1
|
Zhao J, Luo Z. Discovery of Raf Family Is a Milestone in Deciphering the Ras-Mediated Intracellular Signaling Pathway. Int J Mol Sci 2022; 23:ijms23095158. [PMID: 35563547 PMCID: PMC9101324 DOI: 10.3390/ijms23095158] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 01/27/2023] Open
Abstract
The Ras-Raf-MEK-ERK signaling pathway, the first well-established MAPK pathway, plays essential roles in cell proliferation, survival, differentiation and development. It is activated in over 40% of human cancers owing to mutations of Ras, membrane receptor tyrosine kinases and other oncogenes. The Raf family consists of three isoforms, A-Raf, B-Raf and C-Raf. Since the first discovery of a truncated mutant of C-Raf as a transforming oncogene carried by a murine retrovirus, forty years of extensive studies have provided a wealth of information on the mechanisms underlying the activation, regulation and biological functions of the Raf family. However, the mechanisms by which activation of A-Raf and C-Raf is accomplished are still not completely understood. In contrast, B-Raf can be easily activated by binding of Ras-GTP, followed by cis-autophosphorylation of the activation loop, which accounts for the fact that this isoform is frequently mutated in many cancers, especially melanoma. The identification of oncogenic B-Raf mutations has led to accelerated drug development that targets Raf signaling in cancer. However, the effort has not proved as effective as anticipated, inasmuch as the mechanism of Raf activation involves multiple steps, factors and phosphorylation of different sites, as well as complex interactions between Raf isoforms. In this review, we will focus on the physiological complexity of the regulation of Raf kinases and their connection to the ERK phosphorylation cascade and then discuss the role of Raf in tumorigenesis and the clinical application of Raf inhibitors in the treatment of cancer.
Collapse
Affiliation(s)
- Jingtong Zhao
- Queen Mary School, Nanchang University, Nanchang 330031, China;
| | - Zhijun Luo
- Queen Mary School, Nanchang University, Nanchang 330031, China;
- Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang 330031, China
- NCU-QMUL Joint Research Institute of Precision Medical Science, Nanchang 330031, China
- Correspondence:
| |
Collapse
|
2
|
Villaseñor T, Madrid-Paulino E, Maldonado-Bravo R, Pérez-Martínez L, Pedraza-Alva G. Mycobacterium bovis BCG promotes IL-10 expression by establishing a SYK/PKCα/β positive autoregulatory loop that sustains STAT3 activation. Pathog Dis 2019; 77:5512589. [PMID: 31175361 DOI: 10.1093/femspd/ftz032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/05/2019] [Indexed: 01/02/2023] Open
Abstract
Mycobacterium ensures its survival inside macrophages and long-term infection by subverting the innate and adaptive immune response through the modulation of cytokine gene expression profiles. Different Mycobacterium species promote the expression of TGFβ and IL-10, which, at the early stages of infection, block the formation of the phagolysosome, thereby securing mycobacterial survival upon phagocytosis, and at later stages, antagonize IFNγ production and functions. Despite the key role of IL-10 in mycobacterium infection, the signal transduction pathways leading to IL-10 expression in infected macrophages are poorly understood. Here, we report that Mycobacterium bovis BCG promotes IL-10 expression and cytokine production by establishing a SYK/PKCα/β positive feedback loop that leads to STAT3 activation.
Collapse
Affiliation(s)
- Tomás Villaseñor
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62271, México
| | - Edgardo Madrid-Paulino
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62271, México
| | - Rafael Maldonado-Bravo
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62271, México
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62271, México
| | - Gustavo Pedraza-Alva
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62271, México
| |
Collapse
|
3
|
Eblen ST. Extracellular-Regulated Kinases: Signaling From Ras to ERK Substrates to Control Biological Outcomes. Adv Cancer Res 2018; 138:99-142. [PMID: 29551131 DOI: 10.1016/bs.acr.2018.02.004] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The extracellular-regulated kinases ERK1 and ERK2 are evolutionarily conserved, ubiquitous serine-threonine kinases that are involved in regulating cellular signaling in both normal and pathological conditions. Their expression is critical for development and their hyperactivation is a major factor in cancer development and progression. Since their discovery as one of the major signaling mediators activated by mitogens and Ras mutation, we have learned much about their regulation, including their activation, binding partners and substrates. In this review I will discuss some of what has been discovered about the members of the Ras to ERK pathway, including regulation of their activation by growth factors and cell adhesion pathways. Looking downstream of ERK activation I will also highlight some of the many ERK substrates that have been discovered, including those involved in feedback regulation, cell migration and cell cycle progression through the control of transcription, pre-mRNA splicing and protein synthesis.
Collapse
Affiliation(s)
- Scott T Eblen
- Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
4
|
Ke H, Matsumoto S, Murashima Y, Taniguchi-Tamura H, Miyamoto R, Yoshikawa Y, Tsuda C, Kumasaka T, Mizohata E, Edamatsu H, Kataoka T. Structural basis for intramolecular interaction of post-translationally modified H-Ras•GTP prepared by protein ligation. FEBS Lett 2017; 591:2470-2481. [PMID: 28730604 DOI: 10.1002/1873-3468.12759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/09/2017] [Accepted: 07/10/2017] [Indexed: 01/26/2023]
Abstract
Ras undergoes post-translational modifications including farnesylation, proteolysis, and carboxymethylation at the C terminus, which are necessary for membrane recruitment and effector recognition. Full activation of c-Raf-1 requires cooperative interaction of the farnesylated C terminus and the activator region of Ras with its cysteine-rich domain (CRD). However, the molecular basis for this interaction remains unclear because of difficulties in preparing modified Ras in amounts sufficient for structural studies. Here, we use Sortase A-catalyzed protein ligation to prepare modified Ras in sufficient amounts for NMR and X-ray crystallographic analyses. The results show that the farnesylated C terminus establishes an intramolecular interaction with the catalytic domain and brings the farnesyl moiety to the proximity of the activator region, which may be responsible for their cooperative recognition of c-Raf-1-CRD.
Collapse
Affiliation(s)
- Haoliang Ke
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Shigeyuki Matsumoto
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Yosuke Murashima
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Haruka Taniguchi-Tamura
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Ryo Miyamoto
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Yoko Yoshikawa
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Chiemi Tsuda
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Takashi Kumasaka
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo-gun, Hyogo, Japan
| | - Eiichi Mizohata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Hironori Edamatsu
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Tohru Kataoka
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| |
Collapse
|
5
|
Lavoie H, Li JJ, Thevakumaran N, Therrien M, Sicheri F. Dimerization-induced allostery in protein kinase regulation. Trends Biochem Sci 2014; 39:475-86. [PMID: 25220378 DOI: 10.1016/j.tibs.2014.08.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/12/2014] [Accepted: 08/14/2014] [Indexed: 12/12/2022]
Abstract
The ability of protein kinases to switch between inactive and active states is critical to control the outputs of cellular signaling pathways. In several protein kinases, the conformation of helix αC is a key hub on which regulatory inputs converge to induce catalytic switching. An emerging mechanism involved in regulating helix αC orientation is the allosteric coupling with kinase domain surfaces involved in homo- or heterodimerization. In this review, we discuss dimerization-mediated regulation of the rapidly accelerated fibrosarcoma (RAF) and eIF2α kinase families and draw parallels with the analogous behavior of the epidermal growth factor receptor (EGFR) and serine/threonine-protein kinase endoribonuclease 1 (IRE1)/ribonuclease L (RNAse L) kinase families. Given that resistance to RAF-targeted therapeutics often stems from dimerization-dependent mechanisms, we suggest that a better understanding of dimerization-induced allostery may assist in developing alternate therapeutic strategies.
Collapse
Affiliation(s)
- Hugo Lavoie
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | - John J Li
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Neroshan Thevakumaran
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Marc Therrien
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, H3C 3J7, Canada; Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, Québec, H3C 3J7, Canada.
| | - Frank Sicheri
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
6
|
Ronquist KG, Ek B, Stavreus-Evers A, Larsson A, Ronquist G. Human prostasomes express glycolytic enzymes with capacity for ATP production. Am J Physiol Endocrinol Metab 2013; 304:E576-82. [PMID: 23341497 DOI: 10.1152/ajpendo.00511.2012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Prostasomes are prostate-derived, exosome-like microvesicles that transmit signaling complexes between the acinar epithelial cells of the prostate and sperm cells. The vast majority of prostasomes have a diameter of 30-200 nm, and they are generally surrounded by a classical membrane bilayer. Using a selected proteomic approach, it became increasingly clear that prostasomes harbor distinct subsets of proteins that may be linked to adenosine triphosphate (ATP) metabolic turnover that in turn might be of importance in the role of prostasomes as auxiliary instruments in the fertilization process. Among the 21 proteins identified, most of the enzymes of anaerobic glycolysis were represented, and three of the glycolytic enzymes present are among the top 10 proteins found in most exosomes, once again linking prostasomes to the exosome family. Other prostasomal enzymes involved in ATP turnover were adenylate kinase, ATPase, 5'-nucleotidase, and hexose transporters. The identified enzymes in their prostasomal context were operational for ATP formation when supplied with substrates. The net ATP production was low due to a high prostasomal ATPase activity that could be partially inhibited by vanadate that was utilized to profile the ATP-forming ability of prostasomes. Glucose and fructose were equivalent as glycolytic substrates for prostasomal ATP formation, and the enzymes involved were apparently surface located on prostasomes, since an alternative substrate not being membrane permeable (glyceraldehyde 3-phosphate) was operative, too. There is no clear-cut function linked to this subset of prostasomal proteins, but some possible roles are discussed.
