1
|
Cannon AE, Horn PJ. The Molecular Frequency, Conservation and Role of Reactive Cysteines in Plant Lipid Metabolism. PLANT & CELL PHYSIOLOGY 2024; 65:826-844. [PMID: 38113384 DOI: 10.1093/pcp/pcad163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/21/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Cysteines (Cys) are chemically reactive amino acids containing sulfur that play diverse roles in plant biology. Recent proteomics investigations in Arabidopsis thaliana have revealed the presence of thiol post-translational modifications (PTMs) in several Cys residues. These PTMs are presumed to impact protein structure and function, yet mechanistic data regarding the specific Cys susceptible to modification and their biochemical relevance remain limited. To help address these limitations, we have conducted a wide-ranging analysis by integrating published datasets encompassing PTM proteomics (comparing S-sulfenylation, persulfidation, S-nitrosylation and S-acylation), genomics and protein structures, with a specific focus on proteins involved in plant lipid metabolism. The prevalence and distribution of modified Cys residues across all analyzed proteins is diverse and multifaceted. Nevertheless, by combining an evaluation of sequence conservation across 100+ plant genomes with AlphaFold-generated protein structures and physicochemical predictions, we have unveiled structural propensities associated with Cys modifications. Furthermore, we have identified discernible patterns in lipid biochemical pathways enriched with Cys PTMs, notably involving beta-oxidation, jasmonic acid biosynthesis, fatty acid biosynthesis and wax biosynthesis. These collective findings provide valuable insights for future investigations targeting the mechanistic foundations of Cys modifications and the regulation of modified proteins in lipid metabolism and other metabolic pathways.
Collapse
Affiliation(s)
- Ashley E Cannon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA
| | - Patrick J Horn
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA
| |
Collapse
|
2
|
Identification of active site residues implies a two-step catalytic mechanism for acyl-ACP thioesterase. Biochem J 2018; 475:3861-3873. [DOI: 10.1042/bcj20180470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 02/02/2023]
Abstract
In plants and bacteria that use a Type II fatty acid synthase, isozymes of acyl-acyl carrier protein (ACP) thioesterase (TE) hydrolyze the thioester bond of acyl-ACPs, terminating the process of fatty acid biosynthesis. These TEs are therefore critical in determining the fatty acid profiles produced by these organisms. Past characterizations of a limited number of plant-sourced acyl-ACP TEs have suggested a thiol-based, papain-like catalytic mechanism, involving a triad of Cys, His, and Asn residues. In the present study, the sequence alignment of 1019 plant and bacterial acyl-ACP TEs revealed that the previously proposed Cys catalytic residue is not universally conserved and therefore may not be a catalytic residue. Systematic mutagenesis of this residue to either Ser or Ala in three plant acyl-ACP TEs, CvFatB1 and CvFatB2 from Cuphea viscosissima and CnFatB2 from Cocos nucifera, resulted in enzymatically active variants, demonstrating that this Cys residue (Cys348 in CvFatB2) is not catalytic. In contrast, the multiple sequence alignment, together with the structure modeling of CvFatB2, suggests that the highly conserved Asp309 and Glu347, in addition to previously proposed Asn311 and His313, may be involved in catalysis. The substantial loss of catalytic competence associated with site-directed mutants at these positions confirmed the involvement of these residues in catalysis. By comparing the structures of acyl-ACP TE and the Pseudomonas 4-hydroxybenzoyl-CoA TE, both of which fold in the same hotdog tertiary structure and catalyze the hydrolysis reaction of thioester bond, we have proposed a two-step catalytic mechanism for acyl-ACP TE that involves an enzyme-bound anhydride intermediate.
Collapse
|
3
|
Gan Y, Song Y, Chen Y, Liu H, Yang D, Xu Q, Zheng Z. Transcriptome analysis reveals a composite molecular map linked to unique seed oil profile of Neocinnamomum caudatum (Nees) Merr. BMC PLANT BIOLOGY 2018; 18:303. [PMID: 30477425 PMCID: PMC6258453 DOI: 10.1186/s12870-018-1525-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 11/14/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Neocinnamomum caudatum (Nees) Merr., a biodiesel tree species in the subtropical areas of South China, India and Burma, is distinctive from other species in Lauraceae family and its seed oil is rich in linoleic acid (18:2) and stearic acid (18:0). However, there is little genetic information about this species so far. In this study, a transcriptomic analysis on developing seeds of N. caudatum was conducted in an attempt to discern the molecular mechanisms involving the control of the fatty acid (FA) and triacylglycerol (TAG) biosynthesis. RESULTS Transcriptome analysis revealed 239,703 unigenes with an average length of 436 bp and 137 putative biomarkers that are related to FA formation and TAG biosynthesis. The expression patterns of genes encoding β-ketoacyl-acyl carrier protein synthase I (KASI), β- ketoacyl-acyl carrier protein synthase II (KASII), stearoyl-ACP desaturase (SAD), fatty acid desaturase 2 (FAD2), fatty acid desaturase 8 (FAD8) and acyl-ACP thioesterase A/B (FATA/B) were further validated by qRT-PCR. These genes displayed a very similar expression pattern in two distinct assays. Moreover, sequence analysis of different FATBs from diverse plant species revealed that NcFATB is structurally different from its counterpart in other species in producing medium-chain saturated FAs. Concertedly, heterologous expression of NcFATB in E. coli BL21 (DE3) strain showed that this corresponding expressed protein, NcFATB, prefers long-chain saturated fatty acyl-ACP over medium-chain fatty acyl-ACP as substrate. CONCLUSIONS Transcriptome analysis of developing N. caudatum seeds revealed a composite molecular map linked to the FA formation and oil biosynthesis in this biodiesel tree species. The substrate preference of NcFATB for long-chain saturated FAs is likely to contribute to its unique seed oil profile rich in stearic acid. Our findings demonstrate that in the tree species of Lauraceae family, the FATB enzymes producing long-chain FAs are structurally distinct from those producing medium-chain FAs, thereby suggesting that the FATB genes may serve as a biomarker for the classification of tree species of Lauraceae family.
Collapse
Affiliation(s)
- Yi Gan
- School of Agriculture and Food Sciences, Zhejiang A & F University, Zhejiang, 311300 Hangzhou China
| | - Yu Song
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303 Yunnan China
| | - Yadong Chen
- School of Agriculture and Food Sciences, Zhejiang A & F University, Zhejiang, 311300 Hangzhou China
| | - Hongbo Liu
- School of Agriculture and Food Sciences, Zhejiang A & F University, Zhejiang, 311300 Hangzhou China
| | - Dongdong Yang
- School of Agriculture and Food Sciences, Zhejiang A & F University, Zhejiang, 311300 Hangzhou China
| | - Qianyu Xu
- School of Agriculture and Food Sciences, Zhejiang A & F University, Zhejiang, 311300 Hangzhou China
| | - Zhifu Zheng
- School of Agriculture and Food Sciences, Zhejiang A & F University, Zhejiang, 311300 Hangzhou China
| |
Collapse
|
4
|
Aznar-Moreno JA, Sánchez R, Gidda SK, Martínez-Force E, Moreno-Pérez AJ, Venegas Calerón M, Garcés R, Mullen RT, Salas JJ. New Insights Into Sunflower ( Helianthus annuus L.) FatA and FatB Thioesterases, Their Regulation, Structure and Distribution. FRONTIERS IN PLANT SCIENCE 2018; 9:1496. [PMID: 30459777 PMCID: PMC6232763 DOI: 10.3389/fpls.2018.01496] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/25/2018] [Indexed: 05/13/2023]
Abstract
Sunflower seeds (Helianthus annuus L.) accumulate large quantities of triacylglycerols (TAG) between 12 and 28 days after flowering (DAF). This is the period of maximal acyl-acyl carrier protein (acyl-ACP) thioesterase activity in vitro, the enzymes that terminate the process of de novo fatty acid synthesis by catalyzing the hydrolysis of the acyl-ACPs synthesized by fatty acid synthase. Fatty acid thioesterases can be classified into two families with distinct substrate specificities, namely FatA and FatB. Here, some new aspects of these enzymes have been studied, assessing how both enzymes contribute to the acyl composition of sunflower oil, not least through the changes in their expression during the process of seed filling. Moreover, the binding pockets of these enzymes were modeled based on new data from plant thioesterases, revealing important differences in their volume and geometry. Finally, the subcellular location of the two enzymes was evaluated and while both possess an N-terminal plastid transit peptide, only in FatB contains a hydrophobic sequence that could potentially serve as a transmembrane domain. Indeed, using in vivo imaging and organelle fractionation, H. annuus thioesterases, HaFatA and HaFatB, appear to be differentially localized in the plastid stroma and membrane envelope, respectively. The divergent roles fulfilled by HaFatA and HaFatB in oil biosynthesis are discussed in the light of our data.
