1
|
Wilson KD, Porter EG, Garcia BA. Reprogramming of the epigenome in neurodevelopmental disorders. Crit Rev Biochem Mol Biol 2022; 57:73-112. [PMID: 34601997 PMCID: PMC9462920 DOI: 10.1080/10409238.2021.1979457] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The etiology of neurodevelopmental disorders (NDDs) remains a challenge for researchers. Human brain development is tightly regulated and sensitive to cellular alterations caused by endogenous or exogenous factors. Intriguingly, the surge of clinical sequencing studies has revealed that many of these disorders are monogenic and monoallelic. Notably, chromatin regulation has emerged as highly dysregulated in NDDs, with many syndromes demonstrating phenotypic overlap, such as intellectual disabilities, with one another. Here we discuss epigenetic writers, erasers, readers, remodelers, and even histones mutated in NDD patients, predicted to affect gene regulation. Moreover, this review focuses on disorders associated with mutations in enzymes involved in histone acetylation and methylation, and it highlights syndromes involving chromatin remodeling complexes. Finally, we explore recently discovered histone germline mutations and their pathogenic outcome on neurological function. Epigenetic regulators are mutated at every level of chromatin organization. Throughout this review, we discuss mechanistic investigations, as well as various animal and iPSC models of these disorders and their usefulness in determining pathomechanism and potential therapeutics. Understanding the mechanism of these mutations will illuminate common pathways between disorders. Ultimately, classifying these disorders based on their effects on the epigenome will not only aid in prognosis in patients but will aid in understanding the role of epigenetic machinery throughout neurodevelopment.
Collapse
Affiliation(s)
- Khadija D. Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Elizabeth G. Porter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
2
|
Flex E, Martinelli S, Van Dijck A, Ciolfi A, Cecchetti S, Coluzzi E, Pannone L, Andreoli C, Radio FC, Pizzi S, Carpentieri G, Bruselles A, Catanzaro G, Pedace L, Miele E, Carcarino E, Ge X, Chijiwa C, Lewis MES, Meuwissen M, Kenis S, Van der Aa N, Larson A, Brown K, Wasserstein MP, Skotko BG, Begtrup A, Person R, Karayiorgou M, Roos JL, Van Gassen KL, Koopmans M, Bijlsma EK, Santen GWE, Barge-Schaapveld DQCM, Ruivenkamp CAL, Hoffer MJV, Lalani SR, Streff H, Craigen WJ, Graham BH, van den Elzen APM, Kamphuis DJ, Õunap K, Reinson K, Pajusalu S, Wojcik MH, Viberti C, Di Gaetano C, Bertini E, Petrucci S, De Luca A, Rota R, Ferretti E, Matullo G, Dallapiccola B, Sgura A, Walkiewicz M, Kooy RF, Tartaglia M. Aberrant Function of the C-Terminal Tail of HIST1H1E Accelerates Cellular Senescence and Causes Premature Aging. Am J Hum Genet 2019; 105:493-508. [PMID: 31447100 DOI: 10.1016/j.ajhg.2019.07.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 07/10/2019] [Indexed: 02/03/2023] Open
Abstract
Histones mediate dynamic packaging of nuclear DNA in chromatin, a process that is precisely controlled to guarantee efficient compaction of the genome and proper chromosomal segregation during cell division and to accomplish DNA replication, transcription, and repair. Due to the important structural and regulatory roles played by histones, it is not surprising that histone functional dysregulation or aberrant levels of histones can have severe consequences for multiple cellular processes and ultimately might affect development or contribute to cell transformation. Recently, germline frameshift mutations involving the C-terminal tail of HIST1H1E, which is a widely expressed member of the linker histone family and facilitates higher-order chromatin folding, have been causally linked to an as-yet poorly defined syndrome that includes intellectual disability. We report that these mutations result in stable proteins that reside in the nucleus, bind to chromatin, disrupt proper compaction of DNA, and are associated with a specific methylation pattern. Cells expressing these mutant proteins have a dramatically reduced proliferation rate and competence, hardly enter into the S phase, and undergo accelerated senescence. Remarkably, clinical assessment of a relatively large cohort of subjects sharing these mutations revealed a premature aging phenotype as a previously unrecognized feature of the disorder. Our findings identify a direct link between aberrant chromatin remodeling, cellular senescence, and accelerated aging.
Collapse
Affiliation(s)
- Elisabetta Flex
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, 00161 Italy; Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY 10467, USA
| | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, 00161 Italy
| | - Anke Van Dijck
- Department of Medical Genetics, University of Antwerp, Edegem, 2650 Belgium; Department of Neurology, Antwerp University Hospital, Edegem, 2650 Belgium
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, 00146 Italy
| | - Serena Cecchetti
- Microscopy Area, Core Facilities, Istituto Superiore di Sanità, Rome, 00161 Italy
| | - Elisa Coluzzi
- Department of Science, University Roma Tre, Rome, 00146 Italy
| | - Luca Pannone
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, 00161 Italy; Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, 00146 Italy
| | - Cristina Andreoli
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, 00161 Italy
| | - Francesca Clementina Radio
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, 00146 Italy
| | - Simone Pizzi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, 00146 Italy
| | - Giovanna Carpentieri
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, 00161 Italy; Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, 00146 Italy
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, 00161 Italy
| | | | - Lucia Pedace
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, 00146 Italy
| | - Evelina Miele
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, 00146 Italy
| | - Elena Carcarino
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, 00146 Italy; Current affiliation: Cordeliers Research Centre, Inserm 1138, Sorbonne Université, Paris, 75006 France
| | - Xiaoyan Ge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Current affiliation: Department of Genetics and Genomic Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chieko Chijiwa
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada
| | - M E Suzanne Lewis
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6H 3N1, Canada
| | - Marije Meuwissen
- Department of Medical Genetics, University of Antwerp, Edegem, 2650 Belgium
| | - Sandra Kenis
- Department of Neurology, Antwerp University Hospital, Edegem, 2650 Belgium
| | | | - Austin Larson
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kathleen Brown
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Melissa P Wasserstein
- Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY 10467, USA
| | - Brian G Skotko
- Division of Medical Genetics and Metabolism, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02114, USA
| | | | | | - Maria Karayiorgou
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA
| | - J Louw Roos
- Department of Psychiatry, University of Pretoria, Weskoppies Hospital, Pretoria, 0001 South Africa
| | - Koen L Van Gassen
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, 3508 AB the Netherlands
| | - Marije Koopmans
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, 3508 AB the Netherlands
| | - Emilia K Bijlsma
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, 2300 RC the Netherlands
| | - Gijs W E Santen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, 2300 RC the Netherlands
| | | | - Claudia A L Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, 2300 RC the Netherlands
| | - Mariette J V Hoffer
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, 2300 RC the Netherlands
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Haley Streff
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - William J Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brett H Graham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Daan J Kamphuis
- Departement of Neurology, Reinier de Graaf Ziekenhuis, Delft, 2600 GA the Netherlands
| | - Katrin Õunap
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, 50406 Estonia; Institute of Clinical Medicine, University of Tartu, Tartu, 50406 Estonia
| | - Karit Reinson
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, 50406 Estonia; Institute of Clinical Medicine, University of Tartu, Tartu, 50406 Estonia
| | - Sander Pajusalu
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, 50406 Estonia; Institute of Clinical Medicine, University of Tartu, Tartu, 50406 Estonia; Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Monica H Wojcik
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Clara Viberti
- Department of Medical Sciences, University of Turin, Turin, 10126 Italy; Italian Institute for Genomic Medicine, Turin, 10126 Italy
| | - Cornelia Di Gaetano
- Department of Medical Sciences, University of Turin, Turin, 10126 Italy; Italian Institute for Genomic Medicine, Turin, 10126 Italy
| | - Enrico Bertini
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, 00146 Italy
| | - Simona Petrucci
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, 00189 Italy; Division of Medical Genetics, Casa Sollievo della Sofferenza Hospital, IRCCS, San Giovanni Rotondo, 71013 Italy
| | - Alessandro De Luca
- Division of Medical Genetics, Casa Sollievo della Sofferenza Hospital, IRCCS, San Giovanni Rotondo, 71013 Italy
| | - Rossella Rota
- Department of Pediatric Onco-Hematology and Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, 00146 Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University, Rome, 00161 Italy; Istituto Neuromed, IRCCS, Pozzilli, 86077 Italy
| | - Giuseppe Matullo
- Department of Medical Sciences, University of Turin, Turin, 10126 Italy; Italian Institute for Genomic Medicine, Turin, 10126 Italy
| | - Bruno Dallapiccola
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, 00146 Italy
| | - Antonella Sgura
- Department of Science, University Roma Tre, Rome, 00146 Italy
| | - Magdalena Walkiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Current affiliation: National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Edegem, 2650 Belgium.