Collapse
Affiliation(s)
- K Göran Ronquist
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
7
|
Collins BM, Davis MJ, Hancock JF, Parton RG. Structure-based reassessment of the caveolin signaling model: do caveolae regulate signaling through caveolin-protein interactions? Dev Cell 2012; 23:11-20. [PMID: 22814599 DOI: 10.1016/j.devcel.2012.06.012] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Caveolin proteins drive formation of caveolae, specialized cell-surface microdomains that influence cell signaling. Signaling proteins are proposed to use conserved caveolin-binding motifs (CBMs) to associate with caveolae via the caveolin scaffolding domain (CSD). However, structural and bioinformatic analyses argue against such direct physical interactions: in the majority of signaling proteins, the CBM is buried and inaccessible. Putative CBMs do not form a common structure for caveolin recognition, are not enriched among caveolin-binding proteins, and are even more common in yeast, which lack caveolae. We propose that CBM/CSD-dependent interactions are unlikely to mediate caveolar signaling, and the basis for signaling effects should therefore be reassessed.
Collapse
Affiliation(s)
- Brett M Collins
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | |
Collapse
|
8
|
Fuentes G, Valencia A. Ras classical effectors: new tales from in silico complexes. Trends Biochem Sci 2009; 34:533-9. [PMID: 19801192 DOI: 10.1016/j.tibs.2009.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 07/14/2009] [Accepted: 07/21/2009] [Indexed: 10/20/2022]
Abstract
Components of signal transduction pathways have evolved as connected hubs, recognizing several binding partners with remarkable affinities and specificities. Ras is one of these hubs, sensitive to rapid and subtle changes, thus enabling the correct transfer of information. The dynamic nature of such systems makes their structural characterization challenging, despite the vast amount of experimental data available. These data, however, can be used as a restraint for generating comprehensive models of the association of Ras with its effectors. We believe that by following this type of approach, the derived 3D models can provide atomistic understanding of important biological issues, such as how Ras discriminates between the Ras binding domains of its various effectors. The modeled binding interfaces could be used as the starting points for selective modulations of interactions and pathways using small molecules, peptides or mutagenesis.
Collapse
Affiliation(s)
- Gloria Fuentes
- Structural Computational Biology Group, Spanish National Cancer Research Center (CNIO), C/ Melchor Fernández Almagro, 3, 28029 Madrid, Spain.
| | | |
Collapse
|
9
|
Soares P, Preto A, Sobrinho-Simões M. BRAF V600E mutation in papillary thyroid carcinoma: a potential target for therapy? Expert Rev Endocrinol Metab 2009; 4:467-480. [PMID: 30736186 DOI: 10.1586/eem.09.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This article reviews the therapeutic significance of the close genotype-phenotype association in papillary thyroid carcinoma, namely regarding the association between genetic alterations in RET, BRAF or RAS genes and the histopathological variants of papillary thyroid carcinoma. Based upon the aforementioned review on morphology and molecular pathology, the most recent prognostic and therapeutic data are reviewed and the role of targeted therapies, namely those interfering with BRAF-activated pathways are discussed, which may play a role in the treatment of patients with papillary thyroid carcinoma unresponsive to radioactive iodine.
Collapse
Affiliation(s)
- Paula Soares
- a Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr Roberto Frias, s/n, 4200-4465 Porto, Portugal and Department of Pathology, Medical Faculty of the University of Porto, 4200-465 Porto, Portugal.
| | - Ana Preto
- b Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr Roberto Frias, s/n, 4200-4465 Porto, Portugal and Molecular and Environmental Biology Centre (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-4057 Braga, Portugal.
| | - Manuel Sobrinho-Simões
- c Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr Roberto Frias, s/n, 4200-465 Porto, Portugal and Department of Pathology, Medical Faculty of the University of Porto, 4200-465 Porto, Portugal and Department of Pathology, Hospital de S. João, Porto, Portugal.
| |
Collapse
|
10
|
McMahon KA, Zajicek H, Li WP, Peyton MJ, Minna JD, Hernandez VJ, Luby-Phelps K, Anderson RGW. SRBC/cavin-3 is a caveolin adapter protein that regulates caveolae function. EMBO J 2009; 28:1001-15. [PMID: 19262564 DOI: 10.1038/emboj.2009.46] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 01/21/2009] [Indexed: 11/09/2022] Open
Abstract
Caveolae are a major membrane domain common to most cells. One of the defining features of this domain is the protein caveolin. The exact function of caveolin, however, is not clear. One possible function is to attract adapter molecules to caveolae in a manner similar to how clathrin attracts molecules to coated pits. Here, we characterize a candidate adapter molecule called SRBC. SRBC binds PKCdelta and is a member of the STICK (substrates that interact with C-kinase) superfamily of PKC-binding proteins. We also show it co-immunoprecipitates with caveolin-1. A leucine zipper in SRBC is essential for both co-precipitation with caveolin and localization to caveolae. SRBC remains associated with caveolin when caveolae bud to form vesicles (cavicles) that travel on microtubules to different regions of the cell. In the absence of SRBC, intracellular cavicle traffic is markedly impaired. We conclude that SRBC (sdr-related gene product that binds to c-kinase) and two other family members [PTRF (Pol I and transcription release factor) and SDPR] function as caveolin adapter molecules that regulate caveolae function.
Collapse
Affiliation(s)
- Kerrie-Ann McMahon
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Wu H, Rossi G, Brennwald P. The ghost in the machine: small GTPases as spatial regulators of exocytosis. Trends Cell Biol 2008; 18:397-404. [PMID: 18706813 DOI: 10.1016/j.tcb.2008.06.007] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 06/23/2008] [Accepted: 06/25/2008] [Indexed: 10/21/2022]
Abstract
Temporal and spatial regulation of membrane-trafficking events is crucial to both membrane identity and overall cell polarity. Small GTPases of the Rab, Ral and Rho protein families have been implicated as important regulators of vesicle docking and fusion events. This review focuses on how these GTPases interact with the exocyst complex, which is a multisubunit tethering complex involved in the regulation of cell-surface transport and cell polarity. The Rab and Ral GTPases are thought to function in exocyst assembly and vesicle-tethering processes, whereas the Rho family GTPases seem to function in the local activation of the exocyst complex to facilitate downstream vesicle-fusion events. The localized activation of the exocyst by Rho GTPases is likely to have an important role in spatial regulation of exocytosis.
Collapse
Affiliation(s)
- Hao Wu
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
12
|
Xie J, Roberson MS. 3', 5'-cyclic adenosine 5'-monophosphate response element-dependent transcriptional regulation of the secretogranin II gene promoter depends on gonadotropin-releasing hormone-induced mitogen-activated protein kinase activation and the transactivator activating transcription factor 3. Endocrinology 2008; 149:783-92. [PMID: 17962349 PMCID: PMC2219298 DOI: 10.1210/en.2007-0694] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous studies demonstrated that GnRH-induced secretogranin II (SgII) promoter regulation required a consensus cAMP response element (CRE) and protein kinase A/CRE binding protein. The present studies examined the role of additional components of the GnRH signaling network on SgII promoter activity with particular attention devoted to CRE-dependent gene regulation. Disruption of the SgII CRE by mutagenesis resulted in inhibition of GnRH agonist (GnRHa) induction of this promoter in alphaT3-1 cells. Pharmacological and dominant-negative inhibition of the ERK and c-Jun N-terminal kinase (JNK) signaling pathways revealed that GnRHa-induced SgII promoter activity required functional JNK and ERK modules. Combined inhibition of both pathways nearly abolished GnRHa-induced SgII promoter activity. Specific induction of the ERK cascade alone using overexpression of Raf-CAAX was not sufficient to activate the SgII gene promoter. In contrast, overexpression of the catalytic domain of the more pleiotropic MAPK activator, MAPK/ERK kinase-1, was sufficient to induce SgII promoter activity. The effect(s) of mitogen-activated protein/ERK kinase-1 on SgII promoter activity was CRE dependent and was reversed by the combined pharmacological inhibition of both JNK and ERK modules. CRE DNA binding studies demonstrated the recruitment of activating transcription factor (ATF)-3 and c-Jun to the CRE after administration of GnRHa to alphaT3-1 cells. Specific small interfering RNA knockdown of ATF3 reduced ATF3 DNA binding and the effect of GnRHa on the SgII promoter. These studies support the conclusion that MAPK signaling and ATF3 action are essential for full SgII promoter activation by GnRHa through a canonical CRE. Moreover, we suggest that within the GnRH signaling network, CRE-dependent gene regulation in general may be mediated primarily through the immediate early response gene ATF3.
Collapse
Affiliation(s)
- Jianjun Xie
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
13
|
Ma DWL. Lipid mediators in membrane rafts are important determinants of human health and disease. Appl Physiol Nutr Metab 2007; 32:341-50. [PMID: 17510668 DOI: 10.1139/h07-036] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The new field of membrane rafts has provided fresh insight and a novel framework in which to understand the interaction, relation, and organization of lipids and proteins within cell membranes. This review will examine our current understanding of membrane rafts and their role in human health. In addition, the effect of various lipids, including dietary lipids, on membrane raft structure and function will be discussed. Membrane rafts are found in all cells and are characterized by their high concentration of cholesterol, sphingolipids, and saturated fatty acids. These lipids impart lateral segregation of membrane proteins, thus facilitating the spatial organization and regulation of membrane proteins involved in many cellular processes, such as cell proliferation, apoptosis, and cell signaling. Therefore, membrane rafts are shedding new light on the origins of metabolic disturbances and diseases such as cancer, insulin resistance, inflammation, cardiovascular disease, and Alzheimer's disease, which will be further discussed in this review.