Collapse
Affiliation(s)
- Jose A. Aznar-Moreno
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| | - Rosario Sánchez
- Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Seville, Spain
| | - Satinder K. Gidda
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | | | - Mónica Venegas Calerón
- Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Rafael Garcés
- Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Seville, Spain
| | - Robert T. Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Joaquín J. Salas
- Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Seville, Spain
| |
Collapse
|
5
|
Two distinct domains contribute to the substrate acyl chain length selectivity of plant acyl-ACP thioesterase. Nat Commun 2018; 9:860. [PMID: 29491418 PMCID: PMC5830452 DOI: 10.1038/s41467-018-03310-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/01/2018] [Indexed: 01/12/2023] Open
Abstract
The substrate specificity of acyl-ACP thioesterase (TE) plays an essential role in controlling the fatty acid profile produced by type II fatty acid synthases. Here we identify two groups of residues that synergistically determine different substrate specificities of two acyl-ACP TEs from Cuphea viscosissima (CvFatB1 and CvFatB2). One group (V194, V217, N223, R226, R227, and I268 in CvFatB2) is critical in determining the structure and depth of a hydrophobic cavity in the N-terminal hotdog domain that binds the substrate's acyl moiety. The other group (255-RKLSKI-260 and 285-RKLPKL-289 in CvFatB2) defines positively charged surface patches that may facilitate binding of the ACP moiety. Mutagenesis of residues within these two groups results in distinct synthetic acyl-ACP TEs that efficiently hydrolyze substrates with even shorter chains (C4- to C8-ACPs). These insights into structural determinants of acyl-ACP TE substrate specificity are useful in modifying this enzyme for tailored fatty acid production in engineered organisms.
Collapse
|
6
|
Chan KL, Tatarinova TV, Rosli R, Amiruddin N, Azizi N, Halim MAA, Sanusi NSNM, Jayanthi N, Ponomarenko P, Triska M, Solovyev V, Firdaus-Raih M, Sambanthamurthi R, Murphy D, Low ETL. Evidence-based gene models for structural and functional annotations of the oil palm genome. Biol Direct 2017; 12:21. [PMID: 28886750 PMCID: PMC5591544 DOI: 10.1186/s13062-017-0191-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/07/2017] [Indexed: 11/13/2022] Open
Abstract
Background Oil palm is an important source of edible oil. The importance of the crop, as well as its long breeding cycle (10-12 years) has led to the sequencing of its genome in 2013 to pave the way for genomics-guided breeding. Nevertheless, the first set of gene predictions, although useful, had many fragmented genes. Classification and characterization of genes associated with traits of interest, such as those for fatty acid biosynthesis and disease resistance, were also limited. Lipid-, especially fatty acid (FA)-related genes are of particular interest for the oil palm as they specify oil yields and quality. This paper presents the characterization of the oil palm genome using different gene prediction methods and comparative genomics analysis, identification of FA biosynthesis and disease resistance genes, and the development of an annotation database and bioinformatics tools. Results Using two independent gene-prediction pipelines, Fgenesh++ and Seqping, 26,059 oil palm genes with transcriptome and RefSeq support were identified from the oil palm genome. These coding regions of the genome have a characteristic broad distribution of GC3 (fraction of cytosine and guanine in the third position of a codon) with over half the GC3-rich genes (GC3 ≥ 0.75286) being intronless. In comparison, only one-seventh of the oil palm genes identified are intronless. Using comparative genomics analysis, characterization of conserved domains and active sites, and expression analysis, 42 key genes involved in FA biosynthesis in oil palm were identified. For three of them, namely EgFABF, EgFABH and EgFAD3, segmental duplication events were detected. Our analysis also identified 210 candidate resistance genes in six classes, grouped by their protein domain structures. Conclusions We present an accurate and comprehensive annotation of the oil palm genome, focusing on analysis of important categories of genes (GC3-rich and intronless), as well as those associated with important functions, such as FA biosynthesis and disease resistance. The study demonstrated the advantages of having an integrated approach to gene prediction and developed a computational framework for combining multiple genome annotations. These results, available in the oil palm annotation database (http://palmxplore.mpob.gov.my), will provide important resources for studies on the genomes of oil palm and related crops. Reviewers This article was reviewed by Alexander Kel, Igor Rogozin, and Vladimir A. Kuznetsov. Electronic supplementary material The online version of this article (doi:10.1186/s13062-017-0191-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kuang-Lim Chan
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia.,Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Tatiana V Tatarinova
- Department of Biology, University of La Verne, La Verne, California, 91750, USA.,Spatial Sciences Institute, University of Southern California, Los Angeles, CA, 90089, USA
| | - Rozana Rosli
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia.,Genomics and Computational Biology Research Group, University of South Wales, Pontypridd, CF371DL, UK
| | - Nadzirah Amiruddin
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Norazah Azizi
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Mohd Amin Ab Halim
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Nik Shazana Nik Mohd Sanusi
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Nagappan Jayanthi
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Petr Ponomarenko
- Spatial Sciences Institute, University of Southern California, Los Angeles, CA, 90089, USA
| | - Martin Triska
- Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, 90089, USA
| | - Victor Solovyev
- Softberry Inc., 116 Radio Circle, Suite 400, Mount Kisco, NY, 10549, USA
| | - Mohd Firdaus-Raih
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Ravigadevi Sambanthamurthi
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Denis Murphy
- Genomics and Computational Biology Research Group, University of South Wales, Pontypridd, CF371DL, UK
| | - Eng-Ti Leslie Low
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia.
| |
Collapse
|
7
|
Finzel K, Lee DJ, Burkart MD. Using modern tools to probe the structure-function relationship of fatty acid synthases. Chembiochem 2015; 16:528-547. [PMID: 25676190 PMCID: PMC4545599 DOI: 10.1002/cbic.201402578] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Indexed: 12/25/2022]
Abstract
Fatty acid biosynthesis is essential to life and represents one of the most conserved pathways in nature, preserving the same handful of chemical reactions across all species. Recent interest in the molecular details of the de novo fatty acid synthase (FAS) has been heightened by demand for renewable fuels and the emergence of multidrug-resistant bacterial strains. Central to FAS is the acyl carrier protein (ACP), a protein chaperone that shuttles the growing acyl chain between catalytic enzymes within the FAS. Human efforts to alter fatty acid biosynthesis for oil production, chemical feedstock, or antimicrobial purposes has been met with limited success, due in part to a lack of detailed molecular information behind the ACP-partner protein interactions inherent to the pathway. This review will focus on recently developed tools for the modification of ACP and analysis of protein-protein interactions, such as mechanism-based crosslinking, and the studies exploiting them. Discussion specific to each enzymatic domain will focus first on mechanism and known inhibitors, followed by available structures and known interactions with ACP. Although significant unknowns remain, new understandings of the intricacies of FAS point to future advances in manipulating this complex molecular factory.
