1
|
Effect of Actin Alpha Cardiac Muscle 1 on the Proliferation and Differentiation of Bovine Myoblasts and Preadipocytes. Animals (Basel) 2021; 11:ani11123468. [PMID: 34944244 PMCID: PMC8698029 DOI: 10.3390/ani11123468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Marbling is an important factor affecting the quality of beef. The co-culture (myoblast-preadipocytes) system was successfully established in our lab in the early stage to simulate the internal environment of marbling. Within this environment, ACTC1 gene was a differentially expressed gene screened from the co-culture system. The gene was not expressed in monocultured adipocytes but was expressed in co-cultured adipocytes. Therefore, we hypothesize that the ACTC1 gene plays a role in the development of bovine myoblasts and preadipocytes. In this study, we explored the effect of ACTC1 gene on the proliferation and differentiation of bovine myoblasts and preadipocytes, aiming to discover the potential biological function of ACTC1 gene in muscle development and fat deposition. The results showed that ACTC1 could regulate the development of bovine myoblasts and preadipocytes, and ACTC1 could be used as an important target for improving beef quality in the future. Abstract Actin Alpha Cardiac Muscle 1 (ACTC1) gene is a differentially expressed gene screened through the co-culture system of myoblasts-preadipocytes. In order to study the role of this gene in the process of proliferation and differentiation of bovine myoblasts and preadipocytes, the methods of the knockdown, overexpression, and ectopic expression of ACTC1 were used in this study. After ACTC1 knockdown in bovine myoblasts and inducing differentiation, the sizes and numbers of myotube formation were significantly reduced compared to the control group, and myogenic marker genes—MYOD1, MYOG, MYH3, MRF4, MYF5, CKM and MEF2A—were significantly decreased (p < 0.05, p < 0.01) at both the mRNA and protein levels of myoblasts at different differentiation stages (D0, D2, D4, D6 and D8). Conversely, ACTC1 overexpression induced the inverse result. After ectopic expression of ACTC1 in bovine preadipocytes and induced differentiation, the number and size of lipid droplets were significantly higher than those of the control group, and the expression of adipogenic marker genes—FABP4, SCD1, PPARγ and FASN—were significantly increased (p < 0.05, p < 0.01) at the mRNA and protein levels of preadipocytes at different differentiation stages. Flow cytometry results showed that both the knockdown and overexpression of ACTC1 inhibited the normal cell cycle of myoblasts; however, ectopic expression of ACTC1 in adipocytes induced no significant cell cycle changes. This study is the first to explore the role of ACTC1 in bovine myogenesis and lipogenesis and demonstrates that ACTC1 promotes the differentiation of bovine myoblasts and preadipocytes, affecting the proliferation of myoblasts.
Collapse
|
2
|
Hernández-Hernández JM, García-González EG, Brun CE, Rudnicki MA. The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration. Semin Cell Dev Biol 2017; 72:10-18. [PMID: 29127045 DOI: 10.1016/j.semcdb.2017.11.010] [Citation(s) in RCA: 366] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 10/18/2022]
Abstract
The Myogenic Regulatory Factors (MRFs) Myf5, MyoD, myogenin and MRF4 are members of the basic helix-loop-helix family of transcription factors that control the determination and differentiation of skeletal muscle cells during embryogenesis and postnatal myogenesis. The dynamics of their temporal and spatial expression as well as their biochemical properties have allowed the identification of a precise and hierarchical relationship between the four MRFs. This relationship establishes the myogenic lineage as well as the maintenance of the terminal myogenic phenotype. The application of genome-wide technologies has provided important new information as to how the MRFs function to activate muscle gene expression. Application of combined functional genomics technologies along with single cell lineage tracing strategies will allow a deeper understanding of the mechanisms mediating myogenic determination, cell differentiation and muscle regeneration.
Collapse
Affiliation(s)
- J Manuel Hernández-Hernández
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Estela G García-González
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Caroline E Brun
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Michael A Rudnicki
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Departments of Medicine and Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
3
|
MRF4 negatively regulates adult skeletal muscle growth by repressing MEF2 activity. Nat Commun 2016; 7:12397. [PMID: 27484840 PMCID: PMC4976255 DOI: 10.1038/ncomms12397] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/28/2016] [Indexed: 12/11/2022] Open
Abstract
The myogenic regulatory factor MRF4 is highly expressed in adult skeletal muscle but its function is unknown. Here we show that Mrf4 knockdown in adult muscle induces hypertrophy and prevents denervation-induced atrophy. This effect is accompanied by increased protein synthesis and widespread activation of muscle-specific genes, many of which are targets of MEF2 transcription factors. MEF2-dependent genes represent the top-ranking gene set enriched after Mrf4 RNAi and a MEF2 reporter is inhibited by co-transfected MRF4 and activated by Mrf4 RNAi. The Mrf4 RNAi-dependent increase in fibre size is prevented by dominant negative MEF2, while constitutively active MEF2 is able to induce myofibre hypertrophy. The nuclear localization of the MEF2 corepressor HDAC4 is impaired by Mrf4 knockdown, suggesting that MRF4 acts by stabilizing a repressor complex that controls MEF2 activity. These findings open new perspectives in the search for therapeutic targets to prevent muscle wasting, in particular sarcopenia and cachexia.
