12 complexes gained the ability to hydrolyze ATP and recognize specific upstream activator sequences containing a typical inverted-repeat sequence flanked by distinct nucleotides.
Collapse
Affiliation(s)
- Sebin Kang
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Bo-Ram Jang
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Kyu-Ho Lee
- Department of Life Science, Sogang University, Seoul, South Korea
| |
Collapse
|
3
|
Surrett ED, Guckes KR, Cousins S, Ruskoski TB, Cecere AG, Ludvik DA, Okafor CD, Mandel MJ, Miyashiro TI. Two enhancer binding proteins activate σ 54-dependent transcription of a quorum regulatory RNA in a bacterial symbiont. eLife 2023; 12:e78544. [PMID: 37145113 PMCID: PMC10162802 DOI: 10.7554/elife.78544] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/20/2023] [Indexed: 05/06/2023] Open
Abstract
To colonize a host, bacteria depend on an ensemble of signaling systems to convert information about the various environments encountered within the host into specific cellular activities. How these signaling systems coordinate transitions between cellular states in vivo remains poorly understood. To address this knowledge gap, we investigated how the bacterial symbiont Vibrio fischeri initially colonizes the light organ of the Hawaiian bobtail squid Euprymna scolopes. Previous work has shown that the small RNA Qrr1, which is a regulatory component of the quorum-sensing system in V. fischeri, promotes host colonization. Here, we report that transcriptional activation of Qrr1 is inhibited by the sensor kinase BinK, which suppresses cellular aggregation by V. fischeri prior to light organ entry. We show that Qrr1 expression depends on the alternative sigma factor σ54 and the transcription factors LuxO and SypG, which function similar to an OR logic gate, thereby ensuring Qrr1 is expressed during colonization. Finally, we provide evidence that this regulatory mechanism is widespread throughout the Vibrionaceae family. Together, our work reveals how coordination between the signaling pathways underlying aggregation and quorum-sensing promotes host colonization, which provides insight into how integration among signaling systems facilitates complex processes in bacteria.
Collapse
Affiliation(s)
- Ericka D Surrett
- Department of Biochemistry and Molecular Biology, Pennsylvania State UniversityUniversity ParkUnited States
| | - Kirsten R Guckes
- Department of Biochemistry and Molecular Biology, Pennsylvania State UniversityUniversity ParkUnited States
| | - Shyan Cousins
- Department of Biochemistry and Molecular Biology, Pennsylvania State UniversityUniversity ParkUnited States
| | - Terry B Ruskoski
- Department of Biochemistry and Molecular Biology, Pennsylvania State UniversityUniversity ParkUnited States
| | - Andrew G Cecere
- Department of Biochemistry and Molecular Biology, Pennsylvania State UniversityUniversity ParkUnited States
| | - Denise A Ludvik
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadisonUnited States
| | - C Denise Okafor
- Department of Biochemistry and Molecular Biology, Pennsylvania State UniversityUniversity ParkUnited States
- Department of Chemistry, Pennsylvania State UniversityUniversity ParkUnited States
| | - Mark J Mandel
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadisonUnited States
| | - Tim I Miyashiro
- Department of Biochemistry and Molecular Biology, Pennsylvania State UniversityUniversity ParkUnited States
- The Microbiome Center, Huck Institutes of the Life Sciences, Pennsylvania State UniversityUniversity ParkUnited States
| |
Collapse
|
4
|
Transition of Dephospho-DctD to the Transcriptionally Active State via Interaction with Dephospho-IIA
Glc. mBio 2022; 13:e0383921. [PMID: 35311533 PMCID: PMC9040800 DOI: 10.1128/mbio.03839-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Exopolysaccharides (EPSs), biofilm-maturing components of Vibrio vulnificus, are abundantly produced when the expression of two major EPS gene clusters is activated by an enhancer-binding transcription factor, DctD2, whose expression and phosphorylation are induced by dicarboxylic acids. Surprisingly, when glucose was supplied to V. vulnificus, similar levels of expression of these clusters occurred, even in the absence of dicarboxylic acids. This glucose-dependent activation was also mediated by DctD2, whose expression was sequentially activated by the transcription regulator NtrC. Most DctD2 in cells grown without dicarboxylic acids was present in a dephosphorylated state, known as the transcriptionally inactive form. However, in the presence of glucose, a dephosphorylated component of the glucose-specific phosphotransferase system, d-IIAGlc, interacted with dephosphorylated DctD2 (d-DctD2). While d-DctD2 did not show any affinity to a DNA fragment containing the DctD-binding sequences, the complex of d-DctD2 and d-IIAGlc exhibited specific and efficient DNA binding, similar to the phosphorylated DctD2. The d-DctD2-mediated activation of the EPS gene clusters’ expression was not fully achieved in cells grown with mannose. Furthermore, the degrees of expression of the clusters under glycerol were less than those under mannose. This was caused by an antagonistic and competitive effect of GlpK, whose expression was increased by glycerol, in forming a complex with d-DctD2 by d-IIAGlc. The data demonstrate a novel regulatory pathway for V. vulnificus EPS biosynthesis and biofilm maturation in the presence of glucose, which is mediated by d-DctD2 through its transition to the transcriptionally active state by interacting with available d-IIAGlc.