Collapse
Affiliation(s)
- Kara Finzel
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358 (USA)
| | - D. John Lee
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358 (USA)
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358 (USA)
| |
Collapse
|
8
|
Pivato M, Fabrega-Prats M, Masi A. Low-molecular-weight thiols in plants: Functional and analytical implications. Arch Biochem Biophys 2014; 560:83-99. [DOI: 10.1016/j.abb.2014.07.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 01/15/2023]
|
9
|
Zheng P, Babar MDA, Parthasarathy S, Gibson R, Parliament K, Flook J, Patterson T, Friedemann P, Kumpatla S, Thompson S. A truncated FatB resulting from a single nucleotide insertion is responsible for reducing saturated fatty acids in maize seed oil. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1537-47. [PMID: 24802074 DOI: 10.1007/s00122-014-2317-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 04/16/2014] [Indexed: 05/26/2023]
Abstract
We identified a G-nucleotide insertion in a maize FatB responsible for reducing saturated fatty acids through QTL mapping and map-based cloning and developed an allele-specific DNA marker for molecular breeding. Vegetable oils with reduced saturated fatty acids have signficant health benefits. SRS72NE, a Dow AgroSciences proprietory maize inbred line, was found to contain signficantly reduced levels of palmitic acid and total saturated fatty acids in seed oil when compared to other common inbreds. Using F2 and F3 populations derived from a cross between SRS72NE and a normal inbred SLN74, we have demonstrated that the reduced saturated fatty acid phenotype in SRS72NE is controlled by a single QTL on chromosome 9 that explains 79.1 % of palmitic acid and 79.6 % total saturated fatty acid variations. The QTL was mapped to an interval of 105 kb that contains one single gene, a type B fatty acyl-ACP thioesterase (ZmFatB; GRMZM5G829544). ZmFatB alleles from SRS72NE and common inbreds were cloned and sequenced. SRS72NE fatb allele contains a single nucleotide (G) insertion in the 6th exon, which creates a premature stop codon 22 base pairs down stream. As a result, ZmFatB protein from SRS72NE is predicted to contain eight altered and 90 deleted amino acids at its C-terminus. Because the affected region is part of the conserved acyl-ACP thioesterase catalytic domain, the truncated ZmFatB in SRS72NE is likely non-functional. We also show that fatb RNA level in SRS72NE is reduced by 4.4-fold when compared to the normal allele SNL74. A high throughput DNA assay capable of differentiating the normal and reduced saturate fatty acid alleles has been developed and can be used for accelerated molecular breeding.
Collapse
Affiliation(s)
- Peizhong Zheng
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN, 46268, USA,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Cloning, characterization, and expression analysis of acyl–acyl carrier protein (ACP)-thioesterase B from seeds of Chinese Spicehush (Lindera communis). Gene 2014; 542:16-22. [DOI: 10.1016/j.gene.2014.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 03/09/2014] [Accepted: 03/12/2014] [Indexed: 01/19/2023]
|
11
|
Moreno-Pérez AJ, Venegas-Calerón M, Vaistij FE, Salas JJ, Larson TR, Garcés R, Graham IA, Martínez-Force E. Effect of a mutagenized acyl-ACP thioesterase FATA allele from sunflower with improved activity in tobacco leaves and Arabidopsis seeds. PLANTA 2014; 239:667-77. [PMID: 24327259 DOI: 10.1007/s00425-013-2003-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 11/25/2013] [Indexed: 05/26/2023]
Abstract
The substrate specificity of the acyl-acyl carrier protein (ACP) thioesterases significantly determines the type of fatty acids that are exported from plastids. Thus, designing acyl-ACP thioesterases with different substrate specificities or kinetic properties would be of interest for plant lipid biotechnology to produce oils enriched in specialty fatty acids. In the present work, the FatA thioesterase from Helianthus annuus was used to test the impact of changes in the amino acids present in the binding pocket on substrate specificity and catalytic efficiency. Amongst all the mutated enzymes studied, Q215W was especially interesting as it had higher specificity towards saturated acyl-ACP substrates and higher catalytic efficiency compared to wild-type H. annuus FatA. Null, wild type and high-efficiency alleles were transiently expressed in tobacco leaves to check their effect on lipid biosynthesis. Expression of active FatA thioesterases altered the composition of leaf triacylglycerols but did not alter total lipid content. However, the expression of the wild type and the high-efficiency alleles in Arabidopsis thaliana transgenic seeds resulted in a strong reduction in oil content and an increase in total saturated fatty acid content. The role and influence of acyl-ACP thioesterases in plant metabolism and their possible applications in lipid biotechnology are discussed.
Collapse
|
12
|
Lennen RM, Pfleger BF. Modulating membrane composition alters free fatty acid tolerance in Escherichia coli. PLoS One 2013; 8:e54031. [PMID: 23349781 PMCID: PMC3549993 DOI: 10.1371/journal.pone.0054031] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/07/2012] [Indexed: 12/17/2022] Open
Abstract
Microbial synthesis of free fatty acids (FFA) is a promising strategy for converting renewable sugars to advanced biofuels and oleochemicals. Unfortunately, FFA production negatively impacts membrane integrity and cell viability in Escherichia coli, the dominant host in which FFA production has been studied. These negative effects provide a selective pressure against FFA production that could lead to genetic instability at industrial scale. In prior work, an engineered E. coli strain harboring an expression plasmid for the Umbellularia californica acyl-acyl carrier protein (ACP) thioesterase was shown to have highly elevated levels of unsaturated fatty acids in the cell membrane. The change in membrane content was hypothesized to be one underlying cause of the negative physiological effects associated with FFA production. In this work, a connection between the regulator of unsaturated fatty acid biosynthesis in E. coli, FabR, thioesterase expression, and unsaturated membrane content was established. A strategy for restoring normal membrane saturation levels and increasing tolerance towards endogenous production of FFAs was implemented by modulating acyl-ACP pools with a second thioesterase (from Geobacillus sp. Y412MC10) that primarily targets medium chain length, unsaturated acyl-ACPs. The strategy succeeded in restoring membrane content and improving viability in FFA producing E. coli while maintaining FFA titers. However, the restored fitness did not increase FFA productivity, indicating the existence of additional metabolic or regulatory barriers.
Collapse
Affiliation(s)
- Rebecca M. Lennen
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- United States Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Brian F. Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- United States Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
13
|
Identification of transport proteins involved in free fatty acid efflux in Escherichia coli. J Bacteriol 2012; 195:135-44. [PMID: 23104810 DOI: 10.1128/jb.01477-12] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Escherichia coli has been used as a platform host for studying the production of free fatty acids (FFA) and other energy-dense compounds useful in biofuel applications. Most of the FFA produced by E. coli are found extracellularly. This finding suggests that a mechanism for transport across the cell envelope exists, yet knowledge of proteins that may be responsible for export remains incomplete. Production of FFA has been shown to cause cell lysis, induce stress responses, and impair basic physiological processes. These phenotypes could potentially be diminished if efflux rates were increased. Here, a total of 15 genes and operons were deleted and screened for their impact on cell viability and titer in FFA-producing E. coli. Deletions of acrAB and rob and, to a lower degree of statistical confidence, emrAB, mdtEF, and mdtABCD reduced multiple measures of viability, while deletion of tolC nearly abolished FFA production. An acrAB emrAB deletion strain exhibited greatly reduced FFA titers approaching the tolC deletion phenotype. Expression of efflux pumps on multicopy plasmids did not improve endogenous FFA production in an acrAB(+) strain, but plasmid-based expression of acrAB, mdtEF, and an mdtEF-tolC artificial operon improved the MIC of exogenously added decanoate for an acrAB mutant strain. The findings suggest that AcrAB-TolC is responsible for most of the FFA efflux in E. coli, with residual activity provided by other resistance-nodulation-cell division superfamily-type efflux pumps, including EmrAB-TolC and MdtEF-TolC. While the expression of these proteins on multicopy plasmids did not improve production over the basal level, their identification enables future engineering efforts.
Collapse
|
14
|
Zheng Y, Li L, Liu Q, Qin W, Yang J, Cao Y, Jiang X, Zhao G, Xian M. Boosting the free fatty acid synthesis of Escherichia coli by expression of a cytosolic Acinetobacter baylyi thioesterase. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:76. [PMID: 23057831 PMCID: PMC3524773 DOI: 10.1186/1754-6834-5-76] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 10/05/2012] [Indexed: 05/04/2023]
Abstract
BACKGROUND Thioesterases remove the fatty acyl moiety from the fatty acyl-acyl carrier proteins (ACPs), releasing them as free fatty acids (FFAs), which can be further used to produce a variety of fatty acid-based biofuels, such as biodiesel, fatty alcohols and alkanes. Thioesterases play a key role in the regulation of the fatty acid synthesis in Escherichia coli. Therefore, exploring more promising thioesterases will contribute to the development of industrial microbial lipids production. RESULTS We cloned and expressed a cytosolic Acinetobacter baylyi thioesterase ('AcTesA) in E. coli by deleting its leader sequence. Protein sequence alignment, structure modeling and site-directed mutagenesis demonstrated that Ser10, Gly48, Asn77, Asp158 and His161 residues composed the active centre of 'AcTesA. The engineered strain that overexpressed 'AcTesA achieved a FFAs titer of up to 501.2 mg/L in shake flask, in contrast to only 20.5 mg/L obtained in wild-type E. coli, demonstrating that the expression of 'AcTesA indeed boosted the synthesis of FFAs. The 'AcTesA exhibited a substrate preference towards the C8-C16 acyl groups, with C14:0, C16:1, C12:0 and C8:0 FFAs being the top four components. Optimization of expression level of 'AcTesA made the FFAs production increase to 551.3 mg/L. The FFAs production further increased to 716.1 mg/L by optimization of the culture medium. Fed-batch fermentation was also carried out to evaluate the FFAs production in a scaleable process. Finally, 3.6 g/L FFAs were accumulated within 48 h, and a maximal FFAs yield of 6.1% was achieved in 12-16 h post induction. CONCLUSIONS For the first time, an A. baylyi thioesterase was cloned and solubly expressed in the cytosol of E. coli. This leaderless thioesterase ('AcTesA) was found to be capable of enhancing the FFAs production of E. coli. Without detailed optimization of the strain and fermentation, the finally achieved 3.6 g/L FFAs is encouraging. In addition, 'AcTesA exhibited different substrate specificity from other thioesterases previously reported, and can be used to supply the fatty acid-based biofuels with high quality of FFAs. Altogether, this study provides a promising thioesterase for FFAs production, and is of great importance in enriching the library of useful thioesterases.