Collapse
Affiliation(s)
- David W L Ma
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Ontario, Canada.
| |
Collapse
|
14
|
Rauch MC, Ocampo ME, Bohle J, Amthauer R, Yáñez AJ, Rodríguez-Gil JE, Slebe JC, Reyes JG, Concha II. Hexose transporters GLUT1 and GLUT3 are colocalized with hexokinase I in caveolae microdomains of rat spermatogenic cells. J Cell Physiol 2006; 207:397-406. [PMID: 16419038 DOI: 10.1002/jcp.20582] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Postmeiotic spermatogenic cells, but not meiotic spermatogenic cells respond differentially with glucose-induced changes in [Ca2+]i indicating a differential transport of glucose via facilitative hexose transporters (GLUTs) specifically distributed in the plasma membrane. Several studies have indicated that plasma membrane in mammalian cells is not homogeneously organized, but contains specific microdomains known as detergent-resistant membrane domains (DRMDs), lipid rafts or caveolae. The association of these domains and GLUTs isoforms has not been characterized in spermatogenic cells. We analyzed the expression and function of GLUT1 and GLUT3 in isolated spermatocytes and spermatids. The results showed that spermatogenic cells express both glucose transporters, with spermatids exhibiting a higher affinity glucose transport system. In addition, spermatogenic cells express caveolin-1, and glucose transporters colocalize with caveolin-1 in caveolin-enriched membrane fractions. Experiments in which the integrity of caveolae was disrupted by pretreatment with methyl-beta-cyclodextrin, indicated that the involvement of cholesterol-enriched plasma membrane microdomains were involved in the localization of GLUTs and uptake of 2-deoxyglucose. We also observed cofractionation of GLUT3 and caveolin-1 in low-buoyant density membranes together with their shift to higher densities after methyl-beta-cyclodextrin treatment. GLUT1 was found in all fractions isolated. Immunofluorescent studies indicated that caveolin-1, GLUT1, and hexokinase I colocalize in spermatocytes while caveolin-1, GLUT3, and hexokinase I colocalize in spermatids. These findings suggest the presence of hexose transporters in DRMDs, and further support a role for intact caveolae or cholesterol-enriched membrane microdomains in relation to glucose uptake and glucose phosphorylation. The results would also explain the different glucose-induced changes in [Ca2+]i in both cells.
Collapse
|
15
|
Kaur H, Park C, Lewis J, Haugh J. Quantitative model of Ras-phosphoinositide 3-kinase signalling cross-talk based on co-operative molecular assembly. Biochem J 2006; 393:235-43. [PMID: 16159314 PMCID: PMC1383682 DOI: 10.1042/bj20051022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In growth-factor-stimulated signal transduction, cell-surface receptors recruit PI3Ks (phosphoinositide 3-kinases) and Ras-specific GEFs (guanine nucleotide-exchange factors) to the plasma membrane, where they produce 3'-phosphorylated phosphoinositide lipids and Ras-GTP respectively. As a direct example of pathway networking, Ras-GTP also recruits and activates PI3Ks. To refine the mechanism of Ras-PI3K cross-talk and analyse its quantitative implications, we offer a theoretical model describing the assembly of complexes involving receptors, PI3K and Ras-GTP. While the model poses the possibility that a ternary receptor-PI3K-Ras complex forms in two steps, it also encompasses the possibility that receptor-PI3K and Ras-PI3K interactions are competitive. In support of this analysis, experiments with platelet-derived growth factor-stimulated fibroblasts revealed that Ras apparently enhances the affinity of PI3K for receptors; in the context of the model, this suggests that a ternary complex does indeed form, with the second step greatly enhanced through membrane localization and possibly allosteric effects. The apparent contribution of Ras to PI3K activation depends strongly on the quantities and binding affinities of the interacting molecules, which vary across different cell types and stimuli, and thus the model could be used to predict conditions under which PI3K signalling is sensitive to interventions targeting Ras.
Collapse
Affiliation(s)
- Harjeet Kaur
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, U.S.A
| | - Chang Shin Park
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, U.S.A
| | - Jodee M. Lewis
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, U.S.A
| | - Jason M. Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
16
|
Nakopoulou L, Mylona E, Rafailidis P, Alexandrou P, Giannopoulou I, Keramopoulos A. Effect of different ERK2 protein localizations on prognosis of patients with invasive breast carcinoma. APMIS 2006; 113:693-701. [PMID: 16309429 DOI: 10.1111/j.1600-0463.2005.apm_236.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mitogen-activated protein kinase (MAP kinase) pathways represent a cascade of phosphorylation events, including three pivotal kinases, Raf, MEK and ERK1/2, which have been implicated in the pathogenesis of cancer. We examined 151 cases of invasive breast carcinoma by immunohistochemistry and compared the ERK2 expression with clinicopathological parameters, MMP-11 immunoexpression and patients' survival. ERK2 immunoexpression was detected in the cytoplasm and nucleus of cancer cells in 37.7% and 19.2% of cases, respectively. Nuclear ERK2 was inversely correlated with ER (p = 0.039), whereas cytoplasmic ERK2 was positively correlated with MMP-11 in fibroblasts (p = 0.032) and more often expressed in lobular than ductal carcinomas (p = 0.026). Nuclear ERK2 expression was found to be an independent prognostic factor of shortened overall survival of patients (p = 0.040), while cytoplasmic ERK2 had an independent, favorable effect on both disease-free and overall survival (p < 0.0001 and p = 0.002, respectively). These findings suggest that the different subcellular localizations of ERK2 seem to be related to different, possibly contradictory, effects on patient survival.
Collapse
Affiliation(s)
- L Nakopoulou
- School of Medicine, National and Kapodistrian University of Athens, Greece.
| | | | | | | | | | | |
Collapse
|
17
|
Du Y, Böck BC, Schachter KA, Chao M, Gallo KA. Cdc42 induces activation loop phosphorylation and membrane targeting of mixed lineage kinase 3. J Biol Chem 2005; 280:42984-93. [PMID: 16253996 DOI: 10.1074/jbc.m502671200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mixed lineage kinase 3 (MLK3) functions as a mitogen-activated protein kinase kinase kinase to activate multiple mitogen-activated protein kinase pathways. Our current studies demonstrate that lack of MLK3 blocks signaling of activated Cdc42 to c-Jun N-terminal kinase, giving strong support for the idea that Cdc42 is a physiological activator of MLK3. We show herein that Cdc42, in a prenylation-dependent manner, targets MLK3 from a perinuclear region to membranes, including the plasma membrane. Cdc42-induced membrane targeting of MLK3 is independent of MLK3 catalytic activity but depends upon an intact Cdc42/Rac-interactive binding motif, consistent with MLK3 membrane translocation being mediated through direct binding of Cdc42. Phosphorylation of the activation loop of MLK3 requires MLK3 catalytic activity and is induced by Cdc42 in a prenylation-independent manner, arguing that Cdc42 binding is sufficient for activation loop autophosphorylation of MLK3. However, membrane targeting is necessary for full activation of MLK3 and maximal signaling to JNK. We previously reported that MLK3 is autoinhibited through an interaction between its N-terminal SH3 domain and a proline-containing sequence found between the leucine zipper and the CRIB motif of MLK3. Thus we propose a model in which GTP-bound Cdc42/Rac binds MLK3 and disrupts SH3-mediated autoinhibition leading to dimerization and activation loop autophosphorylation. Targeting of this partially active MLK3 to membranes likely results in additional phosphorylation events that fully activate MLK3 and its ability to maximally signal through the JNK pathway.
Collapse
Affiliation(s)
- Yan Du
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
18
|
Terai K, Matsuda M. Ras binding opens c-Raf to expose the docking site for mitogen-activated protein kinase kinase. EMBO Rep 2005; 6:251-5. [PMID: 15711535 PMCID: PMC1299259 DOI: 10.1038/sj.embor.7400349] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Revised: 12/06/2004] [Accepted: 01/11/2005] [Indexed: 11/08/2022] Open
Abstract
A key signalling molecule, c-Raf, is situated downstream from Ras and upstream from the mitogen-activated protein kinase kinase (MEK). We studied the mechanism underlying the signal transduction from Ras to MEK by using probes based on the principle of fluorescence resonance energy transfer. In agreement with previous models, it was found that c-Raf adopted two conformations: open active and closed inactive. Ras binding induced the c-Raf transition from closed to open conformation, which enabled c-Raf to bind to MEK. In the presence of a cytosolic Ras mutant, c-Raf bound to, but failed to phosphorylate, MEK in the cytoplasm. In contrast, the cytosolic Ras mutant significantly enhanced MEK phosphorylation by a membrane-targeted c-Raf. These results demonstrated the essential role of Ras-induced conformational change in MEK activation by c-Raf.