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, 00146 Italy.
| |
Collapse
|
3
|
Liao R, Mizzen CA. Interphase H1 phosphorylation: Regulation and functions in chromatin. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:476-85. [PMID: 26657617 DOI: 10.1016/j.bbagrm.2015.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 12/25/2022]
Abstract
Many metazoan cell types differentially express multiple non-allelic amino acid sequence variants of histone H1. Although early work revealed that H1 variants, collectively, are phosphorylated during interphase and mitosis, differences between individual H1 variants in the sites they possess for mitotic and interphase phosphorylation have been elucidated only relatively recently. Here, we review current knowledge on the regulation and function of interphase H1 phosphorylation, with a particular emphasis on how differences in interphase phosphorylation among the H1 variants of mammalian cells may enable them to have differential effects on transcription and other chromatin processes.
Collapse
Affiliation(s)
- Ruiqi Liao
- Department of Cell and Developmental Biology, University of Illinois at Urbana Champaign, USA
| | - Craig A Mizzen
- Department of Cell and Developmental Biology, University of Illinois at Urbana Champaign, USA; Institute for Genomic Biology, University of Illinois at Urbana Champaign, USA.
| |
Collapse
|
4
|
Parseghian MH. What is the role of histone H1 heterogeneity? A functional model emerges from a 50 year mystery. AIMS BIOPHYSICS 2015; 2:724-772. [PMID: 31289748 PMCID: PMC6615755 DOI: 10.3934/biophy.2015.4.724] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
For the past 50 years, understanding the function of histone H1 heterogeneity has been mired in confusion and contradiction. Part of the reason for this is the lack of a working model that tries to explain the large body of data that has been collected about the H1 subtypes so far. In this review, a global model is described largely based on published data from the author and other researchers over the past 20 years. The intrinsic disorder built into H1 protein structure is discussed to help the reader understand that these histones are multi-conformational and adaptable to interactions with different targets. We discuss the role of each structural section of H1 (as we currently understand it), but we focus on the H1's C-terminal domain and its effect on each subtype's affinity, mobility and compaction of chromatin. We review the multiple ways these characteristics have been measured from circular dichroism to FRAP analysis, which has added to the sometimes contradictory assumptions made about each subtype. Based on a tabulation of these measurements, we then organize the H1 variants according to their ability to condense chromatin and produce nucleosome repeat lengths amenable to that compaction. This subtype variation generates a continuum of different chromatin states allowing for fine regulatory control and some overlap in the event one or two subtypes are lost to mutation. We also review the myriad of disparate observations made about each subtype, both somatic and germline specific ones, that lend support to the proposed model. Finally, to demonstrate its adaptability as new data further refines our understanding of H1 subtypes, we show how the model can be applied to experimental observations of telomeric heterochromatin in aging cells.
Collapse
|
5
|
Bensaude O. Inhibiting eukaryotic transcription: Which compound to choose? How to evaluate its activity? Transcription 2014; 2:103-108. [PMID: 21922053 DOI: 10.4161/trns.2.3.16172] [Citation(s) in RCA: 411] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 04/28/2011] [Indexed: 02/07/2023] Open
Abstract
This review first discusses ways in which we can evaluate transcription inhibition, describe changes in nuclear structure due to transcription inhibition, and report on genes that are paradoxically stimulated by transcription inhibition. Next, it summarizes the characteristics and mechanisms of commonly used inhibitors: α-amanitin is highly selective for RNAP II and RNAP III but its action is slow, actinomycin D is fast but its selectivity is poor, CDK9 inhibitors such as DRB and flavopiridol are fast and reversible but many genes escape transcription inhibition. New compounds, such as triptolide, are fast and selective and able to completely arrest transcription by triggering rapid degradation of RNAP II.
Collapse
|
6
|
Harshman SW, Hoover ME, Huang C, Branson OE, Chaney S, Cheney CM, Rosol TJ, Shapiro CL, Wysocki VH, Huebner K, Freitas MA. Histone H1 phosphorylation in breast cancer. J Proteome Res 2014; 13:2453-67. [PMID: 24601643 PMCID: PMC4012839 DOI: 10.1021/pr401248f] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Indexed: 12/18/2022]
Abstract
Breast cancer is the second leading cause of cancer-related deaths in women. The need for new clinical biomarkers in breast cancer is necessary to further predict prognosis and therapeutic response. In this article, the LC-MS histone H1 phosphorylation profiles were established for three distinct breast cancer cell lines. The results show that the extent of H1 phosphorylation can distinguish between the different cell lines. The histone H1 from the metastatic cell line, MDA-MB-231, was subjected to chemical derivitization and LC-MS/MS analysis. The results suggest that the phosphorylation at threonine 146 is found on both histone H1.2 and histone H1.4. Cell lines were then treated with an extracellular stimulus, estradiol or kinase inhibitor LY294002, to monitor changes in histone H1 phosphorylation. The data show that histone H1 phosphorylation can increase and decrease in response to extracellular stimuli. Finally, primary breast tissues were stained for the histone H1 phosphorylation at threonine 146. Variable staining patterns across tumor grades and subtypes were observed with pT146 labeling correlating with tumor grade. These results establish the potential for histone H1 phosphorylation at threonine 146 as a clinical biomarker in breast cancer.