Collapse
|
4
|
Singh K, Dilworth FJ. Differential modulation of cell cycle progression distinguishes members of the myogenic regulatory factor family of transcription factors. FEBS J 2013; 280:3991-4003. [DOI: 10.1111/febs.12188] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/01/2013] [Accepted: 02/05/2013] [Indexed: 12/29/2022]
Affiliation(s)
- Kulwant Singh
- Sprott Center for Stem Cell Research; Ottawa Hospital Research Institute; ON; Canada
| | | |
Collapse
|
5
|
Myogenic regulatory factor response to resistance exercise volume in skeletal muscle. Eur J Appl Physiol 2009; 108:771-8. [DOI: 10.1007/s00421-009-1279-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
6
|
Laing NG, Dye DE, Wallgren-Pettersson C, Richard G, Monnier N, Lillis S, Winder TL, Lochmüller H, Graziano C, Mitrani-Rosenbaum S, Twomey D, Sparrow JC, Beggs AH, Nowak KJ. Mutations and polymorphisms of the skeletal muscle alpha-actin gene (ACTA1). Hum Mutat 2009; 30:1267-77. [PMID: 19562689 PMCID: PMC2784950 DOI: 10.1002/humu.21059] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The ACTA1 gene encodes skeletal muscle alpha-actin, which is the predominant actin isoform in the sarcomeric thin filaments of adult skeletal muscle, and essential, along with myosin, for muscle contraction. ACTA1 disease-causing mutations were first described in 1999, when a total of 15 mutations were known. In this article we describe 177 different disease-causing ACTA1 mutations, including 85 that have not been described before. ACTA1 mutations result in five overlapping congenital myopathies: nemaline myopathy; intranuclear rod myopathy; actin filament aggregate myopathy; congenital fiber type disproportion; and myopathy with core-like areas. Mixtures of these histopathological phenotypes may be seen in a single biopsy from one patient. Irrespective of the histopathology, the disease is frequently clinically severe, with many patients dying within the first year of life. Most mutations are dominant and most patients have de novo mutations not present in the peripheral blood DNA of either parent. Only 10% of mutations are recessive and they are genetic or functional null mutations. To aid molecular diagnosis and establishing genotype-phenotype correlations, we have developed a locus-specific database for ACTA1 variations (http://waimr.uwa.edu.au).
Collapse
Affiliation(s)
- Nigel G Laing
- Centre for Medical Research, University of Western Australia, Western Australian Institute for Medical Research, QEII Medical Centre, Western Australia, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
ANKRD1, the gene encoding cardiac ankyrin repeat protein, is a novel dilated cardiomyopathy gene. J Am Coll Cardiol 2009; 54:325-33. [PMID: 19608030 DOI: 10.1016/j.jacc.2009.02.076] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 02/05/2009] [Accepted: 02/16/2009] [Indexed: 01/04/2023]
Abstract
OBJECTIVES We evaluated ankyrin repeat domain 1 (ANKRD1), the gene encoding cardiac ankyrin repeat protein (CARP), as a novel candidate gene for dilated cardiomyopathy (DCM) through mutation analysis of a cohort of familial or idiopathic DCM patients, based on the hypothesis that inherited dysfunction of mechanical stretch-based signaling is present in a subset of DCM patients. BACKGROUND CARP, a transcription coinhibitor, is a member of the titin-N2A mechanosensory complex and translocates to the nucleus in response to stretch. It is up-regulated in cardiac failure and hypertrophy and represses expression of sarcomeric proteins. Its overexpression results in contractile dysfunction. METHODS In all, 208 DCM patients were screened for mutations/variants in the coding region of ANKRD1 using polymerase chain reaction, denaturing high-performance liquid chromatography, and direct deoxyribonucleic acid sequencing. In vitro functional analyses of the mutation were performed using yeast 2-hybrid assays and investigating the effect on stretch-mediated gene expression in myoblastoid cell lines using quantitative real-time reverse transcription-polymerase chain reaction. RESULTS Three missense heterozygous ANKRD1 mutations (P105S, V107L, and M184I) were identified in 4 DCM patients. The M184I mutation results in loss of CARP binding with Talin 1 and FHL2, and the P105S mutation in loss of Talin 1 binding. Intracellular localization of mutant CARP proteins is not altered. The mutations result in differential stretch-induced gene expression compared with wild-type CARP. CONCLUSIONS ANKRD1 is a novel DCM gene, with mutations present in 1.9% of DCM patients. The ANKRD1 mutations may cause DCM as a result of disruption of the normal cardiac stretch-based signaling.