Collapse
Affiliation(s)
- Yanning Zheng
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingling Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, China
| | - Qiang Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, China
| | - Jianming Yang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujin Cao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Xinglin Jiang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guang Zhao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Mo Xian
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| |
Collapse
|
15
|
Moreno-Pérez AJ, Sánchez-García A, Salas JJ, Garcés R, Martínez-Force E. Acyl-ACP thioesterases from macadamia (Macadamia tetraphylla) nuts: cloning, characterization and their impact on oil composition. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:82-7. [PMID: 21071236 DOI: 10.1016/j.plaphy.2010.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 10/04/2010] [Accepted: 10/05/2010] [Indexed: 05/19/2023]
Abstract
The mechanisms by which macadamia nuts accumulate the unusual palmitoleic and asclepic acyl moieties, which constitute up to 20% of the fatty acids in some varieties, are still unknown. Acyl-acyl carrier protein (ACP) thioesterases (EC 3.1.2.14) are intraplastidial enzymes that terminate the synthesis of fatty acids in plants and that facilitate the export of the acyl moieties to the endoplasmic reticulum where they can be used in the production of glycerolipids. Here, we have investigated the possible role of acyl-ACP thioesterase activity in the composition of macadamia kernel oil. Accordingly, two acyl-ACP thioesterases were cloned from developing macadamia kernels, one of the FatA type and the other of the FatB type. These enzymes were heterologously expressed in Escherichia coli, and the recombinant thioesterases were purified, characterized kinetically and assayed with a variety of substrates, demonstrating the high specificity of macadamia FatA towards 16:1-ACP. Acyl-ACP thioesterase activity was also characterized in crude extracts from two different varieties of macadamia, Cate and Beaumont, which accumulate different amounts of n-7 fatty acids. The impact of acyl-ACP thioesterase activities on the oil composition of these kernels is discussed in the light of these results.
Collapse
|
16
|
Lennen RM, Braden DJ, West RA, Dumesic JA, Pfleger BF. A process for microbial hydrocarbon synthesis: Overproduction of fatty acids in Escherichia coli and catalytic conversion to alkanes. Biotechnol Bioeng 2010; 106:193-202. [PMID: 20073090 DOI: 10.1002/bit.22660] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of renewable alternatives to diesel and jet fuels is highly desirable for the heavy transportation sector, and would offer benefits over the production and use of short-chain alcohols for personal transportation. Here, we report the development of a metabolically engineered strain of Escherichia coli that overproduces medium-chain length fatty acids via three basic modifications: elimination of beta-oxidation, overexpression of the four subunits of acetyl-CoA carboxylase, and expression of a plant acyl-acyl carrier protein (ACP) thioesterase from Umbellularia californica (BTE). The expression level of BTE was optimized by comparing fatty acid production from strains harboring BTE on plasmids with four different copy numbers. Expression of BTE from low copy number plasmids resulted in the highest fatty acid production. Up to a seven-fold increase in total fatty acid production was observed in engineered strains over a negative control strain (lacking beta-oxidation), with a composition dominated by C(12) and C(14) saturated and unsaturated fatty acids. Next, a strategy for producing undecane via a combination of biotechnology and heterogeneous catalysis is demonstrated. Fatty acids were extracted from a culture of an overproducing strain into an alkane phase and fed to a Pd/C plug flow reactor, where the extracted fatty acids were decarboxylated into saturated alkanes. The result is an enriched alkane stream that can be recycled for continuous extractions. Complete conversion of C(12) fatty acids extracted from culture to alkanes has been demonstrated yielding a concentration of 0.44 g L(-1) (culture volume) undecane.
Collapse
Affiliation(s)
- Rebecca M Lennen
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison Wisconsin, USA
| | | | | | | | | |
Collapse
|
17
|
Jha SS, Jha JK, Chattopadhyaya B, Basu A, Sen SK, Maiti MK. Cloning and characterization of cDNAs encoding for long-chain saturated acyl-ACP thioesterases from the developing seeds of Brassica juncea. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:476-480. [PMID: 20356753 DOI: 10.1016/j.plaphy.2010.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 02/10/2010] [Accepted: 02/15/2010] [Indexed: 05/29/2023]
Abstract
Four types of cDNAs corresponding to the fatty acyl-acyl carrier protein (ACP) thioesterase (Fat) enzyme were isolated from the developing seeds of Brassica juncea, a widely cultivated species amongst the oil-seed crops. The mature polypeptides deduced from the cDNAs showed sequence identity with the FatB class of plant thioesterases. Southern hybridization revealed the presence of at least four copies of BjFatB gene in the genome of this amphidiploid species. Western blot and RT-PCR analyses showed that the BjFatB class thioesterase is expressed poorly in flowers and leaves, but significantly in seeds at the mid-maturation stage. The enzymatic activities of different BjFatB isoforms were established upon heterologous expression of the four BjFatB CDSs in Escherichia coli K27fadD88, a mutant strain of fatty acid beta-oxidation pathway. The substrate specificity of each BjFatB isoform was determined in vivo by fatty acid profile analyses of the culture supernatant and membrane lipid of the recombinant K27fadD88 and E. coli DH10B (fadD(+)) clones, respectively. The BjFatB1 and BjFatB3 were predominantly active on C18:0-ACP substrate, whereas BjFatB2 and BjFatB4 were specific towards C18:0-ACP as well as C16:0-ACP. These novel FatB genes may find potential application in metabolic engineering of crop plants through their over-expression in seed tissues to generate stearate-rich vegetable fats/oils of commercial importance.
Collapse
Affiliation(s)
- Saheli Sinha Jha
- Adv. Lab. for Plant Genetic Engineering, Advanced Technology Development Center, Indian Institute of Technology, Kharagpur-721302, India
| | | | | | | | | | | |
Collapse
|
18
|
Sánchez-García A, Moreno-Pérez AJ, Muro-Pastor AM, Salas JJ, Garcés R, Martínez-Force E. Acyl-ACP thioesterases from castor (Ricinus communis L.): an enzymatic system appropriate for high rates of oil synthesis and accumulation. PHYTOCHEMISTRY 2010; 71:860-9. [PMID: 20382402 DOI: 10.1016/j.phytochem.2010.03.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 03/04/2010] [Accepted: 03/15/2010] [Indexed: 05/16/2023]
Abstract
Acyl-acyl carrier protein (ACP) thioesterases are enzymes that terminate the intraplastidial fatty acid synthesis in plants by hydrolyzing the acyl-ACP intermediates and releasing free fatty acids to be incorporated into glycerolipids. These enzymes are classified in two families, FatA and FatB, which differ in amino acid sequence and substrate specificity. In the present work, both FatA and FatB thioesterases were cloned, sequenced and characterized from castor (Ricinus communis) seeds, a crop of high interest in oleochemistry. Single copies of FatA and FatB were found in castor resulting to be closely related with those of Jatropha curcas. The corresponding mature proteins were heterologously expressed in Escherichia coli for biochemical characterization after purification, resulting in high catalytic efficiency of RcFatA on oleoyl-ACP and palmitoleoyl-ACP and high efficiencies of RcFatB for oleoyl-ACP and palmitoyl-ACP. The expression profile of these genes displayed the highest levels in expanding tissues that typically are very active in lipid biosynthesis such as developing seed endosperm and young expanding leaves. The contribution of these two enzymes to the synthesis of castor oil is discussed.