Collapse
Affiliation(s)
- Sean W. Harshman
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Michael E. Hoover
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Chengsi Huang
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Owen E. Branson
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sarah
B. Chaney
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Carolyn M. Cheney
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Thomas J. Rosol
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Charles L. Shapiro
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Vicki H. Wysocki
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kay Huebner
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Michael A. Freitas
- Department of Molecular Virology, Immunology and
Medical Genetics, Comprehensive Cancer
Center, Department
of Chemistry & Biochemistry, Veterinary Biosciences, College of Veterinary
Medicine, and Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
7
|
Raghuram N, Strickfaden H, McDonald D, Williams K, Fang H, Mizzen C, Hayes JJ, Th'ng J, Hendzel MJ. Pin1 promotes histone H1 dephosphorylation and stabilizes its binding to chromatin. ACTA ACUST UNITED AC 2013; 203:57-71. [PMID: 24100296 PMCID: PMC3798258 DOI: 10.1083/jcb.201305159] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The prolyl isomerase Pin1 stimulates the dephosphorylation of histone H1, stabilizing its binding to chromatin at transcriptionally active chromatin. Histone H1 plays a crucial role in stabilizing higher order chromatin structure. Transcriptional activation, DNA replication, and chromosome condensation all require changes in chromatin structure and are correlated with the phosphorylation of histone H1. In this study, we describe a novel interaction between Pin1, a phosphorylation-specific prolyl isomerase, and phosphorylated histone H1. A sub-stoichiometric amount of Pin1 stimulated the dephosphorylation of H1 in vitro and modulated the structure of the C-terminal domain of H1 in a phosphorylation-dependent manner. Depletion of Pin1 destabilized H1 binding to chromatin only when Pin1 binding sites on H1 were present. Pin1 recruitment and localized histone H1 phosphorylation were associated with transcriptional activation independent of RNA polymerase II. We thus identify a novel form of histone H1 regulation through phosphorylation-dependent proline isomerization, which has consequences on overall H1 phosphorylation levels and the stability of H1 binding to chromatin.
Collapse
Affiliation(s)
- Nikhil Raghuram
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Harshman SW, Young NL, Parthun MR, Freitas MA. H1 histones: current perspectives and challenges. Nucleic Acids Res 2013; 41:9593-609. [PMID: 23945933 PMCID: PMC3834806 DOI: 10.1093/nar/gkt700] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
H1 and related linker histones are important both for maintenance of higher-order chromatin structure and for the regulation of gene expression. The biology of the linker histones is complex, as they are evolutionarily variable, exist in multiple isoforms and undergo a large variety of posttranslational modifications in their long, unstructured, NH2- and COOH-terminal tails. We review recent progress in understanding the structure, genetics and posttranslational modifications of linker histones, with an emphasis on the dynamic interactions of these proteins with DNA and transcriptional regulators. We also discuss various experimental challenges to the study of H1 and related proteins, including limitations of immunological reagents and practical difficulties in the analysis of posttranslational modifications by mass spectrometry.
Collapse
Affiliation(s)
- Sean W Harshman
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, USA, College of Medicine and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio, USA, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA and Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | | | | | | |
Collapse
|
9
|
Willis RE. Human gene control by vital oncogenes: revisiting a theoretical model and its implications for targeted cancer therapy. Int J Mol Sci 2011; 13:316-35. [PMID: 22312254 PMCID: PMC3269688 DOI: 10.3390/ijms13010316] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/18/2011] [Accepted: 12/20/2011] [Indexed: 12/31/2022] Open
Abstract
An important assumption of our current understanding of the mechanisms of carcinogenesis has been the belief that clarification of the cancer process would inevitably reveal some of the crucial mechanisms of normal human gene regulation. Since the momentous work of Bishop and Varmus, both the molecular and the biochemical processes underlying the events in the development of cancer have become increasingly clear. The identification of cellular signaling pathways and the role of protein kinases in the events leading to gene activation have been critical to our understanding not only of normal cellular gene control mechanisms, but also have clarified some of the important molecular and biochemical events occurring within a cancer cell. We now know that oncogenes are dysfunctional proto-oncogenes and that dysfunctional tumor suppressor genes contribute to the cancer process. Furthermore, Weinstein and others have hypothesized the phenomenon of oncogene addiction as a distinct characteristic of the malignant cell. It can be assumed that cancer cells, indeed, become dependent on such vital oncogenes. The products of these vital oncogenes, such as c-myc, may well be the Achilles heel by which targeted molecular therapy may lead to truly personalized cancer therapy. The remaining problem is the need to introduce relevant molecular diagnostic tests such as genome microarray analysis and proteomic methods, especially protein kinase identification arrays, for each individual patient. Genome wide association studies on cancers with gene analysis of single nucleotide and other mutations in functional proto-oncogenes will, hopefully, identify dysfunctional proto-oncogenes and allow the development of more specific targeted drugs directed against the protein products of these vital oncogenes. In 1984 Willis proposed a molecular and biochemical model for eukaryotic gene regulation suggesting how proto-oncogenes might function within the normal cell. That model predicted the existence of vital oncogenes and can now be used to hypothesize the biochemical and molecular mechanisms that drive the processes leading to disruption of the gene regulatory machinery, resulting in the transformation of normal cells into cancer.
Collapse
Affiliation(s)
- Rudolph E Willis
- Department of Medical Oncology, Cancer Treatment Centers of America, Eastern Regional Medical Center, 1331 Wyoming Ave, Philadelphia, PA 19124, USA; E-Mail: ; Tel.: +1-215-537-7545
| |
Collapse
|
10
|
Oleggini R, Di Donato A. Lysyl oxidase regulates MMTV promoter: indirect evidence of histone H1 involvement. Biochem Cell Biol 2011; 89:522-32. [DOI: 10.1139/o11-049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lysyl oxidase (LOX) is the enzyme that facilitates the cross-linking of collagen and elastin, although other functions for this enzyme have been indicated. Of these other functions, we describe herein the ability of LOX to regulate several gene promoters, like collagen III, elastin, and cyclin D1. We have previously demonstrated a specific binding between LOX and histone H1, in vitro. Therefore, we investigated whether LOX would affect the mouse mammary tumor virus (MMTV) promoter and its glucocorticoid regulation, which depends on the phophorylation status of histone H1. Our results show that the over-expression of recombinant human LOX was able to trigger MMTV activity, both in the presence and absence of glucocorticoids. Moreover, we demonstrated that histone H1 from cells expressing recombinant LOX contained isodesmosine and desmosine, indicating specific lysyl-oxidase-dependent lysine modifications. Finally, we were able to co-immunoprecipitate the exogenous LOX and histone H1 from the LOX transfected cells. The data are compatible with a decreased positive charge of histone H1, owing to deamination by LOX of its lysine residues. This event would favor H1 detachment from the target DNA, and consequent opening of the MMTV promoter structure to the activating transcription factors. The presented data, therefore, suggest a possible histone-H1-dependent mechanism for the modulation of MMTV promoter by LOX.