Collapse
|
8
|
Chanoine C, Della Gaspera B, Charbonnier F. Myogenic regulatory factors: Redundant or specific functions? Lessons fromXenopus. Dev Dyn 2004; 231:662-70. [PMID: 15499556 DOI: 10.1002/dvdy.20174] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The discovery, in the late 1980s, of the MyoD gene family of muscle transcription factors has proved to be a milestone in understanding the molecular events controlling the specification and differentiation of the muscle lineage. From gene knock-out mice experiments progressively emerged the idea that each myogenic regulatory factor (MRF) has evolved a specialized as well as a redundant role in muscle differentiation. To date, MyoD serves as a paradigm for the MRF mode of function. The features of gene regulation by MyoD support a model in which subprograms of gene expression are achieved by the combination of promoter-specific regulation of MyoD binding and MyoD-mediated binding of various ancillary proteins. This binding likely includes site-specific chromatin reorganization by means of direct or indirect interaction with remodeling enzymes. In this cascade of molecular events leading to the proper and reproducible activation of muscle gene expression, the role and mode of function of other MRFs still remains largely unclear. Recent in vivo findings using the Xenopus embryo model strongly support the concept that a single MRF can specifically control a subset of muscle genes and, thus, can be substituted by other MRFs albeit with dramatically lower efficiency. The topic of this review is to summarize the molecular data accounting for a redundant and/or specific involvement of each member of the MyoD family in myogenesis in the light of recent studies on the Xenopus model.
Collapse
Affiliation(s)
- Christophe Chanoine
- UMR 7060 CNRS, Equipe Biologie du Développement et de la Différenciation Neuromusculaire, Centre Universitaire des Saints-Pères, Université René Descartes, Paris, France.
| | | | | |
Collapse
|
9
|
Suelves M, Lluís F, Ruiz V, Nebreda AR, Muñoz-Cánoves P. Phosphorylation of MRF4 transactivation domain by p38 mediates repression of specific myogenic genes. EMBO J 2004; 23:365-75. [PMID: 14739931 PMCID: PMC1271762 DOI: 10.1038/sj.emboj.7600056] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Accepted: 12/05/2003] [Indexed: 12/31/2022] Open
Abstract
Skeletal myogenesis is associated with the activation of four muscle regulatory factors (MRFs): Myf5, MyoD, Myogenin and MRF4. Here we report that p38 mitogen-activated protein kinase represses the transcriptional activity of MRF4 (involved in late stages of myogenesis), resulting in downregulation of specific muscle genes. MRF4 is phosphorylated in vitro and in vivo by p38 on two serines (Ser31 and Ser42) located in the N-terminal transactivation domain, resulting in reduced MRF4-mediated transcriptional activity. In contrast, nonphosphorylatable MRF4 mutants display increased transcriptional activity and are able to advance both myoblast fusion and differentiation. We also show that expression of desmin and alpha-actin, but not muscle creatin kinase, decreased at late stages of muscle differentiation, correlating with the induction of MRF4 and p38 activation. Accordingly, inhibition of p38 during late myogenesis results in the upregulation of both desmin and alpha-actin. We propose that repression of MRF4 activity by p38 phosphorylation may represent a new mechanism for the silencing of specific muscle genes at the terminal stages of muscle differentiation.