Collapse
|
5
|
Fernández I, Cornaciu I, Carrica MDC, Uchikawa E, Hoffmann G, Sieira R, Márquez JA, Goldbaum FA. Three-Dimensional Structure of Full-Length NtrX, an Unusual Member of the NtrC Family of Response Regulators. J Mol Biol 2017; 429:1192-1212. [PMID: 28088479 DOI: 10.1016/j.jmb.2016.12.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/21/2016] [Accepted: 12/29/2016] [Indexed: 12/15/2022]
Abstract
Bacteria sense and adapt to environmental changes using two-component systems. These signaling pathways are formed by a histidine kinase that phosphorylates a response regulator (RR), which finally modulates the transcription of target genes. The bacterium Brucella abortus codes for a two-component system formed by the histidine kinase NtrY and the RR NtrX that participates in sensing low oxygen tension and generating an adaptive response. NtrX is a modular protein with REC, AAA+, and DNA-binding domains, an architecture that classifies it among the NtrC subfamily of RRs. However, it lacks the signature GAFTGA motif that is essential for activating transcription by the mechanism proposed for canonical members of this subfamily. In this article, we present the first crystal structure of full-length NtrX, which is also the first structure of a full-length NtrC-like RR with all the domains solved, showing that the protein is structurally similar to other members of the subfamily. We also report that NtrX binds nucleotides and the structures of the protein bound to ATP and ADP. Despite binding ATP, NtrX does not have ATPase activity and does not form oligomers in response to phosphorylation or nucleotide binding. We also identify a nucleotide sequence recognized by NtrX that allows it to bind to a promoter region that regulates its own transcription and to establish a negative feedback mechanism to modulate its expression. Overall, this article provides a detailed description of the NtrX RR and supports that it functions by a mechanism different to classical NtrC-like RRs.
Collapse
Affiliation(s)
- Ignacio Fernández
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | - Irina Cornaciu
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France
| | | | - Emiko Uchikawa
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Guillaume Hoffmann
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Rodrigo Sieira
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | - José Antonio Márquez
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Fernando A Goldbaum
- Fundación Instituto Leloir, IIBBA-CONICET, Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina.
| |
Collapse
|
6
|
Vidangos N, Maris AE, Young A, Hong E, Pelton JG, Batchelor JD, Wemmer DE. Structure, function, and tethering of DNA-binding domains in σ⁵⁴ transcriptional activators. Biopolymers 2013; 99:1082-96. [PMID: 23818155 PMCID: PMC3932985 DOI: 10.1002/bip.22333] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 06/18/2013] [Indexed: 11/07/2022]
Abstract
We compare the structure, activity, and linkage of DNA-binding domains (DBDs) from σ(54) transcriptional activators and discuss how the properties of the DBDs and the linker to the neighboring domain are affected by the overall properties and requirements of the full proteins. These transcriptional activators bind upstream of specific promoters that utilize σ(54)-polymerase. Upon receiving a signal the activators assemble into hexamers, which then, through adenosine triphosphate (ATP) hydrolysis, drive a conformational change in polymerase that enables transcription initiation. We present structures of the DBDs of activators nitrogen regulatory protein C 1 (NtrC1) and Nif-like homolog 2 (Nlh2) from the thermophile Aquifex aeolicus. The structures of these domains and their relationship to other parts of the activators are discussed. These structures are compared with previously determined structures of the DBDs of NtrC4, NtrC, ZraR, and factor for inversion stimulation. The N-terminal linkers that connect the DBDs to the central domains in NtrC1 and Nlh2 were studied and found to be unstructured. Additionally, a crystal structure of full-length NtrC1 was solved, but density of the DBDs was extremely weak, further indicating that the linker between ATPase and DBDs functions as a flexible tether. Flexible linking of ATPase and DBDs is likely necessary to allow assembly of the active hexameric ATPase ring. The comparison of this set of activators also shows clearly that strong dimerization of the DBD only occurs when other domains do not dimerize strongly.