Collapse
|
11
|
Gréen A, Sarg B, Gréen H, Lönn A, Lindner HH, Rundquist I. Histone H1 interphase phosphorylation becomes largely established in G1 or early S phase and differs in G1 between T-lymphoblastoid cells and normal T cells. Epigenetics Chromatin 2011; 4:15. [PMID: 21819549 PMCID: PMC3177758 DOI: 10.1186/1756-8935-4-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Accepted: 08/05/2011] [Indexed: 01/01/2023] Open
Abstract
Background Histone H1 is an important constituent of chromatin, and is involved in regulation of its structure. During the cell cycle, chromatin becomes locally decondensed in S phase, highly condensed during metaphase, and again decondensed before re-entry into G1. This has been connected to increasing phosphorylation of H1 histones through the cell cycle. However, many of these experiments have been performed using cell-synchronization techniques and cell cycle-arresting drugs. In this study, we investigated the H1 subtype composition and phosphorylation pattern in the cell cycle of normal human activated T cells and Jurkat T-lymphoblastoid cells by capillary electrophoresis after sorting of exponentially growing cells into G1, S and G2/M populations. Results We found that the relative amount of H1.5 protein increased significantly after T-cell activation. Serine phosphorylation of H1 subtypes occurred to a large extent in late G1 or early S phase in both activated T cells and Jurkat cells. Furthermore, our data confirm that the H1 molecules newly synthesized during S phase achieve a similar phosphorylation pattern to the previous ones. Jurkat cells had more extended H1.5 phosphorylation in G1 compared with T cells, a difference that can be explained by faster cell growth and/or the presence of enhanced H1 kinase activity in G1 in Jurkat cells. Conclusion Our data are consistent with a model in which a major part of interphase H1 phosphorylation takes place in G1 or early S phase. This implies that H1 serine phosphorylation may be coupled to changes in chromatin structure necessary for DNA replication. In addition, the increased H1 phosphorylation of malignant cells in G1 may be affecting the G1/S transition control and enabling facilitated S-phase entry as a result of relaxed chromatin condensation. Furthermore, increased H1.5 expression may be coupled to the proliferative capacity of growth-stimulated T cells.
Collapse
Affiliation(s)
- Anna Gréen
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, SE-58185 Linköping, Sweden.
| | | | | | | | | | | |
Collapse
|
12
|
Zheng Y, John S, Pesavento JJ, Schultz-Norton JR, Schiltz RL, Baek S, Nardulli AM, Hager GL, Kelleher NL, Mizzen CA. Histone H1 phosphorylation is associated with transcription by RNA polymerases I and II. ACTA ACUST UNITED AC 2010; 189:407-15. [PMID: 20439994 PMCID: PMC2867294 DOI: 10.1083/jcb.201001148] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Histone H1 phosphorylation affects chromatin condensation and function, but little is known about how specific phosphorylations impact the function of H1 variants in higher eukaryotes. In this study, we show that specific sites in H1.2 and H1.4 of human cells are phosphorylated only during mitosis or during both mitosis and interphase. Antisera generated to individual H1.2/H1.4 interphase phosphorylations reveal that they are distributed throughout nuclei and enriched in nucleoli. Moreover, interphase phosphorylated H1.4 is enriched at active 45S preribosomal RNA gene promoters and is rapidly induced at steroid hormone response elements by hormone treatment. Our results imply that site-specific interphase H1 phosphorylation facilitates transcription by RNA polymerases I and II and has an unanticipated function in ribosome biogenesis and control of cell growth. Differences in the numbers, structure, and locations of interphase phosphorylation sites may contribute to the functional diversity of H1 variants.
Collapse
Affiliation(s)
- Yupeng Zheng
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Histone H1 subtypes differentially modulate chromatin condensation without preventing ATP-dependent remodeling by SWI/SNF or NURF. PLoS One 2009; 4:e0007243. [PMID: 19794910 PMCID: PMC2748705 DOI: 10.1371/journal.pone.0007243] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 09/07/2009] [Indexed: 12/16/2022] Open
Abstract
Although ubiquitously present in chromatin, the function of the linker histone subtypes is partly unknown and contradictory studies on their properties have been published. To explore whether the various H1 subtypes have a differential role in the organization and dynamics of chromatin we have incorporated all of the somatic human H1 subtypes into minichromosomes and compared their influence on nucleosome spacing, chromatin compaction and ATP-dependent remodeling. H1 subtypes exhibit different affinities for chromatin and different abilities to promote chromatin condensation, as studied with the Atomic Force Microscope. According to this criterion, H1 subtypes can be classified as weak condensers (H1.1 and H1.2), intermediate condensers (H1.3) and strong condensers (H1.0, H1.4, H1.5 and H1x). The variable C-terminal domain is required for nucleosome spacing by H1.4 and is likely responsible for the chromatin condensation properties of the various subtypes, as shown using chimeras between H1.4 and H1.2. In contrast to previous reports with isolated nucleosomes or linear nucleosomal arrays, linker histones at a ratio of one per nucleosome do not preclude remodeling of minichromosomes by yeast SWI/SNF or Drosophila NURF. We hypothesize that the linker histone subtypes are differential organizers of chromatin, rather than general repressors.
Collapse
|
14
|
Raghuram N, Carrero G, Th’ng J, Hendzel MJ. Molecular dynamics of histone H1This paper is one of a selection of papers published in this Special Issue, entitled CSBMCB’s 51st Annual Meeting – Epigenetics and Chromatin Dynamics, and has undergone the Journal’s usual peer review process. Biochem Cell Biol 2009; 87:189-206. [DOI: 10.1139/o08-127] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The histone H1 family of nucleoproteins represents an important class of structural and architectural proteins that are responsible for maintaining and stabilizing higher-order chromatin structure. Essential for mammalian cell viability, they are responsible for gene-specific regulation of transcription and other DNA-dependent processes. In this review, we focus on the wealth of information gathered on the molecular kinetics of histone H1 molecules using novel imaging techniques, such as fluorescence recovery after photobleaching. These experiments have shed light on the effects of H1 phosphorylation and core histone acetylation in influencing chromatin structure and dynamics. We also delineate important concepts surrounding the C-terminal domain of H1, such as the intrinsic disorder hypothesis, and how it affects H1 function. Finally, we address the biochemical mechanisms behind low-affinity H1 binding.
Collapse
Affiliation(s)
- Nikhil Raghuram
- Department of Oncology, University of Alberta, University Avenue NW, Edmonton, AB T6G 1Z2, Canada
- Mathematics, Center for Science, Athabasca University, Edmonton, AB T5J 3S8, Canada
- Regional Cancer Centre, Medical Science Division, Northern Ontario School of Medicine, Thunder Bay Regional Health Sciences Centre, Thunder Bay, ON P7B 6V4, Canada
| | - Gustavo Carrero
- Department of Oncology, University of Alberta, University Avenue NW, Edmonton, AB T6G 1Z2, Canada
- Mathematics, Center for Science, Athabasca University, Edmonton, AB T5J 3S8, Canada
- Regional Cancer Centre, Medical Science Division, Northern Ontario School of Medicine, Thunder Bay Regional Health Sciences Centre, Thunder Bay, ON P7B 6V4, Canada
| | - John Th’ng
- Department of Oncology, University of Alberta, University Avenue NW, Edmonton, AB T6G 1Z2, Canada
- Mathematics, Center for Science, Athabasca University, Edmonton, AB T5J 3S8, Canada
- Regional Cancer Centre, Medical Science Division, Northern Ontario School of Medicine, Thunder Bay Regional Health Sciences Centre, Thunder Bay, ON P7B 6V4, Canada
| | - Michael J. Hendzel
- Department of Oncology, University of Alberta, University Avenue NW, Edmonton, AB T6G 1Z2, Canada
- Mathematics, Center for Science, Athabasca University, Edmonton, AB T5J 3S8, Canada
- Regional Cancer Centre, Medical Science Division, Northern Ontario School of Medicine, Thunder Bay Regional Health Sciences Centre, Thunder Bay, ON P7B 6V4, Canada
| |
Collapse
|
15
|
Functional Evolution of Cyclin-Dependent Kinases. Mol Biotechnol 2009; 42:14-29. [DOI: 10.1007/s12033-008-9126-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 11/01/2008] [Indexed: 10/21/2022]
|
16
|
Fousteri M, van Hoffen A, Vargova H, Mullenders LHF. Repair of DNA lesions in chromosomal DNA. DNA Repair (Amst) 2005; 4:919-25. [PMID: 15961352 DOI: 10.1016/j.dnarep.2005.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2005] [Indexed: 10/25/2022]
Abstract
Decondensation of chromatin is essential to facilitate access to DNA metabolizing processes such as transcription and DNA repair. Disruption of histone-DNA contacts by histone modification or by ATP dependent chromatin remodelling allows DNA-binding proteins to compete with histones for DNA. The efficiency of global genome nucleotide excision repair (GGR) that removes a variety of helix distorting DNA lesions is known to be affected by chromatin structure most notably demonstrated by the slow repair of heterochromatin. In addition, the efficiency of GGR to repair lesions in transcriptionally active genes requires functional CSA and B proteins. We found that repair of UV-photolesions in both strands of the active adenosine deaminase gene was delayed in CS cells when compared to normal human fibroblasts. We suggest that the lack of transcription recovery characteristic for CS cells exposed to DNA damaging agents, might lead to changes in the chromatin structure of active genes, causing less efficient repair of lesions in these genes when compared to normal cells.
