1
|
Welp LM, Sachsenberg T, Wulf A, Chernev A, Horokhovskyi Y, Neumann P, Pašen M, Siraj A, Raabe M, Johannsson S, Schmitzova J, Netz E, Pfeuffer J, He Y, Fritzemeier K, Delanghe B, Viner R, Vos SM, Cramer P, Ficner R, Liepe J, Kohlbacher O, Urlaub H. Chemical crosslinking extends and complements UV crosslinking in analysis of RNA/DNA nucleic acid-protein interaction sites by mass spectrometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610268. [PMID: 39257782 PMCID: PMC11383681 DOI: 10.1101/2024.08.29.610268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
UV (ultra-violet) crosslinking with mass spectrometry (XL-MS) has been established for identifying RNA-and DNA-binding proteins along with their domains and amino acids involved. Here, we explore chemical XL-MS for RNA-protein, DNA-protein, and nucleotide-protein complexes in vitro and in vivo . We introduce a specialized nucleotide-protein-crosslink search engine, NuXL, for robust and fast identification of such crosslinks at amino acid resolution. Chemical XL-MS complements UV XL-MS by generating different crosslink species, increasing crosslinked protein yields in vivo almost four-fold and thus it expands the structural information accessible via XL-MS. Our workflow facilitates integrative structural modelling of nucleic acid-protein complexes and adds spatial information to the described RNA-binding properties of enzymes, for which crosslinking sites are often observed close to their cofactor-binding domains. In vivo UV and chemical XL-MS data from E. coli cells analysed by NuXL establish a comprehensive nucleic acid-protein crosslink inventory with crosslink sites at amino acid level for more than 1500 proteins. Our new workflow combined with the dedicated NuXL search engine identified RNA crosslinks that cover most RNA-binding proteins, with DNA and RNA crosslinks detected in transcriptional repressors and activators.
Collapse
|
2
|
Eukaryotic Ribosomal Protein S5 of the 40S Subunit: Structure and Function. Int J Mol Sci 2023; 24:ijms24043386. [PMID: 36834797 PMCID: PMC9958902 DOI: 10.3390/ijms24043386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
The ribosomal protein RPS5 is one of the prime proteins to combine with RNA and belongs to the conserved ribosomal protein family. It plays a substantial role in the process of translation and also has some non-ribosome functions. Despite the enormous studies on the relationship between the structure and function of prokaryotic RPS7, the structure and molecular details of the mechanism of eukaryotic RPS5 remain largely unexplored. This article focuses on the structure of RPS5 and its role in cells and diseases, especially the binding to 18S rRNA. The role of RPS5 in translation initiation and its potential use as targets for liver disease and cancer are discussed.
Collapse
|
3
|
Wang ZY, Qu WT, Mei T, Zhang N, Yang NY, Xu XF, Xiong HB, Yang ZN, Yu QB. AtRsmD Is Required for Chloroplast Development and Chloroplast Function in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:860945. [PMID: 35548310 PMCID: PMC9083416 DOI: 10.3389/fpls.2022.860945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/16/2022] [Indexed: 05/25/2023]
Abstract
AtRsmD was recently demonstrated to be a chloroplast 16S rRNA methyltransferase (MTase) for the m2G915 modification in Arabidopsis. Here, its function of AtRsmD for chloroplast development and photosynthesis was further analyzed. The AtRsmD gene is highly expressed in green photosynthetic tissues. AtRsmD is associated with the thylakoid in chloroplasts. The atrsmd-2 mutant exhibited impaired photosynthetic efficiency in emerging leaves under normal growth conditions. A few thylakoid lamellas could be observed in the chloroplast from the atrsmd-2 mutant, and these thylakoids were loosely organized. Knockout of the AtRsmD gene had minor effects on chloroplast ribosome biogenesis and RNA loading on chloroplast ribosomes, but it reduced the amounts of chloroplast-encoded photosynthesis-related proteins in the emerging leaves, for example, D1, D2, CP43, and CP47, which reduced the accumulation of the photosynthetic complex. Nevertheless, knockout of the AtRsmD gene did not cause a general reduction in chloroplast-encoded proteins in Arabidopsis grown under normal growth conditions. Additionally, the atrsmd-2 mutant exhibited more sensitivity to lincomycin, which specifically inhibits the elongation of nascent polypeptide chains. Cold stress exacerbated the effect on chloroplast ribosome biogenesis in the atrsmd-2 mutant. All these data suggest that the AtRsmD protein plays distinct regulatory roles in chloroplast translation, which is required for chloroplast development and chloroplast function.
Collapse
|
4
|
Largy E, König A, Ghosh A, Ghosh D, Benabou S, Rosu F, Gabelica V. Mass Spectrometry of Nucleic Acid Noncovalent Complexes. Chem Rev 2021; 122:7720-7839. [PMID: 34587741 DOI: 10.1021/acs.chemrev.1c00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids have been among the first targets for antitumor drugs and antibiotics. With the unveiling of new biological roles in regulation of gene expression, specific DNA and RNA structures have become very attractive targets, especially when the corresponding proteins are undruggable. Biophysical assays to assess target structure as well as ligand binding stoichiometry, affinity, specificity, and binding modes are part of the drug development process. Mass spectrometry offers unique advantages as a biophysical method owing to its ability to distinguish each stoichiometry present in a mixture. In addition, advanced mass spectrometry approaches (reactive probing, fragmentation techniques, ion mobility spectrometry, ion spectroscopy) provide more detailed information on the complexes. Here, we review the fundamentals of mass spectrometry and all its particularities when studying noncovalent nucleic acid structures, and then review what has been learned thanks to mass spectrometry on nucleic acid structures, self-assemblies (e.g., duplexes or G-quadruplexes), and their complexes with ligands.
Collapse
Affiliation(s)
- Eric Largy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Alexander König
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Anirban Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Debasmita Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Sanae Benabou
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS, INSERM, IECB, UMS 3033, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
5
|
Kramer K, Sachsenberg T, Beckmann BM, Qamar S, Boon KL, Hentze MW, Kohlbacher O, Urlaub H. Photo-cross-linking and high-resolution mass spectrometry for assignment of RNA-binding sites in RNA-binding proteins. Nat Methods 2014; 11:1064-70. [PMID: 25173706 PMCID: PMC6485471 DOI: 10.1038/nmeth.3092] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 07/21/2014] [Indexed: 12/21/2022]
Abstract
RNA–protein complexes play pivotal roles in many central biological processes. While methods based on next-generation sequencing have profoundly advanced our ability to identify the specific RNAs bound by a particular protein, there is a dire need for precise and systematic ways to identify RNA interaction sites on proteins. We have developed an integrated experimental and computational workflow combining photo-induced cross-linking, high-resolution mass spectrometry, and automated analysis of the resulting mass spectra for the identification of cross-linked peptides and exact amino acids with their cross-linked RNA oligonucleotide moiety of such RNA-binding proteins. The generic workflow can be applied to any RNA–protein complex of interest. Application to human and yeast mRNA–protein complexes in vitro and in vivo demonstrates the powerful utility of the approach by identification of 257 cross-linking sites on 124 distinct RNA-binding proteins. The software pipeline developed for this purpose is available as open-source software as part of the OpenMS project.
Collapse
Affiliation(s)
- Katharina Kramer
- 1] Bioanalytical Mass Spectrometry Group, Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany. [2]
| | - Timo Sachsenberg
- 1] Center for Bioinformatics, University of Tübingen, Tübingen, Germany. [2] Department of Computer Science, University of Tübingen, Tübingen, Germany. [3]
| | | | - Saadia Qamar
- Bioanalytical Mass Spectrometry Group, Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Kum-Loong Boon
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - Oliver Kohlbacher
- 1] Center for Bioinformatics, University of Tübingen, Tübingen, Germany. [2] Department of Computer Science, University of Tübingen, Tübingen, Germany. [3] Quantitative Biology Center, University of Tübingen, Tübingen, Germany. [4] Faculty of Medicine, University of Tübingen, Tübingen, Germany
| | - Henning Urlaub
- 1] Bioanalytical Mass Spectrometry Group, Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany. [2] Bioanalytics Research Group, Department of Clinical Chemistry, University Medical Center, Göttingen, Germany
| |
Collapse
|
6
|
Sergeeva OV, Prokhorova IV, Ordabaev Y, Tsvetkov PO, Sergiev PV, Bogdanov AA, Makarov AA, Dontsova OA. Properties of small rRNA methyltransferase RsmD: mutational and kinetic study. RNA (NEW YORK, N.Y.) 2012; 18:1178-1185. [PMID: 22535590 PMCID: PMC3358640 DOI: 10.1261/rna.032763.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 03/06/2012] [Indexed: 05/31/2023]
Abstract
Ribosomal RNA modification is accomplished by a variety of enzymes acting on all stages of ribosome assembly. Among rRNA methyltransferases of Escherichia coli, RsmD deserves special attention. Despite its minimalistic domain architecture, it is able to recognize a single target nucleotide G966 of the 16S rRNA. RsmD acts late in the assembly process and is able to modify a completely assembled 30S subunit. Here, we show that it possesses superior binding properties toward the unmodified 30S subunit but is unable to bind a 30S subunit modified at G966. RsmD is unusual in its ability to withstand multiple amino acid substitutions of the active site. Such efficiency of RsmD may be useful to complete the modification of a 30S subunit ahead of the 30S subunit's involvement in translation.