Collapse
Affiliation(s)
- Natasha Vidangos
- Department of Chemistry and QB3 Institute, University of California, Berkeley, CA, 94720-1460
| | | | | | | | | | | | | |
Collapse
|
7
|
Salavati A, Bushehri AAS, Taleei A, Hiraga S, Komatsu S. A comparative proteomic analysis of the early response to compatible symbiotic bacteria in the roots of a supernodulating soybean variety. J Proteomics 2012; 75:819-32. [PMID: 22005398 DOI: 10.1016/j.jprot.2011.09.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/04/2011] [Accepted: 09/26/2011] [Indexed: 02/03/2023]
Abstract
To reveal the processes involved in the early stages of symbiosis between soybean plants and root nodule bacteria, we conducted a proteomic analysis of the response to bacterial inoculation in the roots of supernodulating (En-b0-1) and non-nodulating (En1282) varieties, and their parental normal-nodulating variety (Enrei). A total of 56 proteins were identified from 48 differentially expressed protein spots in normal-nodulating variety after bacterial inoculation. Among 56 proteins, metabolism- and energy production-related proteins were upregulated in supernodulating and downregulated in non-nodulating varieties compared to normal-nodulating variety. The supernodulating and non-nodulating varieties responded oppositely to bacterial inoculation with respect to the expression of 11 proteins. Seven proteins of these proteins was downregulated in supernodulating varieties compared to non-nodulating variety, but expression of proteasome subunit alpha type 6, gamma glutamyl hydrolase, glucan endo-1,3-beta glucosidase, and nodulin 35 was upregulated. The expression of seven proteins mirrored the degree of nodule formation. At the transcript level, expression of stem 31kDa glycoprotein, leucine aminopeptidase, phosphoglucomutase, and peroxidase was downregulated in the supernodulating variety compared to the non-nodulating variety, and their expression in the normal-nodulating variety was intermediate. These results suggest that suppression of the autoregulatory mechanism in the supernodulating variety might be due to negative regulation of defense and signal transduction-related processes.
Collapse
Affiliation(s)
- Afshin Salavati
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | | | | | | | | |
Collapse
|
8
|
Karunakaran R, Ramachandran VK, Seaman JC, East AK, Mouhsine B, Mauchline TH, Prell J, Skeffington A, Poole PS. Transcriptomic analysis of Rhizobium leguminosarum biovar viciae in symbiosis with host plants Pisum sativum and Vicia cracca. J Bacteriol 2009; 191:4002-14. [PMID: 19376875 PMCID: PMC2698398 DOI: 10.1128/jb.00165-09] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 04/03/2009] [Indexed: 01/20/2023] Open
Abstract
Rhizobium leguminosarum bv. viciae forms nitrogen-fixing nodules on several legumes, including pea (Pisum sativum) and vetch (Vicia cracca), and has been widely used as a model to study nodule biochemistry. To understand the complex biochemical and developmental changes undergone by R. leguminosarum bv. viciae during bacteroid development, microarray experiments were first performed with cultured bacteria grown on a variety of carbon substrates (glucose, pyruvate, succinate, inositol, acetate, and acetoacetate) and then compared to bacteroids. Bacteroid metabolism is essentially that of dicarboxylate-grown cells (i.e., induction of dicarboxylate transport, gluconeogenesis and alanine synthesis, and repression of sugar utilization). The decarboxylating arm of the tricarboxylic acid cycle is highly induced, as is gamma-aminobutyrate metabolism, particularly in bacteroids from early (7-day) nodules. To investigate bacteroid development, gene expression in bacteroids was analyzed at 7, 15, and 21 days postinoculation of peas. This revealed that bacterial rRNA isolated from pea, but not vetch, is extensively processed in mature bacteroids. In early development (7 days), there were large changes in the expression of regulators, exported and cell surface molecules, multidrug exporters, and heat and cold shock proteins. fix genes were induced early but continued to increase in mature bacteroids, while nif genes were induced strongly in older bacteroids. Mutation of 37 genes that were strongly upregulated in mature bacteroids revealed that none were essential for nitrogen fixation. However, screening of 3,072 mini-Tn5 mutants on peas revealed previously uncharacterized genes essential for nitrogen fixation. These encoded a potential magnesium transporter, an AAA domain protein, and proteins involved in cytochrome synthesis.
Collapse
Affiliation(s)
- R Karunakaran
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhou YF, Nan B, Nan J, Ma Q, Panjikar S, Liang YH, Wang Y, Su XD. C4-dicarboxylates sensing mechanism revealed by the crystal structures of DctB sensor domain. J Mol Biol 2008; 383:49-61. [PMID: 18725229 DOI: 10.1016/j.jmb.2008.08.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2008] [Revised: 08/02/2008] [Accepted: 08/06/2008] [Indexed: 11/19/2022]
Abstract
C(4)-dicarboxylates are the major carbon and energy sources during the symbiotic growth of rhizobia. Responses to C(4)-dicarboxylates depend on typical two-component systems (TCS) consisting of a transmembrane sensor histidine kinase and a cytoplasmic response regulator. The DctB-DctD system is the first identified TCS for C(4)-dicarboxylates sensing. Direct ligand binding to the sensor domain of DctB is believed to be the first step of the sensing events. In this report, the water-soluble periplasmic sensor domain of Sinorhizobium meliloti DctB (DctBp) was studied, and three crystal structures were solved: the apo protein, a complex with C(4) succinate, and a complex with C(3) malonate. Different from the two structurally known CitA family of carboxylate sensor proteins CitA and DcuS, the structure of DctBp consists of two tandem Per-Arnt-Sim (PAS) domains and one N-terminal helical region. Only the membrane-distal PAS domain was found to bind the ligands, whereas the proximal PAS domain was empty. Comparison of DctB, CitA, and DcuS suggests a detailed stereochemistry of C(4)-dicarboxylates ligand perception. The structures of the different ligand binding states of DctBp also revealed a series of conformational changes initiated upon ligand binding and propagated to the N-terminal domain responsible for dimerization, providing insights into understanding the detailed mechanism of the signal transduction of TCS histidine kinases.