Collapse
Affiliation(s)
- Maria Fousteri
- Department of Toxicogenetics, Leiden University Medical Centre, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands
| | | | | | | |
Collapse
|
17
|
Dou Y, Song X, Liu Y, Gorovsky MA. The H1 phosphorylation state regulates expression of CDC2 and other genes in response to starvation in Tetrahymena thermophila. Mol Cell Biol 2005; 25:3914-22. [PMID: 15870266 PMCID: PMC1087734 DOI: 10.1128/mcb.25.10.3914-3922.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Tetrahymena thermophila, highly phosphorylated histone H1 of growing cells becomes partially dephosphorylated when cells are starved in preparation for conjugation. To determine the effects of H1 phosphorylation on gene expression, PCR-based subtractive hybridization was used to clone cDNAs that were differentially expressed during starvation in two otherwise-isogenic strains differing only in their H1s. H1 in A5 mutant cells lacked phosphorylation, and H1 in E5 cells mimicked constitutive H1 phosphorylation. Sequences enriched in A5 cells included genes encoding proteases. Sequences enriched in E5 cells included genes encoding cdc2 kinase and a Ser/Thr kinase. These results indicate that H1 phosphorylation plays an important role in regulating the pattern of gene expression during the starvation response and that its role in transcription regulation can be either positive or negative. Treatment of starved cells with a phosphatase inhibitor caused CDC2 gene overexpression. Expression of the E5 version of H1 in starved cells containing endogenous, wild-type H1 caused the wild-type H1 to remain highly phosphorylated. These results argue that Cdc2p is the kinase that phosphorylates Tetrahymena H1, establish a positive feedback mechanism between H1 phosphorylation and CDC2 expression, and indicate that CDC2 gene expression is regulated by an H1 phosphatase.
Collapse
Affiliation(s)
- Yali Dou
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | | | | |
Collapse
|
18
|
Dunn KL, Espino PS, Drobic B, He S, Davie JR. The Ras-MAPK signal transduction pathway, cancer and chromatin remodeling. Biochem Cell Biol 2005; 83:1-14. [PMID: 15746962 DOI: 10.1139/o04-121] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Stimulation of the Ras-mitogen-activated protein kinase (MAPK) signal transduction pathway results in a multitude of events including expression of the immediate-early genes, c-fos and c-myc. Downstream targets of this stimulated pathway are the mitogen- and stress-activated protein kinases (MSK) 1 and 2, which are histone H3 kinases. In chromatin immunoprecipitation assays, it has been shown that the mitogen-induced phosphorylated H3 is associated with the immediate-early genes and that MSK1/2 activity and H3 phosphorylation have roles in chromatin remodeling and transcription of these genes. In oncogene-transformed fibroblasts in which the Ras-MAPK pathway is constitutively active, histone H1 and H3 phosphorylation is increased and the chromatin of these cells has a more relaxed structure than the parental cells. In this review we explore the deregulation of the Ras-MAPK pathway in cancer, with an emphasis on breast cancer. We discuss the features of MSK1 and 2 and the impact of a constitutively activated Ras-MAPK pathway on chromatin remodeling and gene expression.Key words: Ras, mitogen-activated protein kinase signal transduction pathway, histone H3 phosphorylation, MSK1, breast cancer.
Collapse
Affiliation(s)
- Katherine L Dunn
- Manitoba Institute of Cell Biology, University of Manitoba, 675 McDermot Avenue, Winnipeg, MB R3E 0V9, Canada
| | | | | | | | | |
Collapse
|
19
|
Sun JM, Spencer VA, Li L, Yu Chen H, Yu J, Davie JR. Estrogen regulation of trefoil factor 1 expression by estrogen receptor alpha and Sp proteins. Exp Cell Res 2005; 302:96-107. [PMID: 15541729 DOI: 10.1016/j.yexcr.2004.08.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 08/13/2004] [Indexed: 10/26/2022]
Abstract
Estrogen-responsive genes in human breast cancer cells often have an estrogen response element (ERE) positioned next to an Sp1 binding site. In chromatin immunoprecipitation (ChIP) assays, we investigated the binding of estrogen receptor alpha (ER), Sp1, and Sp3 to the episomal and native estrogen-responsive trefoil factor 1 (TFF1; formerly pS2) promoter in MCF-7 breast cancer cells. Mutation of the Sp site upstream of the ERE reduced estrogen responsiveness and prevented binding of Sp1 and Sp3, but not ER to the episomal promoter. In the absence of estradiol (E2), Sp1, Sp3, histone deacetylase 1 (HDAC), and HDAC2, and low levels of acetylated H3 and H4 are associated with the native promoter, with the histones being engaged in dynamic reversible acetylation. Following E2 addition, levels of ER and acetylated H3 and H4 bound to the native promoter increases. There is clearance of Sp1, but not of Sp3, from the promoter while HDAC1 and HDAC2 remain bound. These data are consistent with a model in which Sp1 or Sp3 aid in recruitment of HDACs and histone acetyltransferases (HATs) to mediate dynamic acetylation of histones associated with the TFF1 promoter, which is in a state of readiness to respond to events occurring following the addition of estrogen.