Collapse
|
19
|
Wang G, Zhao J, Vasquez KM. Methods to determine DNA structural alterations and genetic instability. Methods 2009; 48:54-62. [PMID: 19245837 PMCID: PMC2693251 DOI: 10.1016/j.ymeth.2009.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 02/15/2009] [Indexed: 11/16/2022] Open
Abstract
Chromosomal DNA is a dynamic structure that can adopt a variety of non-canonical (i.e., non-B) conformations. In this regard, at least 10 different forms of non-B DNA conformations have been identified; many of them have been found to be mutagenic, and associated with human disease development. Despite the importance of non-B DNA structures in genetic instability and DNA metabolic processes, mechanisms by which instability occurs remain largely undefined. The purpose of this review is to summarize current methodologies that are used to address questions in the field of non-B DNA structure-induced genetic instability. Advantages and disadvantages of each method will be discussed. A focused effort to further elucidate the mechanisms of non-B DNA-induced genetic instability will lead to a better understanding of how these structure-forming sequences contribute to the development of human disease.
Collapse
Affiliation(s)
- Guliang Wang
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, Smithville, TX 78957
| | - Junhua Zhao
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, Smithville, TX 78957
| | - Karen M. Vasquez
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, Smithville, TX 78957
| |
Collapse
|
20
|
Ghosh SK, Bhattacharjee A, Jha JK, Mondal AK, Maiti MK, Basu A, Ghosh D, Ghosh S, Sen SK. Characterization and cloning of a stearoyl/oleoyl specific fatty acyl-acyl carrier protein thioesterase from the seeds of Madhuca longifolia (latifolia). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2007; 45:887-897. [PMID: 17977002 DOI: 10.1016/j.plaphy.2007.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Indexed: 05/25/2023]
Abstract
Deposition of oleate, stearate and palmitate at the later stages of seed development in Mahua (Madhuca longifolia (latifolia)), a tropical non-conventional oil seed plant, has been found to be the characteristic feature of the regulatory mechanism that produces the saturated fatty acid rich Mahua seed fat (commonly known as Mowrah fat). Although, the content of palmitate has been observed to be higher than that of stearate at the initial stages of seed development, it goes down when the stearate and oleate contents consistently rise till maturity. The present study was undertaken in order to identify the kind of acyl-ACP thioesterase(s) that drives the characteristic composition of signature fatty acids (oleate 37%, palmitate 25%, stearate 23%, linoleate 12.5%) in its seed oil at maturity. The relative Fat activities in the crude protein extracts of the matured seeds towards three thioester substrates (oleoyl-, stearoyl- and palmitoyl-ACP) have been found to be present in the following respective ratio 100:31:8. Upon further purification of the crude extract, the search revealed the presence of two partially purified thioesterases: a long-chain oleoyl preferring house-keeping LC-Fat and a novel stearoyl-oleoyl preferring SO-Fat. The characteristic accumulation of oleate and linoleate in the M. latifolia seed fat is believed to be primarily due to the thioesterase activity of the LC-Fat or MlFatA. On the other hand, the SO-Fat showed almost equal substrate specificity towards stearoyl- and oleoyl-ACP, when its activity towards palmitoyl-ACP compared to stearoyl-ACP was only about 12%. An RT-PCR based technique for cloning of a DNA fragment from the mRNA pool of the developing seed followed by nucleotide sequencing resulted in the identification of a FatB type of thioesterase gene (MlFatB). This gene was found to exist as a single copy in the mother plant genome. Ectopic expression of this MlFatB gene product in E. coli strain fadD88 further proved that it induced a higher level of accumulation of both stearic and oleic acids when compared to the negative control line that did not contain this MlFatB gene. It also indicated that SO-Fat indeed is the product of the MlFatB gene present in the maturing seeds of M. latifolia in nature. Additionally, a predicted 3D-structure for MlFatB protein has been developed through use of bioinformatics tools.
Collapse
Affiliation(s)
- Santosh K Ghosh
- IIT-BREF BIOTEK, Indian Institute of Technology, Kharagpur, India
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wales SQ, Li B, Laing JM, Aurelian L. The herpes simplex virus type 2 gene ICP10PK protects from apoptosis caused by nerve growth factor deprivation through inhibition of caspase-3 activation and XIAP up-regulation. J Neurochem 2007; 103:365-79. [PMID: 17877640 PMCID: PMC2643298 DOI: 10.1111/j.1471-4159.2007.04745.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The herpes simplex virus type 2 (HSV-2) protein ICP10PK has anti-apoptotic activity in virus-infected hippocampal cultures through activation of the Ras/Raf-1/MEK/ERK pathway. To exclude the possible contribution of other viral proteins to cell fate determination, we examined the survival of primary hippocampal cultures and neuronally differentiated PC12 cells transfected with ICP10PK from apoptosis caused by nerve growth factor (NGF) withdrawal. NGF deprivation caused apoptosis in cultures mock-transfected or transfected with the kinase-negative ICP10 mutant p139(TM), but not in ICP10PK-transfected cultures. In one clone (PC47), ICP10PK inhibited caspase-3 activation through up-regulation/stabilization of adenylate cyclase (AC), activation of PKA and MEK, and the convergence of the two pathways on extracellular signal-regulated kinase activation. The anti-apoptotic proteins Bag-1 and Bcl-2 were stabilized and the pro-apoptotic protein Bad was phosphorylated (inactivated). In another clone (PC70), ICP10PK inhibited apoptosis through MEK-dependent up-regulation of the anti-apoptotic protein XIAP (that inhibits the activity of processed caspase-3) and down-regulation of the apoptogenic protein Smac/DIABLO. This may be cell-type specific, but the baculovirus p35 protein did not potentiate the neuroprotective activity of ICP10PK in PC12 cells, suggesting that ICP10PK inhibits both caspase activation and activity. The data indicate that ICP10PK inhibits apoptosis independent of other viral proteins and is a promising neuronal gene therapy platform.
Collapse
Affiliation(s)
| | | | | | - Laure Aurelian
- Corresponding Author: Dr. Laure Aurelian, Department of Pharmacology and Experimental Therapeutics, University of Maryland, School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201-1559, Tel : 410-706-3895, FAX : 410-706-2513, e-mail :
| |
Collapse
|
22
|
Mayer KM, Shanklin J. Identification of amino acid residues involved in substrate specificity of plant acyl-ACP thioesterases using a bioinformatics-guided approach. BMC PLANT BIOLOGY 2007; 7:1. [PMID: 17201914 PMCID: PMC1770913 DOI: 10.1186/1471-2229-7-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Accepted: 01/03/2007] [Indexed: 05/13/2023]
Abstract
BACKGROUND The large amount of available sequence information for the plant acyl-ACP thioesterases (TEs) made it possible to use a bioinformatics-guided approach to identify amino acid residues involved in substrate specificity. The Conserved Property Difference Locator (CPDL) program allowed the identification of putative specificity-determining residues that differ between the FatA and FatB TE classes. Six of the FatA residue differences identified by CPDL were incorporated into the FatB-like parent via site-directed mutagenesis and the effect of each on TE activity was determined. Variants were expressed in E. coli strain K27 that allows determination of enzyme activity by GCMS analysis of fatty acids released into the medium. RESULTS Substitutions at four of the positions (74, 86, 141, and 174) changed substrate specificity to varying degrees while changes at the remaining two positions, 110 and 221, essentially inactivated the thioesterase. The effects of substitutions at positions 74, 141, and 174 (3-MUT) or 74, 86, 141, 174 (4-MUT) were not additive with respect to specificity. CONCLUSION Four of six putative specificity determining positions in plant TEs, identified with the use of CPDL, were validated experimentally; a novel colorimetric screen that discriminates between active and inactive TEs is also presented.