Collapse
Affiliation(s)
- Kenta Terai
- Department of Tumor Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Michiyuki Matsuda
- Department of Tumor Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Tel: +81 6 6879 8316; Fax: +81 6 6879 8314; E-mail:
| |
Collapse
|
19
|
Lebreton S, Boissel L, Iouzalen N, Moreau J. RLIP mediates downstream signalling from RalB to the actin cytoskeleton during Xenopus early development. Mech Dev 2004; 121:1481-94. [PMID: 15511640 DOI: 10.1016/j.mod.2004.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Revised: 07/13/2004] [Accepted: 07/26/2004] [Indexed: 10/26/2022]
Abstract
The Ras protein activates at least three different pathways during early development. Two of them regulate mesodermal gene expression and the third is thought to participate in the control of actin cytoskeleton dynamics via the Ral protein. From a yeast two-hybrid screen of a Xenopus maternal cDNA library, we identified the Xenopus orthologue of the Ral interacting protein (RLIP, RIP1 or RalBP1), a putative effector of small G protein Ral. Previously, we observed that a constitutively activated form of Ral GTPase (XralB G23V) induced bleaching of the animal hemisphere and disruption of the cortical actin cytoskeleton. To demonstrate that RLIP is the effector of RalB in early development, we show that the artificial targeting of RLIP to the membrane induces a similar phenotype to that of activated RalB. We show that overexpression of the Ral binding domain (RalBD) of XRLIP, which binds to the effector site of Ral, acts in competition with the endogenous effector of Ral and protects against the destructive effect of XralB G23V on the actin cytoskeleton. In contrast, the XRLIP has a synergistic effect on the activated form of XralB, which is dependent on the RalBD of RLIP. We provide evidence for the involvement of RLIP by way of its RalBD on the dynamics of the actin cytoskeleton and propose that signalling from Ral to RLIP is required for gastrulation.
Collapse
Affiliation(s)
- Stéphanie Lebreton
- Mécanismes Moléculaires du Développement, Institut Jacques Monod, CNRS, Universités Paris VI et Paris VII, 2 Place Jussieu, 75251 Paris 05, France
| | | | | | | |
Collapse
|
20
|
Lee HHC, Choi RCY, Ting AKL, Siow NL, Jiang JXS, Massoulié J, Tsim KWK. Transcriptional regulation of acetylcholinesterase-associated collagen ColQ: differential expression in fast and slow twitch muscle fibers is driven by distinct promoters. J Biol Chem 2004; 279:27098-107. [PMID: 15102835 DOI: 10.1074/jbc.m402596200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The presence of a collagenous protein (ColQ) characterizes the collagen-tailed forms of acetylcholinesterase and butyrylcholinesterase at vertebrate neuromuscular junctions which is tethered in the synaptic basal lamina. ColQ subunits, differing mostly by their signal sequences, are encoded by transcripts ColQ-1 and ColQ-1a, which are differentially expressed in slow and fast twitch muscles in mammals. Two distinct promoters, pColQ-1 and pColQ-1a, were isolated from the upstream sequences of human COLQ gene; they showed muscle-specific expression and were activated by myogenic transcriptional elements in cultured myotubes. After in vivo DNA transfection, pColQ-1 showed strong activity in slow twitch muscle (e.g. soleus), whereas pColQ-1a was preferably expressed in fast twitch muscle (e.g. tibialis). Mutation analysis of the ColQ promoters suggested that the muscle fiber type-specific expression pattern of ColQ transcripts were regulated by a slow upsteam regulatory element (SURE) and a fast intronic regulatory element (FIRE). These regulatory elements were responsive to a calcium ionophore and to calcineurin inhibition by cyclosporine A. The slow fiber type-specific expression of ColQ-1 was abolished by the mutation of an NFAT element in pColQ-1. Moreover, both the ColQ promoters contained N-box element that was responsible for the synapse-specific expression of ColQ transcripts. These results explain the specific expression patterns of collagen-tailed acetylcholinesterase in slow and fast muscle fibers.
Collapse
MESH Headings
- Acetylcholinesterase/biosynthesis
- Acetylcholinesterase/genetics
- Acetylcholinesterase/metabolism
- Adenosine Diphosphate/analogs & derivatives
- Adenosine Diphosphate/pharmacology
- Amino Acid Sequence
- Animals
- Cell Differentiation/genetics
- Cell Line
- Chickens
- Collagen/biosynthesis
- Collagen/genetics
- Collagen/metabolism
- DNA-Binding Proteins/metabolism
- Exons/genetics
- Gene Expression Regulation, Enzymologic/physiology
- Genes, Reporter/genetics
- Humans
- Mice
- Molecular Sequence Data
- Muscle Fibers, Fast-Twitch/enzymology
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Slow-Twitch/enzymology
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle Proteins/biosynthesis
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- NFATC Transcription Factors
- Neuregulins/pharmacology
- Nuclear Proteins
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/genetics
- Rats
- Regulatory Sequences, Nucleic Acid
- Synaptic Transmission/drug effects
- Thionucleotides/pharmacology
- Transcription Factors/metabolism
- Transcription, Genetic/genetics
- Transfection
Collapse
Affiliation(s)
- Henry H C Lee
- Department of Biology, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong SAR, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Goetz CA, O'Neil JJ, Farrar MA. Membrane localization, oligomerization, and phosphorylation are required for optimal raf activation. J Biol Chem 2003; 278:51184-9. [PMID: 14530258 DOI: 10.1074/jbc.m309183200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of the serine/threonine kinase c-Raf-1 requires membrane localization, phosphorylation, and oligomerization. To study these mechanisms of Raf activation more precisely, we have used a membrane-localized fusion protein, myr-Raf-GyrB, which can be activated by coumermycin-induced oligomerization in NIH3T3 transfectants. By introducing a series of point mutations into the myr-Raf-GyrB kinase domain (S338A, S338A/Y341F, Y340F/Y341F, and T491A/S494A) we can separately study the role that membrane localization, phosphorylation, and oligomerization play in the process of Raf activation. We find that phosphorylation of Ser-338 plays a critical role in Raf activation and that this requires membrane localization but not oligomerization of Raf. Mutation of Tyr-341 had a limited effect, whereas mutation of both Ser-338 and Tyr-341 resulted in a synergistic loss of Raf activation following coumermycin-induced dimerization. Importantly, we found that membrane localization and phosphorylation of Ser-338 were not sufficient to activate Raf in the absence of oligomerization. Thus, our studies suggest that three key steps are required for optimal Raf activation: recruitment to the plasma membrane by GTP-bound Ras, phosphorylation via membrane-resident kinases, and oligomerization.
Collapse
Affiliation(s)
- Christine A Goetz
- Center for Immunology, The Cancer Center, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
22
|
Chong H, Guan KL. Regulation of Raf through phosphorylation and N terminus-C terminus interaction. J Biol Chem 2003; 278:36269-76. [PMID: 12865432 DOI: 10.1074/jbc.m212803200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Raf kinase is a key component in regulating the MAPK pathway. B-Raf has been reported as an oncogene and is mutated in 60% of human melanomas. The main focus of Raf regulation studies has been on phosphorylation, dephosphorylation, and scaffolding proteins; however, Raf also has its own auto-regulatory domain. Removal of the N-terminal regulatory domain, initially discovered in the viral Raf oncogene (v-Raf), results in a kinase domain with high basal activity independent of Ras activation. In this report, we show that activating phosphorylations are still required for activity of the truncated C-terminal kinase domain (called 22W). The interaction between the N-terminal regulatory domain and the C-terminal kinase domain is disrupted by activated Ras. Mutations in the Ras binding domain, cysteine-rich domain, or S259A do not affect the inhibition of 22W by the N-terminal domain. When phosphomimetic residues are substituted at the activating sites (DDED) in 22W, this results in a higher basal activity that is no longer inhibited by expression of the N-terminal domain, although binding to the N-terminal domain still occurs. Although the interaction between 22W/DDED and the N-terminal domain may be in a different conformation, the interaction is still disrupted by activated Ras. These data demonstrate that N-terminal domain binding to the kinase domain inhibits the activity of the kinase domain. However, this inhibition is relieved when the C-terminal kinase domain is activated by phosphorylation.
Collapse
Affiliation(s)
- Huira Chong
- Department of Biological Chemistry and the Institute of Gerontology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
23
|
Kracklauer MP, Schmidt C, Sclabas GM. TGFbeta1 signaling via alphaVbeta6 integrin. Mol Cancer 2003; 2:28. [PMID: 12935295 PMCID: PMC184456 DOI: 10.1186/1476-4598-2-28] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Accepted: 08/07/2003] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Transforming growth factor beta1 (TGFbeta1) is a potent inhibitor of epithelial cell growth, thus playing an important role in tissue homeostasis. Most carcinoma cells exhibit a reduced sensitivity for TGFbeta1 mediated growth inhibition, suggesting TGFbeta1 participation in the development of these cancers. The tumor suppressor gene DPC4/SMAD4, which is frequently inactivated in carcinoma cells, has been described as a key player in TGFbeta1 mediated growth inhibition. However, some carcinoma cells lacking functional SMAD4 are sensitive to TGFbeta1 induced growth inhibition, thus requiring a SMAD4 independent TGFbeta1 pathway. RESULTS Here we report that mature TGFbeta1 is a ligand for the integrin alphaVbeta6, independent of the common integrin binding sequence motif RGD. After TGFbeta1 binds to alphaVbeta6 integrin, different signaling proteins are activated in TGFbeta1-sensitive carcinoma cells, but not in cells that are insensitive to TGFbeta1. Among others, interaction of TGFbeta1 with the alphaVbeta6 integrin resulted in an upregulation of the cell cycle inhibitors p21/WAF1 and p27 leading to growth inhibition in SMAD4 deleted as well as in SMAD4 wildtype carcinoma cells. CONCLUSIONS Our data provide support for the existence of an alternate TGFbeta1 signaling pathway that is independent of the known SMAD pathway. This alternate pathway involves alphaVbeta6 integrin and the Ras/MAP kinase pathway and does not employ an RGD motif in TGFbeta1-sensitive tumor cells. The combined action of these two pathways seems to be necessary to elicit a complete TGFbeta1 signal.