Collapse
Affiliation(s)
- Jian-Min Sun
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba, R3E 0V9, Canada
| | | | | | | | | | | |
Collapse
|
20
|
Histone modifications. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s0167-7306(03)39009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
21
|
Contreras A, Hale TK, Stenoien DL, Rosen JM, Mancini MA, Herrera RE. The dynamic mobility of histone H1 is regulated by cyclin/CDK phosphorylation. Mol Cell Biol 2003; 23:8626-36. [PMID: 14612406 PMCID: PMC262667 DOI: 10.1128/mcb.23.23.8626-8636.2003] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The linker histone H1 is involved in maintaining higher-order chromatin structures and displays dynamic nuclear mobility, which may be regulated by posttranslational modifications. To analyze the effect of H1 tail phosphorylation on the modulation of the histone's nuclear dynamics, we generated a mutant histone H1, referred to as M1-5, in which the five cyclin-dependent kinase phosphorylation consensus sites were mutated from serine or threonine residues into alanines. Cyclin E/CDK2 or cyclin A/CDK2 cannot phosphorylate the mutant in vitro. Using the technique of fluorescence recovery after photobleaching, we observed that the mobility of a green fluorescent protein (GFP)-M1-5 fusion protein is decreased compared to that of a GFP-wild-type H1 fusion protein. In addition, recovery of H1 correlated with CDK2 activity, as GFP-H1 mobility was decreased in cells with low CDK2 activity. Blocking the activity of CDK2 by p21 expression decreased the mobility of GFP-H1 but not that of GFP-M1-5. Finally, the level and rate of recovery of cyan fluorescent protein (CFP)-M1-5 were lower than those of CFP-H1 specifically in heterochromatic regions. These data suggest that CDK2 phosphorylates histone H1 in vivo, resulting in a more open chromatin structure by destabilizing H1-chromatin interactions.
Collapse
Affiliation(s)
- Alejandro Contreras
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
22
|
Konishi A, Shimizu S, Hirota J, Takao T, Fan Y, Matsuoka Y, Zhang L, Yoneda Y, Fujii Y, Skoultchi AI, Tsujimoto Y. Involvement of Histone H1.2 in Apoptosis Induced by DNA Double-Strand Breaks. Cell 2003; 114:673-88. [PMID: 14505568 DOI: 10.1016/s0092-8674(03)00719-0] [Citation(s) in RCA: 236] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
It is poorly understood how apoptotic signals arising from DNA damage are transmitted to mitochondria, which release apoptogenic factors into the cytoplasm that activate downstream destruction programs. Here, we identify histone H1.2 as a cytochrome c-releasing factor that appears in the cytoplasm after exposure to X-ray irradiation. While all nuclear histone H1 forms are released into the cytoplasm in a p53-dependent manner after irradiation, only H1.2, but not other H1 forms, induced cytochrome c release from isolated mitochondria in a Bak-dependent manner. Reducing H1.2 expression enhanced cellular resistance to apoptosis induced by X-ray irradiation or etoposide, but not that induced by other stimuli including TNF-alpha and UV irradiation. H1.2-deficient mice exhibited increased cellular resistance in thymocytes and the small intestine to X-ray-induced apoptosis. These results indicate that histone H1.2 plays an important role in transmitting apoptotic signals from the nucleus to the mitochondria following DNA double-strand breaks.
Collapse
Affiliation(s)
- Akimitsu Konishi
- Department of Post-Genomics and Diseases, Osaka University Medical School, 2-2 Yamadaoka, Suita, 565-0871, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Giampuzzi M, Oleggini R, Di Donato A. Demonstration of in vitro interaction between tumor suppressor lysyl oxidase and histones H1 and H2: definition of the regions involved. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1647:245-51. [PMID: 12686141 DOI: 10.1016/s1570-9639(03)00059-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lysyl oxidase (LOX) is the enzyme that cross-links extracellular collagen and tropoelastin and is involved in tumor suppressor activity. Based on the existent homologies between lysine-rich regions of tropoelastin and the "lysine-rich" histone H1, we tested the possibility that H1 could be a new nuclear target. Our study shows that LOX could actually interact specifically not only with histone H1, but also with histone H2. Mechanisms and significance of these interactions are discussed in detail.
Collapse
Affiliation(s)
- Monia Giampuzzi
- Laboratorio di Nefrologia, Istituto G. Gaslini, Largo G. Gaslini, 5, 16147 Genova, Italy
| | | | | |
Collapse
|
24
|
Chadee DN, Peltier CP, Davie JR. Histone H1(S)-3 phosphorylation in Ha-ras oncogene-transformed mouse fibroblasts. Oncogene 2002; 21:8397-403. [PMID: 12466960 DOI: 10.1038/sj.onc.1206029] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2002] [Revised: 08/30/2002] [Accepted: 09/04/2002] [Indexed: 11/08/2022]
Abstract
Phosphorylation of linker histone H1(S)-3 (previously named H1b) and core histone H3 is elevated in mouse fibroblasts transformed with oncogenes or constitutively active mitogen-activated protein kinase (MAPK) kinase (MEK). H1(S)-3 phosphorylation is the only histone modification known to be dependent upon transcription and replication. Our results show that the increased amounts of phosphorylated H1(S)-3 in the oncogene Ha-ras-transformed mouse fibroblasts was a consequence of an elevated Cdk2 activity rather than the reduced activity of a H1 phosphatase, which our studies suggest is PP1. Induction of oncogenic ras expression results in an increase in H1(S)-3 and H3 phosphorylation. However, in contrast to the phosphorylation of H3, which occurred immediately following the onset of Ras expression, there was a lag of several hours before H1(S)-3 phosphorylation levels increased. We found that there was a transient increase in the levels of p21(cip1), which inhibited the H1 kinase activity of Cdk2. Cdk2 activity and H1(S)-3 phosphorylated levels increased after p21(cip1) levels declined. Our studies suggest that persistent activation of the Ras-MAPK signal transduction pathway in oncogene-transformed cells results in deregulated activity of kinases phosphorylating H3 and H1(S)-3 associated with transcribed genes. The chromatin remodelling actions of these modified histones may result in aberrant gene expression.
Collapse
Affiliation(s)
- Deborah N Chadee
- Manitoba Institute of Cell Biology, 675 McDermot Avenue, Winnipeg, Manitoba, R3E 0V9 Canada
| | | | | |
Collapse
|
25
|
Banks GC, Deterding LJ, Tomer KB, Archer TK. Hormone-mediated dephosphorylation of specific histone H1 isoforms. J Biol Chem 2001; 276:36467-73. [PMID: 11479299 DOI: 10.1074/jbc.m104641200] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown a connection between histone H1 phosphorylation and the transcriptional competence of the hormone inducible mouse mammary tumor virus (MMTV) promoter. Prolonged exposure of mouse cells to dexamethasone concurrently dephosphorylated histone H1 and rendered the MMTV promoter refractory to hormonal stimulation and, therefore, transcriptionally unresponsive. Using electrospray mass spectrometry, we demonstrate here that prolonged dexamethasone treatment differentially effects a subset of the six somatic H1 isoforms in mouse cells. H1 isoforms H1.0, H1.1, and H1.2 are non-responsive to hormone whereas prolonged dexamethasone treatment effectively dephosphorylated the H1.3, H1.4, and H1.5 isoforms. The protein kinase inhibitor staurosporine, shown to dephosphorylate histone H1 and down-regulate MMTV in cultured cells, appears only to completely dephosphorylate the H1.3 isoform. These results suggest that dephosphorylation of specific histone H1 isoforms may contribute to the previously observed decrease in transcriptional competence of the MMTV promoter through the modulation of chromatin structure. In a broader sense, this work advances the hypothesis that post-translational modifications of individual histone H1 isoforms directly influence the transcriptional activation/repression of specific genes.