Collapse
Affiliation(s)
- Olga V. Sergeeva
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia
| | - Irina V. Prokhorova
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia
| | - Yerdos Ordabaev
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia
| | - Philipp O. Tsvetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Petr V. Sergiev
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia
| | - Alexey A. Bogdanov
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia
| | - Alexander A. Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Olga A. Dontsova
- Lomonosov Moscow State University, Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia
| |
Collapse
|
7
|
Schmidt C, Kramer K, Urlaub H. Investigation of protein-RNA interactions by mass spectrometry--Techniques and applications. J Proteomics 2012; 75:3478-94. [PMID: 22575267 DOI: 10.1016/j.jprot.2012.04.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 04/19/2012] [Accepted: 04/22/2012] [Indexed: 12/26/2022]
Abstract
Protein-RNA complexes play many important roles in diverse cellular functions. They are involved in a wide variety of different processes in growth and differentiation at the various stages of the cell cycle. As their function and catalytic activity are directly coupled to the structural arrangement of their components--proteins and ribonucleic acids--the investigation of protein-RNA interactions is of great functional and structural importance. Here we discuss the most prominent examples of protein-RNA complexes and describe some frequently used purification strategies. We present various techniques and applications of mass spectrometry to study protein-RNA complexes. We discuss the analysis of intact complexes as well as proteomics-based and crosslinking-based approaches in which proteins are cleaved into smaller peptides. This article is part of a Special Section entitled: Understanding genome regulation and genetic diversity by mass spectrometry.
Collapse
Affiliation(s)
- Carla Schmidt
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | |
Collapse
|
8
|
Surdina AV, Rassokhin TI, Golovin AV, Spiridonova VA, Kopylov AM. Mapping the ribosomal protein S7 regulatory binding site on mRNA of the E. coli streptomycin operon. BIOCHEMISTRY (MOSCOW) 2010; 75:841-50. [PMID: 20673207 DOI: 10.1134/s0006297910070059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this work it is shown by deletion analysis that an intercistronic region (ICR) approximately 80 nucleotides in length is necessary for interaction with recombinant E. coli S7 protein (r6hEcoS7). A model is proposed for the interaction of S7 with two ICR sites-region of hairpin bifurcations and Shine-Dalgarno sequence of cistron S7. A de novo RNA binding site for heterologous S7 protein of Thermus thermophilus (r6hTthS7) was constructed by selection of a combinatorial RNA library based on E. coli ICR: it has only a single supposed protein recognition site in the region of bifurcation. The SERW technique was used for selection of two intercistronic RNA libraries in which five nucleotides of a double-stranded region, adjacent to the bifurcation, had the randomized sequence. One library contained an authentic AG (-82/-20) pair, while in the other this pair was replaced by AU. A serwamer capable of specific binding to r6hTthS7 was selected; it appeared to be the RNA68 mutant with eight nucleotide mutations. The serwamer binds to r6hTthS7 with the same affinity as homologous authentic ICR of str mRNA binds to r6hEcoS7; apparent dissociation constants are 89 +/- 43 and 50 +/- 24 nM, respectively.
Collapse
Affiliation(s)
- A V Surdina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | | |
Collapse
|
9
|
Richter FM, Sander B, Golas MM, Stark H, Urlaub H. Merging molecular electron microscopy and mass spectrometry by carbon film-assisted endoproteinase digestion. Mol Cell Proteomics 2010; 9:1729-41. [PMID: 20530635 DOI: 10.1074/mcp.m110.001446] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many fundamental processes in the cell are performed by complex macromolecular assemblies that comprise a large number of proteins. Numerous macromolecular assemblies are structurally rather fragile and may suffer during purification, resulting in the partial dissociation of the complexes. These limitations can be overcome by chemical fixation of the assemblies, and recently introduced protocols such as gradient fixation during ultracentrifugation (GraFix) offer advantages for the analysis of fragile macromolecular assemblies. The irreversible fixation, however, is thought to render macromolecular samples useless for studying their protein composition. We therefore developed a novel approach that possesses the advantages of fixation for structure determination by single particle electron microscopy while still allowing a correlative compositional analysis by mass spectrometry. In this method, which we call "electron microscopy carbon film-assisted digestion", macromolecular assemblies are chemically fixed and then adsorbed onto electron microscopical carbon films. Parallel, identically prepared specimens are then subjected to structural investigation by electron microscopy and proteomics analysis by mass spectrometry of the digested sample. As identical sample preparation protocols are used for electron microscopy and mass spectrometry, the results of both methods can directly be correlated. In addition, we demonstrate improved sensitivity and reproducibility of electron microscopy carbon film-assisted digestion as compared with standard protocols. We show that sample amounts of as low as 50 fmol are sufficient to obtain a comprehensive protein composition of two model complexes. We suggest our approach to be an optimization technique for the compositional analysis of macromolecules by mass spectrometry in general.
Collapse
|
10
|
Surdina AV, Rassokhin TI, Golovin AV, Spiridonova VA, Kraal B, Kopylov AM. Selection of random RNA fragments as method for searching for a site of regulation of translation of E. coli streptomycin mRNA by ribosomal protein S7. BIOCHEMISTRY (MOSCOW) 2008; 73:652-9. [PMID: 18620530 DOI: 10.1134/s0006297908060047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In E. coli cells ribosomal small subunit biogenesis is regulated by RNA-protein interactions involving protein S7. S7 initiates the subunit assembly interacting with 16S rRNA. During shift-down of rRNA synthesis level, free S7 inhibits self-translation by interacting with 96 nucleotides long specific region of streptomycin (str) mRNA between cistrons S12 and S7 (intercistron). Many bacteria do not have the extended intercistron challenging development of specific approaches for searching putative mRNA regulatory regions, which are able to interact with proteins. The paper describes application of SERF approach (Selection of Random RNA Fragments) to reveal regulatory regions of str mRNA. Set of random DNA fragments has been generated from str operon by random hydrolysis and then transcribed into RNA; the fragments being able to bind protein S7 (serfamers) have been selected by iterative rounds. S7 binds to single serfamer, 109 nucleotide long (RNA109), derived from the intercistron. After multiple copying and selection, the intercistronic mutant (RNA109) has been isolated; it has enhanced affinity to S7. RNA109 binds to the protein better than authentic intercistronic str mRNA; apparent dissociation constants are 26 +/- 5 and 60 +/- 8 nM, respectively. Location of S7 binding site on the mRNA, as well as putative mode of regulation of coupled translation of S12 and S7 cistrons have been hypothesized.
Collapse
Affiliation(s)
- A V Surdina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | | | | | | | | | | |
Collapse
|
11
|
Pourshahian S, Limbach PA. Application of fractional mass for the identification of peptide-oligonucleotide cross-links by mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2008; 43:1081-1088. [PMID: 18320553 PMCID: PMC3008158 DOI: 10.1002/jms.1391] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A method has been developed to identify oligonucleotide-peptide heteroconjugates by accurate mass measurements using MS. The fractional mass (the decimal fraction mass value following the monoisotopic nominal mass) for peptides and oligonucleotides is different due to their differing molecular compositions. This property has been used to develop the general conditions necessary to differentiate peptides and oligonucleotides from oligonucleotide-peptide heteroconjugates. Peptides and oligonucleotides generated by the theoretical digestion of various proteins and nucleic acids were plotted as nominal mass versus fractional mass. Such plots reveal that three nucleotides cross-linked to a peptide produce enough change in the fractional mass to be recognized from non-cross-linked peptides at the same nominal mass. Experimentally, a Cytochrome c digest was spiked with an oligonucleotide-peptide heteroconjugate and conditions for analyzing the sample using liquid chromatography (LC)-MS were optimized. Upon analysis of this mixture, all detected masses were plotted on a fractional mass plot and the heteroconjugate could be readily distinguished from non-cross-linked peptides. The method developed here can be incorporated into a general proteomics-like scheme for identifying protein-nucleic acid cross-links, and this method is equally applicable to characterizing cross-links generated from protein-DNA and protein-RNA complexes.