Collapse
Affiliation(s)
- Martin P Kracklauer
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station, A4800, 78712, Austin, TX, USA
| | - Christian Schmidt
- Department of Surgical Oncology and Molecular Oncology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | - Guido M Sclabas
- Department of Surgical Oncology and Molecular Oncology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
- Department of Visceral and Transplantation Surgery, The University of Bern, Inselspital, Bern, 3010, Switzerland
| |
Collapse
|
24
|
ATP acts via P2Y1 receptors to stimulate acetylcholinesterase and acetylcholine receptor expression: transduction and transcription control. J Neurosci 2003. [PMID: 12805285 DOI: 10.1523/jneurosci.23-11-04445.2003] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
At the vertebrate neuromuscular junction ATP is known to stabilize acetylcholine in the synaptic vesicles and to be co-released with it. We have shown previously that a nucleotide receptor, the P2Y1 receptor, is localized at the junction, and we propose that this mediates a trophic role for synaptic ATP there. Evidence in support of this and on its mechanism is given here. With the use of chick or mouse myotubes expressing promoter-reporter constructs from genes of acetylcholinesterase (AChE) or of the acetylcholine receptor subunits, P2Y1 receptor agonists were shown to stimulate the transcription of each of those genes. The pathway to activation of the AChE gene was shown to involve protein kinase C and intracellular Ca 2+ release. Application of dominant-negative or constitutively active mutants, or inhibitors of specific kinases, showed that it further proceeds via some of the known intermediates of extracellular signal-regulated kinase phosphorylation. In both chick and mouse myotubes this culminates in activation of the transcription factor Elk-1, confirmed by gel mobility shift assays and by the nuclear accumulation of phosphorylated Elk-1. All of the aforementioned activations by agonist were amplified when the content of P2Y1 receptors was boosted by transfection, and the activations were blocked by a P2Y1-selective antagonist. Two Elk-1 binding site sequences present in the AChE gene promoter were jointly sufficient to drive ATP-induced reporter gene transcription. Thus ATP regulates postsynaptic gene expression via a pathway to a selective transcription factor activation.
Collapse
|
25
|
Vikis H, Guan KL. Regulation of the Ras-MAPK pathway at the level of Ras and Raf. GENETIC ENGINEERING 2003; 24:49-66. [PMID: 12416300 DOI: 10.1007/978-1-4615-0721-5_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- Haris Vikis
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | | |
Collapse
|
26
|
Huo H, Guo X, Hong S, Jiang M, Liu X, Liao K. Lipid rafts/caveolae are essential for insulin-like growth factor-1 receptor signaling during 3T3-L1 preadipocyte differentiation induction. J Biol Chem 2003; 278:11561-9. [PMID: 12538586 DOI: 10.1074/jbc.m211785200] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipid rafts/caveolae are found to be essential for insulin-like growth factor (IGF)-1 receptor signaling during 3T3-L1 preadipocyte differentiation induction. In 3T3-L1 cells, IGF-1 receptor is located in lipid rafts/caveolae of the plasma membrane and can directly interact with caveolin-1, the major protein component in caveolae. Disruption of lipid rafts/caveolae by depleting cellular cholesterol with cholesterol-binding reagent, beta-methylcyclodextrin or filipin, blocks the IGF-1 receptor signaling in 3T3-L1 preadipocyte. Both hormonal induced adipocyte differentiation and mitotic clonal expansion are inhibited by lipid rafts/caveolae disruption. However, a nonspecific lipid binding reagent, xylazine, does not affect adipocyte differentiation or mitotic clonal expansion. Further studies indicate that lipid rafts/caveolae are required only for IGF-1 receptor downstream signaling and not the activation of receptor itself by ligand. Thus, our results suggest that localization in lipid rafts/caveolae and association with caveolin enable IGF-1 receptor to have a close contact with downstream signal molecules recruited into lipid rafts/caveolae and transmit the signal through these signal molecule complexes.
Collapse
Affiliation(s)
- Hairong Huo
- State Laboratory of Molecular Biology and Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | |
Collapse
|
27
|
Dhillon AS, Meikle S, Peyssonnaux C, Grindlay J, Kaiser C, Steen H, Shaw PE, Mischak H, Eychène A, Kolch W. A Raf-1 mutant that dissociates MEK/extracellular signal-regulated kinase activation from malignant transformation and differentiation but not proliferation. Mol Cell Biol 2003; 23:1983-93. [PMID: 12612072 PMCID: PMC149463 DOI: 10.1128/mcb.23.6.1983-1993.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
It is widely thought that the biological outcomes of Raf-1 activation are solely attributable to the activation of the MEK/extracellular signal-regulated kinase (ERK) pathway. However, an increasing number of reports suggest that some Raf-1 functions are independent of this pathway. In this report we show that mutation of the amino-terminal 14-3-3 binding site of Raf-1 uncouples its ability to activate the MEK/ERK pathway from the induction of cell transformation and differentiation. In NIH 3T3 fibroblasts and COS-1 cells, mutation of serine 259 resulted in Raf-1 proteins which activated the MEK/ERK pathway as efficiently as v-Raf. However, in contrast to v-Raf, RafS259 mutants failed to transform. They induced morphological alterations and slightly accelerated proliferation in NIH 3T3 fibroblasts but were not tumorigenic in mice and behaved like wild-type Raf-1 in transformation assays measuring loss of contact inhibition or anchorage-independent growth. Curiously, the RafS259 mutants inhibited focus induction by an activated MEK allele, suggesting that they can hyperactivate negative-feedback pathways. In primary cultures of postmitotic chicken neuroretina cells, RafS259A was able to sustain proliferation to a level comparable to that sustained by the membrane-targeted transforming Raf-1 protein, RafCAAX. In contrast, RafS259A was only a poor inducer of neurite formation in PC12 cells in comparison to RafCAAX. Thus, RafS259 mutants genetically separate MEK/ERK activation from the ability of Raf-1 to induce transformation and differentiation. The results further suggest that RafS259 mutants inhibit signaling pathways required to promote these biological processes.
Collapse
Affiliation(s)
- Amardeep S Dhillon
- The Beatson Institute for Cancer Research, CR-UK Beatson Laboratories, Garscube Estate, Bearsden, Glasgow G61 1BD, Scotland, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Carey KD, Watson RT, Pessin JE, Stork PJS. The requirement of specific membrane domains for Raf-1 phosphorylation and activation. J Biol Chem 2003; 278:3185-96. [PMID: 12446733 DOI: 10.1074/jbc.m207014200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of Raf-1 by Ras requires recruitment to the membrane as well as additional phosphorylations, including phosphorylation at serine 338 (Ser-338) and tyrosine 341 (Tyr-341). In this study we show that Tyr-341 participates in the recruitment of Raf-1 to specialized membrane domains called "rafts," which are required for Raf-1 to be phosphorylated on Ser-338. Raf-1 is also thought to be recruited to the small G protein Rap1 upon GTP loading of Rap1. However, this does not result in Raf-1 activation. We propose that this is because Raf-1 is not phosphorylated on Tyr-341 upon recruitment to Rap1. Redirecting Rap1 to Ras-containing membranes or mimicking Tyr-341 phosphorylation of Raf-1 by mutation converts Rap1 into an activator of Raf-1. In contrast to Raf-1, B-Raf is activated by Rap1. We suggest that this is because B-Raf activation is independent of tyrosine phosphorylation. Moreover, mutants that render B-Raf dependent on tyrosine phosphorylation are no longer activated by Rap1.
Collapse
Affiliation(s)
- Kendall D Carey
- Vollum Institute, Department of Cell and Developmental Biology, L474 Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | | | |
Collapse
|
29
|
Nanjundan M, Possmayer F. Pulmonary phosphatidic acid phosphatase and lipid phosphate phosphohydrolase. Am J Physiol Lung Cell Mol Physiol 2003; 284:L1-23. [PMID: 12471011 DOI: 10.1152/ajplung.00029.2002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The lung contains two distinct forms of phosphatidic acid phosphatase (PAP). PAP1 is a cytosolic enzyme that is activated through fatty acid-induced translocation to the endoplasmic reticulum, where it converts phosphatidic acid (PA) to diacylglycerol (DAG) for the biosynthesis of phospholipids and neutral lipids. PAP1 is Mg(2+) dependent and sulfhydryl reagent sensitive. PAP2 is a six-transmembrane-domain integral protein localized to the plasma membrane. Because PAP2 degrades sphingosine-1-phosphate (S1P) and ceramide-1-phosphate in addition to PA and lyso-PA, it has been renamed lipid phosphate phosphohydrolase (LPP). LPP is Mg(2+) independent and sulfhydryl reagent insensitive. This review describes LPP isoforms found in the lung and their location in signaling platforms (rafts/caveolae). Pulmonary LPPs likely function in the phospholipase D pathway, thereby controlling surfactant secretion. Through lowering the levels of lyso-PA and S1P, which serve as agonists for endothelial differentiation gene receptors, LPPs regulate cell division, differentiation, apoptosis, and mobility. LPP activity could also influence transdifferentiation of alveolar type II to type I cells. It is considered likely that these lipid phosphohydrolases have critical roles in lung morphogenesis and in acute lung injury and repair.