Collapse
Affiliation(s)
- G C Banks
- Laboratories of Reproductive and Developmental Toxicology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
26
|
Parseghian MH, Hamkalo BA. A compendium of the histone H1 family of somatic subtypes: An elusive cast of characters and their characteristics. Biochem Cell Biol 2001. [DOI: 10.1139/o01-099] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The last 35 years has seen a substantial amount of information collected about the somatic H1 subtypes, yet much of this work has been overshadowed by research into highly divergent isoforms of H1, such as H5. Reports from several laboratories in the past few years have begun to call into question some of the traditional views regarding the general function of linker histones and their heterogeneity. Hence, the impression in some circles is that less is known about these ubiquitous nuclear proteins as compared with the core histones. The goal of the following review is to acquaint the reader with the ubiquitous somatic H1s by categorizing them and their characteristics into several classes. The reasons for our current state of misunderstanding is put into a historical context along with recent controversies centering on the role of H1 in the nucleus. Finally, we propose a model that may explain the functional role of H1 heterogeneity in chromatin compaction.Key words: histone H1, linker histones, chromatin organization, chromatin compaction, heat shock.
Collapse
|
27
|
Green GR. Phosphorylation of histone variant regions in chromatin: Unlocking the linker? Biochem Cell Biol 2001. [DOI: 10.1139/o01-075] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Histone variants illuminate the behavior of chromatin through their unique structures and patterns of postsynthetic modification. This review examines the literature on heteromorphous histone structures in chromatin, structures that are primary targets for histone kinases and phosphatases in vivo. Special attention is paid to certain well-studied experimental systems: mammalian culture cells, chicken erythrocytes, sea urchin sperm, wheat sprouts, Tetrahymena, and budding yeast. A common theme emerges from these studies. Specialized, highly basic structures in histone variants promote chromatin condensation in a variety of developmental situations. Before, and sometimes after condensed chromatin is formed, the chromatin is rendered soluble by phosphorylation of the heteromorphous regions, preventing their interaction with linker DNA. A simple structural model accounting for histone variation and phosphorylation is presented.Key words: phosphorylation, histone variants, chromatin, linker DNA.
Collapse
|
28
|
Lever MA, Th'ng JP, Sun X, Hendzel MJ. Rapid exchange of histone H1.1 on chromatin in living human cells. Nature 2000; 408:873-6. [PMID: 11130728 DOI: 10.1038/35048603] [Citation(s) in RCA: 315] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The considerable length of DNA in eukaryotic genomes requires packaging into chromatin to fit inside the small dimensions of the cell nucleus. Histone H1 functions in the compaction of chromatin into higher order structures derived from the repeating 'beads on a string' nucleosome polymer. Modulation of H1 binding activity is thought to be an important step in the potentiation/depotentiation of chromatin structure for transcription. It is generally accepted that H1 binds less tightly than other histones to DNA in chromatin and can readily exchange in living cells. Fusion proteins of Histone H1 and green fluorescent protein (GFP) have been shown to associate with chromatin in an apparently identical fashion to native histone H1. This provides a means by which to study histone H1-chromatin interactions in living cells. Here we have used human cells with a stably integrated H1.1-GFP fusion protein to monitor histone H1 movement directly by fluorescence recovery after photobleaching in living cells. We find that exchange is rapid in both condensed and decondensed chromatin, occurs throughout the cell cycle, and does not require fibre-fibre interactions. Treatment with drugs that alter protein phosphorylation significantly reduces exchange rates. Our results show that histone H1 exchange in vivo is rapid, occurs through a soluble intermediate, and is modulated by the phosphorylation of a protein or proteins as yet to be determined.
Collapse
Affiliation(s)
- M A Lever
- Department of Oncology and Cross Cancer Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
29
|
Davie JR, Spencer VA. Signal transduction pathways and the modification of chromatin structure. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000; 65:299-340. [PMID: 11008491 DOI: 10.1016/s0079-6603(00)65008-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Mechanical and chemical signaling pathways are involved in transmitting information from the exterior of a cell to its chromatin. The mechanical signaling pathway consists of a tissue matrix system that links together the three-dimensional skeletal networks, the extracellular matrix, cytoskeleton, and karyoskeleton. The tissue matrix system governs cell and nuclear shape and forms a structural and functional connection between the cell periphery and chromatin. Further, this mechanical signaling pathway has a role in controlling cell cycle progression and gene expression. Chemical signaling pathways such as the Ras/mitogen-activated protein kinase (MAPK) pathway can stimulate the activity of kinases that modify transcription factors, nonhistone chromosomal proteins, and histones. Activation of the Ras/MAPK pathway results in the alteration of chromatin structure and gene expression. The tissue matrix and chemical signaling pathways are not independent and one signaling pathway can affect the other. In this chapter, we will review chromatin organization, histone variants and modifications, and the impact that signaling pathways have on chromatin structure and function.
Collapse
Affiliation(s)
- J R Davie
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
30
|
Mizzen CA, Alpert AJ, Lévesque L, Kruck TP, McLachlan DR. Resolution of allelic and non-allelic variants of histone H1 by cation-exchange-hydrophilic-interaction chromatography. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2000; 744:33-46. [PMID: 10985564 DOI: 10.1016/s0378-4347(00)00210-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A mixed-mode high-performance liquid chromatography (HPLC) method that resolves the six known non-allelic variants of chicken erythrocyte histone H1 is described. Common, but previously unknown, allelic variants of H1 that comigrate in polyacrylamide gel electrophoresis are also resolved. The resolution of H1 variants achieved by this method should be useful in determining the functional significance of H1 sequence heterogeneity and in analyses of post-translational modification of H1. Furthermore, the principles behind the separation should be applicable to analyses of polymorphism in other proteins.
Collapse
Affiliation(s)
- C A Mizzen
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
31
|
Davie JR, Samuel SK, Spencer VA, Holth LT, Chadee DN, Peltier CP, Sun JM, Chen HY, Wright JA. Organization of chromatin in cancer cells: role of signalling pathways. Biochem Cell Biol 1999. [DOI: 10.1139/o99-044] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The role of mechanical and chemical signalling pathways in the organization and function of chromatin is the subject of this review. The mechanical signalling pathway consists of the tissue matrix system that links together the three-dimensional skeletal networks, the extracellular matrix, cytoskeleton, and nuclear matrix. Intermediate filament proteins are associated with nuclear DNA, suggesting that intermediate filaments may have a role in the organization of chromatin. In human hormone-dependent breast cancer cells, the interaction between cytokeratins and chromatin is regulated by estrogens. Transcription factors, histone acetyltransferases, and histone deacetylases, which are associated with the nuclear matrix, are components of the mechanical signalling pathway. Recently, we reported that nuclear matrix-bound human and chicken histone deacetylase 1 is associated with nuclear DNA in situ, suggesting that histone deacetylase has a role in the organization of nuclear DNA. Chemical signalling pathways such as the Ras/mitogen-activated protein kinase (Ras/MAPK) pathway stimulate the activity of kinases that modify transcription factors, nonhistone chromosomal proteins, and histones. The levels of phosphorylated histones are increased in mouse fibroblasts transformed with oncogenes, the products of which stimulate the Ras/MAPK pathway. Histone phosphorylation may lead to decondensation of chromatin, resulting in aberrant gene expression.Key words: histone acetylation, histone phosphorylation, nuclear matrix, cytoskeleton, histone deacetylase, cancer.