Collapse
Affiliation(s)
| | - Patrick A. Limbach
- To whom correspondence should be addressed. Phone (513) 556-1871, Fax (513) 556-9239,
| |
Collapse
|
12
|
Connor DA, Falick AM, Young MC, Shetlar MD. Probing the Binding Region of the Single-Stranded DNA-Binding Domain of Rat DNA Polymerase β Using Nanosecond-Pulse Laser-Induced Cross-Linking and Mass Spectrometry. Photochem Photobiol 2008. [DOI: 10.1111/j.1751-1097.1998.tb09685.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Zhang Q, Crosland E, Fabris D. Nested Arg-specific bifunctional crosslinkers for MS-based structural analysis of proteins and protein assemblies. Anal Chim Acta 2008; 627:117-28. [PMID: 18790135 DOI: 10.1016/j.aca.2008.05.074] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 05/28/2008] [Accepted: 05/28/2008] [Indexed: 01/14/2023]
Abstract
The combination of chemical probing and high-resolution mass spectrometry constitutes a powerful alternative for the structural elucidation of biomolecules possessing unfavorable size, solubility, and flexibility. We have developed nested Arg-specific bifunctional crosslinkers to obtain complementary information to typical Cys- and Lys-specific reagents available on the market. The structures of 1,4-phenyl-diglyoxal (PDG) and 4,4'-biphenyl-diglyoxal (BDG) include two identical 1,2-dicarbonyl functions capable of reacting with the guanido group of Arg residues in proteins, as well as the base-pairing face of guanine in nucleic acids. The reactive functions are separated by modular spacers consisting of one or two benzene rings, which confer greater rigidity to the crosslinker structure than it is afforded by typical aliphatic spacers. Analysis by electrospray ionization (ESI) Fourier transform ion cyclotron resonance (FTICR) mass spectrometry has shown that the probes provide both mono- and bifunctional products with model protein substrates, which are stabilized by the formation of diester derivatives in the presence of borate buffer. The identification of crosslinked sites was accomplished by employing complementary proteolytic procedures and peptide mapping by ESI-FTICR. The results showed excellent correlation with the solvent accessibility and structural context of susceptible residues, and highlighted the significance of possible dynamic effects in determining the outcome of crosslinking reactions. The application of nested reagents with different spacing has provided a new tool for experimentally recognizing flexible regions that may be involved in prominent dynamics in solution. The development of new bifunctional crosslinkers with diverse target specificity and different bridging spans is expected to facilitate the structure elucidation of progressively larger biomolecular assemblies by increasing the number and diversity of spatial constraints available for triangulating the position of crosslinked structures in the three dimensions.
Collapse
Affiliation(s)
- Qingrong Zhang
- University of Maryland Baltimore County, Baltimore, MD 21228, United States
| | | | | |
Collapse
|
14
|
Doneanu CE, Gafken PR, Bennett SE, Barofsky DF. Mass spectrometry of UV-cross-linked protein-nucleic acid complexes: identification of amino acid residues in the single-stranded DNA-binding domain of human replication protein A. Anal Chem 2006; 76:5667-76. [PMID: 15456284 DOI: 10.1021/ac049547c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photochemical cross-linking of human replication protein A (hRPA) to oligonucleotide dT30 was performed to enable identification of amino acid sequences that reside in the DNA-binding domain. A nucleoprotein complex, with a 1:1 protein/DNA stoichiometry, was separated from unreacted enzyme and oligonucleotide by SDS-polyacrylamide gel electrophoresis and subjected to in-gel digestion with trypsin. Three cross-linked tryptic peptides (nucleopeptides) of hRPA70xdT30 (T43, T28/29, and a truncated T24/25) were isolated. Combined mass spectrometric and C-terminal proteolysis experiments showed that at least one amino acid in the segment 235-ATAFNE-240 (located in T24/25), at least one out of the two residues sequence 269-FT-270 (located in T28/29), and at least one from the sequence 383-VSDF-386 (located in T43) were involved in cross-linking. These peptides contained aromatic residues (F238, F269, and F386 respectively) that can form base-stacking interactions with the DNA and were, therefore, most likely to be involved in cross-linking. The results obtained in this study demonstrate that a combination of exhaustive proteolysis and MALDI TOF MS can localize the sites of DNA binding to very short sequences of amino acids. Data so acquired can confirm or amend information obtained from site-directed mutagenesis and X-ray crystallography.
Collapse
Affiliation(s)
- Catalin E Doneanu
- Department of Chemistry, Department of Environmental & Molecular Toxicology, and Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331 USA
| | | | | | | |
Collapse
|
15
|
Yanshina DD, Malygin AA, Karpova GG. Binding of human ribosomal protein S5 with 18S rRNA fragment 1203–1236/1521–1698. Mol Biol 2006. [DOI: 10.1134/s0026893306030071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Geyer H, Geyer R, Pingoud V. A novel strategy for the identification of protein-DNA contacts by photocrosslinking and mass spectrometry. Nucleic Acids Res 2004; 32:e132. [PMID: 15383647 PMCID: PMC519130 DOI: 10.1093/nar/gnh131] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Photochemical crosslinking is a method for studying the molecular details of protein-nucleic acid interactions. In this study, we describe a novel strategy to localize crosslinked amino acid residues that combines laser-induced photocrosslinking, proteolytic digestion, Fe3+-IMAC (immobilized metal affinity chromatography) purification of peptide-oligodeoxynucleotide heteroconjugates and hydrolysis of oligodeoxynucleotides by hydrogen fluoride (HF), with efficient matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The new method is illustrated by the identification of the DNA-binding site of the restriction endonuclease MboI. Photoactivatable 5-iododeoxyuridine was incorporated into a single site within the DNA recognition sequence (GATC) of MboI. Ultraviolet irradiation of the protein-DNA complex with a helium/cadmium laser at 325 nm resulted in 15% crosslinking yield. Proteolytic digestion with different proteases produced various peptide-oligodeoxynucleotide adducts that were purified together with free oligodeoxynucleotide by Fe3+-IMAC. A combination of MS analysis of the peptide-nucleosides obtained after hydrolysis by HF and their fragmentation by MS/MS revealed that Lys209 of MboI was crosslinked to the MboI recognition site at the position of the adenine, demonstrating that the region around Lys209 is involved in specific binding of MboI to its DNA substrate. This method is suitable for the fast identification of the site of contact between proteins and nucleic acids starting from picomole quantities of crosslinked complexes.
Collapse
Affiliation(s)
- Hildegard Geyer
- Biochemisches Institut, Friedrichstrasse 24, Justus-Liebig-Universität, D-35392 Giessen, Germany
| | | | | |
Collapse
|
17
|
Sergiev P, Leonov A, Dokudovskaya S, Shpanchenko O, Dontsova O, Bogdanov A, Rinke-Appel J, Mueller F, Osswald M, von Knoblauch K, Brimacombe R. Correlating the X-ray structures for halo- and thermophilic ribosomal subunits with biochemical data for the Escherichia coli ribosome. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:87-100. [PMID: 12762011 DOI: 10.1101/sqb.2001.66.87] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- P Sergiev
- Department of Chemistry of Natural Compounds and Belozersky Institute, Moscow State University, Moscow 119899, Russia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Odintsova TI, Müller EC, Ivanov AV, Egorov TA, Bienert R, Vladimirov SN, Kostka S, Otto A, Wittmann-Liebold B, Karpova GG. Characterization and analysis of posttranslational modifications of the human large cytoplasmic ribosomal subunit proteins by mass spectrometry and Edman sequencing. JOURNAL OF PROTEIN CHEMISTRY 2003; 22:249-58. [PMID: 12962325 DOI: 10.1023/a:1025068419698] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The 60S ribosomal proteins were isolated from ribosomes of human placenta and separated by reversed phase HPLC. The fractions obtained were subjected to trypsin and Glu-C digestion and analyzed by mass fingerprinting (MALDI-TOF), MS/MS (ESI), and Edman sequencing. Forty-six large subunit proteins were found, 22 of which showed masses in accordance with the SwissProt database (June 2002) masses (proteins L6, L7, L9, L13, L15, L17, L18, L21, L22, L24, L26, L27, L30, L32, L34, L35, L36, L37, L37A, L38, L39, L41). Eleven (proteins L7, L10A, L11, L12, L13A, L23, L23A, L27A, L28, L29, and P0) resulted in mass changes that are consistent with N-terminal loss of methionine, acetylation, internal methylation, or hydroxylation. A loss of methionine without acetylation was found for protein L8 and L17. For nine proteins (L3, L4, L5, L7A, L10, L14, L19, L31, and L40), the molecular masses could not be determined. Proteins P1 and protein L3-like were not identified by the methods applied.
Collapse
Affiliation(s)
- Tatyana I Odintsova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russian Federation
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Rusconi F, Guillonneau F, Praseuth D. Contributions of mass spectrometry in the study of nucleic acid-binding proteins and of nucleic acid-protein interactions. MASS SPECTROMETRY REVIEWS 2002; 21:305-348. [PMID: 12645088 DOI: 10.1002/mas.10036] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nucleic-acid-protein (NA-P) interactions play essential roles in a variety of biological processes-gene expression regulation, DNA repair, chromatin structure regulation, transcription regulation, RNA processing, and translation-to cite only a few. Such biological processes involve a broad spectrum of NA-P interactions as well as protein-protein (P-P) interactions. These interactions are dynamic, in terms of the chemical composition of the complexes involved and in terms of their mere existence, which may be restricted to a given cell-cycle phase. In this review, the contributions of mass spectrometry (MS) to the deciphering of these intricate networked interactions are described along with the numerous applications in which it has proven useful. Such applications include, for example, the identification of the partners involved in NA-P or P-P complexes, the identification of post-translational modifications that (may) regulate such complexes' activities, or even the precise molecular mapping of the interaction sites in the NA-P complex. From a biological standpoint, we felt that it was worth the reader's time to be as informative as possible about the functional significance of the analytical methods reviewed herein. From a technical standpoint, because mass spectrometry without proper sample preparation would serve no purpose, each application described in this review is detailed by duly emphasizing the sample preparation-whenever this step is considered innovative-that led to significant analytical achievements.