Collapse
Affiliation(s)
- Mònica Suelves
- Centre de Regulació Genòmica (CRG), Programa de Diferenciació i Cancer, Barcelona, Spain
- Both authors have contributed equally to this work and should therefore be considered first authors
| | - Frederic Lluís
- Centre de Regulació Genòmica (CRG), Programa de Diferenciació i Cancer, Barcelona, Spain
- Both authors have contributed equally to this work and should therefore be considered first authors
| | - Vanessa Ruiz
- Centre de Regulació Genòmica (CRG), Programa de Diferenciació i Cancer, Barcelona, Spain
| | - Angel R Nebreda
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Pura Muñoz-Cánoves
- Centre de Regulació Genòmica (CRG), Programa de Diferenciació i Cancer, Barcelona, Spain
- Centre de Regulació Genòmica (CRG), Programa de Diferenciació i Cancer, Passeig Maritim, 37-49, E-08003 Barcelona, Spain. Tel.: +34 93 224 0933; Fax: +34 93 224 0899; E-mail:
| |
Collapse
|
10
|
Zádor E, Dux L, Wuytack F. Prolonged passive stretch of rat soleus muscle provokes an increase in the mRNA levels of the muscle regulatory factors distributed along the entire length of the fibers. J Muscle Res Cell Motil 1999; 20:395-402. [PMID: 10531620 DOI: 10.1023/a:1005541522599] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The mRNA levels of the adult and the neonatal sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPases (SERCA1a and SERCA1b, respectively) and those of the muscle regulatory factors (MRFs: myoD, myf-5, myogenin, MRF4) have been assessed by RT PCR in rat soleus muscles immobilized for 3 days in an extended position (passive stretch). The transcript level of the fast type SERCA1a Ca(2+)-transport ATPase decreased to half of its normal value, whereas that of neonatal SERCA1b isoform increased 5-fold above control in stretched muscles. Immunostaining of muscle cross sections showed that the fraction of fibers expressing the SERCA1a protein was decreased evenly along the length of the stretched muscles indicating that a transformation occurred of fast fibers to slow ones. The mRNA levels of MRFs were elevated 3- to 6-fold above the normal level and were distributed evenly along the length of the stretched muscles. However in the controls these transcripts were more abundant at both ends of the muscle. The stretch increased the level of myoD and immunocytochemistry showed the expression of myoD protein in a number of nuclei of the stretched muscles whereas it was practically undetectable by this method in the control muscles. Western blotting did not indicate a significant stretch-induced increase in the level of the myogenin protein, in spite of the fact that immunocytochemistry tended to show more myogenin-positive nuclei in stretched muscles as compared to the controls. These data indicate that after 3 days of passive stretch the central and the terminal parts of the soleus muscle adapt similarly by increasing the levels of the MRFs, by decreasing the overall levels of the fast SERCA1-type of ATPase and by partially re-establishing a neonatal mode of alternative SERCA1 transcript splicing resulting in an increased SERCA1b/1a ratio.
Collapse
Affiliation(s)
- E Zádor
- Inst. Biochem., Albert Szent-Gyorgyi Med. Univ., Szeged, Hungary.
| | | | | |
Collapse
|
11
|
Lowe DA, Lund T, Alway SE. Hypertrophy-stimulated myogenic regulatory factor mRNA increases are attenuated in fast muscle of aged quails. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C155-62. [PMID: 9688846 DOI: 10.1152/ajpcell.1998.275.1.c155] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Myogenic regulatory factors (MRFs) are a family of skeletal muscle-specific transcription factors that regulate the expression of several muscle genes. This study was designed to determine whether MRF transcripts were increased in hypertrophy-stimulated muscle of adult quails and whether equivalent increases occurred in muscles of older quails. Slow-tonic anterior latissimus dorsi and fast-twitch patagialis muscles of adult, middle-aged, aged, and senescent quails were stretch overloaded for 6, 24, or 72 h, with contralateral muscles serving as controls. RNase protection assays showed that MRF4 and MyoD transcript levels were increased and myogenin and Myf5 transcripts were induced in stretch-overloaded muscles. However, MRF4 and MyoD increases were significantly attenuated in patagialis muscles of older quails. RT-PCR analyses of three MRF-regulated genes showed that increases in the transcription of these genes occurred with stretch overload, but the increases were less in muscles of older quails. In summary, attenuated MRF responses in muscles from aged animals may partially explain why muscles from older animals do not hypertrophy to the same extent as muscles from younger animals.
Collapse
Affiliation(s)
- D A Lowe
- Department of Anatomy, College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| | | | | |
Collapse
|
12
|
Abstract
MRF4 is a muscle-specific transcription factor that is expressed both in embryonic somites and later in fetal and adult muscle fibers. Cis-regulatory elements of the MRF4 gene responsible for its complex expression pattern have not yet been identified, although previous studies of the rat MRF4 gene have demonstrated the presence of enhancer activity located several kilobases 5' to the transcription start site. Using cell transfection assays in vitro, we have now localized one of the regulatory regions of MRF4 to a 590-base-pair sequence between 4 and 5 kilobases upstream from the start site. This sequence region functioned as an enhancer in combination either with the MRF4 promoter or with the viral thymidine kinase (tk) promoter. Deletion analysis of MRF4 indicated the existence of another regulatory region, closer to the promoter, which functioned as an enhancer in combination with the MRF4 promoter but not with the tk promoter.
Collapse
Affiliation(s)
- C M Kerkvliet
- Biomedical Program and Department of Biological Sciences, University of Alaska Anchorage, 99508, USA
| | | |
Collapse
|