Collapse
Affiliation(s)
- Yan-Feng Zhou
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Nan B, Zhou Y, Liang YH, Wen J, Ma Q, Zhang S, Wang Y, Su XD. Purification and preliminary X-ray crystallographic analysis of the ligand-binding domain of Sinorhizobium meliloti DctB. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:839-41. [PMID: 16332458 DOI: 10.1016/j.bbapap.2005.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 10/06/2005] [Accepted: 10/06/2005] [Indexed: 11/21/2022]
Abstract
Sinorhizobium meliloti DctBD is a well-characterized two-component system. It is believed that DctB senses the concentration of C4-dicarboxylate compounds on the outside of the bacterium and phosphorylates DctD, which in turn activates transcription of the dctA gene, coding for a gene of C4-dicarboxylate permease. The structure and function of the ligand-binding domain of DctB has not been thoroughly investigated. In this study, this domain was produced in E. coli in soluble form, and purified to homogeneity. Crystals were obtained by hanging-drop vapor-diffusion method. The crystals diffracted to 2.3 A resolution and belonged to P42 space group with unit cell dimensions of a = b = 71.77 A, c = 227.14 A. The asymmetric unit contains four molecules with a corresponding VM of 2.4 A3 Da(-1) and a solvent content of 49.1%.
Collapse
Affiliation(s)
- Beiyan Nan
- National laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Doucleff M, Chen B, Maris AE, Wemmer DE, Kondrashkina E, Nixon BT. Negative Regulation of AAA+ ATPase Assembly by Two Component Receiver Domains: A Transcription Activation Mechanism that is Conserved in Mesophilic and Extremely Hyperthermophilic Bacteria. J Mol Biol 2005; 353:242-55. [PMID: 16169010 DOI: 10.1016/j.jmb.2005.08.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 08/01/2005] [Accepted: 08/03/2005] [Indexed: 10/25/2022]
Abstract
Only a few transcriptional regulatory proteins have been characterized in extremely hyperthermophilic organisms, and most function as repressors. Structural features of the NtrC1 protein from the hyperthermophilic bacterium Aquifex aeolicus suggested that this protein functions similarly to the sigma(54)-polymerase activator DctD of Sinorhizobium meliloti. Here, we demonstrate that NtrC1 is an enzyme that hydrolyzes ATP to activate initiation of transcription by sigma(54)-holoenzyme. New structural data, including small-angle solution scattering data and the crystal structure of the phosphorylated receiver domain, show that NtrC1 uses a signal transduction mechanism very similar to that of DctD to control assembly of its AAA+ ATPase domain. As for DctD, the off-state of NtrC1 depends upon a tight dimer of the receiver domain to repress oligomerization of an intrinsically competent ATPase domain. Activation of NtrC1 stabilizes an alternative dimer configuration of the receiver domain that is very similar to the on-state dimers of the DctD and FixJ receiver domains. This alternative dimer appears to relieve repression of the ATPase domain by disrupting the off-state dimerization interface along the helical linker region between receiver and ATPase domains. Bacterial enhancer binding proteins typically have two linker sequences, one between N-terminal regulatory and central ATPase domains, and one between the central ATPase and C-terminal DNA binding domains. Sequence analyses reveal an intriguing correlation between the negative regulation mechanism of NtrC1 and DctD, and a structured N-terminal linker and unstructured C-terminal one; conversely, the very different, positive mechanism present in NtrC protein occurs in the context of an unstructured N-terminal linker and a structured C-terminal one. In both cases, the structured linkers significantly contribute to the stability of the off-state dimer conformation. These analyses also raise the possibility that a structured linker between N-terminal regulatory and central output domains is used frequently in regulatory proteins from hyperthermophilic organisms.