Collapse
Affiliation(s)
- Filippo Rusconi
- UMR CNRS 8646, U INSERM 565, USM MNHN 0503-43, rue Cuvier, F-75231, Paris Cedex 05, France
| | | | | |
Collapse
|
20
|
Steen H, Jensen ON. Analysis of protein-nucleic acid interactions by photochemical cross-linking and mass spectrometry. MASS SPECTROMETRY REVIEWS 2002; 21:163-182. [PMID: 12476441 DOI: 10.1002/mas.10024] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Photochemical cross-linking is a commonly used method for studying the molecular details of protein-nucleic acid interactions. Photochemical cross-linking aids in defining nucleic acid binding sites of proteins via subsequent identification of cross-linked protein domains and amino acid residues. Mass spectrometry (MS) has emerged as a sensitive and efficient analytical technique for determination of such cross-linking sites in proteins. The present review of the field describes a number of MS-based approaches for the characterization of cross-linked protein-nucleic acid complexes and for sequencing of peptide-nucleic acid heteroconjugates. The combination of photochemical cross-linking and MS provides a fast screening method to gain insights into the overall structure and formation of protein-oligonucleotide complexes. Because the analytical methods are continuously refined and protein structural data are rapidly accumulating in databases, we envision that many protein-nucleic acid assemblies will be initially characterized by combinations of cross-linking methods, MS, and computational molecular modeling.
Collapse
Affiliation(s)
- Hanno Steen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | |
Collapse
|
21
|
Brodersen DE, Clemons WM, Carter AP, Wimberly BT, Ramakrishnan V. Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: structure of the proteins and their interactions with 16 S RNA. J Mol Biol 2002; 316:725-68. [PMID: 11866529 DOI: 10.1006/jmbi.2001.5359] [Citation(s) in RCA: 291] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We present a detailed analysis of the protein structures in the 30 S ribosomal subunit from Thermus thermophilus, and their interactions with 16 S RNA based on a crystal structure at 3.05 A resolution. With 20 different polypeptide chains, the 30 S subunit adds significantly to our data base of RNA structure and protein-RNA interactions. In addition to globular domains, many of the proteins have long, extended regions, either in the termini or in internal loops, which make extensive contact to the RNA component and are involved in stabilizing RNA tertiary structure. Many ribosomal proteins share similar alpha+beta sandwich folds, but we show that the topology of this domain varies considerably, as do the ways in which the proteins interact with RNA. Analysis of the protein-RNA interactions in the context of ribosomal assembly shows that the primary binders are globular proteins that bind at RNA multihelix junctions, whereas proteins with long extensions assemble later. We attempt to correlate the structure with a large body of biochemical and genetic data on the 30 S subunit.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacterial Proteins/chemistry
- Bacterial Proteins/metabolism
- Base Sequence
- Binding Sites
- Crystallography, X-Ray
- Microscopy, Electron
- Models, Molecular
- Molecular Sequence Data
- Neutrons
- Nucleic Acid Conformation
- Protein Binding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Protein Subunits
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/metabolism
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
- Scattering, Radiation
- Sequence Alignment
- Thermus thermophilus/chemistry
- Thermus thermophilus/genetics
Collapse
|
22
|
Steen H, Petersen J, Mann M, Jensen ON. Mass spectrometric analysis of a UV-cross-linked protein-DNA complex: tryptophans 54 and 88 of E. coli SSB cross-link to DNA. Protein Sci 2001; 10:1989-2001. [PMID: 11567090 PMCID: PMC2374209 DOI: 10.1110/ps.07601] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Protein-nucleic acid complexes are commonly studied by photochemical cross-linking. UV-induced cross-linking of protein to nucleic acid may be followed by structural analysis of the conjugated protein to localize the cross-linked amino acids and thereby identify the nucleic acid binding site. Mass spectrometry is becoming increasingly popular for characterization of purified peptide-nucleic acid heteroconjugates derived from UV cross-linked protein-nucleic acid complexes. The efficiency of mass spectrometry-based methods is, however, hampered by the contrasting physico-chemical properties of nucleic acid and peptide entities present in such heteroconjugates. Sample preparation of the peptide-nucleic acid heteroconjugates is, therefore, a crucial step in any mass spectrometry-based analytical procedure. This study demonstrates the performance of four different MS-based strategies to characterize E. coli single-stranded DNA binding protein (SSB) that was UV-cross-linked to a 5-iodouracil containing DNA oligomer. Two methods were optimized to circumvent the need for standard liquid chromatography and gel electrophoresis, thereby dramatically increasing the overall sensitivity of the analysis. Enzymatic degradation of protein and oligonucleotide was combined with miniaturized sample preparation methods for enrichment and desalting of cross-linked peptide-nucleic acid heteroconjugates from complex mixtures prior to mass spectrometric analysis. Detailed characterization of the peptidic component of two different peptide-DNA heteroconjugates was accomplished by matrix-assisted laser desorption/ionization mass spectrometry and allowed assignment of tryptophan-54 and tryptophan-88 as candidate cross-linked residues. Sequencing of those peptide-DNA heteroconjugates by nanoelectrospray quadrupole time-of-flight tandem mass spectrometry identified tryptophan-54 and tryptophan-88 as the sites of cross-linking. Although the UV-cross-linking yield of the protein-DNA complex did not exceed 15%, less than 100 pmole of SSB protein was required for detailed structural analysis by mass spectrometry.
Collapse
Affiliation(s)
- H Steen
- Center for Experimental BioInformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark/Odense University, DK-5230 Odense M, Denmark
| | | | | | | |
Collapse
|
23
|
Thiede B, Wittmann-Liebold B. Analysis of RNA-protein cross-link sites by matrix-assisted laser desorption/ionization mass spectrometry and N-terminal microsequencing. Methods Enzymol 2001; 318:438-46. [PMID: 10890004 DOI: 10.1016/s0076-6879(00)18068-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- B Thiede
- Max-Delbruck-Centrum für Molekulare Medizin, Berlin, Germany
| | | |
Collapse
|
24
|
Robert F, Brakier-Gingras L. Ribosomal protein S7 from Escherichia coli uses the same determinants to bind 16S ribosomal RNA and its messenger RNA. Nucleic Acids Res 2001; 29:677-82. [PMID: 11160889 PMCID: PMC30405 DOI: 10.1093/nar/29.3.677] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ribosomal protein S7 from Escherichia coli binds to the lower half of the 3' major domain of 16S rRNA and initiates its folding. It also binds to its own mRNA, the str mRNA, and represses its translation. Using filter binding assays, we show in this study that the same mutations that interfere with S7 binding to 16S rRNA also weaken its affinity for its mRNA. This suggests that the same protein regions are responsible for mRNA and rRNA binding affinities, and that S7 recognizes identical sequence elements within the two RNA targets, although they have dissimilar secondary structures. Overexpression of S7 is known to inhibit bacterial growth. This phenotypic growth defect was relieved in cells overexpressing S7 mutants that bind poorly the str mRNA, confirming that growth impairment is controlled by the binding of S7 to its mRNA. Interestingly, a mutant with a short deletion at the C-terminus of S7 was more detrimental to cell growth than wild-type S7. This suggests that the C-terminal portion of S7 plays an important role in ribosome function, which is perturbed by the deletion.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Binding, Competitive
- Cell Division/genetics
- Escherichia coli/chemistry
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression Regulation, Bacterial
- Genotype
- Molecular Sequence Data
- Molecular Structure
- Mutation
- Nucleic Acid Conformation
- Protein Binding
- Protein Conformation
- Protein Structure, Tertiary
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
Collapse
Affiliation(s)
- F Robert
- Département de Biochimie, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | | |
Collapse
|
25
|
Urlaub H, Raker VA, Kostka S, Lührmann R. Sm protein-Sm site RNA interactions within the inner ring of the spliceosomal snRNP core structure. EMBO J 2001; 20:187-96. [PMID: 11226169 PMCID: PMC140196 DOI: 10.1093/emboj/20.1.187] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2000] [Revised: 11/13/2000] [Accepted: 11/16/2000] [Indexed: 11/14/2022] Open
Abstract
Seven Sm proteins, E, F, G, D1, D2, D3 and B/B', assemble in a stepwise manner onto the single-stranded Sm site element (PuAU(4-6)GPu) of the U1, U2, U4 and U5 spliceosomal snRNAs, resulting in a doughnut-shaped core RNP structure. Here we show by UV cross-linking experiments using an Sm site RNA oligonucleotide (AAUUUUUGA) that several Sm proteins contact the Sm site RNA, with the most efficient cross-links observed for the G and B/B' proteins. Site-specific photo-cross-linking revealed that the G and B/B' proteins contact distinct uridines (in the first and third positions, respectively) in a highly position-specific manner. Amino acids involved in contacting the RNA are located at equivalent regions in both proteins, namely in loop L3 of the Sm1 motif, which has been predicted to jut into the hole of the Sm ring. Our results thus provide the first evidence that, within the core snRNP, multiple Sm protein-Sm site RNA contacts occur on the inner surface of the heptameric Sm protein ring.