Collapse
Affiliation(s)
- Meera Nanjundan
- Department of Obstetrics and Gynaecology, Canadian Institutes of Health Research Group in Fetal and Neonatal Health and Development, The University of Western Ontario, 339 Windermere Road, London, Ontario, Canada N6A 5A5
| | | |
Collapse
|
30
|
Grewal T, Enrich C, Jäckie S. Role of Annexin 6 in Receptor-Mediated Endocytosis, Membrane Trafficking and Signal Transduction. ANNEXINS 2003. [DOI: 10.1007/978-1-4419-9214-7_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
Han JM, Kim Y, Lee JS, Lee CS, Lee BD, Ohba M, Kuroki T, Suh PG, Ryu SH. Localization of phospholipase D1 to caveolin-enriched membrane via palmitoylation: implications for epidermal growth factor signaling. Mol Biol Cell 2002; 13:3976-88. [PMID: 12429840 PMCID: PMC133608 DOI: 10.1091/mbc.e02-02-0100] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Phospholipase D (PLD) has been suggested to mediate epidermal growth factor (EGF) signaling. However, the molecular mechanism of EGF-induced PLD activation has not yet been elucidated. We investigated the importance of the phosphorylation and compartmentalization of PLD1 in EGF signaling. EGF treatment of COS-7 cells transiently expressing PLD1 stimulated PLD1 activity and induced PLD1 phosphorylation. The EGF-induced phosphorylation of threonine147 was completely blocked and the activity of PLD1 attenuated by point mutations (S2A/T147A/S561A) of PLD1 phosphorylation sites. The expression of a dominant negative PKCalpha mutant by adenovirus-mediated gene transfer greatly inhibited the phosphorylation and activation of PLD1 induced by EGF in PLD1-transfected COS-7 cells. EGF-induced PLD1 phosphorylation occurred primarily in the caveolin-enriched membrane (CEM) fraction, and the kinetics of PLD1 phosphorylation in the CEM were strongly correlated with PLD1 phosphorylation in the total membrane. Interestingly, EGF-induced PLD1 phosphorylation and activation and the coimmunoprecipitation of PLD1 with caveolin-1 and the EGF receptor in the CEM were significantly attenuated in the palmitoylation-deficient C240S/C241S mutant, which did not localize to the CEM. Immunocytochemical analysis revealed that wild-type PLD1 colocalized with caveolin-1 and the EGF receptor and that phosphorylated PLD1 was localized exclusively in the plasma membrane, although some PLD1 was also detected in vesicular structures. Transfection of wild-type PLD1 but not of C240S/C241S mutant increased EGF-induced raf-1 translocation to the CEM and ERK phosphorylation. This study shows, for the first time, that EGF-induced PLD1 phosphorylation and activation occur in the CEM and that the correct localization of PLD1 to the CEM via palmitoylation is critical for EGF signaling.
Collapse
Affiliation(s)
- Jung Min Han
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Light Y, Paterson H, Marais R. 14-3-3 antagonizes Ras-mediated Raf-1 recruitment to the plasma membrane to maintain signaling fidelity. Mol Cell Biol 2002; 22:4984-96. [PMID: 12077328 PMCID: PMC139778 DOI: 10.1128/mcb.22.14.4984-4996.2002] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2001] [Revised: 10/24/2001] [Accepted: 04/19/2002] [Indexed: 11/20/2022] Open
Abstract
We have investigated the role that S259 phosphorylation, S621 phosphorylation, and 14-3-3 binding play in regulating Raf-1 activity. We show that 14-3-3 binding, rather than Raf-1 phosphorylation, is required for the correct regulation of kinase activity. Phosphorylation of S621 is not required for activity, but 14-3-3 binding is essential. When 14-3-3 binding to conserved region 2 (CR2) was disrupted, Raf-1 basal kinase activity was elevated and it could be further activated by (V12,G37)Ras, (V23)TC21, and (V38)R-Ras. Disruption of 14-3-3 binding at CR2 did not recover binding of Raf-1 to (V12,G37)Ras but allowed more efficient recruitment of Raf-1 to the plasma membrane and stimulated its phosphorylation on S338. Finally, (V12)Ras, but not (V12,G37)Ras, displaced 14-3-3 from full-length Raf-1 and the Raf-1 bound to Ras. GTP was still phosphorylated on S259. Our data suggest that stable association of Raf-1 with the plasma membrane requires Ras-mediated displacement of 14-3-3 from CR2. Small G proteins that cannot displace 14-3-3 fail to recruit Raf-1 to the membrane efficiently and so fail to stimulate kinase activity.
Collapse
Affiliation(s)
- Yvonne Light
- Cancer Research UK Centre for Cell and Molecular Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | | | | |
Collapse
|
33
|
Gorzalczany Y, Alloul N, Sigal N, Weinbaum C, Pick E. A prenylated p67phox-Rac1 chimera elicits NADPH-dependent superoxide production by phagocyte membranes in the absence of an activator and of p47phox: conversion of a pagan NADPH oxidase to monotheism. J Biol Chem 2002; 277:18605-10. [PMID: 11896062 DOI: 10.1074/jbc.m202114200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of the superoxide-generating NADPH oxidase of phagocytes is the result of the assembly of a membrane-localized flavocytochrome (cytochrome b(559)) with the cytosolic components p47(phox), p67(phox), and the small GTPase Rac. Activation can be reproduced in an in vitro system in which cytochrome b(559)-containing membranes are mixed with cytosolic components in the presence of an anionic amphiphile. We proposed that the essential event in activation is the interaction between p67(phox) and cytochrome b(559) and that Rac and p47(phox) serve as carriers for p67(phox) to the membrane. When prenylated, Rac can fulfill the carrier function by itself, supporting oxidase activation by p67(phox) in the absence of p47(phox) and amphiphile. We now show that a single chimeric protein, consisting of residues 1-212 of p67(phox) and full-length Rac1 (residues 1-192), prenylated in vitro and exchanged to GTP, becomes a potent oxidase activator in the absence of any other component or stimulus. Oxidase activation by prenylated chimera p67(phox) (1-212)-Rac1 (1-192) is accompanied by its spontaneous association with membranes. Prenylated chimeras p67(phox) (1-212)-Rac1 (178-192) and p67(phox) (1-212)-Rac1 (189-192), containing specific C-terminal regions of Rac1, are inactive; the activity of the first but not of the second chimera can be rescued by supplementation with exogenous nonprenylated Rac1-GTP. An analysis of prenylated p67(phox)-Rac1 chimeras suggests that the basic requirements for oxidase activation are: (i) a "two signals" membrane-localizing motif present in Rac, comprising the prenyl group and a C-terminal polybasic sequence and (ii) an intrachimeric or extrachimeric protein-protein interaction between p67(phox) and Rac1, causing a conformational change in the "activation domain" in p67(phox).
Collapse
Affiliation(s)
- Yara Gorzalczany
- Julius Friedrich Cohnheim-Minerva Center for Phagocyte Research, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
34
|
Rizzo M, Romero G. Pharmacological importance of phospholipase D and phosphatidic acid in the regulation of the mitogen-activated protein kinase cascade. Pharmacol Ther 2002; 94:35-50. [PMID: 12191592 DOI: 10.1016/s0163-7258(02)00170-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The stimulation of cells with many extracellular agonists leads to the activation of phospholipase (PL)D. PLD metabolizes phosphatidylcholine to generate phosphatidic acid (PA). Neither the mechanism through which cell surface receptors regulate PLD activation nor the functional consequences of PLD activity in mitogenic signaling are completely understood. PLD is activated by protein kinase C, phospholipids, and small GTPases of the ADP-ribosylation factor and Rho families, but the mechanisms linking cell surface receptors to the activation of PLD still require detailed analysis. Furthermore, the latest data on the functional consequences of the generation of cellular PA suggest an important role for this lipid in the regulation of membrane traffic and on the activation of the mitogen-activated protein kinase cascade. This review addresses these issues, examining some novel models for the physiological role of PLD and PA and discussing their potential usefulness as specific targets for the development of new therapies.
Collapse
Affiliation(s)
- Mark Rizzo
- Department of Pharmacology, W 1345 BSTWR, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
35
|
Anselmo AN, Bumeister R, Thomas JM, White MA. Critical contribution of linker proteins to Raf kinase activation. J Biol Chem 2002; 277:5940-3. [PMID: 11741918 DOI: 10.1074/jbc.m110498200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genetic analysis of Ras signaling has unveiled the participation of non-enzymatic accessory proteins in signal transmission. These proteins, KSR, CNK, and Sur-8, can interact with multiple core components of the Ras/MAP kinase cascade and may contribute to the structural organization of this cascade. However, the precise biochemical nature of the contribution of these proteins to Ras signaling is currently unknown. Here we show directly that CNK and KSR are required for stimulus dependent Raf kinase activation. CNK is required for membrane recruitment of Raf, while KSR is likely required to couple Raf to upstream kinases. These results demonstrate that CNK and KSR are integral components of the cellular machinery mediating Raf activation.