Collapse
Affiliation(s)
- Michaeleen Doucleff
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
12
|
Yurgel SN, Kahn ML. Dicarboxylate transport by rhizobia. FEMS Microbiol Rev 2004; 28:489-501. [PMID: 15374663 DOI: 10.1016/j.femsre.2004.04.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Revised: 01/03/2004] [Accepted: 04/04/2004] [Indexed: 11/27/2022] Open
Abstract
Soil bacteria collectively known as rhizobia are able to convert atmospheric dinitrogen to ammonia while participating in a symbiotic association with legume plants. This capability has made the bacteria an attractive research subject at many levels of investigation, especially since physiological and metabolic specialization are central to this ecological niche. Dicarboxylate transport plays an important role in the operation of an effective, nitrogen-fixing symbiosis and considerable evidence suggests that dicarboxylates are a major energy and carbon source for the nitrogen-fixing rhizobia. The dicarboxylate transport (Dct) system responsible for importing these compounds generally consists of a dicarboxylate carrier protein, DctA, and a two component kinase regulatory system, DctB/DctD. DctA and DctB/D differ in the substrates that they recognize and a model for substrate recognition by DctA and DctB is discussed. In some rhizobia, DctA expression can be induced during symbiosis in the absence of DctB/DctD by an alternative, uncharacterized, mechanism. The DctA protein belongs to a subgroup of the glutamate transporter family now thought to have an unusual structure that combines aspects of permeases and ion channels. While the structure of C(4)-dicarboxylate transporters has not been analyzed in detail, mutagenesis of S. meliloti DctA has produced results consistent with the alignment of the rhizobial protein with the more characterized bacterial and eukaryotic glutamate transporters in this family.
Collapse
Affiliation(s)
- Svetlana N Yurgel
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA.
| | | |
Collapse
|
13
|
Wang YK, Park S, Nixon BT, Hoover TR. Nucleotide-dependent conformational changes in the sigma54-dependent activator DctD. J Bacteriol 2003; 185:6215-9. [PMID: 14526036 PMCID: PMC225027 DOI: 10.1128/jb.185.20.6215-6219.2003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activators of sigma(54)-RNA polymerase holoenzyme couple ATP hydrolysis to formation of an open promoter complex. DctD(Delta1-142), a truncated and constitutively active form of the sigma(54)-dependent activator DctD from Sinorhizobium meliloti, displayed an altered DNase I footprint at its binding site located upstream of the dctA promoter in the presence of ATP. The altered footprint was not observed for a mutant protein with a substitution at or near the putative arginine finger, a conserved arginine residue thought to contact the nucleotide. These data suggest that structural changes in DctD(Delta1-142) during ATP hydrolysis can be detected by alterations in the DNase I footprint of the protein and may be communicated by interactions between bound nucleotide and the arginine finger. In addition, kinetic data for changes in fluorescence energy transfer upon binding of 2'(3')-O-(N-methylanthraniloyl)-ATP (Mant-ATP) to DctD(Delta1-142) and DctD suggested that these proteins undergo multiple conformational changes following ATP binding.
Collapse
Affiliation(s)
- Ying-Kai Wang
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | | | | | | |
Collapse
|
14
|
Park S, Meyer M, Jones AD, Yennawar HP, Yennawar NH, Nixon BT. Two-component signaling in the AAA + ATPase DctD: binding Mg2+ and BeF3- selects between alternate dimeric states of the receiver domain. FASEB J 2002; 16:1964-6. [PMID: 12368235 DOI: 10.1096/fj.02-0395fje] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A Crystallogral structure is described for the Mg2+-BeF3--bound receiver domain of Sinorhizobium meliloti DctD bearing amino acid substitution E121K. Differences between the apo- and ligand-bound active sites are similar to those reported for other receiver domains. However, the off and on states of the DctD receiver domain are characterized by dramatically different dimeric structures, which supports the following hypothesis of signal transduction. In the off state, the receiver domain and coiled-coil linker form a dimer that inhibits oligomerization of the AAA+ ATPase domain. In this conformation, the receiver domain cannot be phosphorylated or bind Mg2+ and BeF3-. Instead, these modifications stabilize an alternative dimeric conformation that repositions the subunits by approximately 20 A, thus replacing the a4-b5-a5 interface with an a4-b5 interface. Reoriented receiver domains permit the ATPase domain to oligomerize and stimulate open complex formation by the s54 form of RNA polymerase. NtrC, which shares 38% sequence identity with DctD, works differently. Its activated receiver domain must facilitate oligomerization of its ATPase domain. Significant differences exist in the signaling surfaces of the DctD and NtrC receiver domains that may help explain how triggering the common two-component switch can variously regulate assembly of a AAA+ ATPase domain.