Collapse
Affiliation(s)
| | - Veronica A. Raker
- Max-Planck-Institute of Biophysical Chemistry, Department of Cellular Biochemistry, Am Faßberg 11, D-37077 Göttingen and
Max-Delbrück-Center for Molecular Medicine, Department of Protein Chemistry, Robert-Rössle-Straße 10, D-13125 Berlin, Germany Present address: Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti 435, Milano 20141, Italy Corresponding author e-mail: H.Urlaub and V.A.Raker contributed equally to this work
| | - Susanne Kostka
- Max-Planck-Institute of Biophysical Chemistry, Department of Cellular Biochemistry, Am Faßberg 11, D-37077 Göttingen and
Max-Delbrück-Center for Molecular Medicine, Department of Protein Chemistry, Robert-Rössle-Straße 10, D-13125 Berlin, Germany Present address: Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti 435, Milano 20141, Italy Corresponding author e-mail: H.Urlaub and V.A.Raker contributed equally to this work
| | - Reinhard Lührmann
- Max-Planck-Institute of Biophysical Chemistry, Department of Cellular Biochemistry, Am Faßberg 11, D-37077 Göttingen and
Max-Delbrück-Center for Molecular Medicine, Department of Protein Chemistry, Robert-Rössle-Straße 10, D-13125 Berlin, Germany Present address: Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti 435, Milano 20141, Italy Corresponding author e-mail: H.Urlaub and V.A.Raker contributed equally to this work
| |
Collapse
|
26
|
Metzler DE, Metzler CM, Sauke DJ. Ribosomes and the Synthesis of Proteins. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50032-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Urlaub H, Hartmuth K, Kostka S, Grelle G, Lührmann R. A general approach for identification of RNA-protein cross-linking sites within native human spliceosomal small nuclear ribonucleoproteins (snRNPs). Analysis of RNA-protein contacts in native U1 and U4/U6.U5 snRNPs. J Biol Chem 2000; 275:41458-68. [PMID: 11006293 DOI: 10.1074/jbc.m007434200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We describe a novel approach to identify RNA-protein cross-linking sites within native small nuclear ribonucleoprotein (snRNP) particles from HeLa cells. It combines immunoprecipitation of the UV-irradiated particles under semi-denaturing conditions with primer extension analysis of the cross-linked RNA moiety. In a feasibility study, we initially identified the exact cross-linking sites of the U1 70-kDa (70K) protein in stem-loop I of U1 small nuclear RNA (snRNA) within purified U1 snRNPs and then confirmed the results by a large-scale preparation that allowed N-terminal sequencing and matrix-assisted laser desorption ionization mass spectrometry of purified cross-linked peptide-oligonucleotide complexes. We identified Tyr(112) and Leu(175) within the RNA-binding domain of the U1 70K protein to be cross-linked to G(28) and U(30) in stem-loop I, respectively. We further applied our immunoprecipitation approach to HeLa U5 snRNP, as part of purified 25 S U4/U6.U5 tri-snRNPs. Cross-linking sites between the U5-specific 220-kDa protein (human homologue of Prp8p) and the U5 snRNA were located at multiple nucleotides within the highly conserved loop 1 and at one site in internal loop 1 of U5 snRNA. The cross-linking of four adjacent nucleotides indicates an extended interaction surface between loop 1 and the 220-kDa protein. In summary, our approach provides a rapid method for identification of RNA-protein contact sites within native snRNP particles as well as other ribonucleoprotein particles.
Collapse
Affiliation(s)
- H Urlaub
- Abteilung Zelluläre Biochemie, Max-Planck-Institut für Biopysikalische Chemie, Am Fassberg 11, D-37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
28
|
Fredrick K, Dunny GM, Noller HF. Tagging ribosomal protein S7 allows rapid identification of mutants defective in assembly and function of 30 S subunits. J Mol Biol 2000; 298:379-94. [PMID: 10772857 DOI: 10.1006/jmbi.2000.3563] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ribosomal protein S7 nucleates folding of the 16 S rRNA 3' major domain, which ultimately forms the head of the 30 S ribosomal subunit. Recent crystal structures indicate that S7 lies on the interface side of the 30 S subunit, near the tRNA binding sites of the ribosome. To map the functional surface of S7, we have tagged the protein with a Protein Kinase A recognition site and engineered alanine substitutions that target each exposed, conserved residue. We have also deleted conserved features of S7, using its structure to guide our design. By radiolabeling the tag sequence using Protein Kinase A, we are able to track the partitioning of each mutant protein into 30 S, 70 S, and polyribosome fractions in vivo. Overexpression of S7 confers a growth defect, and we observe a striking correlation between this phenotype and proficiency in 30 S subunit assembly among our collection of mutants. We find that the side chain of K35 is required for efficient assembly of S7 into 30 S subunits in vivo, whereas those of at least 17 other conserved exposed residues are not required. In addition, an S7 derivative lacking the N-terminal 17 residues causes ribosomes to accumulate on mRNA to abnormally high levels, indicating that our approach can yield interesting mutant ribosomes.
Collapse
Affiliation(s)
- K Fredrick
- Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064, USA
| | | | | |
Collapse
|
29
|
Cavdar Koc E, Blackburn K, Burkhart W, Spremulli LL. Identification of a mammalian mitochondrial homolog of ribosomal protein S7. Biochem Biophys Res Commun 1999; 266:141-6. [PMID: 10581179 DOI: 10.1006/bbrc.1999.1785] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bovine mitochondrial small subunit ribosomal proteins were separated by two-dimensional electrophoresis. The region containing the most basic protein(s) was excised and the protein(s) present subjected to in-gel digestion with trypsin. Electrospray tandem mass spectrometry was used to provide sequence information on some of the peptide products. Searches of the human EST database using the sequence of the longest peptide analyzed indicated that this peptide was from the mammalian mitochondrial homolog of prokaryotic ribosomal protein S7 (MRP S7(human)). MRP S7(human) is a 28-kDa protein with a pI of 10. Significant homology to bacterial S7 is observed especially in the C-terminal half of the protein. Surprisingly, MRP S7(human) shows less homology to the corresponding mitochondrial proteins from plants and fungi than to bacterial S7.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Base Sequence
- Binding Sites
- Cattle
- DNA, Complementary/genetics
- Databases, Factual
- Expressed Sequence Tags
- Humans
- Isoelectric Point
- Mass Spectrometry
- Mitochondria/chemistry
- Mitochondria/metabolism
- Mitochondrial Proteins/chemistry
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Molecular Sequence Data
- Molecular Weight
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Plant Proteins/chemistry
- Plant Proteins/genetics
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Sequence Alignment
- Sequence Analysis, Protein
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- E Cavdar Koc
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | | | | | | |
Collapse
|
30
|
Golden MC, Resing KA, Collins BD, Willis MC, Koch TH. Mass spectral characterization of a protein-nucleic acid photocrosslink. Protein Sci 1999; 8:2806-12. [PMID: 10631998 PMCID: PMC2144224 DOI: 10.1110/ps.8.12.2806] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A photocrosslink between basic fibroblast growth factor (bFGF155) and a high affinity ssDNA oligonucleotide was characterized by positive ion electrospray ionization mass spectrometry (ESIMS). The DNA was a 61-mer oligonucleotide photoaptamer bearing seven bromodeoxyuridines, identified by in vitro selection. Specific photocrosslinking of the protein to the oligonucleotide was achieved by 308 nm XeCl excimer laser excitation. The cross-linked protein nucleic acid complex was proteolyzed with trypsin. The resulting peptide crosslink was purified by PAGE, eluted, and digested by snake venom phosphodiesterase/alkaline phosphatase. Comparison of the oligonucleotide vs. the degraded peptide crosslink by high performance liquid chromatography coupled to an electrospray ionization triple quadrupole mass spectrometer showed a single ion unique to the crosslinked material. Sequencing by collision induced dissociation (MS/MS) on a triple quadrupole mass spectrometer revealed that this ion was the nonapeptide TGQYKLGSK (residues 130-138) crosslinked to a dinucleotide at Tyr133. The MS/MS spectrum indicated sequential fragmentation of the oligonucleotide to uracil covalently attached to the nonapeptide followed by fragmentation of the peptide bonds. Tyr133 is located within the heparin binding pocket, suggesting that the in vitro selection targeted this negative ion binding region of bFGF155.
Collapse
Affiliation(s)
- M C Golden
- Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215, USA
| | | | | | | | | |
Collapse
|
31
|
Miyamoto A, Usui M, Yamasaki N, Yamada N, Kuwano E, Tanaka I, Kimura M. Role of the N-terminal region of ribosomal protein S7 in its interaction with 16S rRNA which binds to the concavity formed by the beta-ribbon arm and the alpha-helix. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:591-8. [PMID: 10561602 DOI: 10.1046/j.1432-1327.1999.00901.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ribosomal protein S7, a primary 16S rRNA-binding protein, plays an essential role in stabilizing the 3' major domain of 16S rRNA and also in feedback regulation of the str operon, as a translational repressor. We examined amino acid residues in ribosomal protein S7 from Bacillus stearothermophilus (BstS7) that are essential for 16S rRNA binding. Truncation of the N-terminal 10 residues of BstS7 abolished its binding to 16S rRNA, whereas removal of the C-terminal eight residues had no effect on the binding activity. Subsequently, we used site-directed mutagenesis to identify essential basic residues in the N-terminal region for 16S rRNA binding. Mutation of Arg3 and Lys8 significantly weakened the binding activity, and a smaller decrease in binding activity was observed with Arg2 and Arg9 mutations. These observations indicate that N-terminal basic residues, especially Arg3 and Lys8, play a crucial role as positively charged recognition groups for the negatively charged phosphate backbone of 16S rRNA. In addition, the mutagenesis study showed that Arg75, Arg78, Arg94, and Arg101, which are located in a concavity formed by the beta-ribbon arm and the alpha-helix (alpha4), individually make only a small contribution to 16S rRNA binding, but together probably form a positively charged binding site for 16S rRNA. With regard to aromatic residues, Tyr84 on the tip of the beta-ribbon arm was found to be involved in 16S rRNA binding, whereas the conserved aromatic residues Trp102 and Tyr106 in the concavity had little effect. We then probed the 16S rRNA-binding site(s) for the N-terminal region of S7 with iron tethered to the mutant of BstS7 containing a single cysteine residue at position 4. The N-terminal region of S7 is placed in close proximity to helix 43 in the 16S rRNA. Probing also revealed additional cleavages between nucleotides 1397 and 1438, near the P-site region in 16S rRNA. This finding is consistent with a three-dimensional model of 16S rRNA that shows close proximity of helix 43 to the P-site during three-dimensional folding.