Collapse
Affiliation(s)
- Anthony N Anselmo
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | |
Collapse
|
36
|
Chen Z, Gibson TB, Robinson F, Silvestro L, Pearson G, Xu B, Wright A, Vanderbilt C, Cobb MH. MAP kinases. Chem Rev 2001; 101:2449-76. [PMID: 11749383 DOI: 10.1021/cr000241p] [Citation(s) in RCA: 696] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Z Chen
- Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kerkhoff E, Rapp UR. The Ras-Raf relationship: an unfinished puzzle. ADVANCES IN ENZYME REGULATION 2001; 41:261-7. [PMID: 11384750 DOI: 10.1016/s0065-2571(00)00023-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- E Kerkhoff
- Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), Versbacher Str. 5, 97078, Würzburg, Germany
| | | |
Collapse
|
38
|
Jaumot M, Hancock JF. Protein phosphatases 1 and 2A promote Raf-1 activation by regulating 14-3-3 interactions. Oncogene 2001; 20:3949-58. [PMID: 11494123 DOI: 10.1038/sj.onc.1204526] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2000] [Revised: 04/06/2001] [Accepted: 04/09/2001] [Indexed: 11/09/2022]
Abstract
Raf-1 activation is a complex process which involves plasma membrane recruitment, phosphorylation, protein-protein and lipid-protein interactions. We now show that PP1 and PP2A serine-threonine phosphatases also have a positive role in Ras dependent Raf-1 activation. General serine-threonine phosphatase inhibitors such sodium fluoride, or ss-glycerophosphate and sodium pyrophosphate, or specific PP1 and PP2A inhibitors including microcystin-LR, protein phosphatase 2A inhibitor I(1) or protein phosphatase inhibitor 2 all abrogate H-Ras and K-Ras dependent Raf-1 activation in vitro. A critical Raf-1 target residue for PP1 and PP2A is S259. Serine phosphatase inhibitors block the dephosphorylation of S259, which accompanies Raf-1 activation, and Ras dependent activation of mutant Raf259A is relatively resistant to serine phosphatase inhibitors. Sucrose gradient analysis demonstrates that serine phosphatase inhibition increases the total amount of 14-3-3 and Raf-1 associated with the plasma membrane and significantly alters the distribution of 14-3-3 and Raf-1 across different plasma membrane microdomains. These observations suggest that dephosphorylation of S259 is a critical early step in Ras dependent Raf-1 activation which facilitates 14-3-3 displacement. Inhibition of PP1 and PP2A therefore causes plasma membrane accumulation of Raf-1/14-3-3 complexes which cannot be activated.
Collapse
Affiliation(s)
- M Jaumot
- Laboratory of Experimental Oncology, Department of Pathology, University of Queensland Medical School, Herston Road, Queensland 4006, Australia
| | | |
Collapse
|
39
|
Hamilton M, Liao J, Cathcart MK, Wolfman A. Constitutive association of c-N-Ras with c-Raf-1 and protein kinase C epsilon in latent signaling modules. J Biol Chem 2001; 276:29079-90. [PMID: 11358964 DOI: 10.1074/jbc.m102001200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Phorbol ester stimulation of the MAPK cascade is believed to be mediated through the protein kinase C (PKC)-dependent activation of Raf-1. Although several studies suggest that phorbol ester stimulation of MAPK is insensitive to dominant-negative Ras, a requirement for Ras in Raf-1 activation by PKC has been suggested recently. We now demonstrate that in normal, quiescent mouse fibroblasts, endogenous c-N-Ras is constitutively associated with both c-Raf-1 and PKC epsilon in a biochemically silent, but latent, signaling module. Chemical inhibition of novel PKCs blocks phorbol 12-myristate 13-acetate (PMA)-mediated activation of MAPKs. Down-regulation of PKC epsilon protein levels by antisense oligodeoxyribonucleotides blocks MAPK activation in response to PMA stimulation, demonstrating that PKC epsilon activity is required for MAPK activation by PMA. c-Raf-1 activity in immunoprecipitated c-N-Ras.c-Raf-1.PKC epsilon complexes is stimulated by PMA and is inhibited by GF109203X, thereby linking c-Raf-1 activation in this complex to PKC activation. These observations suggest that in quiescent cells Ras is organized into ordered, inactive signaling modules. Furthermore, the regulation of the MAPK cascade by both Ras and PKC is intimately linked, converging at the plasma membrane through their association with c-Raf-1.
Collapse
Affiliation(s)
- M Hamilton
- Department of Cell Biology, The Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | | | | | |
Collapse
|
40
|
Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 2001; 22:153-83. [PMID: 11294822 DOI: 10.1210/edrv.22.2.0428] [Citation(s) in RCA: 1318] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitogen-activated protein (MAP) kinases comprise a family of ubiquitous proline-directed, protein-serine/threonine kinases, which participate in signal transduction pathways that control intracellular events including acute responses to hormones and major developmental changes in organisms. MAP kinases lie in protein kinase cascades. This review discusses the regulation and functions of mammalian MAP kinases. Nonenzymatic mechanisms that impact MAP kinase functions and findings from gene disruption studies are highlighted. Particular emphasis is on ERK1/2.
Collapse
Affiliation(s)
- G Pearson
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Pearson G, English JM, White MA, Cobb MH. ERK5 and ERK2 cooperate to regulate NF-kappaB and cell transformation. J Biol Chem 2001; 276:7927-31. [PMID: 11118448 PMCID: PMC4372717 DOI: 10.1074/jbc.m009764200] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously demonstrated an involvement of MEK5 and ERK5 in RafBXB-stimulated focus formation in NIH3T3 cells. We find here that MEK5 and ERK5 cooperate with the RafBXB effectors MEK1/2 and ERK1/2 to induce foci. To further understand MEK5-ERK5-dependent signaling, we examined potential MEK5-ERK5 effectors that might influence focus-forming activity. Consistent with results from our focus-formation assays, constitutively active variants of MEK5 and MEK1 synergize to activate NF-kappaB, and MEK5 and ERK5 are required for activation of NF-kappaB by RafBXB. The MEK5-ERK5 pathway is also sufficient to activate both NF-kappaB and p90 ribosomal S6 kinase. Our results support the hypothesis that NF-kappaB and p90 ribosomal S6 kinase are involved in MEK5-ERK5-dependent focus formation and may serve as integration points for ERK5 and ERK1/2 signaling.
Collapse
Affiliation(s)
| | - Jessie M. English
- the Department of Biological Research-Oncology, Schering-Plough Research Institute, Kenilworth, New Jersey 07033
| | - Michael A. White
- the Department of Pharmacology and Cell Biology and Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041
| | - Melanie H. Cobb
- To whom correspondence should be addressed: Dept of Pharmacology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9041. Tel.: 214-648-3627, Fax: 214-648-3811,
| |
Collapse
|
42
|
Asthagiri AR, Lauffenburger DA. A computational study of feedback effects on signal dynamics in a mitogen-activated protein kinase (MAPK) pathway model. Biotechnol Prog 2001; 17:227-39. [PMID: 11312698 DOI: 10.1021/bp010009k] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exploiting signaling pathways for the purpose of controlling cell function entails identifying and manipulating the information content of intracellular signals. As in the case of the ubiquitously expressed, eukaryotic mitogen-activated protein kinase (MAPK) signaling pathway, this information content partly resides in the signals' dynamical properties. Here, we utilize a mathematical model to examine mechanisms that govern MAPK pathway dynamics, particularly the role of putative negative feedback mechanisms in generating complete signal adaptation, a term referring to the reset of a signal to prestimulation levels. In addition to yielding adaptation of its direct target, feedback mechanisms implemented in our model also indirectly assist in the adaptation of signaling components downstream of the target under certain conditions. In fact, model predictions identify conditions yielding ultra-desensitization of signals in which complete adaptation of target and downstream signals culminates even while stimulus recognition (i.e., receptor-ligand binding) continues to increase. Moreover, the rate at which signal decays can follow first-order kinetics with respect to signal intensity, so that signal adaptation is achieved in the same amount of time regardless of signal intensity or ligand dose. All of these features are consistent with experimental findings recently obtained for the Chinese hamster ovary (CHO) cell lines (Asthagiri et al., J. Biol. Chem. 1999, 274, 27119-27127). Our model further predicts that although downstream effects are independent of whether an enzyme or adaptor protein is targeted by negative feedback, adaptor-targeted feedback can "back-propagate" effects upstream of the target, specifically resulting in increased steady-state upstream signal. Consequently, where these upstream components serve as nodes within a signaling network, feedback can transfer signaling through these nodes into alternate pathways, thereby promoting the sort of signaling cross-talk that is becoming more widely appreciated.
Collapse
Affiliation(s)
- A R Asthagiri
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| | | |
Collapse
|
43
|
Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J 2001. [PMID: 11023813 DOI: 10.1042/0264-6021: 3510289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Ras/Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK (extracellular-signal-regulated kinase) pathway is at the heart of signalling networks that govern proliferation, differentiation and cell survival. Although the basic regulatory steps have been elucidated, many features of this pathway are only beginning to emerge. This review focuses on the role of protein-protein interactions in the regulation of this pathway, and how they contribute to co-ordinate activation steps, subcellular redistribution, substrate phosphorylation and cross-talk with other signalling pathways.