Collapse
|
32
|
Guo CY, Wang Y, Brautigan DL, Larner JM. Histone H1 dephosphorylation is mediated through a radiation-induced signal transduction pathway dependent on ATM. J Biol Chem 1999; 274:18715-20. [PMID: 10373485 DOI: 10.1074/jbc.274.26.18715] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ionizing radiation is known to activate multiple signal transduction pathways, but the targets of these pathways are poorly understood. Phosphorylation of histone H1 is thought to have a role in chromatin condensation/decondensation, and we asked whether ionizing radiation (IR) would alter H1 phosphorylation. Our data demonstrate that low doses of IR result in a dramatic, but transient, dephosphorylation of H1 isoforms. The in vivo IR-induced dephosphorylation of H1 is completely blocked by wortmannin and is abrogated in ataxia telangiectasia cells. Furthermore, we measured radiation-induced inhibition of cyclin dependent kinase activity and activation of histone H1 phosphatase activity. Both activities were affected by radiation-induced signals in an ATM-dependent manner. Thus, the rapid IR-induced dephosphorylation of H1 involves a pathway including ATM and a wortmannin-sensitive step leading to both inhibition of cyclin-dependent kinase activities as well as activation of H1 phosphatase(s).
Collapse
Affiliation(s)
- C Y Guo
- Department of Radiation Oncology, University of Virginia Health Science System, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
33
|
Mizzen CA, Dou Y, Liu Y, Cook RG, Gorovsky MA, Allis CD. Identification and mutation of phosphorylation sites in a linker histone. Phosphorylation of macronuclear H1 is not essential for viability in tetrahymena. J Biol Chem 1999; 274:14533-6. [PMID: 10329641 DOI: 10.1074/jbc.274.21.14533] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Linker histone phosphorylation has been suggested to play roles in both chromosome condensation and transcriptional regulation. In the ciliated protozoan Tetrahymena, in contrast to many eukaryotes, histone H1 of macronuclei is highly phosphorylated during interphase. Macronuclei divide amitotically without overt chromosome condensation in this organism, suggesting that requirements for phosphorylation of macronuclear H1 may be limited to transcriptional regulation. Here we report the major sites of phosphorylation of macronuclear H1 in Tetrahymena thermophila. Five phosphorylation sites, present in a single cluster, were identified by sequencing 32P-labeled peptides isolated from tryptic peptide maps. Phosphothreonine was detected within two TPVK motifs and one TPTK motif that resemble established p34(cdc2) kinase consensus sequences. Phosphoserine was detected at two non-proline-directed sites that do not resemble known kinase consensus sequences. Phosphorylation at the two noncanonical sites appears to be hierarchical because it was observed only when a nearby p34(cdc2) site was also phosphorylated. Cells expressing macronuclear H1 containing alanine substitutions at all five of these phosphorylation sites were viable even though macronuclear H1 phosphorylation was abolished. These data suggest that the five sites identified comprise the entire collection of sites utilized by Tetrahymena and demonstrate that phosphorylation of macronuclear H1, like the protein itself, is not essential for viability in Tetrahymena.
Collapse
Affiliation(s)
- C A Mizzen
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | |
Collapse
|
34
|
Montecino M, van Wijnen AJ, Lian JB, Stein JL, Stein GS. Phosphorylation-mediated control of chromatin organization and transcriptional activity of the tissue-specific osteocalcin gene. J Cell Biochem 1999; 72:586-94. [PMID: 10022617 DOI: 10.1002/(sici)1097-4644(19990315)72:4<586::aid-jcb13>3.0.co;2-k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have analyzed the linkage of protein phosphorylation to the remodeling of chromatin structure that accompanies transcriptional activity of the rat osteocalcin (OC) gene in bone-derived cells. Short incubations with okadaic acid, an inhibitor of protein phosphatases 1 and 2A, induced marked changes in the chromatin organization of the OC gene promoter. These changes were reflected by loss of the two DNase I hypersensitive sites normally present in bone-derived cells expressing this gene. These hypersensitive sites include the elements that control basal tissue-specific expression, as well as steroid hormone regulation. Indeed, the absence of hypersensitivity was accompanied by inhibition of basal and vitamin D-dependent enhancement of OC gene transcription. The effects of okadaic acid on OC chromatin structure and gene activity were specific and reversible. Staurosporine, a protein kinase C inhibitor, did not significantly affect transcriptional activity or DNase I hypersensitivity of the OC gene. We conclude that cellular phosphorylation-dephosphorylation events distinct from protein kinase C-dependent reactions are required for both chromatin remodeling and transcriptional activity of the OC gene in osseous cells.
Collapse
Affiliation(s)
- M Montecino
- Department of Cell Biology & Cancer Center, University of Massachusetts Medical Center, Worcester 01655, USA
| | | | | | | | | |
Collapse
|
35
|
Walia H, Chen HY, Sun JM, Holth LT, Davie JR. Histone acetylation is required to maintain the unfolded nucleosome structure associated with transcribing DNA. J Biol Chem 1998; 273:14516-22. [PMID: 9603965 DOI: 10.1074/jbc.273.23.14516] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleosomes associated with transcribing chromatin of mammalian cells have an unfolded structure in which the normally buried cysteinyl-thiol group of histone H3 is exposed. In this study we analyzed transcriptionally active/competent DNA-enriched chromatin fractions from chicken mature and immature erythrocytes for the presence of thiol-reactive nucleosomes using organomercury-agarose column chromatography and hydroxylapatite dissociation chromatography of chromatin fractions labeled with [3H]iodoacetate. In mature and immature erythrocytes, the active DNA-enriched chromatin fractions are associated with histones that are rapidly highly acetylated and rapidly deacetylated. When histone deacetylation was prevented by incubating cells with histone deacetylase inhibitors, sodium butyrate or trichostatin A, thiol-reactive H3 of unfolded nucleosomes was detected in the soluble chromatin and nuclear skeleton-associated chromatin of immature, but not mature, erythrocytes. We did not find thiol-reactive nucleosomes in active DNA-enriched chromatin fractions of untreated immature erythrocytes that had low levels of highly acetylated histones H3 and H4 or in chromatin of immature cells incubated with inhibitors of transcription elongation. This study shows that transcription elongation is required to form, and histone acetylation is needed to maintain, the unfolded structure of transcribing nucleosomes.
Collapse
Affiliation(s)
- H Walia
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba R3E OW3, Canada
| | | | | | | | | |
Collapse
|
36
|
Abstract
Recent advances highlight the involvement of histone acetyltransferases in transcriptional activation and histone deacetylases in transcriptional repression. Transcription factors loaded onto regulatory DNA elements may recruit either coactivators with histone acetyltransferase activity or corepressors associated with histone deacetylases. The recruited enzymes may either acetylate or deacetylate proximal nucleosomal histones or nonhistone chromosomal proteins.
Collapse
Affiliation(s)
- J R Davie
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
37
|
Davie JR, Chadee DN. Regulation and regulatory parameters of histone modifications. J Cell Biochem 1998; 72 Suppl 30-31:203-213. [DOI: 10.1002/(sici)1097-4644(1998)72:30/31+<203::aid-jcb25>3.0.co;2-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/1998] [Accepted: 09/08/1998] [Indexed: 11/11/2022]
|