Collapse
MESH Headings
- Arginine/chemistry
- Circular Dichroism
- Dose-Response Relationship, Drug
- Geobacillus stearothermophilus/metabolism
- Hydroxyl Radical
- Kinetics
- Lysine/chemistry
- Models, Genetic
- Mutagenesis, Site-Directed
- Mutation
- Nucleic Acid Conformation
- Protein Binding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- Ribosomal Proteins/chemistry
- Spectrometry, Fluorescence
- Tryptophan/chemistry
- Tyrosine/chemistry
Collapse
Affiliation(s)
- A Miyamoto
- Laboratory of Biochemistry, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Markus MA, Gerstner RB, Draper DE, Torchia DA. Refining the overall structure and subdomain orientation of ribosomal protein S4 delta41 with dipolar couplings measured by NMR in uniaxial liquid crystalline phases. J Mol Biol 1999; 292:375-87. [PMID: 10493882 DOI: 10.1006/jmbi.1999.3061] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prokaryotic protein S4 initiates assembly of the small ribosomal subunit by binding to 16 S rRNA. Residues 43-200 of S4 from Bacillus stearothermophilus (S4 Delta41) bind to both 16 S rRNA and to a mRNA pseudoknot. In order to obtain structure-based insights regarding RNA binding, we previously determined the solution structure of S4 Delta41 using NOE, hydrogen bond, and torsion angle restraints. S4 Delta41 is elongated, with two distinct subdomains, one all helical, the other including a beta-sheet. In contrast to the high resolution structures obtained for each individual subdomain, their relative orientation was not precisely defined because only 17 intersubdomain NOE restraints were determined. Compared to the 1.7 A crystal structure, when the sheet-containing subdomains are superimposed, the helical subdomain is twisted by almost 45 degrees about the long axis of the molecule in the solution structure. Because variations in subdomain orientation may explain how the protein recognizes multiple RNA targets, our current goal is to determine the orientation of the subdomains in solution with high precision. To this end, NOE assignments were re-examined. NOESY experiments on a specifically labeled sample revealed that one of the intersubdomain restraints had been misassigned. However, the revised set of NOE restraints produces solution structures that still have imprecisely defined subdomain orientations and that lie between the original NMR structure and the crystal structure. In contrast, augmenting the NOE restraints with N-H dipolar couplings, measured in uniaxial liquid crystalline phases, clearly establishes the relative orientation of the subdomains. Data obtained from two independent liquid crystalline milieux, DMPC/DHPC bicelles and the filamentous bacteriophage Pf1, show that the relative orientation of the subdomains in solution is quite similar to the subdomain orientation in the crystal structure. The solution structure, refined with dipolar data, is presented and its implications for S4's RNA binding activity are discussed.
Collapse
Affiliation(s)
- M A Markus
- Molecular Structural Biology Unit, National Institute of Dental and Craniofacial Research, 30 Convent Drive, Bethesda, Room 106, MD 20892-4310, USA
| | | | | | | |
Collapse
|
33
|
Clemons WM, May JL, Wimberly BT, McCutcheon JP, Capel MS, Ramakrishnan V. Structure of a bacterial 30S ribosomal subunit at 5.5 A resolution. Nature 1999; 400:833-40. [PMID: 10476960 DOI: 10.1038/23631] [Citation(s) in RCA: 277] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The 30S ribosomal subunit binds messenger RNA and the anticodon stem-loop of transfer RNA during protein synthesis. A crystallographic analysis of the structure of the subunit from the bacterium Thermus thermophilus is presented. At a resolution of 5.5 A, the phosphate backbone of the ribosomal RNA is visible, as are the alpha-helices of the ribosomal proteins, enabling double-helical regions of RNA to be identified throughout the subunit, all seven of the small-subunit proteins of known crystal structure to be positioned in the electron density map, and the fold of the entire central domain of the small-subunit ribosomal RNA to be determined.
Collapse
Affiliation(s)
- W M Clemons
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City 84103, USA
| | | | | | | | | | | |
Collapse
|
34
|
Larive CK, Lunte SM, Zhong M, Perkins MD, Wilson GS, Gokulrangan G, Williams T, Afroz F, Schöneich C, Derrick TS, Middaugh CR, Bogdanowich-Knipp S. Separation and analysis of peptides and proteins. Anal Chem 1999; 71:389R-423R. [PMID: 10409086 DOI: 10.1021/a1990013o] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- C K Larive
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wang R, Alexander RW, VanLoock M, Vladimirov S, Bukhtiyarov Y, Harvey SC, Cooperman BS. Three-dimensional placement of the conserved 530 loop of 16 S rRNA and of its neighboring components in the 30 S subunit. J Mol Biol 1999; 286:521-40. [PMID: 9973568 DOI: 10.1006/jmbi.1998.2493] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nucleotides 518-533 form a loop in ribosomal 30 S subunits that is almost universally conserved. Both biochemical and genetic evidence clearly implicate the 530 loop in ribosomal function, with respect both to the accuracy control mechanism and to tRNA binding. Here, building on earlier work, we identify proteins and nucleotides (or limited sequences) site-specifically photolabeled by radioactive photolabile oligoDNA probes targeted toward the 530 loop of 30 S subunits. The probes we employ are complementary to 16 S rRNA nucleotides 517-527, and have aryl azides attached to nucleotides complementary to nucleotides 518, 522, and 525-527, positioning the photogenerated nitrene a maximum of 19-26 A from the complemented rRNA base. The crosslinks obtained are used as constraints to revise an earlier model of 30 S structure, using the YAMMP molecular modeling package, and to place the 530 loop region within that structure.
Collapse
MESH Headings
- Cross-Linking Reagents/radiation effects
- DNA, Complementary/metabolism
- Escherichia coli/chemistry
- Escherichia coli/ultrastructure
- Models, Molecular
- Nucleic Acid Conformation
- Photoaffinity Labels/radiation effects
- RNA, Bacterial/chemistry
- RNA, Bacterial/radiation effects
- RNA, Messenger/chemistry
- RNA, Messenger/radiation effects
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/radiation effects
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/radiation effects
- Ribosomes/chemistry
- Ribosomes/metabolism
- Ribosomes/ultrastructure
Collapse
Affiliation(s)
- R Wang
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Gopalan V, Kühne H, Biswas R, Li H, Brudvig GW, Altman S. Mapping RNA-protein interactions in ribonuclease P from Escherichia coli using electron paramagnetic resonance spectroscopy. Biochemistry 1999; 38:1705-14. [PMID: 10026248 DOI: 10.1021/bi9807106] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ribonuclease P (RNase P) is a catalytic ribonucleoprotein (RNP) essential for tRNA biosynthesis. In Escherichia coli, this RNP complex is composed of a catalytic RNA subunit, M1 RNA, and a protein cofactor, C5 protein. Using the sulfhydryl-specific reagent (1-oxyl-2,2,5, 5-tetramethyl-Delta3-pyrroline-3-methyl)methanethiosulfonate (MTSL), we have introduced a nitroxide spin label individually at six genetically engineered cysteine residues (i.e., positions 16, 21, 44, 54, 66, and 106) and the native cysteine residue (i.e., position 113) in C5 protein. The spin label covalently attached to any protein is sensitive to structural changes in its microenvironment. Therefore, we expected that if the spin label introduced at a particular position in C5 protein was present at the RNA-protein interface, the electron paramagnetic resonance (EPR) spectrum of the spin label would be altered upon binding of the spin-labeled C5 protein to M1 RNA. The EPR spectra observed with the various MTSL-modified mutant derivatives of C5 protein indicate that the spin label attached to the protein at positions 16, 44, 54, 66, and 113 is immobilized to varying degrees upon addition of M1 RNA but not in the presence of a catalytically inactive, deletion derivative of M1 RNA. In contrast, the spin label attached to position 21 displays an increased mobility upon binding to M1 RNA. The results from this EPR spectroscopy-based approach together with those from earlier studies identify residues in C5 protein which are proximal to M1 RNA in the RNase P holoenzyme complex.