Collapse
Affiliation(s)
- Sungdae Park
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
15
|
Park S, Zhang H, Jones AD, Nixon BT. Biochemical evidence for multiple dimeric states of the Sinorhizobium meliloti DctD receiver domain. Biochemistry 2002; 41:10934-41. [PMID: 12206664 DOI: 10.1021/bi0260031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
X-ray crystal structures suggest very different dimeric states for the inactive and active forms of the two-component receiver domain of Sinorhizobium meliloti DctD, a sigma(54)-dependent AAA+ ATPase. Moreover, the receiver domain in crystals grown from unphosphorylated protein is refractory to phosphorylation whereas solution protein is fully phosphorylatable, and equilibrium analytical ultracentrifugation data are consistent with solution dimers for both phosphorylated and unphosphorylated forms of the protein. Here we report biochemical data consistent with the presence of multiple dimeric conformations in the inactive and active states, and evidence for significant change in the dimeric state upon activation by phosphorylation or binding of Mg(2+) and BeF(3)(-).
Collapse
Affiliation(s)
- Sungdae Park
- Department of Biochemistry and Molecular Biology and Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
16
|
Tropel D, van der Meer JR. Identification and physical characterization of the HbpR binding sites of the hbpC and hbpD promoters. J Bacteriol 2002; 184:2914-24. [PMID: 12003931 PMCID: PMC135056 DOI: 10.1128/jb.184.11.2914-2924.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas azelaica HBP1 can use 2-hydroxybiphenyl (2-HBP) and 2,2'-dihydroxybiphenyl as sole carbon and energy sources by means of the hbp regulon. This regulon is composed of three genes, hbpCA and hbpD, coding for enzymes of a meta-cleavage pathway and the hbpR gene, which codes for a XylR/DmpR-type transcription regulator. It was previously shown that HbpR activates transcription from two sigma(54)-dependent promoters, P(hbpC) and P(hbpD), in the presence of 2-HBP. In this study, by using gel mobility shift assays with a purified fusion protein containing calmodulin binding protein (CBP) and HbpR, we detected two binding regions for HbpR in P(hbpC) and one binding region in P(hbpD). DNase I footprints of the proximal binding region of P(hbpC) and of the binding region in P(hbpD) showed that CBP-HbpR protected a region composed of two inverted repeat sequences which were homologous to the binding sites identified for XylR. Unlike the situation in the XylR/P(u) system, we observed simultaneous binding of CBP-HbpR on the two upstream activating sequences (UASs). Fragments with only one UAS did not show an interaction with HbpR, indicating that both pairs of UASs are needed for HbpR binding. The addition of both ATP and 2-HBP increased the DNA binding affinity of HbpR. These results showed for the first time that, for regulators of the XylR/DmpR type, the effector positively affects the recruitment of the regulatory protein on the enhancer DNA.
Collapse
Affiliation(s)
- David Tropel
- Process of Environmental Microbiology and Molecular Ecotoxicology, Swiss Federal Institute for Environmental Science and Technology (EAWAG), CH-8600 Dübendorf, Switzerland
| | | |
Collapse
|
17
|
Abstract
Transcriptional enhancers are cis-acting DNA elements that are binding sites for regulatory proteins and function at large distances from promoter elements to stimulate transcription. Once thought to be unique to eukaryotes, enhancer-like elements have been discovered in a wide variety of bacteria. The regulatory proteins that bind to these bacterial enhancers must contact RNA polymerase to activate transcription. In principle, interactions between bacterial enhancer-binding proteins and RNA polymerase can occur by either DNA looping or tracking of the enhancer-binding protein along the DNA. Paradigms for each of these methods are found in bacterial systems. Activators of sigma(54)-RNA polymerase holoenzyme contact polymerase by DNA looping, while bacteriophage T4 gp45 functions as a sliding clamp that tracks along DNA until it engages RNA polymerase. Significant advances have been made over the last few years towards understanding the mechanisms by which bacterial enhancer-binding proteins activate transcription, but important aspects of these mechanisms are still poorly defined.
Collapse
Affiliation(s)
- H Xu
- Department of Microbiology, 527 Biological Sciences Building, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
18
|
Abstract
One of the paradigms of symbiotic nitrogen fixation has been that bacteroids reduce N2 to ammonium and secrete it without assimilation into amino acids. This has recently been challenged by work with soybeans showing that only alanine is excreted in 15N2 labelling experiments. Work with peas shows that the bacteroid nitrogen secretion products during in vitro experiments depend on the experimental conditions. There is a mixed secretion of both ammonium and alanine depending critically on the concentration of bacteroids and ammonium concentration. The pathway of alanine synthesis has been shown to be via alanine dehydrogenase, and mutation of this enzyme indicates that in planta there is likely to be mixed secretion of ammonium and alanine. Alanine synthesis directly links carbon catabolism and nitrogen assimilation in the bacteroid. There is now overwhelming evidence that the principal carbon sources of bacteroids are the C4-dicarboxylic acids. This is based on labelling and bacteroid respiration data, and mutation of both the dicarboxylic acid transport system (dct) and malic enzyme. L-malate is at a key bifurcation point in bacteroid metabolism, being oxidized to oxaloacetate and oxidatively decarboxylated to pyruvate. Pyruvate can be aminated to alanine or converted to acetyl-CoA where it either enters the TCA cycle by condensation with oxaloacetate or forms polyhydroxybutyrate (PHB). Thus regulation of carbon and nitrogen metabolism are strongly connected. Efficient catabolism of C4-dicarboxylates requires the balanced input and removal of intermediates from the TCA cycle. The TCA cycle in bacteroids may be limited by the redox state of NADH/NAD+ at the 2-ketoglutarate dehydrogenase complex, and a number of pathways may be involved in bypassing this block. These pathways include PHB synthesis, glutamate synthesis, glycogen synthesis, GABA shunt and glutamine cycling. Their operation may be critical in maintaining the optimum redox poise and carbon balance of the TCA cycle. They can also be considered to be overflow pathways since they act to remove or add electrons and carbon into the TCA cycle. Optimum operation of the TCA cycle has a major impact on nitrogen fixation.