Collapse
Affiliation(s)
- Kimberly M Mayer
- Brookhaven National Laboratory, Department of Biology, Upton, NY 11973 USA
- University of North Carolina at Wilmington, Center for Marine Science, Wilmington, NC 28409 USA
| | - John Shanklin
- Brookhaven National Laboratory, Department of Biology, Upton, NY 11973 USA
| |
Collapse
|
23
|
Jha JK, Maiti MK, Bhattacharjee A, Basu A, Sen PC, Sen SK. Cloning and functional expression of an acyl-ACP thioesterase FatB type from Diploknema (Madhuca) butyracea seeds in Escherichia coli. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2006; 44:645-55. [PMID: 17092734 DOI: 10.1016/j.plaphy.2006.09.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2006] [Accepted: 09/22/2006] [Indexed: 05/12/2023]
Abstract
A cDNA of fatty acyl-acyl carrier protein (ACP) thioesterase (Fat) from developing seed of Madhuca butyracea has been cloned. The deduced amino acid sequence of the cDNA corresponding to the mature polypeptide showed 30-40% and 60-75% identity to the reported FatA and FatB class of plant thioesterases, respectively. This gene, MbFatB, is present as a single copy in M. butyracea genome and the MbFatB protein was detected clearly in seed tissues of this plant but not in that of Indian mustard (Brassica juncea). Heterologous expression of the MbFatB gene driven by different promoters in E. coli wild type and fatty acid beta-oxidation mutant (fadD88) strains resulted production of the recombinant protein with various fusion tags either as biologically inactive (insoluble) or functionally active forms. Expression of functionally active recombinant MbFatB in E. coli affected bacterial growth and cell morphology as well as changed the fatty acid profiles of the membrane lipid and the culture supernatant. Alteration of the fatty acid composition was directed predominantly towards palmitate and to a lesser extent myristate and oleate due to acyl chain termination activity of plant thioesterase in bacteria. Thus, this new MbFatB gene isolated from a non-traditional oil-seed tree can be used in future for transgenic development of oil-seed Brassica, a widely cultivated crop that expresses predominantly oleoyl-ACP thioesterase (FatA) in its seed tissue and has high amount of unwanted erucic acid in edible oil in order to alter the fatty acid profile in a desirable way.
Collapse
Affiliation(s)
- J K Jha
- IIT-BREF Biotek, Indian Institute of Technology, Kharagpur, India
| | | | | | | | | | | |
Collapse
|
24
|
Chin KH, Chou CC, Wang AHJ, Chou SH. Crystal structure of a putative acyl-CoA thioesterase from Xanthomonas campestris (XC229) adopts a tetrameric hotdog fold of ϵγ mode. Proteins 2006; 64:823-6. [PMID: 16763992 DOI: 10.1002/prot.21037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ko-Hsin Chin
- Institute of Biochemistry, National Chung-Hsing University, Taichung, Taiwan, Republic of China
| | | | | | | |
Collapse
|
25
|
Serrano-Vega MJ, Garcés R, Martínez-Force E. Cloning, characterization and structural model of a FatA-type thioesterase from sunflower seeds (Helianthus annuus L.). PLANTA 2005; 221:868-880. [PMID: 15841386 DOI: 10.1007/s00425-005-1502-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Accepted: 02/03/2005] [Indexed: 05/24/2023]
Abstract
The substrate specificity of acyl-acyl carrier protein (ACP) thioesterases (EC 3.1.2.14) determines the fatty acids available for the biosynthesis of storage and membrane lipids in seeds. In order to determine the mechanisms involved in the biosynthesis of fatty acids in sunflower seeds (Helianthus annuus L.), we isolated, cloned and sequenced a cDNA clone of acyl-ACP thioesterase from developing sunflower seeds, HaFatA1. Through the heterologous expression of HaFatA1 in Escherichia coli we have purified and characterized this enzyme, showing that sunflower HaFatA1 cDNA encodes a functional thioesterase with preference for monounsaturated acyl-ACPs. The HaFatA1 thioesterase was most efficient (kcat/K(m)) in catalyzing oleoyl-ACP, both in vivo and in vitro. By comparing this sequence with those obtained from public databases, we constructed a phylogenetic tree that included FatA and FatB thioesterases, as well as related prokaryotic proteins. The phylogenetic relationships support the endosymbiotic theory of the origin of eukaryotic cells and the suggestion that eubacteria from the delta-subdivision were the guest cells in the symbiosis with archaea. These prokaryotic proteins are more homologous to plant FatB, suggesting that the ancient thioesterases were more similar to FatB. Finally, using the available structure prediction methods, a 3D model of plant acyl-ACP thioesterases is proposed that reflects the combined data from direct mutagenesis and chimera studies. In addition, the model was tested by mutating the residues proposed to interact with the ACP protein in the FatA thioesterase by site-directed mutagenesis. The results indicate that this region is involved in the stabilization of the substrate at the active site.
Collapse
Affiliation(s)
- M J Serrano-Vega
- Instituto de la Grasa, CSIC, Av. Padre García Tejero 4, 41012, Sevilla, Spain
| | | | | |
Collapse
|
26
|
Abstract
HSV triggers and blocks apoptosis in cell type-specific fashion. This review discusses present understanding of the role of apoptosis and signaling cascades in neuronal pathogenesis and survival and summarizes present findings relating to the modulation of these strictly balanced processes by HSV infection. Underscored are the findings that HSV-1, but not HSV-2, triggers apoptosis in CNS neurons and causes encephalitis in adult subjects. Mechanisms responsible for the different outcomes of infection with the two HSV serotypes are described, including the contribution of viral antiapoptotic genes, notably the HSV-2 gene ICP10PK. Implications for the potential use of HSV vectors in future therapeutic developments are discussed.
Collapse
Affiliation(s)
- L Aurelian
- Virology/Immunology Laboratories, University of Maryland, Bressler, Room 4-023, 655 West Baltimore Street, Baltimore, MD 21201, USA.
| |
Collapse
|
27
|
Mayer KM, Shanklin J. A Structural Model of the Plant Acyl-Acyl Carrier Protein Thioesterase FatB Comprises Two Helix/4-Stranded Sheet Domains, the N-terminal Domain Containing Residues That Affect Specificity and the C-terminal Domain Containing Catalytic Residues. J Biol Chem 2005; 280:3621-7. [PMID: 15531590 DOI: 10.1074/jbc.m411351200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plant acyl-acyl carrier protein thioesterases (TEs) terminate the acyl-acyl carrier protein track of fatty acid biosynthesis and play an essential role in determining the amount and composition of fatty acids entering the storage lipid pool. A combination of bioinformatics tools was used to predict a three-dimensional model for Arabidopsis FatB (AtFatB), which comprises a fold similar to that of Escherichia coli TEII, an enzyme that is functionally similar to plant TEs but lacks significant sequence similarity and displays different inhibitor sensitivity. The catalytic residues in AtFatB, Cys-264 and His-229, localize to the same region of the model as catalytic residues found in other enzymes with helix/multi-stranded sheet motifs (hot dog folds). Based on the model, we identified Asn-227 as a possible third member of the proposed papain-like catalytic triad. The conversion of Asn-227 to Ala resulted in a loss of detectable activity (>200-fold reduction), similar to the result seen for the equivalent mutation in papain. Mapping of plant TE specificity-affecting mutations onto the structural model showed that these mutations all cluster around the catalytic triad. Also, superposition of the crystallographically determined structures of the complexes of 4-hydroxybenzoyl-CoA TE with substrate and beta-hydroxydecanoyl thiol ester dehydrase with inhibitor onto the AtFatB model showed that the substrate and inhibitor localize to the same region as the AtFatB catalytic triad in their respective structures. Together these data corroborate the structural model and show that the hot dog fold is common to enzymes from both prokaryotes and eukaryotes and that this fold supports at least three different catalytic mechanisms.
Collapse
Affiliation(s)
- Kimberly M Mayer
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | | |
Collapse
|
28
|
Salas JJ, Ohlrogge JB. Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases. Arch Biochem Biophys 2002; 403:25-34. [PMID: 12061798 DOI: 10.1016/s0003-9861(02)00017-6] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The specificity of plant acyl-acyl carrier protein (ACP) thioesterases is the major determinant of the chain length and level of saturated fatty acids found in most plant tissues. Although these enzymes have been previously characterized from a number of sources, information on kinetic parameters for a wide range of substrates with cloned enzymes is lacking. In the present study the substrate specificity of recombinant FatA thioesterase isoforms from Arabidopsis (AtFatA) and coriander (CsFatA) and FatB from Arabidopsis (AtFatB) have been re-examined with a comprehensive range of substrates including 14:1-ACP and 16:1-ACP. AtFatA displayed the highest catalytic efficiencies (kcat/Km) towards oleoyl-ACP with activities at least 20-fold lower for all other tested substrates and 75-fold lower with palmitoyl-ACP. Both chain length and double bond presence strongly influenced kcat of FatA with minor influence on Km. Arabidopsis FatB substrate specificity was found to differ from previous reports and this difference could be attributed to the influence of ACP structure. FatB activity with palmitoyl-ACP was 2.5-fold higher and the ratio of 16:0-ACP/14:0-ACP hydrolysis was 6.4-fold higher with spinach ACP compared to E. coli ACP. Additionally, the influence of amino acid domains from both AtFatA and AtFatB on their substrate specificity was studied by utilizing a domain-swapping approach. The characterization of the resulting chimeric enzymes pointed to the N-terminus as a determinant of the substrate specificity for both FatA and FatB acyl-ACP thioesterases.