Collapse
|
44
|
Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J 2001. [PMID: 11023813 DOI: 10.1042/0264-6021] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Ras/Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK (extracellular-signal-regulated kinase) pathway is at the heart of signalling networks that govern proliferation, differentiation and cell survival. Although the basic regulatory steps have been elucidated, many features of this pathway are only beginning to emerge. This review focuses on the role of protein-protein interactions in the regulation of this pathway, and how they contribute to co-ordinate activation steps, subcellular redistribution, substrate phosphorylation and cross-talk with other signalling pathways.
Collapse
|
45
|
Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J 2001. [PMID: 11023813 DOI: 10.1042/0264-6021:3510289] [Citation(s) in RCA: 267] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Ras/Raf/MEK (mitogen-activated protein kinase/ERK kinase)/ERK (extracellular-signal-regulated kinase) pathway is at the heart of signalling networks that govern proliferation, differentiation and cell survival. Although the basic regulatory steps have been elucidated, many features of this pathway are only beginning to emerge. This review focuses on the role of protein-protein interactions in the regulation of this pathway, and how they contribute to co-ordinate activation steps, subcellular redistribution, substrate phosphorylation and cross-talk with other signalling pathways.
Collapse
|
46
|
Pearson G, Bumeister R, Henry DO, Cobb MH, White MA. Uncoupling Raf1 from MEK1/2 impairs only a subset of cellular responses to Raf activation. J Biol Chem 2000; 275:37303-6. [PMID: 11018021 DOI: 10.1074/jbc.c000570200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Raf family of serine/threonine protein kinases is intimately involved in the transmission of cell regulatory signals controlling proliferation and differentiation. The best characterized Raf substrates are MEK1 and MEK2. The activation of MEK1/2 by Raf is required to mediate many of the cellular responses to Raf activation, suggesting that MEK1/2 are the dominant Raf effector proteins. However, accumulating evidence suggests that there are additional Raf substrates and that subsets of Raf-induced regulatory events are mediated independently of Raf activation of MEK1/2. To examine the possibility that there is bifurcation at the level of Raf in activation of MEK1/2-dependent and MEK1/2-independent cell regulatory events, we engineered a kinase-active Raf1 variant (RafBXB(T481A)) with an amino acid substitution that disrupts MEK1 binding. We find that disruption of MEK1/2 association uncouples Raf from activation of ERK1/2, induction of serum-response element-dependent gene expression, and induction of growth and morphological transformation. However, activation of NF-kappaB-dependent gene expression and induction of neurite differentiation were unimpaired. In addition, Raf-dependent activation of p90 ribosomal S6 kinase was only slightly impaired. These results support the hypothesis that Raf kinases utilize multiple downstream effectors to regulate distinct cellular activities.
Collapse
Affiliation(s)
- G Pearson
- Departments of Cell Biology and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | |
Collapse
|
47
|
York RD, Molliver DC, Grewal SS, Stenberg PE, McCleskey EW, Stork PJ. Role of phosphoinositide 3-kinase and endocytosis in nerve growth factor-induced extracellular signal-regulated kinase activation via Ras and Rap1. Mol Cell Biol 2000; 20:8069-83. [PMID: 11027277 PMCID: PMC86417 DOI: 10.1128/mcb.20.21.8069-8083.2000] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neurotrophins promote multiple actions on neuronal cells including cell survival and differentiation. The best-studied neurotrophin, nerve growth factor (NGF), is a major survival factor in sympathetic and sensory neurons and promotes differentiation in a well-studied model system, PC12 cells. To mediate these actions, NGF binds to the TrkA receptor to trigger intracellular signaling cascades. Two kinases whose activities mediate these processes include the mitogen-activated protein (MAP) kinase (or extracellular signal-regulated kinase [ERK]) and phosphoinositide 3-kinase (PI3-K). To examine potential interactions between the ERK and PI3-K pathways, we studied the requirement of PI3-K for NGF activation of the ERK signaling cascade in dorsal root ganglion cells and PC12 cells. We show that PI3-K is required for TrkA internalization and participates in NGF signaling to ERKs via distinct actions on the small G proteins Ras and Rap1. In PC12 cells, NGF activates Ras and Rap1 to elicit the rapid and sustained activation of ERKs respectively. We show here that Rap1 activation requires both TrkA internalization and PI3-K, whereas Ras activation requires neither TrkA internalization nor PI3-K. Both inhibitors of PI3-K and inhibitors of endocytosis prevent GTP loading of Rap1 and block sustained ERK activation by NGF. PI3-K and endocytosis may also regulate ERK signaling at a second site downstream of Ras, since both rapid ERK activation and the Ras-dependent activation of the MAP kinase kinase kinase B-Raf are blocked by inhibition of either PI3-K or endocytosis. The results of this study suggest that PI3-K may be required for the signals initiated by TrkA internalization and demonstrate that specific endocytic events may distinguish ERK signaling via Rap1 and Ras.
Collapse
Affiliation(s)
- R D York
- Vollum Institute, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | | | | | | | |
Collapse
|
48
|
Farrar MA, Tian J, Perlmutter RM. Membrane localization of Raf assists engagement of downstream effectors. J Biol Chem 2000; 275:31318-24. [PMID: 10913130 DOI: 10.1074/jbc.m003399200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously described a small molecule-directed protein dimerization strategy, using coumermycin to juxtapose Raf fusion proteins containing the coumermycin-binding domain GyrB. Oligomerization of cytoplasmically localized Raf-GyrB fusion proteins leads to an increase in the kinase activity of both Raf and its substrate Mek. Surprisingly, more distal targets, such as Erk1 and Erk2, are not activated using this approach. Here we report that coumermycin-induced oligomerization of a membrane-localized Raf-GyrB fusion protein potently activated Erk1 and Erk2, up-regulated Fos protein levels, and induced expression of many immediate-early response genes. Thus, both membrane localization and oligomerization of Raf-GyrB are required to target Raf signals to downstream effectors. The ability to activate the entire Raf signal transduction cascade conditionally, using coumermycin-induced oligomerization, should prove useful for dissecting Raf-mediated effects on gene expression and cellular differentiation.
Collapse
Affiliation(s)
- M A Farrar
- Merck Research Laboratories, Rahway, New Jersey 07065, USA.
| | | | | |
Collapse
|
49
|
Schmitt JM, Stork PJ. beta 2-adrenergic receptor activates extracellular signal-regulated kinases (ERKs) via the small G protein rap1 and the serine/threonine kinase B-Raf. J Biol Chem 2000; 275:25342-50. [PMID: 10840035 DOI: 10.1074/jbc.m003213200] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptors can induce cellular proliferation by stimulating the mitogen-activated protein (MAP) kinase cascade. Heterotrimeric G proteins are composed of both alpha and betagamma subunits that can signal independently to diverse intracellular signaling pathways including those that activate MAP kinases. In this study, we examined the ability of isoproterenol, an agonist of the beta(2)-adrenergic receptor (beta(2)AR), to stimulate extracellular signal-regulated kinases (ERKs). Using HEK293 cells, which express endogenous beta(2)AR, we show that isoproterenol stimulates ERKs via beta(2)AR. This action of isoproterenol requires cAMP-dependent protein kinase and is insensitive to pertussis toxin, suggesting that Galpha(s) activation of cAMP-dependent protein kinase is required. Interestingly, beta(2)AR activates both the small G proteins Rap1 and Ras, but only Rap1 is capable of coupling to Raf isoforms. beta(2)AR inhibits the Ras-dependent activation of both Raf isoforms Raf-1 and B-Raf, whereas Rap1 activation by isoproterenol recruits and activates B-Raf. beta(2)AR activation of ERKs is not blocked by expression of RasN17, an interfering mutant of Ras, but is blocked by expression of either RapN17 or Rap1GAP1, both of which interfere with Rap1 signaling. We propose that isoproterenol can activate ERKs via Rap1 and B-Raf in these cells.
Collapse
Affiliation(s)
- J M Schmitt
- Vollum Institute and the Department of Cell and Developmental Biology, Oregon Health Sciences University, Portland 97201, USA
| | | |
Collapse
|
50
|
Rizzo MA, Shome K, Watkins SC, Romero G. The recruitment of Raf-1 to membranes is mediated by direct interaction with phosphatidic acid and is independent of association with Ras. J Biol Chem 2000; 275:23911-8. [PMID: 10801816 DOI: 10.1074/jbc.m001553200] [Citation(s) in RCA: 255] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The serine/threonine kinase Raf-1 is an essential component of the MAPK cascade. Activation of Raf-1 by extracellular signals is initiated by association with intracellular membranes. Recruitment of Raf-1 to membranes has been reported to be mediated by direct association with Ras and by the phospholipase D product phosphatidic acid (PA). Here we report that insulin stimulation of HIRcB fibroblasts leads to accumulation of Ras, Raf-1, phosphorylated MEK, phosphorylated MAPK, and PA on endosomal membranes. Mutations that disrupt Raf-PA interactions prevented recruitment of Raf-1 to membranes, whereas disruption of Ras-Raf interactions did not affect agonist-dependent translocation. Expression of a dominant-negative Ras mutant did not prevent insulin-dependent Raf-1 translocation, but inhibited phosphorylation of MAPK. Finally, the PA-binding region of Raf-1 was sufficient to target green fluorescent protein to membranes, and its overexpression blocked recruitment of Raf-1 to membranes and disrupted insulin-dependent MAPK phosphorylation. These results indicate that agonist-dependent Raf-1 translocation is primarily mediated by a direct interaction with PA and is independent of association with Ras.
Collapse
Affiliation(s)
- Megan A Rizzo
- Departments of Pharmacology and Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|