Collapse
Affiliation(s)
- P Poole
- Division of Microbiology, School of Animal and Microbial Sciences, University of Reading, UK
| | | |
Collapse
|
19
|
Sojda J, Gu B, Lee J, Hoover TR, Nixon BT. A rhizobial homolog of IHF stimulates transcription of dctA in Rhizobium leguminosarum but not in Sinorhizobium meliloti. Gene 1999; 238:489-500. [PMID: 10570977 DOI: 10.1016/s0378-1119(99)00366-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Sequence inspection identified several potential IHF binding sites adjacent to the Rhizobium leguminosarum dctA promoter. IHF protected the -30 to -76 region from DNase I digestion, but systematic error in quantitative assays suggested that this protein DNA interaction is complex. IHF stimulated DctD-mediated transcriptional activation from the R. leguminosarum dctA promoter both in vivo and in vitro. In contrast to R. leguminosarum dctA, the Sinorhizobium meliloti dctA promoter region was found to have a much weaker match to the consensus IHF binding site and a low affinity for IHF. Moreover, IHF had no effect on transcriptional activation from the S. meliloti dctA promoter in vitro. A base substitution was introduced into the IHF binding site of R. leguminosarum dtA that reduced the affinity of the promoter regulatory region for IHF by approximately 30-fold and resulted in an eight-fold decrease in transcriptional activation in both R. leguminosarum and S. meliloti. These data suggest that both rhizobial species have an IHF homolog that stimulates DctD-mediated transcriptional activation from the R. leguminosarum dctA promoter. Consistent with this hypothesis, a 12.5 kDa protein was identified from R. leguminosarum as a putative homolog of IHF subunit beta by immunoblotting and N-terminal sequence analysis.
Collapse
Affiliation(s)
- J Sojda
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park 16802, USA
| | | | | | | | | |
Collapse
|
20
|
Reid CJ, Poole PS. Roles of DctA and DctB in signal detection by the dicarboxylic acid transport system of Rhizobium leguminosarum. J Bacteriol 1998; 180:2660-9. [PMID: 9573150 PMCID: PMC107217 DOI: 10.1128/jb.180.10.2660-2669.1998] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The dctA gene, coding for the dicarboxylate transport protein, has an inducible promoter dependent on activation by the two-component sensor-regulator pair DctB and DctD. LacZ fusion analysis indicates that there is a single promoter for dctB and dctD. The dctA promoter is also induced by nitrogen limitation, an effect that requires DctB-DctD and NtrC. DctB alone is able to detect dicarboxylates in the absence of DctA and initiate transcription via DctD. However, DctA modifies signal detection by DctB such that in the absence of DctA, the ligand specificity of DctB is broader. dctAp also responds to heterologous induction by osmotic stress in the absence of DctA. This effect requires both DctB and DctD. A transposon insertion in the dctA-dctB intergenic region (dctA101) which locks transcription of dctA at a constitutive level independent of DctB-DctD results in improper signalling by DctB-DctD. Strain RU150, which carries this insertion, is defective in nitrogen fixation (Fix-) and grows very poorly on ammonia as a nitrogen source whenever the DctB-DctD signalling circuit is activated by the presence of a dicarboxylate ligand. Mutation of dctB or dctD in strain RU150 reinstates normal growth on dicarboxylates. This suggests that DctD-P improperly regulates a heterologous nitrogen-sensing operon. Increased expression of DctA, either via a plasmid or by chromosomal duplication, restores control of DctB-DctD and allows strain RU150 to grow on ammonia in the presence of a dicarboxylate. Thus, while DctB is a sensor for dicarboxylates in its own right, it is regulated by DctA. The absence of DctA allows DctB and DctD to become promiscuous with regard to signal detection and cross talk with other operons. This indicates that DctA contributes significantly to the signalling specificity of DctB-DctD and attenuates cross talk with other operons.