Collapse
Affiliation(s)
- Joaquín J Salas
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824-1312, USA
| | | |
Collapse
|
29
|
Vigneswaran N, Thayaparan J, Knops J, Trent J, Potaman V, Miller DM, Zacharias W. Intra- and intermolecular triplex DNA formation in the murine c-myb proto-oncogene promoter are inhibited by mithramycin. Biol Chem 2001; 382:329-42. [PMID: 11308031 DOI: 10.1515/bc.2001.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mithramycin inhibits transcription by binding to G/C-rich sequences, thereby preventing regulatory protein binding. However, it is also possible that mithramycin inhibits gene expression by preventing intramolecular triplex DNA assembly. We tested this hypothesis using the DNA triplex adopted by the murine c-myb proto-oncogene. The 5'-regulatory region of c-myb contains two polypurine:polypyrimidine tracts with imperfect mirror symmetry, which are highly conserved in the murine and human c-myb sequences. The DNA binding drugs mithramycin and distamycin bind to one of these regions as determined by DNase I protection assay. Gel mobility shift assays, nuclease and chemical hypersensitivity and 2D-gel topological analyses as well as triplex-specific antibody binding studies confirmed the formation of purine*purine:pyrimidine inter- and pyrimidine*purine:pyrimidine intra-molecular triplex structures in this sequence. Mithramycin binding within the triplex target site displaces the major groove-bound oligonucleotide, and also abrogates the supercoil-dependent H-DNA formation, whereas distamycin binding had no such effects. Molecular modeling studies further support these observations. Triplex-specific antibody staining of cells pretreated with mithramycin demonstrates a reversal of chromosomal triplex structures compared to the non-treated and distamycin-treated cells. These observations suggest that DNA minor groove-binding drugs interfere with gene expression by precluding intramolecular triplex formation, as well as by physically preventing regulatory protein binding.
Collapse
Affiliation(s)
- N Vigneswaran
- Department of Stomatology, The University of Texas-Houston Dental Branch, 77030, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Scott WN, McFerran NV, Harriott P, Walker B, Nelson J. Development of laminin receptor agonists: identification of important functional residues by alanine scanning. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1481:25-36. [PMID: 10962089 DOI: 10.1016/s0167-4838(00)00120-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
An antagonist of cellular adhesion and motility, acetyl-C-[S-Acm]-VIGYSGDRC-[S-Acm]-NH(2) (mEGF(33-42)), shares homology with the agonist sequence CDPGYIGSR-NH(2). It has been proposed that the latter peptide binds to the high affinity 67 kDa laminin receptor. Both peptides have equal affinities for the receptor and similar conformations have been derived for both. We have examined the importance of individual non-homologous residues with respect to receptor binding and antagonistic properties of mEGF(33-42). Alanine scanning of non-conserved residues in the N-terminal half of mEGF(33-42) caused loss of biological activity with respect to cell attachment, receptor binding and migratory response. Substitution of alanine for serine (position 6) caused loss of laminin-specific cell attachment and receptor binding activities. However, the peptide did stimulate migration suggesting that this peptide may be a non-specific stimulator of migration. In contrast, alanine substitution for the C-terminal Cys-S-Acm had no apparent effect on the attachment or receptor binding activities of the peptide but generated an agonist from the antagonist parent. Comparison of the modelled folds of the alanine containing peptides revealed the presence of significant helical content in those peptides capable of stimulating migration and suggests that a reduction in bulk in the N-terminal residues is not conducive to adopting a productive binding conformation.
Collapse
Affiliation(s)
- W N Scott
- Centre for Peptide and Protein Engineering, School of Biology and Biochemistry, The Queen's University of Belfast, Belfast BT9 7BL, UK.
| | | | | | | | | |
Collapse
|
31
|
Nuthall HN, Vassaux G, Huxley C, Harris A. Analysis of a DNase I hypersensitive site located -20.9 kb upstream of the CFTR gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:431-43. [PMID: 10561583 DOI: 10.1046/j.1432-1327.1999.00872.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator gene (CFTR) shows a tightly regulated pattern of expression with spatial and temporal control. The regulatory elements achieving this appear to lie outside the basal promoter of the gene. We previously identified DNase I hypersensitive sites (DHSs) at -79.5 kb and -20.5 kb with respect to the CFTR translational start site which may contain important regulatory elements. We have now investigated further the DHS at -20.5 kb to evaluate its potential function in the regulation of CFTR expression. Finer mapping revealed that the DHS lies at -20.9 kb. Deletion of the DHS from a 310-kb yeast artificial chromosome (YAC) containing the human CFTR gene has shown that this site may be responsible for about 60% of wild-type levels of transcription from the YAC transgene when expressed in Caco2 cells. DNase I footprinting showed several regions of protection within the -20.9 kb region with nuclear extracts from Caco2 cells, but not with extracts from lymphoblastoid cells, which do not show the DHS. Matches to several transcription factor-binding sites were found, but supershift analysis with specific antibodies did not identify the transcription factors involved. Two purine/pyrimidine mirror repeat elements within the -20.9-kb DHS were shown not to adopt non-B-DNA conformations. Thus, we provide evidence for a role for the -20.9 kb DHS in the transcriptional regulation of the CFTR gene, although the mechanisms mediating this effect remain unclear.
Collapse
MESH Headings
- Amino Acid Motifs
- Base Sequence
- Binding Sites
- Chromosomes, Artificial, Yeast
- Cloning, Molecular
- Cystic Fibrosis Transmembrane Conductance Regulator/chemistry
- Cystic Fibrosis Transmembrane Conductance Regulator/genetics
- DNA, Superhelical/ultrastructure
- Deoxyribonuclease I/chemistry
- Electrophoresis, Agar Gel
- Exons
- Gene Deletion
- Gene Expression Regulation
- Humans
- Models, Genetic
- Molecular Sequence Data
- Nucleic Acid Conformation
- Plasmids/metabolism
- Protein Biosynthesis
- Purines/chemistry
- Pyrimidines/chemistry
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Single-Strand Specific DNA and RNA Endonucleases/metabolism
- Transcription, Genetic
- Transgenes
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- H N Nuthall
- Paediatric Molecular Genetics, Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | | | | | | |
Collapse
|
32
|
Rothman-Denes LB, Dai X, Davydova E, Carter R, Kazmierczak K. Transcriptional regulation by DNA structural transitions and single-stranded DNA-binding proteins. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:63-73. [PMID: 10384271 DOI: 10.1101/sqb.1998.63.63] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- L B Rothman-Denes
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
33
|
Facciotti MT, Bertain PB, Yuan L. Improved stearate phenotype in transgenic canola expressing a modified acyl-acyl carrier protein thioesterase. Nat Biotechnol 1999; 17:593-7. [PMID: 10385326 DOI: 10.1038/9909] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The engineering of crops for selected fatty acid production is one of the major goals of plant biotechnology. The Garm FatA1, an acyl-acyl carrier protein (ACP) thioesterase isolated from Garcinia mangostana, generates an elevated stearate (18:0) phenotype in transgenic Brassica plants. By site-directed mutagenesis, we generated seven mutants that showed up to a 13-fold increase in specific enzyme activity toward 18:0-ACP in vitro. The seed-specific expression of mutant S111A/V193A in Brassica plants results in transgenic plants that accumulate 55-68% more stearate than plants expressing the wild-type enzyme. Our results demonstrate that a thioesterase can be engineered to increase specific activity and that its improved function demonstrated in vitro is retained in vivo.