Collapse
Affiliation(s)
- V Gopalan
- Department of Biology, Yale University, New Haven, Connecticut 06520, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Fewell SW, Woolford JL. Ribosomal protein S14 of Saccharomyces cerevisiae regulates its expression by binding to RPS14B pre-mRNA and to 18S rRNA. Mol Cell Biol 1999; 19:826-34. [PMID: 9858605 PMCID: PMC83939 DOI: 10.1128/mcb.19.1.826] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/1998] [Accepted: 09/24/1998] [Indexed: 11/20/2022] Open
Abstract
Production of ribosomal protein S14 in Saccharomyces cerevisiae is coordinated with the rate of ribosome assembly by a feedback mechanism that represses expression of RPS14B. Three-hybrid assays in vivo and filter binding assays in vitro demonstrate that rpS14 directly binds to an RNA stem-loop structure in RPS14B pre-mRNA that is necessary for RPS14B regulation. Moreover, rpS14 binds to a conserved helix in 18S rRNA with approximately five- to sixfold-greater affinity. These results support the model that RPS14B regulation is mediated by direct binding of rpS14 either to its pre-mRNA or to rRNA. Investigation of these interactions with the three-hybrid system reveals two regions of rpS14 that are involved in RNA recognition. D52G and E55G mutations in rpS14 alter the specificity of rpS14 for RNA, as indicated by increased affinity for RPS14B RNA but reduced affinity for the rRNA target. Deletion of the C terminus of rpS14, where multiple antibiotic resistance mutations map, prevents binding of rpS14 to RNA and production of functional 40S subunits. The emetine-resistant protein, rpS14-EmRR, which contains two mutations near the C terminus of rpS14, does not bind either RNA target in the three-hybrid or in vitro assays. This is the first direct demonstration that an antibiotic resistance mutation alters binding of an r protein to rRNA and is consistent with the hypothesis that antibiotic resistance mutations can result from local alterations in rRNA structure.
Collapse
Affiliation(s)
- S W Fewell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
38
|
Davies C, Gerstner RB, Draper DE, Ramakrishnan V, White SW. The crystal structure of ribosomal protein S4 reveals a two-domain molecule with an extensive RNA-binding surface: one domain shows structural homology to the ETS DNA-binding motif. EMBO J 1998; 17:4545-58. [PMID: 9707415 PMCID: PMC1170785 DOI: 10.1093/emboj/17.16.4545] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We report the 1.7 A crystal structure of ribosomal protein S4 from Bacillus stearothermophilus. To facilitate the crystallization, 41 apparently flexible residues at the N-terminus of the protein have been deleted (S4Delta41). S4Delta41 has two domains; domain 1 is completely alpha-helical and domain 2 comprises a five-stranded antiparallel beta-sheet with three alpha-helices packed on one side. Domain 2 is an insertion within domain 1, and it shows significant structural homology to the ETS domain of eukaryotic transcription factors. A phylogenetic analysis of the S4 primary structure shows that the likely RNA interaction surface is predominantly on one side of the protein. The surface is extensive and highly positively charged, and is centered on a distinctive canyon at the domain interface. The latter feature contains two arginines that are totally conserved in all known species of S4 including eukaryotes, and are probably crucial in binding RNA. As has been shown for other ribosomal proteins, mutations within S4 that affect ribosome function appear to disrupt the RNA-binding sites. The structure provides a framework with which to probe the RNA-binding properties of S4 by site-directed mutagenesis.
Collapse
Affiliation(s)
- C Davies
- Department of Structural Biology, St Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38105, USA
| | | | | | | | | |
Collapse
|
39
|
Thiede B, Urlaub H, Neubauer H, Grelle G, Wittmann-Liebold B. Precise determination of RNA-protein contact sites in the 50 S ribosomal subunit of Escherichia coli. Biochem J 1998; 334 ( Pt 1):39-42. [PMID: 9693099 PMCID: PMC1219658 DOI: 10.1042/bj3340039] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
RNA-protein cross-linked complexes were isolated and purified to obtain precise data about RNA-protein contact sites in the 50 S ribosomal subunit of Escherichia coli. N-terminal microsequencing and matrix-assisted laser desorption ionization MS were used to identify the cross-linking sites at the amino acid and nucleotide levels. In this manner the following contact sites of five ribosomal proteins with the 23 S rRNA were established: Lys-67 of L2 to U-1963, Tyr-35 of L4 to U-615, Lys-97 of L21 to U-546, Lys-49 of L23 to U-139 or C-140 and Lys-71 and Lys-74 of L27 to U-2334.
Collapse
Affiliation(s)
- B Thiede
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Strasse 10, D-13125 Berlin, Germany
| | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- A L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco 94143-0446, USA
| | | | | |
Collapse
|
41
|
Kalurachchi K, Nikonowicz EP. NMR structure determination of the binding site for ribosomal protein S8 from Escherichia coli 16 S rRNA. J Mol Biol 1998; 280:639-54. [PMID: 9677294 DOI: 10.1006/jmbi.1998.1915] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many cellular processes involve the preferential interaction of an RNA molecule with a specific protein. A detailed analysis of the individual protein and RNA components of these interactions can provide unique insights into the structural features important for protein-RNA recognition. Ribosomal protein S8 of Escherichia coli plays a key role in 30 S ribosomal subunit assembly through its interaction with 16 S rRNA. The binding site for protein S8 comprises a portion of helix 21, nucleotides G588 to G604 and C634 to C651. This region forms a base-paired helix that is interrupted by a non-Watson-Crick segment composed of nine phylogenetically conserved nucleotides. We have investigated the detailed structure of the conserved segment and the interaction of this region with metal ions using NMR spectroscopy. Twenty-four of the 40 calculated structures converged to similar conformations and were grouped into two families. The main difference between the families is the orientation of the base of U641. The rms deviation between the heavy-atoms of the ten lowest-energy structures is 1.24 A. The orientations of the G597.C643 base-pair and A595.(A596.U644) base-triple within the conserved core have been defined and appear to extend the proximal segment of helix 21 into the phylogenetically conserved core. The base of A642 terminates this helix by stacking against C643 and the base of U641 forms hydrogen bonds with core nucleotides. The conserved core also contains a Mg2+-binding site that promotes stabilization of the secondary and tertiary structure elements of the core. A model for the interaction of S8 with its RNA-binding site is proposed.
Collapse
Affiliation(s)
- K Kalurachchi
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | | |
Collapse
|
42
|
Ramakrishnan V, White SW. Ribosomal protein structures: insights into the architecture, machinery and evolution of the ribosome. Trends Biochem Sci 1998; 23:208-12. [PMID: 9644974 DOI: 10.1016/s0968-0004(98)01214-6] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Models of the bacterial ribosome based on recent structural analyses are beginning to provide new insights into the protein synthetic machinery. Central to evolving models are the high-resolution structures of individual ribosomal proteins, which represent detailed probes of their local RNA and protein environments. Ribosomal proteins are extremely ancient molecules; the structures therefore also provide a unique window into early protein evolution. Many of the proteins contain domains that are present in more recently evolved families of RNA- and DNA-binding proteins. Such structural homology can be used to predict mechanisms by which proteins interact with RNA in the ribosome.
Collapse
Affiliation(s)
- V Ramakrishnan
- Dept of Biochemistry, University of Utah School of Medicine, Salt Lake City 84132, USA
| | | |
Collapse
|
43
|
Farrow MA, Aboul-ela F, Owen D, Karpeisky A, Beigelman L, Gait MJ. Site-specific cross-linking of amino acids in the basic region of human immunodeficiency virus type 1 Tat peptide to chemically modified TAR RNA duplexes. Biochemistry 1998; 37:3096-108. [PMID: 9485463 DOI: 10.1021/bi972695v] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Human Immunodeficiency Virus type 1 Tat protein interacts specifically with a U-rich bulge within an RNA stem-loop known as the trans-activation responsive region (TAR) that occurs in all viral transcripts. We have photochemically cross-linked to Tat peptide (37-72), a model TAR duplex substituted at U23 in the bulge by 4-thioU. We have identified the cross-linked amino acid as Arg55 in the basic region of the Tat peptide by use of a combination of proteolytic digestions and MALDI-TOF mass spectrometric analysis. The identification also required use of a synthetic Tat peptide containing a site-specific, uniformly 13C and 15N isotopically labeled arginine. We also describe a new chemical procedure for obtaining site-specific cross-links to Tat via the use of 2'-beta-alanyl U-substituted TAR and the amino-specific reagent dithiobis(succinimidyl propionate). U23-2'-functionalized TAR was shown to cross-link uniquely to Lys51 in the basic region of Tat, whereas other sites in the upper and lower stems of TAR (U35, U38, and U42) showed cross-linking only to the N-terminus of Tat peptide (37-72). U40 cross-linked to both Lys51 and the N-terminus of the peptide. The results help to establish a preliminary model of the binding of Tat peptide to the major groove of TAR RNA.
Collapse
Affiliation(s)
- M A Farrow
- Laboratory of Molecular Biology, Medical Research Council, Hills Road, Cambridge CB2 2QH, U.K
| | | | | | | | | | | |
Collapse
|
44
|
Crain PF, McCloskey JA. Applications of mass spectrometry to the characterization of oligonucleotides and nucleic acids. Curr Opin Biotechnol 1998; 9:25-34. [PMID: 9503584 DOI: 10.1016/s0958-1669(98)80080-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mass spectrometry-based techniques continue to undergo active development for applications to nucleic acids, fueled by methods based on electrospray and matrix-assisted laser desorption ionization. In the past two years, notable advances have occurred in multiple interrelated areas, including sequencing techniques for oligonucleotides, approaches to mixture analysis, microscale sample handling and targeted DNA assays, and improvements in instrumentation for greater sensitivity and mass resolution.