Collapse
Affiliation(s)
- C J Reid
- School of Animal and Microbial Sciences, University of Reading, Reading RG6 6AJ, United Kingdom
| | | |
Collapse
|
21
|
Gao Y, Wang YK, Hoover TR. Mutational analysis of the phosphate-binding loop of Rhizobium meliloti DctD, a sigma54-dependent activator. J Bacteriol 1998; 180:2792-5. [PMID: 9573172 PMCID: PMC107239 DOI: 10.1128/jb.180.10.2792-2795.1998] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The phosphate-binding loop of sigma54-dependent activators is thought to participate in ATP binding and/or hydrolysis. Alanine substitutions at positions 3, 4, 6, 7, and 8 of this motif in Rhizobium meliloti DctD disrupted transcriptional activation and ATP hydrolysis. Interestingly, substitution of alanine at position 7 also affected DNA binding.
Collapse
Affiliation(s)
- Y Gao
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
22
|
Wang YP, Kolb A, Buck M, Wen J, O'Gara F, Buc H. CRP interacts with promoter-bound sigma54 RNA polymerase and blocks transcriptional activation of the dctA promoter. EMBO J 1998; 17:786-96. [PMID: 9451003 PMCID: PMC1170427 DOI: 10.1093/emboj/17.3.786] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The cAMP receptor protein (CRP) is an activator of sigma70-dependent transcription. Analysis of the sigma54-dependent dctA promoter reveals a novel negative regulatory function for CRP. CRP can bind to two distant sites of the dctA promoter, sites which overlap the upstream activator sequences for the DctD activator. CRP interacts with Esigma54 bound at the dctA promoter via DNA loop formation. When the CRP-binding sites are deleted, CRP still interacts in a cAMP-dependent manner with the stable Esigma54 closed complex via protein-protein contacts. CRP is able to repress activation of the dctA promoter, even in the absence of specific CRP-binding sites. CRP affects both the final level and the kinetics of activation. The establishment of the repression and its release by the NtrC activator proceed via slow processes. The kinetics suggest that CRP favours a new form of closed complex which interconverts slowly with the classical closed intermediate. Only the latter is capable of interacting with an activator to form an open promoter complex. Thus, Esigma54 promoters are responsive to CRP, a protein unrelated to sigma54 activators, and the repression exerted is the direct result of an interaction between Esigma54 and the CRP-cAMP complex.
Collapse
Affiliation(s)
- Y P Wang
- Unité de Physicochimie des Macromolécules Biologiques (URA1149 du CNRS), Institut Pasteur, 75724 Paris cedex 15, France
| | | | | | | | | | | |
Collapse
|
23
|
Wang YK, Hoover TR. Alterations within the activation domain of the sigma 54-dependent activator DctD that prevent transcriptional activation. J Bacteriol 1997; 179:5812-9. [PMID: 9294439 PMCID: PMC179471 DOI: 10.1128/jb.179.18.5812-5819.1997] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Rhizobium meliloti DctD (C4-dicarboxylate transport protein D) is a transcriptional activator that catalyzes the ATP-dependent isomerization of closed complexes between sigma 54-RNA polymerase holoenzyme and the dctA promoter to open complexes. Following random mutagenesis of dctD, 55 independent mutant forms of DctD that failed to activate transcription from a dctA'-'lacZ reporter gene in Escherichia coli were selected, and the amino acid substitutions were determined for these mutant proteins. Amino acid substitutions were distributed throughout the central domain of the protein, the domain responsible for transcription activation, but most of the substitutions occurred within three highly conserved regions of the protein. Selected mutant proteins were purified, and their activities were studied in vitro. All of the purified mutant proteins appeared to have normal DNA-binding activity and interacted with sigma 54 and core RNA polymerase, as determined from protein crosslinking assays. Proteins with amino acid substitutions in a region spanning amino acid positions 222 to 225 retained their ATPase activities, whereas proteins with substitutions in other regions had little or no ATPase activity. Taken together, these data suggest that the region that encompasses amino acid residues 222 through 225 probably functions in coupling the energy released from ATP hydrolysis to open complex formation rather than as a major determinant for binding to RNA polymerase.
Collapse
Affiliation(s)
- Y K Wang
- Department of Microbiology, University of Georgia, Athens 30602, USA
| | | |
Collapse
|
24
|
Petri V, Brenowitz M. Quantitative nucleic acids footprinting: thermodynamic and kinetic approaches. Curr Opin Biotechnol 1997; 8:36-44. [PMID: 9013649 DOI: 10.1016/s0958-1669(97)80155-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Quantitative footprinting techniques allow a detailed analysis of the thermodynamic forces that characterize nucleic acid-ligand interactions and ligand-induced changes in nucleic acid structure by separately resolving the intrinsic and cooperative Gibbs free energy changes describing the reactions being investigated. A new implementation of the quantitative footprinting technique is the application of stopped-flow techniques to the study of kinetic reactions.
Collapse
Affiliation(s)
- V Petri
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | |
Collapse
|