Collapse
|
34
|
|
35
|
Benning MM, Wesenberg G, Liu R, Taylor KL, Dunaway-Mariano D, Holden HM. The three-dimensional structure of 4-hydroxybenzoyl-CoA thioesterase from Pseudomonas sp. Strain CBS-3. J Biol Chem 1998; 273:33572-9. [PMID: 9837940 DOI: 10.1074/jbc.273.50.33572] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The soil-dwelling microbe, Pseudomonas sp. strain CBS-3, has attracted recent attention due to its ability to survive on 4-chlorobenzoate as its sole carbon source. The biochemical pathway by which this organism converts 4-chlorobenzoate to 4-hydroxybenzoate consists of three enzymes: 4-chlorobenzoyl-CoA ligase, 4-chlorobenzoyl-CoA dehalogenase, and 4-hydroxybenzoyl-CoA thioesterase. Here we describe the three-dimensional structure of the thioesterase determined to 2.0-A resolution. Each subunit of the homotetramer is characterized by a five-stranded anti-parallel beta-sheet and three major alpha-helices. While previous amino acid sequence analyses failed to reveal any similarity between this thioesterase and other known proteins, the results from this study clearly demonstrate that the molecular architecture of 4-hydroxybenzoyl-CoA thioesterase is topologically equivalent to that observed for beta-hydroxydecanoyl thiol ester dehydrase from Escherichia coli. On the basis of the structural similarity between these two enzymes, the active site of the thioesterase has been identified and a catalytic mechanism proposed.
Collapse
Affiliation(s)
- M M Benning
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin- Madison, Madison, Wisconsin 53705, USA
| | | | | | | | | | | |
Collapse
|
36
|
Starkey JR, Dai S, Dratz EA. Sidechain and backbone requirements for anti-invasive activity of laminin peptide 11. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1429:187-207. [PMID: 9920396 DOI: 10.1016/s0167-4838(98)00236-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The structure of laminin peptide 11 (CDPGYIGSR-NH2) contains valuable information for the design of mimetic compounds with anti-invasive and anti-metastatic properties. An alanine scan replacement experiment identified Tyr5, Ile6 and Arg9 residues as contributing significantly to anti-invasive activity. Circular dichroism spectra and NMR alphaH chemical shift values both supported the existence of populations of nonrandom coil solution structures for the analogs tested. A D-Ala4 for Gly4 substituted analog completely lost activity, while an L-Ala4 for Gly4 substituted analog retained half the activity of the parent peptide. These results complement our previous findings with D/L alanine substitutions at the Gly7 position, and together they suggest an 'S'-shaped backbone as likely for the active peptide conformation. NMR-constrained molecular modeling supported a direct involvement of the Tyr5 and Ile6 sidechains in conferring bioactivity, and indicated that the Tyr5 sidechain was buried in the Ala2 for Asp2 substitution. Based on the fact that the peptide 11 sequence derives from the disulfide bonded c-loop of an LE-repeat, we synthesized the cyclic CDPGYIGSRC-NH2 peptide. This analog exhibited good anti-invasive and anti-metastatic activity. NMR modeling experiments suggested that the trans-proline cyclic peptide, would favor an 'S'-shaped backbone conformation. Full retro-inverso analogs of peptide 11 were shown to have anti-invasive activity inferior to that of peptide 11. This weak bioactivity was probed using NMR-constrained molecular dynamics, and revealed potential conformations which limited the ability of the required sidechains to mimic the positions of those in the native peptide conformations.
Collapse
Affiliation(s)
- J R Starkey
- Department of Microbiology, Montana State University, Bozeman 59717, USA.
| | | | | |
Collapse
|
37
|
Affiliation(s)
- B J Rawlings
- Department of Chemistry, University of Leicester, UK.
| |
Collapse
|
38
|
Hawkins DJ, Kridl JC. Characterization of acyl-ACP thioesterases of mangosteen (Garcinia mangostana) seed and high levels of stearate production in transgenic canola. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 13:743-752. [PMID: 9681015 DOI: 10.1046/j.1365-313x.1998.00073.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Acyl-acyl-carrier protein (ACP) thioesterases are, at least in part, responsible for the fatty acyl chain length composition of seed storage oils. Acyl-ACP thioesterases with specificity for each of the saturated acyl-ACP substrates from 8:0 through 16:0 have been cloned, with the exception of 18:0, and are members of the FatB class of thioesterases. The authors have determined that the tropical tree species mangosteen (Garcinia mangostana) stores 18:0 (stearate) in its seed oil in amounts of up to 56% by weight. Acyl-ACP thioesterase activity as measured in crude mangosteen seed extracts showed a preference for 18:1-ACP substrates, but had significant activity with 18:0 relative to that with 16:0-ACP, suggesting a thioesterase might be involved in the production of stearate. Three distinct acyl-ACP thioesterases were cloned from mangosteen seed cDNA; two representative of the FatA class and one representative of the FatB class. When expressed in vitro, the enzyme encoded by one of the FatAs (Garm FatA1) while preferring 18:1-ACP showed relatively low activity with 16:0-ACP as compared to 18:0-ACP, similar to the substrate preferences shown by the crude seed extract. Expression of Garm FatA1 in Brassica seeds led to the accumulation of stearate up to 22% in seed oil. These results suggest that Garm FatA1 is at least partially responsible for determining the high stearate composition of mangosteen seed oil and that FatA as well FatB thioesterases have evolved for specialized roles.
Collapse
|
39
|
Abstract
With respect to plant biotechnology, 1995 and 1996 will be marked by the commercialization of the first genetically engineered plant oil and a number of ground-breaking publications. The modification of plant components using transgenic technology is not just 'switching' phenotypes from one host to another, rather, it is a means for producing valuable novel products that are normally not found (or are difficult to find) in plants. Active research is being carried out with similar schemes in both academic laboratories and biotechnology companies. As a result, the traditional line that separates the 'basic' research of universities and the 'practical' work of industry is becoming fuzzy. Although many roadblocks remain, judging from the progress made in the past two years, the genetic engineering of plant components is heading towards a bright and exciting future.
Collapse
Affiliation(s)
- L Yuan
- Calgene Inc 1920 Fifth Street, Davis, CA 95616, USA
| | | |
Collapse
|
40
|
Pickard RT, Chiou XG, Strifler BA, DeFelippis MR, Hyslop PA, Tebbe AL, Yee YK, Reynolds LJ, Dennis EA, Kramer RM, Sharp JD. Identification of essential residues for the catalytic function of 85-kDa cytosolic phospholipase A2. Probing the role of histidine, aspartic acid, cysteine, and arginine. J Biol Chem 1996; 271:19225-31. [PMID: 8702602 DOI: 10.1074/jbc.271.32.19225] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cytosolic phospholipase A2 (cPLA2) hydrolyzes the sn-2-acyl ester bond of phospholipids and shows a preference for arachidonic acid-containing substrates. We found previously that Ser-228 is essential for enzyme activity and is likely to function as a nucleophile in the catalytic center of the enzyme (Sharp, J. D., White, D. L., Chiou, X. G., Goodson, T., Gamboa, G. C., McClure, D., Burgett, S., Hoskins, J., Skatrud, P. L., Sportsman, J. R., Becker, G. W., Kang, L. H., Roberts, E. F., and Kramer, R. M.(1991) J. Biol. Chem. 266, 14850-14853). cPLA2 contains a catalytic aspartic acid motif common to the subtilisin family of serine proteases. Substitution within this motif of Ala for Asp-549 completely inactivated the enzyme, and substitutions with either glutamic acid or asparagine reduced activity 2000- and 300-fold, respectively. Additionally, using mutants with cysteine replaced by alanine, we found that Cys-331 is responsible for the enzyme's sensitivity to N-ethylmaleimide. Surprisingly, substituting alanine for any of the 19 histidines did not produce inactive enzyme, demonstrating that a classical serine-histidine-aspartate mechanism does not operate in this hydrolase. We found that substituting alanine or histidine for Arg-200 did produce inactive enzyme, while substituting lysine reduced activity 200-fold. Results obtained with the lysine mutant (R200K) and a coumarin ester substrate suggest no specific interaction between Arg-200 and the phosphoryl group of the phospholipid substrate. Arg-200, Ser-228, and Asp-549 are conserved in cPLA2 from six species and also in four nonmammalian phospholipase B enzymes. Our results, supported by circular dichroism, provide evidence that Asp-549 and Arg-200 are critical to the enzyme's function and suggest that the cPLA2 catalytic center is novel.
Collapse
Affiliation(s)
- R T Pickard
- Lilly Research Laboratories, Indianapolis, Indiana 46285, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|