Collapse
Affiliation(s)
- P F Crain
- University of Utah, Department of Medicinal Chemistry, Salt Lake City 84112-5820, USA.
| | | |
Collapse
|
45
|
Favre A, Saintomé C, Fourrey JL, Clivio P, Laugâa P. Thionucleobases as intrinsic photoaffinity probes of nucleic acid structure and nucleic acid-protein interactions. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1998; 42:109-24. [PMID: 9540218 DOI: 10.1016/s1011-1344(97)00116-4] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the past few years thionucleobases have been extensively used as intrinsic photolabels to probe the structure in solution of folded RNA molecules and to identify contacts within nucleic acids and/or between nucleic acids and proteins, in complex nucleoprotein assemblies. These thio residues such as 4-thiouracil found in E. coli tRNA and its non-natural congeners 4-thiothymine, 6-thioguanine and 6-mercaptopurine absorb light at wavelengths longer than 320 nm and, thus, can be selectively photoactivated. Synthetic or enzymatic procedures have been established, allowing the random or site-specific incorporation of thionucleotide(s) within a RNA (DNA) chain which, in most cases, retains unaltered structural and biological properties. Owing to the high photoreactivity of their triplet state (intersystem yield close to unity), 4-thiouracil and 4-thiothymine derivatives exhibit a high photocrosslinking ability towards pyrimidines (particularly thymine) but also purines. From the nature of the photoproducts obtained in base or nucleotide mixtures and in dinucleotides, the main photochemical pathway was identified as a (2 + 2) photoaddition of the excited C-S bond onto the 5, 6 double bond of pyrimidines yielding thietane intermediates whose structure could be characterized. Depending on the mutual orientation of these bonds in the thietanes, their subsequent dark rearrangement yielded, respectively, either the 5-4 or 6-4 bipyrimidine photoadduct. A similar mechanism appears to be involved in the formation of the unique photoadduct formed between 4-thiothymidine and adenosine. The higher reactivity of thymine derived acceptors can be explained by an additional pathway which involves hydrogen abstraction from the thymine methyl group, followed by radical recombination, leading to methylene linked bipyrimidines. The high photocrosslinking potential of thionucleosides inserted in nucleic acid chains has been used to probe RNA-RNA contacts within the ribosome permitting, in particular, the elucidation of the path of mRNA throughout the small ribosomal subunit. Functional interactions between the mRNA spliced sites and U RNAs could be detected within the spliceosome. Analysis of the photocrosslinks obtained within small endonucleolytic ribozymes in solution led to a tertiary folded pseudo-knot structure for the HDV ribozyme and allowed the construction of a Y form of a hammerhead ribozyme, which revealed to be in close agreement with the structure observed in crystals. Thionucleosides incorporated in nucleic acids crosslink efficiently amino-acid residues of proteins in contact with them. Despite the fact that little is known about the nature of the photoadducts formed, this approach has been extensively used to identify protein components interacting at a defined nucleic acid site and applied to various systems (replisome, spliceosome, transcription complexes and ribosomes).
Collapse
Affiliation(s)
- A Favre
- Institut Jacques Monod, CNRS-Université Paris VII, France
| | | | | | | | | |
Collapse
|
46
|
Hosaka H, Nakagawa A, Tanaka I, Harada N, Sano K, Kimura M, Yao M, Wakatsuki S. Ribosomal protein S7: a new RNA-binding motif with structural similarities to a DNA architectural factor. Structure 1997; 5:1199-208. [PMID: 9331423 DOI: 10.1016/s0969-2126(97)00270-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The ribosome is a ribonucleoprotein complex which performs the crucial function of protein biosynthesis. Its role is to decode mRNAs within the cell and to synthesize the corresponding proteins. Ribosomal protein S7 is located at the head of the small (30S) subunit of the ribosome and faces into the decoding centre. S7 is one of the primary 16S rRNA-binding proteins responsible for initiating the assembly of the head of the 30S subunit. In addition, S7 has been shown to be the major protein component to cross-link with tRNA molecules bound at both the aminoacyl-tRNA (A) and peptidyl-tRNA (P) sites of the ribosome. The ribosomal protein S7 clearly plays an important role in ribosome function. It was hoped that an atomic-resolution structure of this protein would aid our understanding of ribosomal mechanisms. RESULTS The structure of ribosomal protein S7 from Bacillus stearothermophilus has been solved at 2.5 A resolution using multiwavelength anomalous diffraction and selenomethionyl-substituted proteins. The molecule consists of a helical hydrophobic core domain and a beta-ribbon arm extending from the hydrophobic core. The helical core domain is composed of a pair of entangled helix-turn-helix motifs; the fold of the core is similar to that of a DNA architectural factor. Highly conserved basic and aromatic residues are clustered on one face of the S7 molecule and create a 16S rRNA contact surface. CONCLUSIONS The molecular structure of S7, together with the results of previous cross-linking experiments, suggest how this ribosomal protein binds to the 3' major domain of 16S rRNA and mediates the folding of 16S rRNA to create the ribosome decoding centre.
Collapse
Affiliation(s)
- H Hosaka
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Wimberly BT, White SW, Ramakrishnan V. The structure of ribosomal protein S7 at 1.9 A resolution reveals a beta-hairpin motif that binds double-stranded nucleic acids. Structure 1997; 5:1187-98. [PMID: 9331418 DOI: 10.1016/s0969-2126(97)00269-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Ribosomal protein S7, a crucial RNA-binding component of the ribosome, is one of two proteins that initiates assembly of the 30S ribosomal subunit. It is required for proper folding of a large 3' domain of 16S ribosomal RNA. S7 regulates its own synthesis by binding to its own mRNA. This ability of S7 to bind both messenger and ribosomal RNAs makes determination of its mode of RNA recognition particularly interesting. RESULTS The crystal structure of S7 from Thermus thermophilus was determined by a two-wavelength anomalous diffraction experiment using the LIII edge of mercury. The S7 structure consists of a bundle of six helices and an extended beta hairpin between helices 3 and 4, with two or more RNA-binding sites on its surface. The hairpin, along with portions of helices 1, 4 and 6, forms a large, positively charged, concave surface that has the appropriate curvature and dimensions to bind double-stranded RNA. A second putative RNA-binding site comprises parts of loop 2 and the helix 4-loop 5 turn. CONCLUSIONS Structural similarity between S7 and the IHF/HU family of proteins strongly suggests that the beta hairpin of S7 binds to a groove of double-stranded RNA. The beta hairpin of S7 is also similar to those from other nucleic acid binding proteins, such as ribosomal protein L14 and BIV Tat, suggesting that it belongs to an extended family of such motifs, all of which bind to a groove of double-stranded nucleic acid. The residues in S7 loop 2 that belong to the second putative RNA-binding site may have a role analogous to the N-terminal residues of IHF/HU which grip an unbent portion of double helix.
Collapse
Affiliation(s)
- B T Wimberly
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City 84132, USA
| | | | | |
Collapse
|
48
|
Mueller F, Brimacombe R. A new model for the three-dimensional folding of Escherichia coli 16 S ribosomal RNA. II. The RNA-protein interaction data. J Mol Biol 1997; 271:545-65. [PMID: 9281425 DOI: 10.1006/jmbi.1997.1211] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The map of the mass centres of the 21 proteins from the Escherichia coli 30 S ribosomal subunit, as determined by neutron scattering, was fitted to a cryoelectron microscopic (cryo-EM) model at a resolution of 20 A of 70 S ribosomes in the pre-translocational state, carrying tRNA molecules at the A and P sites. The fit to the 30 S moiety of the 70 S particles was accomplished with the help of the well-known distribution of the ribosomal proteins in the head, body and side lobe regions of the 30 S subunit, as determined by immuno electron microscopy (IEM). Most of the protein mass centres were found to lie close to the surface (or even outside) of the cryo-EM contour of the 30 S subunit, supporting the idea that the ribosomal proteins are arranged peripherally around the rRNA. The ribosomal protein distribution was then compared with the corresponding model for the 16 S rRNA, fitted to the same EM contour (described in an accompanying paper), in order to analyse the mutual compatibility of the arrangement of proteins and rRNA in terms of the available RNA-protein interaction data. The information taken into account included the hydroxyl radical and base foot-printing data from Noller's laboratory, and our own in situ cross-linking results. Proteins S1 and S14 were not considered, due to the lack of RNA-protein data. Among the 19 proteins analysed, 12 (namely S2, S4, S5, S7, S8, S9, S10, S11, S12, S15, S17 and S21) showed a fit to the rRNA model that varied from being excellent to at least acceptable. Of the remaining 7, S3 and S13 showed a rather poor fit, as did S18 (which is considered in combination with S6 in the foot-printing experiments). S16 was difficult to evaluate, as the foot-print data for this protein cover a large area of the rRNA. S19 and S20 showed a bad fit in terms of the neutron map, but their foot-print and cross-link sites were clustered into compact groups in the rRNA model in those regions of the 30 S subunit where these proteins have respectively been located by IEM studies.
Collapse
Affiliation(s)
- F Mueller
- AG-Ribosomen, Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, Berlin, 14195, Germany
| | | |
Collapse
|